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Abstract One of the most relevant applications of digital image forensics is to accu-
rately identify the device used for taking a given set of images, a problem called source
identification. This paper studies recent developments in the field and proposes the
mixture of two techniques (Sensor Imperfections and Wavelet Transforms) to get bet-
ter source identification of images generated with mobile devices. Our results show
that Sensor Imperfections and Wavelet Transforms can jointly serve as good forensic
features to help trace the source camera of images produced by mobile phones. Fur-
thermore, the model proposed here can also determine with high precision both the
brand and model of the device.
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1 Introduction

Source identification research investigates techniques to identify the characteristics of
digital data acquisition devices (e.g., digital cameras and mobile phones) used in the
generation of images. These techniques are expected to achieve two major outcomes.
The first is to infer the class (model) of the source, the second is to accurately find its
individual source properties. The success of source identification techniques depend
on the assumption that all images acquired by the same image acquisition device
will exhibit certain characteristics that are intrinsic to it, because of their (proprietary)
image formation pipeline and the unique hardware components they deploy, regardless
of the content of the image. It should be noted that despite the fact that they frequently
encode device related information (like model, type, date and time, and compression
details in the image header, e.g., EXIF header) this information can be easily tampered
with, so it cannot be used for forensics purposes.

1.1 Image formation in digital cameras

The design of image source identification techniques requires a basic understanding of
the physics in operation on these devices. The general structure of the image formation
pipeline remains similar for almost all digital cameras, although much of the details are
kept as proprietary information by each manufacturer. The basic structure is illustrated
in Fig. 1.

Consumer level digital cameras consist of a lens system, sampling filters, a color
filter array, imaging sensor, and a digital image processor [1]. The lens system is

Fig. 1 Stages of digital camera pipeline [1]
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essentially composed of a lens and the mechanisms to control exposure, focus, and
image stabilization to collect and control the light from the scene. After the light enters
the camera through the lens, it goes through a combination of filters that includes at least
the infra-red and anti-aliasing filters to ensure maximum visible quality. The light is
then focused onto the imaging sensor, an array of light-sensing elements called pixels.
Digital cameras generally employ charge-coupled device (CCD) or complimentary
metal-oxide semiconductor (CMOS) imaging sensors. Each light sensing element of
the sensor array integrates the incident light over the whole spectrum, and obtains an
electric signal representation of the scenery. Since each imaging sensor element is
essentially monochromatic, capturing color images requires separate sensors for each
color component. However, due to cost considerations in most digital cameras only a
single sensor is used along with a color filter array (CFA). The CFA arranges pixels
in a pattern so that each element has a different spectral filter. Hence, each element
only detects one wavelength band, and the raw image collected from the imaging
sensor is a mosaic of different colors and varying intensity values. The CFA patterns
are generally comprised of red-green-blue (RGB) and cyan-magenta-yellow (CMY)
color components. The measured color values are passed to a digital image processor
which performs a number of operations to produce a visually pleasing image. As each
sub-partition of pixels only provides information about a number of color component
values, the missing one need to be obtained through a demosaicing operation. This is
followed by other forms of processing like white point correction, image sharpening,
aperture correction, gamma correction and compression. Although the operations and
stages explained here are standard in a digital camera, the exact details in each stage
varies from one manufacturer to another, and even in different camera models by the
same manufacturer.

2 Source model identification

The features used to differentiate camera-models are derived from differences in
processing techniques, and the component technologies. The major problem with this
approach is that many different models and brands use components by only a few num-
ber of manufacturers, and the processing steps and algorithms remain in general very
similar among different models of a brand. Hence, reliable identification of a source
camera-model heavily depends on characterizations of various model-dependent fea-
tures as briefly explained below.

2.1 Techniques based on metadata

These are the simplest, although they strongly depend on the data the maker decides
to insert as metadata when the picture is taken. Furthermore, this method is the most
vulnerable to tampering. Nevertheless, if it can be shown by any means that there were
not any external modifications, using the generally large amount of metadata present
can greatly help the forensic analyst.

There is a huge number of works focusing on the different types of metadata in
pictures, for search and classification purposes [2,3,16,17]. As stated before, these
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techniques, though simplest, depend on the quality and quantity of metadata the maker
decides to introduce. The most widespread specification to identify the source of the
camera, Exif [15], has two specific tags: “Make” and “Model”. Unfortunately, filling
data in those tags is not mandatory.

2.2 Techniques based on image features

Çeliktutan et al. [4] use a set of binary similarity measures for assessing the similitude
between the bit-planes of an image. The underlying assumption is that proprietary
CFA interpolation algorithms leave correlations across adjacent bit-planes of an image
that can be captured by the proposed measures. 108 binary similarity measures are
obtained for image classification purposes. The results of their experiment for a group
of 9 cameras has accuracy 62 %, collecting 200 images from each of the maximum
resolutions, with a constant size of 640×480 pixels, at day light, and in auto-focus
mode.

Tsai et al. [18] proposed different methods: They used a set of image features to
obtain camera characteristics. These include color features, quality features and image
characteristics in the frequency domain. They adopt the Wavelet Transform method for
computing wavelet domain statistics, and added SVM to the search stage to enhance
the identification rate. The results obtained over four camera models from two different
brands yielded average accuracies close to 92 %.

McKay et al. [10] extend the image source identification technique to devices such
as mobile phone cameras, digital cameras, and scanners. To achieve this, they first
should find sources of variation among different devices, and between different mod-
els of a device. They use the dissimilarities in the image acquisition process to develop
two groups of features, namely color interpolation coefficients and noise features. They
later use these to obtain an accurate identification. In their experiments they employed
five different models of mobile phones, five models of digital cameras and four mod-
els of scanner to identify the source type. The results were an overall identification
accuracy of 93.75 %. In their analysis of the identifying device brand/model of the
smartphone, they obtained an accuracy close to 97.7 % for five models.

2.3 Techniques based on CFA and demosaicing artifacts

The choice of CFA and the specifics of the demosacing algorithm produce some of
the most pronounced differences among different digital camera models. In those
with a single imaging sensor, the use of demosacing algorithms is crucial for correct
rendering high spatial image details, and it greatly impacts the edge and color qual-
ity of an image. Essentially, demosaicing is a form of interpolation which in effect
introduces a specific type of inter-dependency (correlations) between the color values
of image pixels. The specific form of these dependencies can be extracted from the
images to fingerprint different demosaicing algorithms, and to determine the source
camera-model of an image. Brayman et al. [1], describe their approach to identify,
detect and classify traces of demosaicing operations. They rely on two methods: The
first is based on the use of Expectation-Maximization algorithms which analyze the
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correlation of each pixel value to its neighbours; The second method is based on ana-
lyzing inter-pixel differences. They divide their experiments into two categories. The
first category was performed to asses the accuracy of camera-model identification, and
the second evaluated the improvement in individual camera identification. The accu-
racy in identifying the source of an image among four and five models is measured
as 88 and 84.8 %, respectively, using images captured under automatic settings and at
highest compression levels.

2.4 Techniques based on the use of sensor imperfections

They can be divided into two large branches: pixel defects or sensor noise patterns.
Geradts et al. [7] examine CCD pixel defects, but this work is not very relevant in our

case as we are dealing with CMOS. This technique includes point defects, hot points,
dead pixels, pixel traps and cluster defects. The result noted that each of the cameras
had a different defect pattern. Nevertheless, it also showed that the number of defects
in the pixels for a camera differed between pictures and varies quite significantly
depending on the content of the image. It also revealed that the number of defects
varied at different temperatures. Finally, the study found that cameras with high-end
CCDs did not generally had this kind of problem, thus not all cameras suffered from
this issue. It is also true that most cameras have additional mechanisms to compensate
for this problem.

Luka et al. [9] proposes a method based on the non-uniformity of the pixels (PNU
Pixel Non-Uniformity), which is a great source for the retrieval of noise patterns and
allows identifying the sensors and therefore the camera. The result for pictures of
different sizes and for cropped images is, unfortunately, not satisfactory [19].

2.5 Techniques based on wavelet transforms

Meng et al. [11] proposes a feature-based method for source camera identification.
This method employs the magnitude and phase statistics of bi-coherence along with
wavelet coefficient statistics, focusing on capturing the unique non-linear distortions
on higher-order image statistics produced by different cameras and the impact of image
processing operations on the wavelet domain.

First, the Bi-Coherence Features are extracted: The normalized bi-spectrum of the
signal is estimated by dividing the signal into N (possibly overlapping) segments,
computing the Fourier transform of each segment, and averaging the individual esti-
mates. The mean of the magnitude and the negative phase entropy of the bi-coherence
are computed as statistical features.

Next, scale wavelet decomposition is employed to split the frequency space into four
scales and orientations. Then, four statistics (mean, variance, skewness and kurtosis) of
the sub-band coefficients and the linear prediction errors at each orientation, scale and
color channel are computed. These statistics compose the second group of statistical
feature vectors used for source camera identification.

Once the bi-coherence and wavelet statistics are computed, the sequential forward
featured selection (SFFS) algorithm [13] is used to reduce the correlation among
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features and computing load, while keeping the same classification accuracy. The
SFFS method analyzes all the features and builds the most significant set from them
by adding and removing features until no more improvements are possible.

Finally, the most representative features are classified by a multi-class SVM using
a C-support vector classification with non-linear RBF kernel with two tunable para-
meters.

The results obtained from this technique are satisfactory, based on their success
in distinguishing different cameras of the same brand. However, further improve-
ments could be made by incorporating features from other techniques like in the next
approach.

The work in [20] describes a scheme for source camera identification based on
extracting and classifying wavelet statistical features. This method is composed of
three phases: Wavelet Feature Extraction, Wavelet Feature Selection, and Wavelet
Feature Classification.

Outstanding features from the wavelet domain are extracted integrating the sta-
tistical model for natural digital image from the wavelet coefficients including 216
higher-order wavelet features and 135 wavelet coefficient co-occurrence statistics.
Features from the wavelet domain are preferred over spatial features (image color and
Image Quality Metrics IQM) and Color Filter Array (CFA).

Analogously to the aforementioned forementioned method, Four-scale wavelet
decomposition is employed based on Separable Quadrate Mirror Filters (QMFs) to
split the frequency space, the same four statistics (mean, variance, skewness and kur-
tosis) and the linear prediction errors are extracted.

The statistics above do not relate to the texture correlation, as it has been observed
the co-occurrence features are the best among those used in the image texture feature
extraction [14]. Hence, in order to take into account the texture correlation between
the wavelet coefficients a co-occurrence matrix is constructed from those coefficients
to form an image texture representation and distance calculation is applied in the
same orientation to coefficients of co-occurrence matrix between different scales.
Then statistical features (energy, entropy, contrast, homogeneity and correlation) are
calculated from those distances.

The wavelet features selection and classification processes are performed in the
same manner as in the above method, using the SFFS algorithm to select the most
representative features, and a multi-class SVM as classifier.

As in the previous experiments, they succeeded in distinguishing different types of
the same Canon camera. However, this could be improved by evaluating the robustness
of the identification system proposed for the feature vector, and also by extending the
image data set in favour of covering more brands, models, textures and contents.

Ozparlak and Avcibas [12] exposes a differentiating images technique using trans-
forms from the wavelet family. They propose statistical models for ridge-let, and
contour-let sub-bands.

– Ridgelet Transform: Wavelets perform well at catching zero-dimensional or point
singularities. Nevertheless, two-dimensional signals (i.e., images) normally con-
tain one-dimensional singularities (i.e., edges and corners). In order to overcome
the above mentioned drawbacks of wavelet, a system called “ridgelets” was devel-
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Fig. 2 Wavelet representation versus contourlet representation [6]

oped. The main idea is to use Radon Transform (RAT) to map the line singularities
to point singularities. Then, the mapped point singularities in the Radon domain
can be effectively handled by the use of wavelet transform.

– Contourlet Transform: In painting lines and contours are used instead of dots to
create images. The image wavelet representation is equivalent to using points, in
this case the image is not clear and y the image elaboration is harder (Fig. 2a).
Likewise, the representation called “contourlets” [6] is the equivalent to using con-
tour lines, simplifying the image construction and giving it a realistic appearance
(Fig. 2a).

According to the results of previous studies [6], an efficient representation of an
image should satisfy the following characteristics:

1. Multi-resolution: The representation must be a successful approximation to the
image, considering low and high resolutions.

2. Localization: the basic elements must be localized in both spatial and frequency
domains.

3. Critical Sampling: the representation should form a basis or a frame with low level
of redundancy.

4. Directionality: A remarkable representation must have base elements in different
directions.

5. Anisotropy: To capture smooth contours in images, the representation should con-
tain basis elements using a variety of elongated shapes with different aspect ratios.

The wavelets transforms cover the first three properties, as ridgelets cover the first
four, and contourlets cover all of them.

After defining the statistical models for ridgelet and contourlet coefficients, the
feature extraction is performed. For each subband of a wavelet-based transform, eight
statistical features are calculated from the coefficients themselves and the error predic-
tion between the coefficients by using the statistical models proposed. As final steps,
sequential floating search (SFS) for the feature selection is applied and a SVM for the
feature classification is used.
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Since the wavelet-based method considers 216 features (useful only for one dimen-
sion representation), while the ridgelet-based approach takes into account 48 features,
and contourlets approach considers a total of 768 features. The improved results apply-
ing both ridgelet and contourlet transforms are reasonable due to the fact that we get the
statistics over more than three directions, taking into account all five of the properties
of an efficient image representation.

The ridgelet and contourlet models are not only effective at separating the different
models, but also they separate the images of the two different cameras or scanners
with the same model. However, we could try improvements by experimenting with
different feature selection algorithms (e. g. SFFP).

Studies on wavelet techniques have produced positive results. Nonetheless, we
propose in here their usage for mobile phone cameras. This deserves special mention
owing to the fact that the experiments have been focused on traditional cameras leaving
out one of the fields that currently is gaining more ground every day.

3 Proposal description

In this section, we describe how features extracted can be utilized to more reliably
detect the individual source camera of an image. Here the two types of methods (sensor
imperfections and wavelet transforms) are combined to more accurately detect source
camera of an image.

3.1 Sensor noise patterns

During the image generation process, usually several defects are injected; these will
appear in the final image as noise. One type of noise is caused by array’s defects;
this includes hot point defects, dead pixels, pixel traps, cluster defects, and column
defects. This causes those pixels to differ greatly from the original image, in several
cases being indifferent to which of the two images is taken, since they all the time show
the same pixel value. For instance, the dead pixels will appear in the image as a black
pixel in the resulting image, and hot pixels will appear as brilliant points. The noise
pattern in an image refers to any spatial pattern that does not change between images
and it is generated by a “dark current” and PRNU (photoresponse non uniformity) [8].

There are some filters to smooth out the effect of this noise. For simplicity, speed
and ease of implementation we will use the Gaussian filter. This filter will be used
later to eliminate quickly and effectively the noise in the images, and with these data
we will be able to perform different operations that lead us to determine the different
features.

Our aim is to obtain a set of image features that enable us to clearly differentiate
the camera model.

Given an initial image of M ∗ N pixels, whith M rows and N columns, we denote
Inoise as the noise in the original image and Idenoised as the image with no noise. Then
we get:

Inoise = I − Idenoised
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In order to achieve noise-free images we will use the Gaussian filter, which provides
us the necessary speed for analyzing large numbers of photos in a short time. Next,
we will subtract each color component (RGB) to the original picture, which will give
the noise component of each pixel for each color.

The noise in the original image Inoise can be modelled as the sum of two compo-
nents, the constant noise Inoiseconstant and random noise Inoiserandom .

Înoiseconstant (1, j) =
∑M

i=1
Inoise (i, j)

M
, 1 ≤ j ≤ N

To identify the similarities between different rows regarding the reference pattern, we
will use the correlation of these with the mentioned pattern.

correlation (X, Y ) =
(
X − X

) · (
Y − Y

)
∥∥X − X

∥∥ · ∥∥Y − Y
∥∥

We do the same for columns.
Once we obtain the row and column correlations, we will extract the features.
At the time of obtaining the features it is important to consider that the input image

orientation is critical, as this might change completely the resulting features.

3.2 First-order and higher-order features

For every type of correlation (rows or columns) we obtain the first-order statistics:
mean, median, minimum and maximum. The higher-order features are: variance, skew-
ness and kurtosis. Additionally, we add the ratio between the correlations of rows and
columns.

It was considered appropriate adding a new feature based on the image noise to the
set of features above. This new feature measures the medium noise per pixel, which
is independent from the columns and rows correlations of the reference pattern.

In total we have seven rows features, seven columns features, the ratio and average
pixel noise, resulting in a total of 16 features.

3.3 Wavelet transforms

Each color band is split into three sub-bands using QMFs (separable quadratic mirror
filters) and subsequently the mean of each of the three sub bands, giving us a total of
9 features.

In Fig. 3 the absolute values of the coefficients of the sub-bands for a disk image
are shown. It can be observed the top right sub-band vertical, the bottom left diag-
onal sub-band, and the bottom left diagonal subband. This image shows three-level
decomposition, our algorithm uses just one level.
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Fig. 3 Example wavelet sub-bands

4 Support vector machine-based classification

SVM algorithms belong to the lineal classifiers family. In this type of classifiers there
is a priori knowledge about the classes at which the individuals that we want classify
belong [5].

Given a set of training examples (samples) we can label classes and train a SVM to
build a model that predicts the class of a new sample. Intuitively, an SVM is a model
representing the sample points in the space, separating the classes by a space as wide
as possible. When new samples are placed in correspondence with the established
pattern, depending on their proximity they may be classified into one class depending
on the proximity to each one.

Formally, a SMV generates an hyperplane or an hyperplane set in a high dimensional
space which can be used in classifying or regression problems. An efficient separation
between classes allows more accurate classification.

Mathematically:
Starting from a set of training data {xi , yi } with:

i = 1, . . . , l, yi ∈ {−1, 1} y xi ∈ Rd

Then there exists a hyperplane which separates data from positive and negative labels,
such that:
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xiω + b ≥ 1 − ξi parayi = 1xiω + b ≤ 1 + ξi parayi = −1xi ≥ ∀i

Where ω is the normal to the hyperplane and xi are the variables introduced by clas-
sification errors as violations of the hyperplane, so

∑
ξi will be the classification

error bound. A straightforward way to add the objective function cost is to minimize∥∥ω2
∥∥

2 + C
∑

ξi , being C the constant chosen for the inverse of the value of the crim-
inalization of errors. Thus, we have a convex optimization problem whose quadratic
optimization is the number of support vectors.

In most cases, the input space is not linear, so that a transformation needs to be
done to a Euclidean space H .

Therefore, the training algorithm depends only on the data input through the prod-
ucts of the form φ (xi ) : φ

(
x j

)
. Then there exists a function called “kernel” such that

is true that:

K
(
xi , x j

) = φ (xi ) : φ
(
x j

)

Among “kernels” the most commonly used are:

– Polynomial (homogeneous) K
(
xi , x j

) = (
xi · x j

)d

– Polynomial (heterogeneous) K
(
xi , x j

) = (
xi · x j + 1

)d

– RBF (Radial Basis Function) K
(
xi , x j

) = exp
(
−γ

∥∥xi − x j
∥∥2

)

– Hyperbolic tangent K
(
xi , x j

) = tanh
(
kxi · x j + c

)
for k > 0 y c < 0

5 Experiments and results

To verify the effectiveness of our extraction features algorithm for identifying different
sources, several experiments were made varying the mobile phone models and the
number of pictures, as we will also take into account how this affects the algorithm.
At least 30 pictures of each mobile were taken. In our first experiment, we will use 10
different phone models and various brands which are listed below: Iphone 3G, Iphone
3GS, Blackberry 8520, HTC Desire HD, LG Ku990i, Nokia 5300, Nokia 6110, Nokia
N95, Nokia E61i, Sony and Ericsson W580i.

Of all these models we take exactly 50 photographs.
The results show a 89.4 % accuracy. With so few photographs of each group, the

result seems quite remarkable.
We took another group of phones, from which there will be at least 150 photos

with a maximum of 200. The seven considered models are: Blackberry 8520, HTC
Desire HD, LG Ku990i, Nokia 5300, Nokia 6110, Nokia 6300, Sony Ericsson T707,
and Sony Ericsson W580i.

The result in this case is a 94.2 % accuracy. Therefore, we can observe that the
performance of the algorithm is much better as a consequence of having more images,
but is also positively affected because we have three models less.

With the propose of making a more direct comparison of how the number of classes
affects performance, we will compare two common models, five groups in total with
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Table 1 Accuracy rate by
number of images

Number of images Success rate (%)

30 96.6

60 95

90 94.4

120 96.6

150 96.3

50 pictures each, and then we will try with 150 photos each. The common models of
each brand are: Blackberry 8520, HTC Desire HD,LG Ku990i, Nokia 5300, and Sony
Ericsson W580i.

For 50 images we have an accuracy of 95.8 %. With 100 images each we have a rate
of 96.2 %. We can see that the difference is not huge, and probably not statistically
significant. We tested only two groups to verify if this difference could be even smaller,
and so we used the Blackberry 8520 and Sony Ericsson W580i.

Table 1 shows that the accuracy does not change significantly, so we can conclude
that the number of images does not affect significantly the success rate in this approach.

6 Conclusions

This paper studies the recent developments in the field of image source identifica-
tion. Proposed techniques in the literature are categorized into five main areas based
on source model identification: Metadata, Image Features, CFA and Demosaicing
Artifacts, Use of Sensor Imperfection and Wavelet Transforms. The main idea of the
proposed approaches in each category is described in detail, and reported results are
discussed to evaluate the potential of the methods.

Furthermore, we present our approach for image acquisition forensics to identify
both the type of image acquisition device and the brand/model of the device. We have
proposed to jointly employ sensor imperfections and wavelet transforms as features
for forensic analysis. These are estimated from the images and are jointly used as
features for forensic analysis. We show that the combined set of features can provide
tell-tale clues and accurately help trace the origin of the input image and help identify
the mobile phone camera brand and model that was used in its capture with high
accuracy. Our approach utilizes the optimal parameter search from SVM for prediction
and classification, which results in a better identification rate.
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