
Hopkins, Tim and Morse, David R. (1996) The Implementation and Visualisation
of a Large Spatial Individual-Based Model using Fortran 90. Technical
report. UKC, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21328/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21328/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Implementation and Visualisation of a Large
Spatial Individual-Based Model using Fortran 90

Tim Hopkins and David R. Morse
Computing Laboratory, University of Kent at Canterbury,

Canterbury, Kent CT2 7NF, UK

October 10, 1996

Abstract

We look in detail at the implementation of a simulation of the spread of Bar-
ley Yellow Dwarf Virus in a barley field. The model considers explicitly each in-
dividual plant and aphid, therefore it requires special care to reduce the amount of
storage used whilst still producing a computationally efficient code. We attempt
to quantify the cost of some of the decisions made in terms of their memory and
processor time requirements. Finally we briefly consider the visualisation of the
results and how the amount of data produced by the model may be reduced to a
manageable level.
KEYWORDS: BARLEY YELLOW DWARF VIRUS, SIMULATION

1 Introduction

The increased power and availability of computers in recent years has led to the de-
velopment of two new types of ecological simulation model: individual-based mod-
els and spatially-explicit models. In the former, each biological entity in the model
is simulated at the level of the individual organism rather than the population level
(see DeAngelis & Gross [6], Judson [10] and Kawata & Toquenaga [11] for reviews).
Among other things, this allows individual variation to be simulated [8]. In the latter
type of model, space is represented explicitly, usually on an extended regular array of
patches, with communication (or migration) often being restricted to between adjacent
patches rather than global communication with all the patches in the model (see for
example, Hassell, Comins & May [7], [4]. These spatial simulation models have been
developed in recognition of the important part that spatial heterogeneity has to play in
influencing population dynamics.

Spatial and individual-based ecological models use substantial computing resources
— both processing power and memory [18], hence there are relatively few examples
of individual-based spatially-explicit ecological simulation models in the literature.
Those models which have been developed have tended to use special purpose, paral-
lel computers such as transputer networks [15], or the Connection Machine [5], [17].
There have been relatively few examples of individual-based spatially-explicit ecolog-
ical models which have been developed on general purpose computer hardware.

1

In this paper we describe the implementation of a reasonably simple model for the
spread of Barley Yellow Dwarf Virus (BYDV). It is an economically important pest of
cereal crops and wild grasses worldwide [16]. It causes yellowing of the leaves and
often results in significant yield losses in cereals. The approach used here is to model
the individual plants in a cereal crop and the aphids in an attempt to obtain a better
understanding of the population dynamics of the aphid and the mechanisms involved
in the spread of the virus. Because of the very large amounts of data involved a naive
approach is doomed to failure due to storage considerations. We therefore consider
a number of ways in which we can reduce the amount of memory required to store
data and discuss some of the implications these may have on the resultant run times.
Finally, we consider how the results of the simulation may be visualised and discuss
how data storage demands may also be reduced during this phase.

In section 3 we look in detail at the steps involved in the simulation and follow
that with a careful consideration of the storage requirements of the model and discuss
why we chose Fortran 90 as the implementation language. Section 6 provides some
timing and performance measurements obtained from running the resultant Fortran
90 implementation on a medium and a large simulation. This is followed by some
examples of the way in which an off-the-shelf visualisation system may be used to
provide a clear pictorial view of the results along with a discussion on minimising the
amount of results data that this requires. We conclude the paper with an evaluation of
the final code and a short discussion of how extensions to the model may affect the
efficiency of the code.

2 Barley Yellow Dwarf Virus

Barley Yellow Dwarf Virus infects a wide range of grasses worldwide, including cere-
als. It is one of the most economically important diseases of grasses [16]. The virus
can only be transmitted from one plant to another by aphids such as Rhopalsiphum
padi (L.) feeding on the phloem of the host plant [16]. BYDV does not reproduce
within the aphid.

The disease is spread in two ways by the aphids [13]:

� Primary infection takes place when infective, winged (alate) aphids migrate onto
the crop from reservoir populations of the virus elsewhere;

� Secondary infection results from dispersal of the offspring of the migrant aphids.
Note that these aphids first have to acquire infection by feeding on an infected
plant before they can pass it on to another plant.

Control measures aimed at halting the spread of BYDV are targetted at the sec-
ondary infection phase by reducing or eliminating the spread of BYDV by the off-
spring of the infective immigrant aphids. This is achieved by applying an aphicide
spray to control the aphids. Comparatively little is known about the factors which de-
termine the rate at which this secondary spread of the disease advances through the
crop. However, a recent simulation model developed by McElhany et al. [12] has in-
dicated that factors such as the preference of the aphid vector for diseased or healthy
hosts plants can be important in determining the rate of secondary spread. Other mod-
els of the spread of BYDV have been more or less successful in predicting the spatial

2

and temporal dynamice of the disease and the factors which influence its spread [13],
[14].

3 Details of the Simulation

We attempt to simulate the spread of BYDV in a cereal field by keeping track of the
position and state of the individual aphids and by considering their effect on individ-
ual barley plants. The simulation consists of a sequence of days during which the
following events take place in the order indicated:

1. Immigration of aphids: over a defined period of consecutive days at the be-
ginning of the simulation period a predetermined number of winged aphids are
randomly placed on the individual barley plants in the field. This random place-
ment models immigrant winged aphids being blown into the field. Every plant
is equally likely to be assigned an immigrant aphid. Each immigrant aphid is
assumed to be of the same age. A probability threshold is provided which deter-
mines which of the immigrant aphids are infected with BYDV.

2. Based on given daily temperature data, the development and reproductive rates
for all the aphids in the simulation are calculated.

3. For each aphid in the field,

(a) Its age is updated based on the daily development rate calculated in step 2
above. Newly born aphids become wingless morphs and wingless morphs
die when their computed ‘ages’ exceed one.
Note: no winged aphids develop during the simulation.

(b) Based on the daily reproductive rate, newly born aphids appear on the same
plant as their parents.
Note: these newly born aphids immediately become part of the population,
i.e., their ages are first updated and they may move plants on their day of
birth.

(c) Its position may change; movement occurs when a given probability thresh-
old is exceeded. The current simulation allows a choice of two dispersal
models

i. purely random: the aphid is transported to a random point in the field.
ii. movement is restricted to a nearest neighbour move with the probabil-

ities as given in Figure 1.

These probabilities were chosen as a first approximation in modelling the
tendency of aphids to move between plants in the same row in a cereal
field [16]. This movement preference reflects the fact that inter-plant spac-
ing is closer within rows than it is between rows of plants. The move-
ment preferences chosen contrast with those employed by McElhany et
al. [12] who constrained movement to be to the four nearest neighbours
only (excluding the diagonals) and had higher probabilities on within row
movement (p � ����) and lower probabilities on between row movement
(p � ����) than those indicated in Figure 1.

3

0.2 0.2

0.1 0.1 0.1

0.1 0.1 0.1y

x

Figure 1: Probabilities of aphid dispersal to the nearest neighbour plant. The rows run
parallel to the x-axis.

4. The virus states of the aphid and the plant on which the aphid is feeding are
updated. An infected aphid always feeds upon its current plant, passing on the
infection. A healthy aphid is always infected if it settles on an infected plant.
The incubation periods for both plant and aphid are given and have been as-
sumed to be constant in time.

5. We are primarily interested in visualising

(a) The spread of the virus among the cereal.

(b) The population dynamics of the aphid population (the position and the
number of infected aphids, and the general population are both of interest).

4 Storage Requirements of the Model

In order to provide a realistic model we require the cereal field to contain between one
and ten million plants. This corresponds to a planting density of 300 plants/m� and a
field plot which is of the order of 100m�. We assume that there is an immigrant aphid
population of between two and twenty thousand aphids per day during the immigration
period. For ��� plants we specified an immigrant population of 2000 aphids/day for
four days and for ��� plants, 20000 aphids/day for four days. The resultant populations
after 30 days were �� ��� and �� ��� aphids respectively. Clearly with this amount
of data careful consideration needs to be given to the methods used to represent both
the plant and aphid information.
We need to maintain data on the following variables in the simulation model:

� for each individual aphid, its

– current age (a real value in the range [0,1])

– life stages (one of newly born, wingless, winged or dead)

– position in the field (x, y coordinate – a pair of integers)

4

– BYDV status (one of infected, incubating, or uninfected)

– incubation period (the number of days the virus has been incubating – used
to update the BYDV status from incubating to infected).

� for each individual plant, its

– BYDV status (one of infected, incubating, or uninfected)

– incubation period (the number of days before a plant, bitten by an infected
aphid, itself becomes infected – used to update the BYDV status from
incubating to infected).

A naive storage scheme might use five integers (one each for the life stage, the x-
coordinate, the y-coordinate, the BYDV status and the incubation period) and a real
number (the age) for each aphid and two integers for each plant (the BYDV status
and the incubation period). (The coordinate information for the plants being implicitly
obtained using a two dimensional array.) This gives conservative storage requirements
of

��� plants �� � ��� aphids = 27 Mbytes
��� plants �� � ��� aphids = 270 Mbytes

where both integers and reals are assumed to require 32 bits. Even with the current
cheap state of memory the higher figure is unlikely to be available to most research
workers. The use of integer and real arrays would make access to the data relatively
fast, although this would necessitate allocating storage space in advance in statically
allocated languages such as Fortran 77 with the accompanying problem of accurately
estimating an upper bound on the final number of aphids.

Therefore a naive implementation of the model would represent the data as arrays
of records (or their equivalent if the programming language does not support structured
data types); a one-dimensional array for the aphids and a two-dimensional array for the
plants.

4.1 Improvements to the Storage Requirements

We can reduce the storage requirements of the model by noting that the two dimen-
sional view of the data is not necessary for coding the simulation, as all accesses to
plants can be directly mapped into a one dimensional array. The actual coordinates of
each plant are only required for nearest neighbour calculations and the final visuali-
sation of the data. This reduces the field position of which plant the aphid is on to a
single integer.

To avoid the need to reserve array space we implement the storage of the aphid data
as a linked list of records, where each individual aphid has its age, life state, position,
BYDV status and incubation period recorded. The major disadvantage of a simple
linked list over an array is the loss of fast random access to the data. However, in this
application, we are only interested in accessing the aphids sequentially. There are also
time overheads involved in packing and unpacking the records to extract the required
data, and the hidden storage overhead of the pointers involved in the linked list.

5

The data within the aphid record can be compressed even further, again decreasing
the storage required, but further increasing the overheads of packing and unpacking
the data. For example, the aphid data could be represented as follows

� age = 32 bits (real)

� life status = 2 bits (only 4 possible states)

� position in the field = 24 bits (range �� ��� i.e., � ���� � ���� plants)

� BYDV status = 2 bits (only 3 possible states)

� incubation period = 4 bits (allows up to 15 days).

It should be noted that the last four fields may be packed into a 32 bit integer and
thus the data associated with each aphid has been compressed to 8 bytes and a pointer
(normally 4 bytes). The storage requirements given earlier in this section are then
reduced to 17.6Mb and 176Mb respectively.

We note that although the age of the aphid requires updating at each time step,
if no other data associated with that aphid changes, there is no need to repack the
compressed data.

We require to access the plant data randomly (typically we wish to ascertain ef-
ficiently whether the plant at a given coordinate is infected) so linked lists cannot be
considered practical because of their sequential access mechanism. As far as the sim-
ulation of the plant population is concerned we are only interested in whether a plant
is infected or not. Thus provided we temporarily store the positions of the incubating
plants in some efficient manner we may reduce the plant array to a bit array. Provided
the incubation period is short (4 days is typical), and that not too many plants are in-
cubating at any time, we may also store the incubating plants as linked lists. This has
a storage overhead of an integer and one pointer for each incubating plant.

The final structure used for storing the plant data was a bit array to store the in-
fected/uninfected state of each plant along with a circular list of linked lists storing the
coordinates of incubating plants. On completing the incubation period these plant lists
are used to update the bit array and the storage is reused. Figure 2 gives a pictorial
view of this data structure.

coord

coord

coord

...

coord

coord

coord

...

...

...

Null

Null

Null

Figure 2: Incubating plants data structure (see text for further explanations).

6

The circular list at the head of the data structure just provides easy updating of the
pointers recording the current day and end of incubation day pointers.

The storage space required is then reduced to �������n� bytes for ��� plants and
����� � �n� bytes for ��� plants where n� and n� are the maximum number of plants
incubating at any one time.

An alternative method of storing the plant data would be to allocate an extra in-
cubation bit for each plant. This method is only more efficient if � ���% of all the
plants are infected over any incubation period.

5 Language Choice

Any language supporting the use of pointers and providing facilities for the simple
manipulation of bits would be suitable for implementing the simulation; two of the
more popular languags are C and Fortran 90. Fortran 90 [9] was chosen since it pro-
vides the ability, via HPF (High Performance Fortran [1], [2], [3]), to port the code
onto a parallel architecture such as a DEC Alpha Cluster. In addition, by making use
of the module facility available in the new Fortran language, we may use information
hiding. This means that it is possible to build the simulation software so that the user
is unaware of the underpinning data structures. Indeed the effects of any change to the
data structure are localised within a single module and, since all access to this module
is at a subroutine level, no changes are required elsewhere in the simulation code.

For example, the aphid-control module contains a number of publically callable
routines which allow

1. an aphid’s record to be unpacked into its components and repacked into a, pos-
sibly compressed, record;

2. newly born aphids to be added to the list and dead ones deleted;

3. a count to be kept of the number of aphids at each life stage, and so on.

A similar approach may be used for manipulating the plant data, both for storing the
incubating plants and for recording those infected.

6 Performance of the Simulation Software

All code was developed on a Silicon Graphics Indy with a 133MHz R4000 processor
and 32Mbytes of memory running Irix 5.3 and using the Edinburgh Portable Compiler
Fortan 90 system. It was also successfully compiled and run on a Sun Sparc 10 using
the Craysoft and NAG Fortran 90 systems without any source code changes.

The results reported in this section refer to simulations on square grids of p plants
in each direction (i.e., p� plants in total) with �����p� immigrant aphids on each of the
first four days. The immigrant aphids are all winged aphids aged 0.5 with a probability
of ��� of being infected with BYDV. The probability that an aphid moves during the
course of a day is ����. The simulation takes place between days 70 and 100.

All timings were obtained using the Fortran 90 intrinsic function system clock.
Care was taken to ensure that the machine was, as far as is possible with any networked

7

machine, only processing the simulation model. Multiple runs were made and the
shortest reported time used.

Table 3 shows the total CPU time used along with the final number of aphids for
p � ���, ���� and ���� using a linked list to store the aphid information and packing
the coordinate, life stage, incubation time and BYDV status into a single integer.

Plants # Immigrant Aphids Final # Aphids CPU seconds
��� � ��� 2000 �� ��� 8.5

��� 8000 �� ��� 41
��� � ��� 20000 ��� � ��� 130
�� ��� 32000 	�� � ��� 460

Figure 3: Results on 133MHz SG Indy using EPC Fortran 90 with highest level of
optimization

A more detailed breakdown of these timings is given in Figure 4 where the CPU
time required for each day of the simulation is plotted. It may clearly be seen that, as
p increases, the CPU time required to process each day of the simulation increases far
more rapidly towards the end of simulation. Indeed the plot for p � ���� is almost
linear over the last ten days whilst it shows a very steep rise for larger values of p.
The reason for the large jumps at day 99 for p � ���� and at day 96 for p � ����

may be explained by the dramatic increase in the number of page faults (from 1 when
p � ���� to 96,800 when p � ����) which take place as the data structures grow.
It may also be the case that the run time system is attempting to free extra space by
garbage collecting. In real terms, for p � ����, this book-keeping work by the system
is accounting for around 50% of the processor time used for the simulation.

0

10

20

30

40

50

60

70

80

90

70 75 80 85 90 95 100

S
ec

on
ds

Day

CPU Time/day of Simulation

"1000x1000"
"1500x1500"
"2000x2000"

Figure 4: CPU time required for each day of the simulation

8

Figure 5 shows the number of records in the linked list storing the aphid data at
the end of each day, this includes all newly born, wingless and winged aphids. Any
aphids which die or go outside the grid are deleted from the list. The flat portion of
the curve (days 78–88) shows the period between the immigrant aphids dying and the
newly born aphids reaching reproductive age.

0

100

200

300

400

500

600

700

800

70 75 80 85 90 95 100

A
ph

id
s

(1
00

0)

Day

Growth of Aphid Population

Figure 5: Aphid population for each day of the simulation (p � ����)

Figure 6 shows the growth in the total number of plants becoming infected with
time. The bottom line shows the number of plants becoming infected on each day of
the simulation and the middle line shows how many plants are being stored in the data
structure for that day. This is one area in which the data storage could be improved.
The problem is that if a plant is bitten by more than one aphid multiple copies of its
coordinates are stored in the linked list. As the aphid population grows this problem
becomes more pronounced, the excess is, however, quite small when compared to
the storage required for the extra bit for each plant necessary to efficiently prevent
duplicate entries.

Packing the aphid records into an integer and a real as described in Section 4.1
did allow larger problems to be tackled. Tests using this extra packing indicated an
overhead of approximately 15%.

Finally the simulation was implemented using an array of packed records; this
provided the saving in space but required setting the length of the array storing the
aphid data at the start of the simulation. The execution times are comparable for the
smaller values of p but for the larger domains (p � ���� and p � ����) they do
not exhibit the page fault problem to the same degree (just 10,000 page faults for
p � ����). The run time for p � ���� was 200 seconds with the effects of swapping
not evident until day 97. The delayed effects of swapping are due to the fact that using
arrays does not incur storage overheads for pointers.

9

0

1000

2000

3000

4000

5000

6000

7000

8000

70 75 80 85 90 95 100

P
la

nt
s

Day

Infected Plant Data

"Infected_by_day"
"Number_stored"

"Total_infected"

Figure 6: Aphid population for each day of the simulation

7 Visualizing the output

The simulation contains state information on at least one million plants and one million
aphids, each of which has the potential to be updated during each time step (equivalent
to a day) of the simulation. While this data could be summarized in one or a few values,
(see for example Figures 5 and 6), clearly much information is lost, particularly on the
spatial aspects of the dynamics of the model. Some data reduction is almost inevitable
given the amount of storage which would be required to store all the data generated by
the simulation and its dimensionality. There are also too many variables in the data for
them to be simultaneously displayed and interpreted easily.

One of the most basic views of the output of the simulation is an animation of the
spread of infected plants and aphids as the simulation progresses. Overlaid on top of
this could be contour maps or iso-surfaces showing the distribution and abundance of
the aphids — both the infected and the uninfected populations. A single frame from
such an animation (corresponding to the state of the simulation at day 100) is shown
in Figure 7.

There are at least two ways in which the data required for such a display can be
produced. One is to dump the state of the entire simulation at the end of each time
step; the second is just to produce the changes in the state of the simulation which
have occurred during the last time step. There is a trade-off here which depends on
what proportion of the simulation state changes. With simulations such as the BYDV
simulation where the stored state is large compared to the changes between one time
step and the next (particularly in the early stages of the simulation when the size of
the infected patches are small) then the former approach is preferable. For example,
in most simulations, the size of the file containing all the changes to a simple map of
the spread of infected plants for an entire simulation is smaller than that which would
have been produced by dumping the state of infection of all the plants in the simulation

10

in a single time step. In other simulations such as those involving cellular automata
or those of Hassell, Comins & May [7], [4] where virtually all the simulation state
changes at each time step, then the saving through just producing the changes in state
are minimal or nonexistent.

Other ways in which the size of the data files which the simulation produced could
be reduced were to use standard UNIX file compression tools and to write the files as
binary files rather than ASCII files.

As well as the data storage issue, a second issue is extracting the required state
information from the simulation. In general, state information which was stored in ar-
rays, such as the plant infection status could be extracted easily simply by printing out
the arrays at each time step. Other information was more difficult to extract, such as
the aphid data (which was stored in linked lists) although summary information could
be accumulated at each time step as each aphid was processed. Relating the aphid and
plant states and the changes in state and movement of the aphids was particularly diffi-
cult and involved generating extremely large data files which were then post-processed
by simple programs to extract the relevant data in a form which could be visualized.

In general it proved simpler to separate physically the simulation and visualization
functions of the modelling process by using graphical and visualization packages such
as Uniras and Explorer. These were linked to the simulation by using temporary files.
An alternative approach would have been to have included bespoke graphical display
facilities in the simulation. While this would have made the simulation easier to use, it
would have reduced the potential for analysing the simulation output in non-standard
ways.

8 Summary and Conclusions

We have used Fortran 90 to produce an efficient implementation of a relatively sim-
ple individual-based model for the spread of BYDV within a cereal field. The new
pointer facilities available in Fortran 90 allowed us to use data structures that grew
with the aphid population and the bit level intrinsic functions provided a portable, stor-
age efficient means of storing the state (infected/uninfected) of each plant. These same
intrinsic functions also meant that we could compress the data describing each individ-
ual aphid as far as possible and this allowed much larger problems to be solved, albeit
with the computational overhead of packing and unpacking the data.

The use of pointers does lead to overheads in both storage and CPU time due to
page faults as the data structures grow. The use of arrays, which required length infor-
mation to be provided at compile time, alleviated this problem by reducing the number
of page faults for a given size problem. Certainly the move to High Performance For-
tran (HPF) will necessitate the use of an array based data structure although individual
aphid data could still be packed. The advantage which HPF brings is that it makes
it much easier to distribute the simulation over multiple processors, which is another
way of improving the performance of such simulations.

One of the problems with individual-based models is that of visualizing the vast
amounts of data that describe the state of the model at each stage of the simulation.
With our relatively simple model we were primarily concerned with the spread of the
disease within the plants. We could thus restrict the data required to update our view

11

of the plants at the end of each time step to just the coordinates of any newly infected
plants. To obtain a detailed view of the aphid population is more complex. Some
information like the number of aphids at each life stage or the number of infected and
uninfected aphids can easily be updated as the aphid data is sequentially processed.
Other views of the data, especially those requiring links between the plants and the
aphids were more difficult to obtain and generated very large data files. Improvements
may be possible in this area by recording aphid movements and state changes and
post-processing these to form animations.

Future work in this area will investigate both distributing the simulation among a
number of processors using HPF and increasing the complexity and biological realism
of the actual model. We will also be considering how we can couple the computation
and visualization parts of the simulation more tightly together. Such a coupling will
allow a more interactive exploration of the behaviour of the simulation under various
parameter combinations and changes rather than a post-hoc analysis of the results. We
are also investigating how simulation and visualization tools can be linked in a network
transparent manner so that the two essential components of the modelling process can
be run in parallel on different processors.

References

[1] Anonymous. High Performance Fortran language specification (part I). ACM
Fortran Forum, 12(4):1–86, December 1993.

[2] Anonymous. High Performance Fortran language specification (part II). ACM
Fortran Forum, 13(2):87–150, June 1994.

[3] Anonymous. High Performance Fortran language specification (part III). ACM
Fortran Forum, 13(3):22–55, September 1994.

[4] H.N. Comins, M.P. Hassell, and R.M. May. The spatial dynamics of host para-
sitoid systems. Journal of Animal Ecology, 61(3):735–748, 1992.

[5] R. Costanza and T. Maxwell. Spatial ecosystem modeling using parallel proces-
sors. Ecological Modelling, 58(1–4):159–183, 1991.

[6] D.L. DeAngelis and L.J. Gross. Individual-based models and approaches in
ecology. Chapman & Hall, London, 1992.

[7] M.P. Hassell, H.N. Comins, and R.M. May. Spatial structure and chaos in insect
population-dynamics. Nature, 353(6341):255–258, 1991.

[8] M. Huston, D. Deangelis, and W. Post. New computer-models unify ecological
theory. Bioscience, 38(10):682–691, 1988.

[9] ISO/IEC. Information Technology – Programming Languages – Fortran
(ISO/IEC 1539:1991(E)). ISO/IEC Copyright Office, Geneva, 1991.

[10] O.P. Judson. The rise of the individual-based model in ecology. Trends in Ecology
& Evolution, 9(1):9–14, 1994.

12

[11] M. Kawata and Y. Toquenaga. From artificial individuals to global patterns.
Trends in Ecology & Evolution, 9(11):417–421, 1994.

[12] P. McElhany, L.A. Real, and A.G. Power. Vector preference and disease dynam-
ics — a study of barley yellow dwarf virus. Ecology, 76(2):444–457, 1995.

[13] D. Morgan. A simulation model of BYDV epidemiology. Proceedings of CYM-
MIT Workshop on Barley Yellow Dwarf Virus — 1987, pages 300–304, 1989.

[14] D. Morgan, N. Carter, and P.C. Jepson. Modelling principles in relation to the
epidemiology of barley yellow dwarf virus. Bulletin IOBC/WPRS, 11:27–32,
1988.

[15] D.R. Morse. Spatial simulation modelling of insect population dynamics on a
transputer network. In J. Kerridge, editor, Transputers and occam research: new
directions, pages 66–75, Netherlands, 1993. IOS Press.

[16] A.G. Power. Competition between viruses in a complex plant-pathogen system.
Ecology, 77(4):1004–1010, 1996.

[17] E. Uziel and M.W. Berry. Parallel models of animal migration in Northern Yel-
lowstone National Park. International Journal of Supercomputer Applications
and High Performance Computing, 9(4):237–255, 1995.

[18] F. Villa. New computer architectures as tools for ecological thought. Trends in
Ecology & Evolution, 7(6):179–183, 1992.

13

(a)

(b)

Figure 7: (a) Healthy and (b) infected aphid numbers on each plant in a simulation on
a ������� lattice. The dark grey areas denote plants which have been infected by the
BYDV virus. (The size of the simulation was reduced for clarity on a small figure.)

14

