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2. Lagged Phase Change

Motivation

GC pauses are undesirable for modern enterprise
“> Eliminate GC pauses from multi-threaded applications

widely used

Mostly Concurrent G On-The-Fly (OTF) GC

need barrier sync. for phase change never stop more than one thread at a time

o handshake

Phase B Phase A Phase B

time time

Challenge on OTF GC: designing correct and efficient write barrier

Different phases require different invariants

Sapphire’s bug
Mutator A in copy phase

INV: no non-movinge—» to-space
Mutator B in flip phase i
INV: no new non-movinge— from-space ﬁ:~>

|. B stores pointer to to-space object X’ to
non-moving space
2. Aloads X’ from non-moving space
3. A stores pointer to from-space objectY
to a slot of X’
We introduce intermediate states to
prevent conflicts between invariants of

adjacent phases

Copy Phase

Copy Phase

1 non-moving space

Flip Phase
time

3. Concurrent Copy

Contributions

Implemented Sapphire OTF GC on widely-used JavaVM (Jikes RVM)
Developed general framework for OTF, parallel GC

Identified a pattern of lagged phase change and fixed a bug in Sapphire
Developed efficient concurrent copying method using transactions
Support subtleties such as Object.hashCode () and weak references

Lhwpn —

. Sapphire (Hudson & Moss, 2001]

The only known on-the-fly copying GC, but no full-scale implementation exists
Replication: create semantically equivalent replica behind mutators
write barrier enforces invariant: no to-space e— from-space pointer

Mark Phase Copy Phase Flip Phase

creates empty “shells” copies object bodies flips non-moving space

from- sgace /
to-space .

header header

non-moving space
data

1 \
n from-space’
:I to-space -

non-moving space

non-moving space

mutator works with write to to-space as well mutator works with all spaces
from-space and non-moving space flip before writing from-space ptr

Sapphire: compare-and-swap per word X.f =

Our solution: copy-fence-verify per object

copy-object(X, X’) / . \
for(f : fields(X))
{ buf.f = X.f; X'.f = forward(X.f); }
ace

fence;
for (f : fields(X))
if (X.f 1= buf.f) fallback; Race detection

Can use HWV transaction for race detection

» fewer synchronisation compare
* sequential memory access e 2 4 : : !.

* transaction setup was heavier than fence .

=) similar throughput to SW transaction

Evaluation Result

time critical task (tree manipulation)

other 9 _> ﬁ_p.aJSé_)e? 01

threads
.

* Long pauses were very rare

o
2

normalised frequency

¢ Write barrier slowed down mutators to

outside of GC
during GC messs

distribution of times for;
time-critical task
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