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Abstract. An important aspect in the specification of distributed systems is
the role of the internal (or unobservable) operation. Such operations are not
part of the interface to the environment (i.e. the user cannot invoke them),
however, they are essential to our understanding and correct modelling of the
system. In this paper we are interested in the use of the formal specification
notation Z for the description of distributed systems. Various conventions have
been employed to model internal operations when specifying such systems in
7. TIf internal operations are distinguished in the specification notation, then
refinement needs to deal with internal operations in appropriate ways.

Using an example of a telecommunications protocol we show that standard Z
refinement is inappropriate for refining a system when internal operations are
specified explicitly. We present a generalization of Z refinement, called weak re-
finement, which treats internal operations differently from observable operations
when refining a system. We discuss the role of internal operations in a Z spec-
ification, and in particular whether an equivalent specification not containing
internal operations can be found. The nature of divergence through livelock is
also discussed.

Correspondence and offprint requests to: John Derrick, Computing Laboratory, University of
Kent, Canterbury, CT2 7NF, UK.

* This work was partially funded by British Telecom Research Labs., and the EPSRC under
grant number GR/K13035.



2 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steen
1. Introduction

The Z specification language [Spi89] has gained a certain amount of acceptance
in the software community as an industrial strength formal method. Z is a state-
based language based upon set theory and first order logic. The most common
style of specification in Z is the so called “state plus operations” style, where a
collection of operations describe changes to the state space. The state space and
operations are described as schemas, and the schema calculus has proved to be
an enduring structuring mechanism for specifying complex systems.

A growing literature and a number of industrial case studies have demon-
strated the usability of the language, and attention is being turned to new do-
mains of applicability - one such example being the use of Z for the specification
of concurrent and distributed systems [Cus91, Rud91, MZ94, Lam94, Str95].
However, concurrent and distributed systems place a number of requirements
on notations used to specify such systems, and, in particular, one aspect that is
important is the role of the internal (or unobservable) operation. Internal opera-
tions are not part of the interface to the environment (i.e. the user cannot invoke
them), however, they are essential to our understanding and correct modelling of
the system. Such operations (or actions) arise naturally in distributed systems,
either as a result of modelling concurrency or the non-determinism that is inher-
ent in a model of such a system. For example, internal operations can be used to
model communication (e.g. as in the language CCS [Mil89]), non-determinism
arises as a by-product of this interpretation. Internal operations are also central
to obtaining abstract specification through hiding, a particularly important ex-
ample of this is to enable communication to be internalised - a central facet in
the design of distributed systems.

The majority of formal notations which have been designed with concurrent
systems in mind have a notion of internal action, event or operation as part
of the language or its semantics. Examples include CCS [Mil89], CSP [Hoa85]
and LOTOS [BB88]. In particular, internal events have an important role in the
theory of process algebras, and a special symbol is reserved for the occurrence
of such an internal event (e.g. 7 in LOTOS or 7 in CCS).

In addition to the description, i.e., specification, of a system an important
benefit that formal methods offer is the ability to develop a system’s specification
according to some theory of refinement in that language. Examples include the
use of refinement in Z [Spi89, WD96], VDM [Jon89] or bisimulation in a pro-
cess algebra [Mil89]. However, if internal events are distinguished in a particular
specification notation, then the theory of refinement in that language should deal
with such internal events in an appropriate way. One way is to treat an internal
event no differently from observable events, the strong bisimulation relation in a
process algebra is an example of an equivalence relation adopting such a conven-
tion. However, it is well recognised that strong bisimulation is inappropriate as a
refinement relation because it discriminates too many specifications that might
reasonably be seen as equivalent. Therefore internal events in refinement and
equivalence relations typically have a different role than the observable events of
the system. Examples of relations in which the observable is differentiated from
the internal are weak bisimulation [Mil89], testing equivalence [Bri88], reduc-
tion and extension [BSS86], failures refinement [Hoa85] and Hennessy’s testing
pre-orders [Hen88]. Central to these relations is the understanding that internal
events are unobservable, and that refinement relations must refine the observable
behaviour of a specification differently from the internal aspects of its behaviour.
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Now that Z is being used for the specification of concurrent or distributed sys-
tems, a number of authors have recognised the need to explicitly specify internal
operations separately from the observable interface, and a number of conventions
have been adopted for their description. In each case the internal operation is
specified as normal and either has a distinguished name or informal commen-
tary telling us that it is not part of the interface to the environment (we will see
examples of both approaches below). This approach immediately raises two ques-
tions. Firstly, is it possible to dispense with such internal operations by adding
their behaviour to the observable interface in some fashion? Secondly, if internal
operations are to appear explicitly in a Z specification, we need to consider the
possibility of refining these specifications. How should we treat the refinement of
internal operations in Z? This paper seeks to address these issues. In particular,
we shall show that the standard Z refinement rules are inappropriate for the
refinement of internal operations. We make a proposal called weak refinement
which seeks to offer a correct generalisation of refinement when specifications
contain internal operations. This has a similar relation to ordinary Z refinement
as weak bisimulation does to strong bisimulation in a process algebra. In par-
ticular, we define weak refinement by considering the stand point of an external
observer of the system, who manipulates operations in the user interface.

Such an external observer will require that a retrieve relation is still defined
between the state spaces of the abstract and concrete specifications and that each
abstract observable operation AOp is recast as a concrete observable operation
COp. The weak refinement relation is defined to ensure that the observable
behaviour of the concrete specification is a refinement of the observable behaviour
of the abstract specification.

We will also consider to what extent internal operations are necessary and
whether we can dispense with them. For specifications that do not contain live-
lock (i.e., infinite sequences of internal events) we will argue that we can dispense
with the explicit use of internal operations in the specification. For specifications
containing divergence in the form of livelock whether we can dispense with their
explicit specification will turn out to depend on the interpretation of divergence
used.

Throughout the paper we assume the state plus operations style of Z speci-
fication, and our discussion takes place within that context.

The structure of the paper is as follows. In Section 2 we review the use
of internal operations in Z specifications. Section 3 presents an example of a
specification and refinement involving internal operations, the example illustrates
that standard Z refinement is inappropriate in the presence of internal operations.
Section 4 formulates the generalization that we call weak refinement, which is
motivated by the treatment of internal events in process algebras. Section 5
revisits the protocol example to show that weak refinement has the required
properties of a refinement where internal operations have been specified. Section
6 considers whether we can dispense with internal operations and the role of
divergence in answering that question. Section 7 discusses some properties of
weak refinement, related work is then reviewed in Section 8, and we conclude in
Section 9.
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2. Internal Operations

In the traditional approach to the specification of sequential systems in Z, the
operations specified represent the interface to the environment. That is, a state
change occurs in the system if and only if the environment invokes one of the op-
erations. Each operation therefore represents a potential observable event of the
system under construction, and this is usually an acceptable model. However,
when modelling concurrent and distributed systems it is convenient to model
internal events. These internal events represent operations over which the en-
vironment has no control (hence the name internal), but are still necessary to
specify in a full description of the system. Since they are not part of the envi-
ronmental or user interface they can be invoked by the system whenever their
pre-conditions hold. They can arise either due to the natural non-determinism
of a distributed system [Hoa85], or due to communication within the system
[Mil89] or due to some aspect of the system being hidden at this level of ab-
straction [BB88]. The necessity for the specification of internal events in process
algebras is well recognised [Mil89], and a number of researchers have found it
convenient or necessary to specify internal operations in 7Z when specifying dis-
tributed systems [CW92, WJ94, Raf94, Str95, WD96, DBBS96a].

For example, Strulo [Str95] considers the use of Z in network management and
describes the need for both observable and internal operations in this application
area. A particular example is described of a network manager’s view of a router
within a network. There, alarm notifications are a typical example of internal
events which are specified as usual but with informal commentary describing
which operations are observable and which are internal. A similar approach and
application area is described in [WJ94, Raf94].

Cusack and Wezeman, in [CW92], adopt a number of conventions for the use
of Z for the specification of OSI network management standards. In particular,
they make the distinction between internal and observable operations according
to whether an operation has input/output: operations which use AState but have
neither input or output variables are internal (unobservable) actions, correspond-
ing to the internal event in LOTOS. All other operations can be thought of as
interactions with the environment, or external operations [CW92]. Their work
is placed in an object-oriented setting and they consider notions of subtyping
based upon conformance instead of refinement.

In [DBBS964a] a distinguishing name (i) is used to denote which operations
are internal. The motivation there was to provide a direct mapping between
events in LOTOS and operations in Z in order to support the use of multiple
viewpoints in the Open Distributed Processing reference model [ITU95].

Woodcock and Davies [WD96] also use informal commentary to describe
which operations are internal and which are observable. They also comment on
whether these internal operations add to the expressive power of the language,
saying: It should be clear that we could dispense with such operations, but only
by adding the required degree of non-determinism to the remainder of the speci-
fication. We will give a constructive proof of this statement in Section 6.

Evans in [Eva97] considers the use of Z for the specification of parallel sys-
tems, and in particular discusses issues of liveness and fairness in dynamic speci-
fications. Internal operations are specified as in [WD96], and he also considers the
refinement relations needed for Z specifications of concurrent systems. Similar
work has appeared in other state-based formalisms. For example, Butler [But97]
considers the specification and refinement of internal actions in the B method
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[Abr96]. There, internal actions are specified explicitly in an abstract machine.
Additional work in this area also includes the work of Lano, e.g. [Lan97].

In each case the internal operation is specified as normal and either has a dis-
tinguished name or informal commentary telling us that it is not part of the user
interface. We will see examples of both below. Used in this way, Z is clearly suf-
ficient as a notation for the specification of internal operations or events, and as
can be seen from the examples referenced above, internal events are needed when
Z is used to specify parts of a distributed system which contain large amounts
of state information. Typical of this application area are managed objects or
the information viewpoint of the Open Distributed Processing reference model,
where the specifications contain a lot of state but there is also a need to model
internal operations such as alarms.

This section has reviewed the use of internal operations in 7 specifications,
the next section considers an example of their specification and refinement.

3. Refinement

A 7 specification describes the state space together with a collection of opera-
tions. The Z refinement relation [Spi89, WD96], defined between two Z specifi-
cations, allows both the state space and the individual operations to be refined
in a uniform manner?.

Operation refinement is the process of recasting each abstract operation AOp
into a concrete operation COp, such that, informally, the following holds. The
pre-condition of COp may be weaker than the pre-condition of AOp, and COp
may have a stronger post-condition than AOp. That is, COp must be applicable
whenever AOp is, and if AOp is applicable, then every state which COp might
produce must be one of those which AOp might produce. Data refinement ex-
tends operation refinement by allowing the state space of the concrete operations
to be different from the state space of the abstract operations.

Consider an abstract specification with state space Astate, operation AQOp,
and initialisation Ainit, and a refined specification with state space Cstate, oper-
ation COp, and initialisation Cinit. Refinement is defined in terms of an abstrac-
tion schema or retrieve relation, usually called Ret, Retrieve or Abs, which relates
the abstract and concrete states. It has the same signature as Astate A Cstate,
and its property holds if the concrete state is one of those which represent the
abstract state [Spi89]. The retrieve relation does not need to be total nor func-
tional. The concrete specification is a refinement of the abstract specification if
the following conditions hold:

Initialisation V Cstate’ o Cinit - 3 Astate’ o Ainit A Ret’
Applicability V Astate; Cstate o pre AOp A Ret F pre COp

Correctness V Astate; Cstate; Cstate' e pre AOp A Ret A COp + 3 Astate’ o
Ret' A AOp

An illustration of refinement will be given in the following subsection.

There is a growing body of experience and literature concerning refinement in
the traditional context of sequential systems specified in Z, e.g. [WD96]. However,

t We consider only refinements defined by forward simulations in this paper. Similar results
could be obtained for backwards simulations if needed.
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these refinement rules assume all operations are observable. How does refinement
behave if some of the operations are internal or unobservable?

As an illustration of refinement involving internal operations we consider the
specification and refinement of a telecoms protocol (the Signalling System No.
7 standard) adapted from [WD96, HMR89]. The first specification defines the
external view of the protocol, subsequently we develop a sectional view which
specifies the route that messages take through the protocol. [HMR®&9] discusses
the formalisation of the informal specification in more depth, our purpose here
is to use the formalisation given in [WD96] as an illustrative example.

3.1. Specification 1: the external view

Let M be the set of messages that the protocol handles. The state of the system
is represented by the state schema Faxt, and comprises two sequences which
represent messages that have arrived in the protocol (in), and those that have
been forwarded (out).

__Ext
in, out : seq M

Jds:seq M e in =35 out

Incoming messages are added to the left of in, and the messages contained in in
but not in out represent those currently inside the protocol. The state invariant
specifies that the protocol must not corrupt or re-order. Initially, no messages
have been sent, and this is specified by the following initialisation schema:

ExtInit = [Emt' | ' = ()]

The specification at this level is completed by the description of two op-
erations which model the transmission (Transmit) and reception (Receive) of
messages into and out of the protocol. In the specification of the Receive op-
eration, either no message is available (e.g. all messages are en route in the
protocol) or the next one is output, at this level of abstraction this choice is
made non-deterministically. The specifications are straightforward?.

_ Transmit
AExt
m?: M

in' = (m?) " in
out' = out

__ Receive

AEzxt

in' = in
#Hout' = F#out + 1V out' = out

¥ The Receive operation could, if desired, actually output the transmitted value, however this
is immaterial to our concerns here.
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3.2. Specification 2: the sectional view

The second specification describes the sectional view which specifies the route
the messages take through the protocol in terms of a number of sections. Each
section in the protocol may receive and send messages, and those which have been
received, but not yet sent on, are in the section. The messages pass through the
sections in order. Let N be the number of sections. In the state schema, ins i
represents the messages currently inside section %, rec ¢ the messages that have
been received by section 7, and sent i the messages that have been sent onwards
from section i. The state and initialisation schemas are then given by

_ Section _ SectionlInit
rec, ins, sent : seq(seq M) Section’
N = #rec = #ins = #sent Vi:1..N e
rec — ins ™ " sent rec' i =ins' i = sent’ i = ()
front sent = tail rec

where 7 denotes pairwise concatenation of the two sequences (so for every i

we have rec i = ins i ~ sent i). The predicate front sent = tail rec ensures that
messages that are sent from one section are those that have been received by the
next. This specification also has operations to transmit and receive messages,
and they are specified as follows:

_ STransmit
ASection
m?: M

head rec’ = (m?) ™ (head rec)
tail rec’ = tail rec
sent’ = sent

__ SReceivey
ASection

rec’ = rec

front ins' = front ins
last ins' = front(last ins)
front sent’ = front sent

last sent’ = (last(last ins)) ~ (last sent)

SReceive = SReceiveg V ESection

Here, the new message received is added to the first section in the route by
the operation STransmit.

The operation SReceive will deliver a message from the last section in the
route. In the external view presented above, messages arrive non-deterministically
because we did not model the interior of the protocol. In the sectional view this
non-determinism is represented by the progress of the messages through the sec-
tions. Therefore in this more detailed design, we need to specify how the messages
make progress through the sections. We do so by defining an operation Daemon
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which non-deterministically selects a section to make progress. The oldest mes-
sage is then transferred to the following section, and nothing else changes. The
important part, of this operation is given by:

__ Daemong
ASection
3i:1.N 1|

insi#£()e

ins'i = front(ins 1)
ins' (i + 1) = (last(ins 1)) " ins(i + 1)
Vi:1.N|j#iNj#i+1eins'j=insj

The informal commentary accompanying the specification tells us that Daemon
is an internal operation, and so can be invoked by the system whenever its pre-
condition holds. As noted in [WD96]: This operation is not part of the user in-
terface. The user cannot invoke Daemon, but it is essential to our understanding
of the system and to its correctness.

The sectional view is in some way a refinement of the external view, where
the retrieve relation is given by:

__ Retrieve
Ext
Section

head rec = in
last sent = out

We note that the retrieve relation used here is a total function, i.e., V Section e
3, Ext e Retrieve.

Under this refinement STransmit and SReceive correspond to Transmit and
Receive respectively, and the internal operation Daemon corresponds to the ex-
ternal operation ZFEzt, i.e. the identity operation on FExt. The refinement is
proved correct by showing that (where we have omitted the appropriate quan-
tification over the states):

SectionInit A Retrieve’ = Extlnit

pre Transmit A Retrieve = pre STransmit

pre Transmit A\ Retrieve A STransmit A Retrieve’ = Transmit
pre Receive A Retrieve = pre SReceive

pre Receive A Retrieve A SReceive N\ Retrieve’ = Receive
preZEzt A Retrieve = pre Daemon

pre 2Ext A Retrieve A Daemon N\ Retrieve' = SExt

The refinement is discussed in [WD96]. This completes the first refinement
of the external view.

Let us summarise the situation so far. We can specify a system that contains
non-determinism in some of the operations in its user interface (e.g. Receive),
but which does not contain any internal operations. We can then refine this
specification to one that contains internal operations that correctly models (in
the sense of a refinement existing between the specifications) the abstract spec-
ification. We have used the standard Z refinement relations, which have been
perfectly adequate at this level.
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3.3. Specification 3: refining internal operations

However, let us look at the refinement of the internal operation Daemon again.
As it stands Daemong represents the functionality that for non-empty sections
(ins i # ()) we transfer a message along the sections. But in order that the
complete operation Daemon refines =Fxt, Daemony must be extended to ensure
that

preZEzt A Retrieve = pre Daemon

i.e. that Daemon is always applicable.

This means that the internal operation Daemon can always be invoked by
the system, and therefore we have introduced livelock into the specification. This
would not be acceptable in an implementation.

The alternative to this would be to leave Daemon as Daemong, i.e., just
specify the intended behaviour. However, now it is not a refinement since

pre ZFEzt A Retrieve = pre Daemon

fails. We will return to this point later.

Suppose for the moment that we are given the sectional view specification
containing an internal operation Daemon = Daemong, we can now refine this
further. In particular we can refine the Daemon operation. This operation is
partial (as it does not specify what happens if ins i = () for every i), and using
the standard Z refinement rules we can weaken its pre-condition, and refine it to
the following:

— NDaemon
ASection
(Vi:1.N—1;3Im: Meinsi={)ANins'l =(m)) V
(3i:1.N 1|
insi#£()e

ins'i = front(ins 1)
ins'(i + 1) = (last(ins 1)) " ins(i + 1)
Vi:1.N|j#iANj#i+1eins'j=insj)

This operation includes the same functionality as before, except that in addition
the system can invoke it non-deterministically (since it is an internal opera-
tion) initially to insert an arbitrary message into the first section. Thus initially
there are two possible behaviours of the system: as before the user could in-
voke Transmit to insert a message into the protocol, or now the system could
non-deterministically invoke NDaemon which corrupts the input stream of the
protocol before the user has inserted any messages (ins'l = (m)).

The specification which contains the sectional view operations together with
this new NDaemon in place of Daemon is a refinement of the sectional view.
Yet clearly implementations which introduce arbitrary amounts of noise into a
stream of protocol messages are unacceptable. But in these situations, using
standard Z refinement this has been allowed to happen, what has gone wrong?

We have used standard Z refinement here, and at issue is the refinement of
internal operations. Internal operations have behaviour which isn’t subject to
the normal interpretation of operations that are in the user interface, therefore
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it is not surprising that the standard refinement rules bring about unexpected
and undesirable consequences.

Furthermore, the standard refinement rules allow the possibility of livelock
or divergence to be added when we refine an internal operation. For example, the
Daemon internal operation in the sectional view could be replaced by a divergent
version, DDaemon, specified by:

__DDaemon
ASection

ins' = ins

The specification containing this operation as an internal operation is a refine-
ment of the external view. However, the system now contains divergence in that
DDaemon can be invoked non-deterministically an arbitrary number of times,
causing a livelock.

The introduction of livelock is not due to the introduction of an internal
operation Daemon refining the identity on Ezt, ZFxt. To see this it is sufficient
to note that a divergent version of NDaemon given by

_ DNDaemon
ASection

(Vi:1.N—1eins i =) Ains' = ins)V
(Fi:1.N-1|
ins i £ ()e
ins'i = front(ins 1)
ins' (i + 1) = (last(ins 1)) " ins(i + 1)
Vi:1.N|j#iNj#i+1eins'j=ins j)

is a refinement of Daemon, and introduces similar potential livelock at the initial
system state.

The weak refinement rules presented below will contain two conditions which
are necessary and sufficient to prevent divergence being introduced upon refine-
ment. An alternative approach to these rules which explicitly prevent livelock
being introduced is to adopt a non-catastrophic interpretation of divergence, this
approach is discussed in Section 6.1 below.

3.4. The firing condition interpretation

The firing condition interpretation is a potential solution to the problems en-
countered when refining internal operations described by Strulo in [Str95]. It has
the merit of simplicity, but, as we shall see, perhaps constrains refinement too
far. Strulo calls internal operations active, and operations in the user interface
passive. The firing condition interpretation is the idea that the pre-condition
of an operation specifies when the operation can happen instead of saying that
an operation is undefined, but possible, outside its pre-condition. That is, the
pre-condition represents the guard of an operation.

To define refinement, Strulo identifies three regions for an operation (uncon-
strained, empty and interesting). The three regions of an operation represent;:
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The unconstrained region: states where the operation is divergent because
no constraints are made on the after state;

The empty region: states outside the usual pre-condition but which aren’t
divergent, and the operation is considered to be impossible in this region;
and

The interesting region: the remaining states where some but not all after
states are allowed.

The applicability and correctness refinement rules are then re-interpreted for
internal operations as:

F COp = AOp
F (3 State’ @ AOp) A (3 State’ @ = AOp) = (3 State’ o COp) A (3 State’ @ = COp)

In terms of these interpretations and the regions of definition of an operation,
the first condition prevents an operation becoming possible (unconstrained or
interesting) where it was impossible (empty), and the second condition ensures
that the concrete operation doesn’t become impossible (empty) where it was
defined and possible (interesting).

For a full discussion the reader should consult [Str95]. It is worth remark-
ing that no data refinement is considered here and that these rules constitute
conditions for operation refinement only.

We can apply these ideas to the above example, and in doing so we find
that with the firing condition interpretation, NDaemon is not a refinement of
Daemon. This is because it is not true that

F NDaemon = Daemon

Thus this interpretation successfully stops the pre-condition of an internal op-
eration from being weakened. However, in order to achieve this the rules place
a barrier between observable and unobservable operation refinements. In par-
ticular, for hybrid specifications (ones involving both internal and observable
operations), the refinement rules used depend on the type of operation - stan-
dard refinement for observable operations, and the firing condition interpretation
for internal operations.

However, the division is not always as simple as that, on occasion we may
wish to introduce internal operations during a refinement, or we may wish to
remove internal operations in a refinement. The refinement of the external view
to the sectional view is an example of the introduction of internal operations,
and we will give an example of their removal shortly.

The consequence of this is that, unfortunately, under the firing condition in-
terpretation we find that the sectional view is not a refinement of the external
view of the protocol, because now Daemon does not correspond to =ZFzt under
the firing condition interpretation refinement rules (since we are adding an ex-
plicit internal operation when there was no one previously). To overcome this,
can we restrict the use of the firing condition interpretation refinement rules to
when the abstract operation is internal? The following example illustrates that
we cannot.

Consider an abstract specification with an operation AOp in the user in-
terface, and an internal operation IOp. The concrete specification consists of a
single operation COp. Both have state space State consisting of a mode : {0,1}.
Initially mode is set to 0. The only operations in the specifications are given by:
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_AOp _10p
A State A State

error! : yes | no

mode = 0 A mode' =1

mode =1 A mode' =0
error! = yes

__COp
AState

error! : yes ‘ no

mode = mode' = 0 A error! = yes

With these specifications their observable behaviour is identical to an ex-
ternal observer. Therefore it is natural to view the concrete specification as a
refinement of the abstract. In the abstract, after invoking AOp an error message
will occur (triggered by the internal operation I0p happening, which it eventu-
ally always will®). Likewise in the concrete specification, after invoking COp an
error message will occur. This type of removal of internal events lies at the heart
of all treatments of internal operations in process algebras. However, under the
firing condition interpretation, the concrete operation is not a refinement of the
abstract, because no operation that was possible can become impossible - even
if the internal behaviour has moved elsewhere T.

Summarising the discussion so far, we have found that the standard notion
of refinement in Z is too liberal in the presence of internal operations. Problems
have arisen because of the interpretation of internal operations which have al-
lowed undesirable behaviour to be introduced into a refinement, including the
possibility of divergence through livelock. By considering the pre-condition of an
operation to represent its guard, an alternative approach to refinement is devel-
oped in [Str95]. However, this involves a different interpretation of operations,
and the refinement of internal behaviour can be too strict as the example above
shows. In the next section we will seek an alternative generalization of refinement
motivated by the treatment of internal events in process algebras.

4. Weak Refinement

To define weak refinement we will consider the standpoint of an external observer
who is concerned with the observable operations only. Such an external observer
will require that a retrieve relation is still defined between the state spaces of
the abstract and concrete specifications and that each observable operation AOp
is recast as a concrete operation COp. The refinement relation will ensure that
the observable behaviour of the concrete specification is a refinement of the
observable behaviour of the abstract specification.

Three of the weak refinement rules have the same form as standard refine-
ment:

§ We are assuming an implicit weak fairness condition here, that if an internal operation is
continuously offered it eventually will be taken. This is the standard assumption to make
[Led91], and we do not discuss it further in this paper.

T The issue of internal operations having output is discussed in Section 5.2.
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Initialisation V Cstate’ o Cinit, - 3 Astate’ o Ainit, N Ret’
Applicability V Astate; Cstate o pre,, AOp A Ret |- pre,, COp

Correctness V Astate; Cstate; Cstate’ » pre, AOp A Ret A COp,, - 3 Astate' o
Ret' A AOp,,

except that the subscript w denotes a weak counterpart which we will define
below and involves sequences of internal operations.

In addition, we introduce two conditions that prevent the introduction of
divergence upon refinement, they are:

D1 Ret+- E € WF
D2 VieRetANiFE < E

where the quantification in D2 is over all internal operations in the concrete
specification, and (WF,<) is a well-founded set and E an expression in the state
variables!!.

To motivate our ideas the next subsection reviews the treatment of internal
events in process algebras, and we use these ideas in our formulation of weak
refinement which will follow.

4.1. Internal events in Process Algebras

Refinement in a process algebra is defined in terms of the transitions a behaviour
or process can undergo. We write P —%» P’ if a process (or behaviour) P can
perform the action a and then evolve to the process P’. Refinements and equiv-
alences are defined in terms of a systems transitions. Typically, for each relation,
two versions are possible - a strong relation which treats all actions identically
whether observable or not, and a weak version that makes allowances for internal
events and is only concerned with observable transitions.

To make allowances for internal actions, consideration is given to what is
meant by an observable transition. An observable transition is taken to be any
observable action preceded or succeeded by any (finite) number of internal events.
Observable transitions are written P == P’ which means that process P can
evolve to process P’ by undergoing an unspecified (but finite) number of internal
events, followed by the action a, followed by an unspecified number of internal
events.

Given a (strong) relation defined in terms of allowable transitions its weak
or observable counterpart would replace a transition P —— P’ by the observable
transition: P == P’.

For example, strong bisimulation relates two behaviours P and @ as equiv-
alent whenever a transition P; — P, in P is matched exactly by a transition
Q1 = @, in Q (for a complete definition and full details see, for example,
[Mil89]). Weak bisimulation (or observational equivalence), [Mil89], weakens the
requirement in strong bisimulation in the sense that two behaviours P and @ are
weakly equivalent whenever a transition P; — Ps in P is matched by a similar
observable transition Q; == @ in Q. An extremely simple example (cf Section

Il This is essentially the technique of using a variant function to prove termination.
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3.4) is the following two behaviours (represented by transition diagrams) which
are weak bisimular but not strongly bisimular:

4.2. Formulating weak refinement

Throughout this section we denote the state spaces of the abstract and concrete
specifications by Astate and Cstate respectively. Let Ret be the retrieve relation
defined between the specifications. AOp and COp stand for operations on the
abstract and concrete state spaces where COp implements AOp. The initial
states are given by schemas Cinit and Ainit.

Our formulation of weak refinement will be motivated by the approach taken
in process algebras. Application of an operation in Z corresponds to a transition
in a process algebra, and in weak refinement in place of the application of an
operation Op we allow a finite number of internal operations before and after the
occurrence of the operation. This corresponds to the change from P -2 P’ to

a . . .
P = P’ in a process algebra when moving from a strong to observable scenario.

Here we take advantage of the Z schema calculus, and note that 22 can
be denoted by saying that there exist internal operations iy, ..., i, ji, ..., (for
some k, [ > 0) such that we can apply the composition 41 §...34 $O0pSHh 3. ..
In order to avoid such quantifications over sequences of internal operations, we
encode “all possible internal evolution” for a specification as a single operation
I (such that we can write I § Op §1I) as follows.

Let Internals be the set of all internal operations in the specification; this set
can be typed as P StateOp for some StateOp. Let IntSeq == seq Internals, rep-
resenting all finite sequences of internal operations. The effect of such a sequence
is obtained using the operator o : IntSeq — StateOp defined, using distributed
schema composition, by

()= =State
ops= 3/ ops for ops # ()

“Every possible finite internal evolution” is now described by the schema dis-
junction of the effects of all possible finite sequences of internal operations, i.e.

I =3z : IntSeq oz

or in other words, two states are related by I iff there exists a series of internal

operations z such that the combined effect Z of these operations relates the
states.

We distinguish between internal operations in the concrete and abstract
specifications by using the subscripts C and A on I. For operations Op ab-
breviate pre(I § Op) by pre, Op, and 1§ Op §I by Op,, if desired. (Note that
pre Op,, = pre,, Op since [ is total.)
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We can now re-formulate each of the three conditions for refinement for a
system containing internal operations. We begin with the initialization condition.

Initialization

Without internal operations the relationship required upon initialization is that
each possible initial state of the concrete specification must represent a possible
initial state of the abstract specification. In the presence of internal operations
after an initialization the system might evolve internally to another state. There-
fore, “each possible initial state of the concrete specification” now includes all
possible evolutions of the initial state under internal operations. Likewise “a
possible initial state of the abstract specification” can now include a potential
evolution of the initial state due to invocation of internal operations in the sys-
tem.
To formalise this we require that:

V Cstate' o Cinit § I - 3 Astate’ o (Ainit §1a) A Ret

The (hidden) quantification (over all possible evolutions) of the internal op-
erations in Cinit § I is important. What we wish to ensure is that every initial
concrete path (including all possible internal operations) can be matched by some
initial abstract path (possibly involving internal operations). We abbreviate the
condition to

Y Cstate’' o Cinit,, - 3 Astate' o Ainit, N\ Ret’

Applicability

Applicability must ensure that if an abstract and concrete state are related by
the retrieve relation, then the concrete operation should terminate whenever
the abstract operation terminated, where termination is usually expressed in
terms of satisfaction of the pre-condition of an operation. In the presence of
internal operations we must allow for potential invocation of internal operations,
and hence we require that: if an abstract and concrete state are related by the
retrieve relation, then whenever the abstract operation terminates possibly after
any internal evolution then the concrete operation terminates after some internal
evolution. This is described by saying there exists internal operations 4, ..., i
such that pre(i; §... 54 § AOp) holds.
Applicability can then be expressed as

V Astate; Cstate o pre(I4 § AOp) A Ret +- pre(Ic § COp)

Using the abbreviation pre,, AOp, where we note that we have replaced pre AOp
by the condition that AOp is applicable after a number of internal operations,
applicability in weak refinement reduces to

V Astate; Cstate » pre,, AOp A Ret - pre,, COp

Correctness

For correctness, we require the weak analogy to the following: if an abstract
state and a concrete state are related by Ret, and both the abstract and con-



16 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steen

crete operations are guaranteed to terminate, then every possible state after the
concrete operation must be related by Ret’ to a possible state after the abstract
operation [Spi89]. For the weak version pre AOp is replaced by pre, AOp and
we ask that, every possible state after the concrete operation must be related
by Ret' to a possible state after the abstract operation, except that now ’after’
means an arbitrary number of internal operations may occur before and after
the abstract operation. The condition thus becomes, in full,

V Astate; Cstate; Cstate' @ pre(Ig4 § AOp) A Ret A (I3 COp § 1)+
3 Astate’ @ Ret' AN (I § AOp §1,)

which we abbreviate to
V Astate; Cstate; Cstate’ o pre,, AOp A Ret A COp,, - 3 Astate’ ® Ret' A AOp,,

Again the quantification over every possible finite internal evolution in COp,,
is important. We need to ensure that every path involving COp and possible
internal operations can be matched by some path involving AOp and (possibly)
internal operations. Hence the quantification in COp,, is over all finite sequences
of internal operations before and after COp.

Rules for Internal operations

We will also apply the correctness rule to internal operations. For internal oper-
ations we do not want applicability to prevent an internal operation becoming
impossible where it was previously possible, indeed we want to refine out such
internal operations if appropriate. Therefore for an internal operation i (defined
on a state space State) we define its weak pre-condition (not its pre-condition)
by

pre,, i = pre ZState = State

Although this definition of the weak pre-condition for internal operations
looks strange, it does not allow us to arbitrarily weaken the pre-condition of an
internal operation under weak refinement. The circumstances when we can are
governed by what observable operations are present in the abstract specifica-
tion, and the correctness rules for observable operations prevent the arbitrary
weakening of pre-conditions of internal operations.

Applicability for internal operations will reduce to checking that the concrete
state is implied by the abstract state (modulo the retrieve relation).

The final piece in the jigsaw is the meaning of correctness for internal oper-
ations. Recall that we define the weak version of an operation Op by

Op. — 130p31 for an observable Op,
Pu =771 for an internal operation Op

This ensures that we can match up an occurrence of an internal operation in the
abstract specification by zero or more internal actions (using I) in the concrete
specification.

To prevent divergence being introduced upon refinement we introduce two
divergence refinement rules. The criteria these rules embody are based upon
those in [But97]. We use a well-founded set WF with a partial order <, and
a variant which is an expression in the state variables. The variant, E, should
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always be an element of the set WF, and it should be decreased by each internal
operation in the concrete operation. These two conditions can be formulated as:

D1 Ret- E € WF
D2 VieRetANiFE < E

where the quantification in D2 is over all internal operations in the concrete
specification. Note that although internal operations decrease the variant, there
are no constraints on observable operations, which are allowed to increase the
variant. This means that an internal operation can be invoked an infinite number
of times, but not in an infinite sequence. So for example in the following figure
with appropriately chosen variant the behaviour on the left satisfies D1 and D2,
whereas the behaviour on the right cannot possibly do so.

Summarising the conditions we find that weak refinement requires that

e V Cstate' o Cinit,, - 3 Astate’ o Ainit,, N Ret’
e V Astate; Cstate @ pre, AOp A Ret - pre,, COp
o V Astate; Cstate; Cstate' @ pre,, AOpARetACOp,, - 3 Astate’ o Ret' ANAOp,,

where pre, (Op) = pre(Z § Op) and

Op. — 130p31 for an observable Op,
Pu =171 for an internal operation Op

with correctness (but not applicability) being applied to the internal operations.
In addition, if WF is a well-founded set and E an expression in the state
variables, the following rules prevent the introduction of divergence:

D1 Rett+ E € WF
D2 VieRetANiFE < E

where the quantification in D2 is over all internal operations in the concrete
specification.

In the next section we show how these rules are applied in practice, and we
shall see that although the full generality introduces complexity, in practice the
overheads are not large.

5. Examples

In this section we illustrate the theory that was developed above to the exam-
ples presented at the start of the paper. In the protocol example, the intuitive
behaviour we wish to capture is that the sectional view is a refinement of the
external view, but that the third specification is not a refinement of the sectional
view. We show that this is indeed the case with weak refinement. We then con-
sider internal operations which output to the environment and compare the Z
specification of such internal events to the approach taken in process algebras.
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5.1. The Signalling Protocol

First we show that the sectional view of the protocol is a weak refinement of the
external view. We first prove the initialization is correct, noting that the retrieve
relation is total and functional, so that we can use the usual simplification, and
we show that:

VY Ext'; Section' e Sectionlnit,, A Retrieve & Extlnit,,

This reduces to V Ezt'; Section' e Sectionlnit A Retrieve & ExtInit, since there
are no internal operations in the external specification, and no internal operation
is applicable after Sectionlnit in the sectional view. This can be verified as in
the verification of the standard refinement in Section 3.2.

To verify applicability, we need to show that

pre,, Transmit A\ Retrieve - pre  STransmit
pre,, Receive A Retrieve - pre  SReceive

In the case of Transmit, this weak applicability requirement reduces to
pre Transmit A\ Retrieve b pre(ls § STransmit)

since pre,, Transmit = pre Transmit. We find this to be true by considering the
empty sequence of internal operations in the sectional view. A similar argument
holds for the weak applicability requirement for Receive. Notice that weak re-
finement does not require that Daemon is always applicable since we only verify
correctness of internal operations. Therefore Daemon is not forced to be a total
operation, and the problem of livelock is solved.

Similarly, to verify correctness, we need to show that

pre Transmit A Retrieve A STransmit,, A Retrieve' - Transmit
pre Receive N\ Retrieve A SReceive,, N\ Retrieve' - Receive
pre ZExt A Retrieve A Daemon,, N\ Retrieve' - ZExt

For the first, we need to check that occurrences of the Daemon operation
before and after STransmit in the concrete specification still leave us in a state
that is consistent with that produced by Transmit in the abstract. From the
refinement demonstrated in Section 3.2 we found that pre ZFxt A Retrieve A
Daemon A Retrieve’ = ZFEuzt, it therefore follows that Retrieve A Daemon A
Retrieve’ = ZExt, and hence that

pre Transmit A Retrieve A STransmit,, A Retrieve' =
pre Transmit A Retrieve A ZExt § STransmit § ZFExt A\ Retrieve’
F Transmit

The second case is similar. For the third this reduces to showing that

Yk o Ext A Retrieve A Daemon® A Retrieve' - ZExt

where Daemon® denotes k sequential compositions of Daemon. We can make
the deduction

Ezt A Retrieve A Daemon® A Retrieve! = Ext AN SExt = = Ext

Finally to show that the sectional view does not introduce divergence in
the form of potential livelock of its internal operations we will prove that the
divergence criteria are satisfied. To do so we consider the well founded set to be
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the lexiographical ordering on NV (where N is the number of sections in the
protocol). The variant will be the expression (#ins1, ..., #insN), i.e. a sequence
consisting of the number of messages inside each section in the route.

Clearly we have E € WF. Furthermore we have

Ret A Daemon = E' < E
since
Daemon = Ji:1..N — 1 e (ins' i = front(ins i) AVj < i eins' j = ins j)

so that Vj < i e #ins' j = #ins j and #ins’ i = (#ins i) — 1. This ensures
that if Daemon is applicable then it can only be invoked a finite number of times
before it is disabled and an observable operation must be invoked.

Therefore we have shown that the sectional view is indeed a weak refinement
of the external view and that no livelock has been introduced upon refinement.
Moreover, the additional verification requirements imposed by the generality of
weak refinement are not large in this example, being confined to the consideration
of one internal operation - Daemon.

We shall now show that the third specification is not a weak refinement of
the sectional view. That is, we are not at liberty to weaken the pre-condition of
an internal operation arbitrarily. Consider the initialization rule that (for total
functional Retrieve):

V Astate; Cstate o Cinit, N\ Retrieve - Ainit,,

Now in the sectional view it is not possible to apply Daemon initially. However, it
is possible to apply NDaemon initially (where it arbitrarily inserts a new element
into the protocol). Thus for the third specification to be a weak refinement of
the sectional view we require that

SectionInit § NDaemon & Sectionlnit
This is clearly not true, since
SectionInit § NDaemon = ins' 1 # ()

that is, ins is no longer empty.
In addition to the initialization requirement failing in this example, the re-
quirement that

pre,, STransmit A Retrieve A STransmit,, A Retrieve' b STransmit,

is also violated for similar reasons as the initial condition fails.

5.2. Internal operations with output

In the second example, presented in Section 3.4, in order to show that the con-
crete specification is a weak refinement of the abstract specification, we would
need to prove that for some retrieve relation Ret:

V State @ pre,, AOp A Ret + pre, COp
V State @ pre,, AOp A Ret A COp,, + 3 State’ o Ret' A AOp,

The retrieve relation we will use will link the states for which mode = 0, since
the state mode = 1 was used purely as an intermediate state for the purposes of
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specifying the temporal ordering of the operations. Hence the retrieve relation
will be specified by

__ Ret
State

mode = 0

With this retrieve relation we will in fact show that the concrete operation COp
implements both abstract operations AOp and IOp. Since the concrete specifi-
cation does not have any internal operations we just need to show that:

pre, AOp A Ret I pre COp

pre, AOp A Ret A COp A Ret' = AOp,,
pre, I0p A Ret I pre COp

pre,, I0p A Ret A COp A Ret' = 10p,,

We can calculate the pre-conditions needed. Note that in the case of pre, AOp

w
this includes states from which the system can perform an internal operation

and then invoke AOp, which then terminates successfully.

_pre, AOp _pre COp
State State
mode = 0V mode = 1 mode = 0

The applicability and correctness for the refinement of AOp as COp are then
easily verified. Consideration of the internal operation amounts to showing that
(because of the way the pre-condition of an internal operation is defined)

Ret F pre COp
Ret A COp A Ret' - 3k o IOp*

and the latter holds for £ = 0.

Therefore the concrete specification is indeed a weak refinement of the ab-
stract (because there are no internal operations in the concrete system we do not
need to check for divergence). This illustrates an interesting aspect of specifying
internal operations in Z - they can output data (in fact some interpretations of
unobservableness in Z outlaw this possibility e.g. [CR92], but generally this is
the case [Str95, WJ94]). This is in contrast to a process algebra where typically
internal actions can have no data attributes.

Consider, for example, full LOTOS [BB88], where the internal action is writ-
ten i. Internal actions in LOTOS can arise as a result of direct specification or
as a result of hiding observable actions. In the first case, it is syntactically illegal
to associate a data attribute with an internal action, e.g. the behaviour

i'T; B
is not well-formed. Here action prefix is represented by ; and a value declaration
on an action is given by a !, and B represents the subsequent behaviour. In the

second case, upon hiding an observable action with data, the data is hidden as
well as the action. So, for example, in the behaviour

hide g in (g!5; stop)

the transition i can be performed, but no data is associated with the occurrence
of the internal action i. That is the only transition this behaviour can perform
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is the following.
hide ¢ in (g¢!5; stop) %5 hide g in stop

However, it is desirable to be able to specify an internal event which does
have data associated with it. Indeed [Str95] contains an example of such an
operation - an alarm notification in a managed object. This is a typical example
of the kind of application where it is necessary to be able to specify an atomic
internal operation which has output associated with it. Used in this style Z offers
a different model to LOTOS in terms of internal events it can specify.

Whether or not such an internal event is unobservable is debatable, and
perhaps such events mark the difference between active systems as opposed to
reactive systems - the latter often modelled using a process algebra. In an active
system events can be under the control of the system but not the environment
(e.g. an alarm operation), such events are internal but can have observable effects
(such as an alarm notification). This differs from the notion of internal in a
process algebra, which equates internal with no observable transition or effect,
including output. In such an interpretation the operation IOp defined above
would not be internal as we can observe its occurrence via its output, and the
term active used in [Str95] could be used instead. However, the theory of weak
refinement developed here is equally applicable to such a class of events.

6. Removing internal operations

In this section we will consider to what extent it is true that we can dispense
with internal operations, both in terms of their specification and in terms of
refinements of specifications containing them. To do so we begin with a discussion
of labelled transition systems (LTS) which provide a suitable model to discuss
the role of internal operations. We will use labelled transition systems to answer
the question

For any specification containing internal operations, is there an equivalent specification without
internal operations?

and to do so we will need to consider a suitable definition of equivalence. We
will argue that testing equivalence provides a suitable yardstick by which to
compare specifications. We will then show that for any specification containing
internal operations, we can find a testing equivalent specification not containing
any internal operations.

Having answered the original question in the affirmative, we can then prove
that weak refinement is correct in the sense that: if specification S is a weak
refinement of specification S;, then there exists equivalent specifications to S
and Sy, Ty, T> respectively, not containing internal operations such that 75 is a
standard Z refinement of specification T7. The consequences of this are that we
can dispense with internal operations if we choose, but if we use them then their
weak refinement is still correct.

So far this discussion will have taken place in the context of divergence free
specifications. We will conclude this section with a discussion on the removal,
and interpretation, of divergence due to livelock.

A labelled transition system [BSS86] is a 4-tuple LTS = (S, L, —>, so), where
S is a set of states, L a set of labels, —€ S x L x S being a transition relation
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and sy € S the initial state of the system. As usual we write s; — s, whenever
(s1,a, s2) €E—. We will need the following (standard) definitions:

P ““=8" P’ means that there exist Py, ..., Pn_1 € S such that P 2% P, -2
Py...Py_4 2 P,
o ' . i*0 a1i" ag...a, "
P— P'ifo=a...a, means 3kg,...,k, € N such that P —
Pl

P =% means 3 P’ such that P =% P’
P #= means that —(P =%)
P after 0 = {P' | P =% P'} is the set of all states reachable from P after 7.

Ref(P,0) ={X | 3P' € P after 0 « P' #> VY a € X} is the refusal set of P
after the trace o.

Tr(P) = {o | P ==} is the trace set of P.

We also call P stable if P has no initial internal transition. In this discus-
sion we can limit ourselves to stable systems since any Z specification can be
considered stable due to the presence of the (observable) initialisation schema.
We can now define reduction and testing equivalence for labelled transition sys-
tems in a standard fashion [BSS86] (this is the formulation used in the LOTOS
community, there are alternative, but equivalent, formulations in CSP).

Definition 1.
Let Py = (S, L1, —1, s0) and P> = (S, Ly, —9, tp) be labelled transition sys-
tems. Then Py red P iff (i) Tr(Py) C Tr(Ps),and (ii) Yo € Tr(P1), Ref(Py,0) C
Ref(P27 (T)'

Reduction induces an equivalence called testing equivalence defined as fol-
lows: Py te P, iff (i) Tr(Py) = Tr(Ps), and (ii) Yo € Tr(Py),Ref(Pi,0) =
Ref(P27 (T)'

It has been argued that testing equivalence is a natural and correct notion of
equivalence between systems [BB88]. Weak bisimulation is known to respect all
the distinctions which could reasonably be made by an external observer. How-
ever, it is often considered too fine and makes distinctions which couldn’t really
be made by an observer [Led91, BSS86]. Testing equivalence on the other hand
makes precisely those distinctions which can be observed by testing the systems
under consideration. If we consider labelled transition systems to represent the
behaviour of a system or specification, we can use testing equivalence as a suit-
able notion of equivalence, two systems are equivalent if their LTSs are testing
equivalent.

The context we are interested in here is how to answer the following ques-
tion: given a Z specification with internal operations explicitly specified, can we
dispense with such operations by adding their non-determinism to the observ-
able operations present? If we can answer yes to this question (as is claimed in
[WD96]), then we know that internal operations do not increase the expressive
power of the language. We can then even verify that weak refinement is correct
by showing that weak refinement of a specification with internal operations im-
plies the normal Z refinement if the internal operations are absorbed into the
observable ones.
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We first consider divergence free specifications, i.e. specifications without di-
vergence due to livelock of internal operations. To show that for divergence free
7 specifications we can dispense with internal operations we will derive a trans-
formation which will remove internal operations to create a Z specification which
is testing equivalent to the original. We will first describe the transformation in
terms of labelled transition systems and prove that testing equivalence is pre-
served, we will then give the transformation for 7 specifications. This makes
the implicit assumption that we can represent Z specifications as labelled tran-
sition systems in the obvious manner, the standard way to do this is given in
[Smi95, CW92] for example.

We use testing equivalence as our benchmark for equivalence of specifications
as opposed to the equivalence induced by weak refinement because we wish to
validate weak refinement against the removal of internal operations. If we had
only shown that the transformed specification was weak refinement equivalent
to the original, we could not then show that the weak refinement relation was
correct. By using testing equivalence we can validate weak refinement.

Given a LTS P; = (S, L,—>1, sp) we derive another labelled transition sys-
tem Py = (S, L,—>9, $p) which does not contain any internal transitions. The
transformation is defined by the following rules:

a . a
S1 —2 S2 iff S1 =—>1 S2

for all observable actions a € L. Note that we are interested in stable labelled
transition systems (ones with no initial internal action), as all Z specifications
have an initialisation schema which is considered observable.

As an example, we find the above definition produces the following transfor-
mations, where in each example the original behaviour is given on the left with
the transformed behaviour on the right. Note that the purpose is to generate an

equivalent LTS, but it will not necessary be the minimal such system.
a a
a a a a
. a
b / ¢ c
C

Example 1 Example 2

Notice that P ==, P’ if and only P ==, P'. This implies that the traces
of the two systems are the same, i.e. Tr(P;) = Tr(P:), and furthermore the
refusals are identical, that is for all traces o, Ref (P1,0) = Ref(Pa, o). Therefore
we have proved:

Theorem 1. Every labelled transition system has a transformation to a testing
equivalent labelled transition system which contains no internal transitions.
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In the context of a 7Z specification the transformation to remove internal
operations consists of redefining each observable operation AOp by an operation
AOpg. That is AOpg is defined as follows

AOps =1a 3 AOp§ 1a

Note that this definition is equivalent to taking the disjunction of all combina-
tions of internal operations before and after AOp,i.e. AOps = AOpVi3AOpV
AOp§iVigAOpgiVigigAOpV .... Observe that pre AOps = pre, AOp.
The transformed Z specification will have an identical number of observable
operations, but with the internal operations simply removed. Note that we
consider the initialisation schema INIT as an observable operation, and thus
this too absorbs internal operations under the transformation if applicable (i.e.
INiTg = INITV INIT iV INIT §igiV...).

For example, consider the behaviour described by the following transition
diagram, where a and b are observable events, and ¢ represents an internal op-

eration:
1

3

2

As a Z specification we give this diagram its obvious interpretation as the
specification:

State _Init
Fstate :{0,1,2,3} AState
state’ =0
_a _b )
A State A State A State

state = 1 A state’ = 3 state = 0 A state' = 2 state = O A state’ =1

Then the equivalent specification without internal operations is given by:

_ State _ Init
state : {0,1,2, 3} AState

state’ =0V state’ =1

_a _b
AState AState
(state = 1 A state' = 3)V state = 0 A state' = 2

(state = 0 A state’ = 3)

With this transformation in place we know we can, if necessary, dispense with
internal operations in divergence free specifications. We are now in a position to
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prove that weak refinement is correct with respect to standard 7 refinement,
which we do now.

Theorem 2. Let S; and S, be Z specifications possibly containing internal oper-
ations. Let S5 be a weak refinement of S;. Then there exists equivalent specifica-
tions to S and Sy, denoted Ty, Ts respectively, not containing internal operations
such that T, is a standard Z refinement of the specification Tj.
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Proof

We assume that there is one internal operation called i in the
specifications. The proof generalises easily to an arbitrary number
of internal operations.

Because S; is a weak refinement of S; we know that if the operation
COp in S, refines the operation AOp in S;, then the following hold:

o V Cstate' o Cinit,, - 3 Astate’ o Ainit, N\ Ret’
o V Astate; Cstate @ pre,, AOp A Ret - pre,, COp

o V Astate; Cstate; Cstate' e pre, AOp A Ret A COp,, +
3 Astate’ e Ret' A AOp,,

From the above we know there exist equivalent specifications with-
out internal operations. For each operation Op, let Ops denote the
transformed operation given by the scheme above. We will prove
the transformed specifications are refinements, i.e., we will show
that

o V Cstate' o Cinitg - 3 Astate’ o Ainits N\ Ret’
o V Astate; Cstate @ pre AOps A Ret - pre COpg

o V Astate; Cstate; Cstate’ o pre AOps AN Ret A COps +
3 Astate’ @ Ret' A AOps

Initialization

We can make the following deduction
Cinits = Cinit § Io
= (Ainit §I4) A Ret’
= Ainits N\ Ret'
Applicability

We can make a similar deduction as follows:

pre AOps A Ret = pre(I4 $ AOp §14) A Ret
=pre(ls § AOp) A Ret
= pre(Ic § COp)
= pre COps

Correctness

Finally, in a similar manner:

pre AOps A Ret A COpgs = pre, AOp A Ret A (I § COp § 1)
= Ret' A AOp,,
= Ret' A AOps

This concludes the proof that weak refinement is correct.
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The next subsection considers to what extent these results can carry over to
specifications that contain divergence in the form of livelock.

6.1. Divergence

Section 3.3 showed that the standard Z refinement rules could allow divergence
to be introduced into a Z specification upon refinement. By divergence here we
mean a state where an infinite number of internal operations can be invoked,
thus causing the system to potentially livelock where it keeps on performing
internal and non-visible computations. How best should we treat this type of
divergence in Z? One possibility is to use the two refinement rules D1 and D2,
which guarantee that if the abstract specification is divergence free, then so will
the refinement. However, we would also like to consider whether a divergent
specification could be considered equivalent to a specification without internal
operations, i.e., whether we really can dispense with internal operations in all
circumstances. To answer this we need to consider differing interpretations of
divergence.

In a labelled transition system or process algebra there are two standard in-
terpretations of divergence: a catastrophic or non-catastrophic view. The former
is based upon the idea that a process diverges after the trace o if any of its
subtraces diverge [BHA84, dNH84] (i.e. 3¢’ < ¢ such that the process diverges
after ¢'). The alternative non-catastrophic view says that a system P diverges
after o iff there is a state reachable from P by o such that in that state it is pos-
sible to engage in an infinite sequence of internal events [Led91]. These differing
interpretations are then reflected in how different equivalences treat divergence.

For example, testing equivalence adopts the non-catastrophic view of diver-
gence, so that it ignores divergence or treats it in a fair manner [Led91]. On the
other hand the equivalence induced by must testing [Hen88] (denoted =,ust)
adopts the catastrophic view of divergence. This equivalence coincides with the
failures equivalence of CSP [Hoa85], and therefore CSP is said to take a catas-
trophic view of divergence, whereas LOTOS with its testing equivalence is said
to possess a non-catastrophic view of divergence. For example, consider the fol-

lowing pairs of systems:
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P1 P2 P1 P2
Example 1 Example 2

-
 —

P1 P2 P1 P2
Example 3 Example 4

We find that in examples 1 and 2, P; te Py (P1 and P2 have the same
traces and refusals) but P; and P, are not must-equivalent (because in both
cases P; diverges whereas P, does not). However, in example 3, P; and P, are
not testing equivalent (they have different traces), yet they are must-equivalent
(the traces only differ after a point of divergence). Finally, example 4 exhibits
two systems which are both testing and must-equivalent (they have the same
traces and refusals and both diverge initially).

Adopting a non-catastrophic view of divergence allows one to remove inter-
nal operations from a Z specification using the same procedure as defined in
the previous section. The transformation defined above will remove internal op-
erations from a divergent specification and replace it with a testing equivalent
specification containing no internal operations within it.

If one wanted to adopt a catastrophic view of divergence it is more prob-
lematic as to whether one can find an equivalent specification without internal
operations in it. This depends on whether livelock divergence is considered to
be a potentially different kind of divergence than that of a Z operation invoked
outside its precondition. Under a catastrophic view, in order to find an equiv-
alent specification without internal operations contained within it, we have to
equate the two types of divergence. For example, in example 3 above, to find a
specification which is equivalent to the behaviour P;, we would have to diverge
at every trace after state s;, therefore the best approximation to this would be
the specification:
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State _ Init
listate :{s0, 5} AState
state’ = sy
_a
AState

state = sy A state’ = s;

This specification can perform the operation a initially. However, subse-
quently it is in state s;, which is outside the precondition of the operation a.
Therefore any subsequent invocation of a will be divergent. The subtle intuitive
difference between this specification and P; is that in the former it is the invo-
cation of an operation which causes the system to diverge, whereas in P; the
livelock is invoked by the system itself. So in terms of removal of internal opera-
tions it would seem therefore more natural to adopt a non-catastrophic view of
divergence in the context of Z specifications.

7. Discussion

An important aspect of refinement, in both the sequential and concurrent worlds,
is the ability to strengthen an implementation by reducing the non-determinism
in the abstract specification. Indeed this is a property of standard Z refinement, in
the absence of internal operations. Adding internal operations in a specification
has introduced an additional form of non-determinism into the language. We
shall see that weak-refinement allows us to reduce this type of non-determinism
by removing internal operations.

Consider the behaviours described by the following transition diagrams, where
a and b are observable events, and i represents an internal operation (we have
omitted the transition formed by the initialisation schema):

Py

NN N

These specifications are not equivalent in any sense, for example in a process
algebraic setting none of them are weak bisimulation equivalent. However, we
would like a refinement to remove the non-determinism which is present in terms
of the internal events, and for P; to refine P, which in turn refines P3. Indeed,
seen as labelled transition systems or processes they are related in the sense
that, for example, P; red P, red P3, where red is the reduction relation defined
above. Weak refinement, which we denote C,,, also exhibits this property, that
is Py C, Py Ty Py, but Py Z,, Py [Z, P3. In terms of Z specifications we are
giving these diagrams their obvious interpretation as described in Section 6.

A slightly more complex example is given by the two behaviours defined by
the following, where again the event ¢ is internal and all others are observable.
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P Q

Interpreted as Z specifications we find that P is a weak refinement of ().
This example is interesting because by resolving the non-determinism, the im-
plementation never offers the operation b. The retrieve relation which shows this
is a weak refinement is given by the dotted lines in the above diagram. Because
pre b A Ret has a predicate which is false, b can be implemented by any operation
in the concrete specification (e.g. ZState will do).

Notice that, as one would hope, () is not a weak refinement of P, because we
have to quantify over all paths of internal operations in the concrete specifica-
tion in the correctness criteria for weak refinement. The corresponding relations
between labelled transition systems also hold, i.e. P red @) but = () red P.

One desirable property that standard Z refinement possesses is that it is
a congruence. That is, if specification S is refined by S’, then in any context
C[.], C[S'] refines C[S]. A consequence of this is that operations can be refined
individually and the whole specification is then a refinement of the original.

However, weak refinement is not a congruence, due to the presence of internal
operations. To see this consider the two specifications given by the following
behaviours:

P Q

Then under weak refinement these are equivalent, i.e. P C,, ¢ and Q C,, P.
However, if we add just one further operation to each specification which is
applicable at the initial state, i.e. we specify the behaviour

NN

then, as we observed earlier, @) is not a weak refinement of P. So congruence is
lost with weak refinement. Incidentally, this counter-example is the same example
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that shows weak bisimulation is not a congruence in a process algebra, so the
result here is not surprising and the ability to find observational relations which
are congruences can be non-trivial.

Although weak refinement is not a congruence, it does possess useful proper-
ties when used in unification and consistency checking. Unification is a method
used to combine partial specifications, and the unification of two specifications is
their least common refinement [BBDS97] (least in the sense that any other com-
mon refinement is a refinement of the unification). Partial specifications arise
in many contexts [FS96], and one such context is their use as viewpoints in
distributed systems, and in particular their use within the Open Distributed
Processing (ODP) standardization initiative [ITU95]. ODP is a joint standard-
isation activity of the ISO and ITU. A reference model has been defined which
describes an architecture for building open distributed systems. Central to this
architecture is a viewpoints model. This enables distributed systems to be de-
scribed from as a number of different partial specifications, each representing a
different perspective.

ODP is typical of applications where it is useful to use Z for the specifica-
tion of distributed systems, i.e., one where we might wish to use a language
that will support data refinement of specifications which involve the complex
representation of state and use explicit internal operations in the description.

The use of a number of viewpoints to represent multiple aspects of one system
under construction means that we need to be able to check the viewpoints for
consistency. One consistency checking method is to construct their unification
and to check it for contradictions. [BDBS96] describes how this may be achieved
if the viewpoints are specified in Z. The unification of two Z viewpoints is con-
structed in two phases. In the first phase (“state unification”), a unified state
space for the two viewpoints has to be constructed. The viewpoint operations
are then adapted to operate on this unified state. At this stage we have to check
that a condition called state comsistency is satisfied. In the second phase, called
operation unification, each pair of adapted operations from the viewpoints which
are partial descriptions of the same operation have to be combined into a single
operation on the unified state. This also involves a consistency condition (opera-
tion consistency) which ensures that the unified operation is a refinement of the
viewpoint operations.

What is the correct unification strategy if the viewpoints contain internal
operations? In the context of ODP this is almost certain to happen, since the
viewpoints occur at different levels of abstraction, and operations in one view-
point may be hidden in another. Do we have to transform the viewpoints to
ones not containing internal operations before we apply unification? Fortunately
we do not, since it can be shown that the least common weak refinement is
equivalent to the least common refinement of the viewpoints without internal
operations. That is, if we use the transformation defined earlier that produced
testing equivalent specifications without internal operations, and take the least
common standard refinement for the unification, this unification will be (test-
ing) equivalent to the least common weak refinement of the original viewpoints.
The consequence of this is that we can unify using weak refinement and we do
not have to remove internal operations first - a transformation that can be very
complex.

The use of viewpoints, or partial specifications, in a number of application
areas has led to proposals (see for example [Ben89, MD98, Fis97, Smi97]) to
combine state-based methods with process algebras in order that the strengths of
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a particular method can be applied in an appropriate way. It would be interesting
to compare refinement in these methodologies with the ideas of weak refinement
discussed in this paper.

8. Related Work

In this section we discuss related approaches to the issue of refinement of state-
based specifications containing internal operations. A preliminary version of this
paper appears in [DBBS97]. Other work in this area includes [Str95], [But97]
and [Eva97]. The work of Strulo, [Str95], was discussed in Section 3.4, and we
consider here the proposals of Butler [But97] and Evans [Eva97].

In [But97], Butler considers the design of distributed systems using the B
abstract machine notation [Abr96]. His approach is based on the action system
formalism, and he considers refinement of abstract machines which contain in-
ternal actions. Although placed in a different formalism, the refinement rules
in [But97] can be seen to be a restricted version of the weak refinement rules
presented here. Butler first considers refinement of an abstract system M to a
concrete system N where neither contains any internal actions. Refinement in
this context is defined by the following rules:

1. M.init T N.init
2. M.a C N.a for each (observable) action a
3. AI A gd(M.a) = gd(N.a) for each (observable) action a

where AI is the retrieve relation, C denotes action refinement in B, M.a
represents the action a in system M, and gd(M.a) is the guard of the action a
in system M. Informally the first two conditions ensure that each action of N
is refinement of its counterpart in M. The third condition ensures that N may
only refuse an action when M may refuse it.

Butler then introduces internal actions in an abstract machine as follows,
[But97]. “Internal actions are not visible to the environment of a machine. Any
number of executions of an internal action may occur in between each execution
of a visible action. If the action system reaches a state where internal actions can
be executed infinitely, then the action system diverges. Internal actions do not
have input or output parameters, and are specified explicitly in a machine.” To
extend refinement to a concrete system that may contain internal actions, we let
B(N) denote the set of internal actions in a system N. The extended refinement
rules are then given by:

1. M.init T N.init

M .a € N.a for each (observable) action a

skip C N.h for each internal action h € B(N)

Al = E € WF

AINE =e= [N.h](E < e)

AI N gd(M.a) = gd(N.a) vV (3h € B(N) e gd(N.h)) for each (observable)

action a

S otk W

The divergence conditions (4 and 5) are identical to the ones we have used in
our formulation of weak refinement (as is the notation), and we do not discuss
them further.
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The principal restriction made by Butler (and difference to our work) is to
consider only internal actions in the concrete system and for none to occur in
the system under refinement. He therefore does not have a mechanism to refine
systems containing internal actions. Such a restriction simplifies the refinement
rules for internal actions considerably. For example, we find that rule 3: skip C
N.h, can be deduced from the weak refinement applicability rule applied to
internal operations, since in the Z setting skip corresponds to ZState.

Furthermore, because of the third condition, together with the divergence
conditions (4 and 5), the final condition (AI A gd(M.a) = gd(N.a) vV (3h €
B(N) e gd(N.h))) represents the same requirements as the weak refinement
applicability rule applied to observable operations. This is because conditions 4
and 5 prevent infinite execution of internal actions, and skip C N.h ensures that
execution of an internal action won’t effect the abstract state, so that gd(N.a) Vv
(3h € B(N) e gd(N.h)) implies that potentially a finite number of internal
actions can occur and then N.a will be enabled. This represents the same criteria
as applicability in weak refinement.

However, the initialisation condition (1) and the correctness condition (2)
here are more restrictive than their weak refinement counterparts. For example,
the B machine initialisation condition does not allow any internal evolution of the
concrete system unlike initialisation in weak refinement. Correctness is similarly
restrictive.

Evans, in [Eva97], makes a proposal for the refinement of Z specifications
in the presence of internal operations. Evans is principally concerned with the
specification of safety and liveness properties, and discusses refinement in that
context. Even without considering internal operations he uses a reformulation of
standard Z refinement which he claims will ensure that safety and liveness prop-
erties are preserved under refinement. This reformulation replaces the normal
correctness criteria with the following:

NextStatec N AAbs - NextStatea

where Abs is the retrieve relation and NextStatec (NextStatea) is the disjunction
of all the operations in the concrete (abstract) specification. For example, in the
external view of the protocol discussed above, NextStatey would be Receive V
Transmat.

Evans then considers refinement in the presence of internal operations, and
his definition uses four conditions, the standard initialisation condition together
with

1. NextStatec N AAbs + NextStaten
2. NextStatec A = COp N AAbs + pre AOp = pre AOp’
3. pre AOp A Abs ~» pre COp

where ~» is a formulization of the leads-to property, see [Eva97] for details.
NextStatec now includes all the internal operations, for example, in the sectional
view of the protocol, NextStatec will be SReceive V STransmit V Daemon.

Unfortunately it is unclear whether internal operations are allowed in the
abstract specification or just the concrete. It is also not clear as to whether the
final refinement rule of Evans should apply to just the observable operations (as
one would expect). Assuming that we apply the final refinement rule to just the
observable operations, then this rule can be seen to be a weak applicability rule,
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assuming the concrete specification doesn’t contain divergence (divergence is not
discussed in [Eva97]).

The motivation Evans gives for the second condition is its use as a liveness
condition to ensure that whenever an abstract operation is enabled, it will remain
enabled at least until the corresponding concrete operation occurs. Because his
conditions are motivated by liveness and safety issues, his first two conditions
are orthogonal to the weak refinement conditions whose motivation was different.
Again, like in the work of Butler but unlike our weak refinement, the initialisation
condition of Evans does not allow any unobservable evolution of the initial states
of the system.

9. Conclusions

The motivation for the work described in this paper arose out of our interest
in the use of Z for the specification of distributed systems, and in particular its
use within the Open Distributed Processing standardization initiative. A refer-
ence model for the standard has been defined which describes an architecture for
building open distributed systems. Central to this architecture is a viewpoints
model. This enables distributed systems to be described from a number of dif-
ferent perspectives. There are five viewpoints: enterprise, information, computa-
tional, engineering and technology. Z and LOTOS are strong candidates for use
in some of the ODP viewpoints, for example Z in the information viewpoint and
LOTOS in the computational and engineering viewpoints. The use of different
viewpoints specified in different languages means we have to have mechanisms
to check for the consistency of specifications. One aspect of our work has been
the development of means to check for the consistency of two Z specifications,
and a means to translate LOTOS specifications into Z [DBBS964].

Requirements and specifications of an ODP system can be made from any
of the viewpoints, and these viewpoint specifications will typically be made at
different levels of abstraction. It is important therefore that techniques, includ-
ing refinement, are developed to cope with such partial specifications occuring
at differing levels of abstraction. The presence of internal operations in a specifi-
cation is just one of the consequences of such an approach to large scale software
engineering.

In addition, development of viewpoints written in different languages will be
undertaken using different refinement relations, and this also motivates the need
to develop a notion of weak-refinement in 7Z which is related to refinements in
LOTOS. A full discussion of the relationships between the differing refinement
relations is given in [DBBS96b] (which incidentally assumes the firing condition
interpretation discussed above).

In this paper we used an example of a telecommunications protocol to show
that standard Z refinement is inappropriate for refining a system when inter-
nal operations are specified explicitly. We then formulated a generalization of Z
refinement, called weak refinement, which treats internal operations differently
from observable operations when refining a system. We also discussed the role
of internal operations in a 7 specification, and in particular whether an equiv-
alent, specification not containing internal operations can always be found. If a
specification is divergence free we showed that we could find a testing equivalent
specification that did not contain internal operations. In the presence of poten-
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tial livelock we discussed the effect of differing interpretations of divergence have
on finding such an equivalent specification.
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