University of

"1l Kent Academic Repository

Ugawa, Tomoharu, Jones, Richard E. and Ritson, Carl G. (2014) An On-The-Fly
Copying Garbage Collection Framework for Jikes RVM. In: 12th Asian
Symposium on Programming Languages and Systems, 17-19 November

2014, Singapore.

Downloaded from
https://kar.kent.ac.uk/45210/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Best poster prize, APLAS 2014

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/45210/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An On-The-Fly Copying Garbage Collection
Framework for Jikes RVM

Tomoharu Ugawa @ Richard E. Jones University of
Carl G. Ritson en

N
)
Computing

KocHI UNIVERSITY OF TECHNOLOGY

2. Lagged Phase Change

Motivation

GC pauses are undesirable for modern enterprise
“> Eliminate GC pauses from multi-threaded applications

widely used

Mostly Concurrent G On-The-Fly (OTF) GC

need barrier sync. for phase change never stop more than one thread at a time

o handshake

Phase B Phase A Phase B

time time

Challenge on OTF GC: designing correct and efficient write barrier

Different phases require different invariants

Sapphire’s bug
Mutator A in copy phase

INV: no non-movinge—» to-space
Mutator B in flip phase i
INV: no new non-movinge— from-space ﬁ:~>

|. B stores pointer to to-space object X’ to
non-moving space
2. Aloads X’ from non-moving space
3. A stores pointer to from-space objectY
to a slot of X’
We introduce intermediate states to
prevent conflicts between invariants of

adjacent phases

Copy Phase

Copy Phase

1 non-moving space

Flip Phase
time

3. Concurrent Copy

Contributions

Implemented Sapphire OTF GC on widely-used JavaVM (Jikes RVM)
Developed general framework for OTF, parallel GC

Identified a pattern of lagged phase change and fixed a bug in Sapphire
Developed efficient concurrent copying method using transactions
Support subtleties such as Object.hashCode () and weak references

Lhwpn —

. Sapphire (Hudson & Moss, 2001]

The only known on-the-fly copying GC, but no full-scale implementation exists
Replication: create semantically equivalent replica behind mutators
write barrier enforces invariant: no to-space e— from-space pointer

Mark Phase Copy Phase Flip Phase

creates empty “shells” copies object bodies flips non-moving space

from- sgace /
to-space .

header header

non-moving space
data

1 \
n from-space’
:I to-space -

non-moving space

non-moving space

mutator works with write to to-space as well mutator works with all spaces
from-space and non-moving space flip before writing from-space ptr

Sapphire: compare-and-swap per word X.f =

Our solution: copy-fence-verify per object

copy-object(X, X’) / . \
for(f : fields(X))
{ buf.f = X.f; X'.f = forward(X.f); }
ace

fence;
for (f : fields(X))
if (X.f 1= buf.f) fallback; Race detection

Can use HWV transaction for race detection

» fewer synchronisation compare
* sequential memory access e 2 4 : : !.

* transaction setup was heavier than fence .

=) similar throughput to SW transaction

Evaluation Result

time critical task (tree manipulation)

other 9 _> ﬁ_p.aJSé_)e? 01

threads
.

* Long pauses were very rare

o
2

normalised frequency

¢ Write barrier slowed down mutators to

outside of GC
during GC messs

distribution of times for;
time-critical task
on dual Xeon!

0.001
(observed regardless of GC) 0.0001 | ‘H
0 1

roughly half speed le05

E5520 @ 2. 27GHZ
m""l —
2 4

execution time (0.1 ms bm|




