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Abstract

Constructive type theories� such as that of Martin�L�of� allow program construction

and veri�cation to take place within a single system� proofs may be read as programs

and propositions as types� However� parts of proofs may be seen to be irrelevant

from a computational viewpoint� We show how a form of abstract interpretation

may be used to detect computational redundancy in a functional language based

upon Martin�L�of�s type theory� Thus� without making any alteration to the system

of type theory itself� we present an automatic way of discovering and removing such

redundancy� We also note that the strong normalisation property of type theory

means that proofs of correctness of the abstract interpretation are simpler� being

based upon a set�theoretic rather than a domain�theoretic semantics�
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Introduction

Over the last 
fteen years constructive type theories such as Martin�L�of type theory ��
�
and the calculus of constructions ��� have been widely investigated by computer scientists�
These theories are worth examining for a number of reasons�

� Constructive type theories are simultaneously �constructive� logics and �functional�
programming languages and so they allow program construction and veri
cation to
take place in a single system�

� A proof constructed interactively can be interpreted as giving rise to a program
�witnessing� the theorem proved�

� Since propositions can be read as types� the type system of the programming language
is considerably richer than in conventional functional languages such as Haskell ��	��
For instance� any property �such as being a prime number� over a type de
nes a
subtype of the type in question �in this case the natural numbers��

Despite the identi
cation of propositions and types and of proofs and programs �the so�
called Curry�Howard isomorphism� the activities of proving and programming have dif�
ferent purposes� Typically in proving a theorem we are interested in constructing a proof
object� while in writing a program we are not only interested in constructing the program
�or proof object� but also in executing the program� that is reducing expressions involving
the program to normal form� In other words� proof construction is concerned with the
static behaviour of the language� does this term have this type� Programming is con�
cerned both with this and with the dynamic behaviour of expressions� what value does
this expression have�
When we examine the reduction behaviour of expressions in constructive type theory

we discover a disadvantage of identifying proofs and programs� the static and the dynamic
are intimately linked� and particularly we 
nd that static parts of a program can a�ect its
dynamic behaviour� We consider two cases now�

� The existential type

��y � B�C�y�

can be used to represent the subtype of B consisting of those elements b with the
property C�b�� Note that we have used the term �represent�� the elements of ��y �
B�C�y� are in fact pairs �b� p� where b � B and p is a proof that b has the property C�
that is p � C�b�� Elements of the existential type thus consist of pairs of data values
and proof terms�

Suppose� as suggested by �	�� � that we take the proposition

��x � A���y � B�C�x� y� ���

�



as a speci
cation of a function from A to B� Elements of the type ��� will in fact
be functions returning pairs of values� the second component of which contains proof
information� Using ��� as a speci
cation of a function thus introduces information
irrelevant to the computation itself�

� Given that the type system is more expressive than those in traditional languages
we can give more accurate types to functions� We can� for example� express the fact
that the head function on lists should only be applied to non�empty lists by giving
it the type

��l � �A���nonempty �l�� A�

This means that the head function takes two arguments� a list and a proof that the
list is non�empty� �The nonempty function is de
ned in Section ��� In a well�formed
application of the function�

head e p ���

the presence of the p ensures that the list e has a head � in other words it ensures that
the expression ��� is well�typed � but the proof term is not needed in the calculation
of the head of e itself� Again we can see here that the proof information which is
important for the static checking of the application is nonetheless irrelevant to the
computation of the result�

How are we to deal with this proof irrelevance�
One approach is to modify the types of the language to include the so�called �information

loss� types �	�� �� from which the witnessing information is removed� While this approach
appears neat� it is unfortunately weaker than might be expected �	�� 	�� and so unworkable
in practice�
Some separation of proof and data values can be given by judicious use of the axiom

of choice� which is valid in Martin�L�of�s type theory� We investigated this Skolemization
process in �����
A third approach� which can be seen in systems such as Coq ��� and a later re�working

of Martin�L�of�s theory �	��� is to set aside the identi
cation of propositions and types�
While this has the desired e�ect of allowing the separation of the computationally relevant
�inhabitants of types� and irrelevant �inhabitants of propositions� it has two drawbacks�

� The Curry�Howard isomorphism is an important principle� which allows the user
of a type theory to think in two quite distinct ways about the same problem� and
thus to give him or herself a greater chance of succeeding in 
nding its solution�
Moreover� losing the identi
cation means that there is substantial duplication of
e�ort� as constructions have to be performed in both the universe of types and of
propositions�

�



� When writing a speci
cation or making a construction a user is forced to decide
between using a proposition or a type� between making something computationally
irrelevant or not� We suggest that this sort of choice is di�cult to make� an incorrect
decision can result in substantial e�ort having to be expended in reconstruction�
Moreover� we see such a choice as being better made analytically than in an ad hoc

way� We turn to this approach now�

In this paper we suggest two complementary approaches based on experience of implemen�
tation of mainstream functional programming languages �	���
First we observe that there are di�erent strategies for reducing expressions to normal

form� In applicative order reduction of a function application

f a b �	�

the arguments a and b are fully evaluated before the application itself� while in normal�
order reduction a and b are substituted unevaluated for the formal parameters of f � and
are only reduced when and to the extent that it is necessary during the evaluation of the
normal form of the whole expression �	�� An optimisation of normal�order reduction is lazy
evaluation� under which each argument a and b is evaluated at most once� this is achieved
by substituting pointers to a and b for the formal parameters of f � and thereby results in
the evaluation of a graph rather than an expression tree to normal form�
Consider an application of the form ��� above� the proof p will not be required in com�

puting the head of e� and so under lazy evaluation will not be evaluated� We therefore
avoid evaluating computationally irrelevant terms by evaluating expressions lazily� Never�
theless� there is an overhead in handling proof terms such as p during expression evaluation�
They will� for instance� occupy considerable amounts of heap space during evaluation� and
therefore slow down execution�
Our second insight is to analyse programs such as head to try to discover when ar�

guments will and will not be needed� The paper shows how in cases such as head and
many others we can use techniques of static analysis or abstract interpretation �
� ��� ��
to discover when arguments are not evaluated and therefore computationally irrelevant�
We also show how these techniques can be combined with more traditional analyses� such
as strictness analysis� which are seen in production�quality compilers of lazy functional
languages �	���
A crucial part of any abstract interpretation is a proof that the analysis we perform is

sound� in this case we show that any argument asserted to be unnecessary is indeed so�
We characterise this in the set�theoretic semantics for the type theory as follows� f is said
to be independent of its argument if for all possible arguments a and b

�� f a �� � �� f b ��

that is� the result is independent of the value of the argument�
What is novel about this approach� The simple set�theoretic semantics makes proofs

considerably easier than in the case of a programming language containing unrestricted
recursion and therefore requiring a domain�theoretic semantics�

	



Secondly� we stress that this method is used at compile time� and requires no change
to the source language� it is therefore invisible to the programmer who works in a type
theory having the Curry�Howard identi
cation between propositions and types�
Finally� the analysis can be performed in conjunction with other techniques such as

strictness analysis which form part of the traditional repertoire of the implementor�

Overview of the paper

The remainder of this paper is organised as follows� In Section � we describe the main fea�
tures of type theory and how computationally irrelevant proof objects may occur� Section �
describes the basic ideas of abstract interpretation� focussing upon backwards analysis� We
show how this method is used to detect computational redundancy in the TT system in
Section 	� Type theory allows types to be the inputs and results of functions� We con�
sequently describe how types may be analysed in Section �� Section � then gives some
examples of the application of backwards analysis to type theory� In Section � we discuss
the semantics of type theory as a prelude to Section � in which we demonstrate how the
backwards analysis of type theory may be proved correct� This shows that our analysis can�
not erroneously detect a parameter that will be needed by the computation as redundant�
Our system has been implemented within a prototype compiler for a prototype functional
system based upon type theory� This is described brie�y in Section �� Finally in Section 

we describe related work and in Section �� we present our conclusions�

Syntactic conventions

We now give the conventions to indicate di�erent classes of syntactic objects in this paper��

Teletype font is used for actual program fragments in a functional programming language
such as Miranda� or Haskell�

Italic font is used to denote type theoretic program fragments� These include function
names such as index and variables such as x and the selectors and constructors of
the theory such as lrec and Succ�

Bold face is used to indicate abstract constants such as A� abstract variables such as c
and v and abstract functions such as f and g�

� Type theory

We describe the structure of type theory and how certain proof objects may be seen as
computationally irrelevant� This is particularly evident when certain function de
nitions
in a functional system based upon type theory are compared with their counterparts in a
language such as Haskell�

�
Miranda is a trademark of Research Software Ltd�
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��� Rules of TT

Type theory is an intuitionistic logic with explicit proof objects which are terms in an
extension of the typed lambda calculus� The types of the theory are given meaning as
intuitionistic sets and� by the Curry�Howard correspondence ����� may also be seen as both
logical formulas and speci
cations of programs� We purposely adhere to this correspon�
dence in this paper� identifying� for example� � formulas with � sets� We thus use the TT
system presented in ����� This approach is taken as we argue that it is not necessary to
separate the types �sets� from logical formulas in order to obtain computational e�ciency�
Each type is presented completely by four classes of rules� formation� introduction�

elimination and computation� The 
rst three classes use a natural deduction style whilst
the last class� computation� uses the reduction rule style of lambda calculus�

Formation rules describe how types are formed from other types� The base types of the
system such as bool and N may be formed without reference to other types and so
may be seen as constants within U�� the lowest in a hierarchy of type universes� For
example� we have�

bool � U�
�bool Form�

Some types� such as � types which represent dependent products� will require other
types as premises in their formation�

�x � A�
���

A � Um P � Un

��x � A��P � Umax �m�n�
�� Form�

Type theory also allows the formation of types dependent on values from other types�
as is illustrated by the formation rule for equality types�

A � Un a � A b � A

I�A� a� b� � Un

�Equality Form�

Introduction rules specify how canonical terms of each type may be formed� For example�
we have�

True � bool
�bool Introt�

False � bool
�bool Introf�

The introduction of a pair relies upon two premises� the type of the second part of
the pair relies upon the value of the 
rst�

a � A p � P �a�x�

�a� p� � ��x � A��P
�� Intro�

�



Elimination rules indicate how other terms may be de
ned using a term of the type in
question� For example� an element of the bool type gives the following elimination
rule�

tr � bool l � C�True�x� d � C�False�x�

if tr then l else d � C�tr�x�
�bool Elim�

Similarly� either the 
rst or second part of a pair may be extracted�

p � ��x � A��P

Fst p � A
�� Elimf �

p � ��x � A��P

Snd p � P �Fst p�x�
�� Elims�

Computation rules show how the terms formed by the elimination rules will be reduced�
Together� the set of computation rules for TT show how terms may be reduced
to normal form� For example� the if�then�else construct of TT has the following
computation rules��

if True then l else d � l

if False then l else d � d

The terms resulting from the elimination of products have the following computation
rules��

Fst�a� b� � a

Snd �a� b� � b

There are is the special case of the � type which does not contain any elements�
However� if we have a pathological proof object of this type we can eliminate it to produce
an arbitrary element of any type that we choose�

p � �

abortA p � A
�� Elim�

� does not have computation rules �it does not make sense to try to reduce a proof object
that should not exist� and the abort term is de
ned to be in normal form�
Finally there are structural rules by which assumptions can be introduced� substitutions

of convertible terms can be made and so on� We refer to ���� for details of these�

��� Dealing with computational irrelevancy

Computationally irrelevant parameters may be included within functions during the appli�
cation of the relevant introduction rules� This is because we only want the functions to be
applied to arguments of the correct form� such as non�empty lists in the case of the head of
list function discussed in the introduction� We illustrate this by comparing the functions
which index a list in Haskell �denoted by ��� and in TT � The Haskell de
nition is�

�



���� �� �a� �	 Int �	 a

�x�
� �� � � x

�
�xs� �� n 
 n 	 � � xs �� �n���

�
�
� �� 
 � error �PreludeList���� negative index�

�� �� 
 � error �PreludeList���� index too large�

However� in type theory� the function is de
ned as follows �using the informal presentation
style of type theoretic functions that comes from ����  typing is denoted by ��� and list
construction by ���� i�e� the reverse of the Haskell convention�� where A denotes an arbitrary
type�

index � ��l � �A�����n � N����n � !l�� A�

index �� n p �df abortA p

index �a��x� � p �df a

index �a��x� �n" �� p �df index x n p

As can be seen� the TT version has an extra parameter� In the Haskell version� if an out
of range index is required from a list then an error occurs with an appropriate message�
This is equivalent to the computation resulting in the unde
ned object of the type of the
components of the input list� Thus such functions in Haskell are partial and each type
contains an unde
ned element� In contrast� in TT � all functions are total and unde
ned
terms do not exist� The abort clause in TT indicates that a pathological error has occurred
during program development �when applying the index function� and the p is a nonsensical
witness to the � type� which should be empty� Such clauses will never be evaluated at
run�time� assuming that we evaluate closed terms �i�e� terms containing no free variables�
and that the TT system is consistent� The latter is expressed by � containing no closed
terms� During correct program development� however� the proof object p should be of type
�� p will then indicate that an appropriate index is being used with the given list�
Objects such as p are not� however� of computational interest since they do not form

part of the results in which we are interested� such as the third element of a list� Moreover�
they are formed from other inputs as part of the proof obligations in applying a function
such as index� Whilst lazy evaluation will ensure that such parameters will not have to
be calculated when computing the normal form of the output� they still a space burden
during execution�
Instead of altering the type theory and weakening the Curry�Howard correspondence� as

is the case with the subset theory� we use abstract interpretation to detect automatically
computational redundancy at compile�time� Abstract interpretation will act upon the
syntax of terms in TT to determine abstract semantic properties such as computational
redundancy� Given such information we should be able to transform the TT version of
index into one where the third parameter is eliminated�

�



� Backwards analysis

��� Abstract interpretation

The idea of abstract interpretation is to discover� without executing a program� partial
information about the parameters of the program so that the program may be complied
more e�ciently� In other words� we simplify the range of values that objects may take so
that we may compute a restricted amount of information about the variables in which we
are interested� We therefore produce an abstract semantics for a particular interpretation
of a language� The actual semantics for the language is� in a sense� too exact� in that it
only stipulates the results of a computation in terms of a given expression� it does not give
us data about parts of the computation or how the result may be categorised� Abstract
interpretation allows us to categorise results� A simple example of this is the #rule of signs$
for multiplication in arithmetic �two numbers of the same sign produce a positive number�
two numbers of opposite sign produce a negative� in which we are only interested in the
sign of a number rather than its actual value�
The basic form of abstract interpretation is forwards analysis where we propagate ab�

stract values as inputs to produce an abstract result� The rule of signs is an example
of a forwards analysis� Backwards analysis� naturally� is the reverse� we take abstract
information for the output of an expression to be analysed and propagate it to give infor�
mation about the inputs of the program� We can thus tell� for example� whether an input
parameter has to be evaluated in order to evaluate the main expression of the program�

��� Basic ideas of backwards analysis

The abstract values of backwards analysis� which we shall refer to as contexts� may be seen
as sets of continuations ��	� whereby an abstract value such as #unused$ will mean that
the expression will de
nitely not be evaluated in the future computation of the program�
The backwards analysis of Hughes ��	� ��� ��� has linear complexity in relation to the

number of arguments� This� as Hughes notes� is unlike forwards analysis� which in the form
given in ��� is NP�complete� The linear complexity of backwards analysis is due to the fact
that only a single input value �which represents a property of the result of the function� is
required by each abstract function in the 
rst�order case� Davis and Wadler have shown
����� however� that the complexity of the analyses is not due to the direction of the analyses
but whether relationships between the variables of a function may be considered �what they
term a high��delity analysis� or not� We may� for example� capture a property such as joint
redundancy where if one parameter is needed for a particular application of a function then
another will be unused in that application� A high�
delity backwards analysis will have
the same order of complexity as the forwards analyses that we have described above� The
backwards analysis that we shall develop is a low�
delity one in that we do not consider the
possible properties of the parameters in conjunction� However� for higher�order functions�
we are forced to make the analysis partly high�
delity ���� in order to gain non�trivial
information�

�



With regard to data structures� the work of Hughes and Launchbury ���� shows that
backwards analysis is either better than �in the case of products� or incomparable with �in
the case of sums� the corresponding forwards analysis in the 
rst�order case� This advan�
tage is of particular relevance to type theory since we will be dealing with large amounts
of structured data with some components being purely proof theoretic� For example� some
products will represent a function together with a proof that it meets some speci
cation�
The use of backwards analysis can also be justi
ed by the fact that the �ow of in�

formation is naturally backwards in the case of the semantic properties in which we are
interested� We know that the results of our programs are needed but we wish to deduce
which parameters of functions may be discarded�

��� Contexts and lattices

We assume a knowledge of basic lattice theory� including the Knaster�Tarski 
xpoint the�
orem� as may be found in �����

De�nition � 
Context lattice�

A context lattice is a 
nite lattice �that is a set partially ordered by a relation v where
each pair of elements has a greatest lower bound� called the meet� and a least upper bound�
called the join� with a distinguished element ABSENT� and an operation� contand �� ��
which is an associative operation that is monotonic with respect to each of its arguments
and for which ABSENT is the identity�
The least element of the lattice� CONTRA is a zero� We also denote the context join as
contor �t � for which CONTRA is the identity�

����� ABSENT and CONTRA

We shall 
rst discuss the two contexts which must be present in any context lattice� They
may not� however� be necessarily distinct from other contexts in the lattice or each other�
Indeed� we shall see that in the neededness analysis lattice they are the same point�

ABSENT is the context which results when a variable x is computationally redundant

with respect to E� This may be due to the following possibilities�

�� x does not occur free in the expression E� For example� ABSENT is the relevant
context with respect to x for the expression y " ��

�� x only occurs in E as �part of� an applicand to a function which does not use that
parameter� For example� suppose that the function const takes two parameters and
simply returns the second as its result� Suppose then that E is the expression�

const x 	

ABSENT again applies to x as it is computationally redundant here due to const
not using its 
rst parameter�






	� E has no computational content and is itself of a computationally redundant form�
An example of this is an abort expression in TT which is used to ensure complete
presentation in a strongly normalizing system� pathological proof objects of the
empty type � are eliminated using abort expressions� For example� for the hd of list
function in TT we may have�

hd � ��l � �A�����nonempty l�� A�

hd �� p �df abortA p ���

hd �a �� x� p �df a

nonempty is a function over lists which returns a type that depends upon whether
the given list is empty or not� We give its de
nition in Section �� In ���� p must be
a proof that the empty list is not empty and therefore is an impossible proof of type
�� abortA p is a normal form of type A� It is nonsensical to evaluate p further� in
this case p represents an error in proof derivation and its actual form is semantically
irrelevant� It is su�cient to know that p � � whilst it is axiomatic to type theory
that � is not inhabited by a closed term if the theory is consistent�

As demonstrated above� the idea of the ABSENT context is vital to our development
of a system which automatically detects computational redundancy in expressions of TT�
In the neededness analysis lattice� ABSENT and CONTRA both correspond to the
context U representing the fact that a parameter is unused during a computation�

CONTRA represents the most precise context information we can assert about an
object via a context lattice� It always corresponds to the bottom element of the context
lattice� Its name comes from the fact that it represents CONTRAdictory information in
the sharing analysis lattice� In that lattice� if a variable has context CONTRA then it
indicates that the parameter must both be used and unused by the computation�
We shall abbreviate ABSENT by AB and CONTRA by CR�

����� The contand and contor operations

There are two primitive operations upon each context lattice� contand �� � and contor
�t �� Contand has to be de
ned according to the abstract semantics of each analysis�
It should represent the idea of combining the properties of two contexts� in an analogous
way to a logical conjunction� For example� the result of applying contand to a context
U denoting the fact that a parameter is de
nitely unused and a context N indicating
that the parameter may be used should be N� this captures the idea that if a parameter
is required by one or more sub�expressions then it is required for the computation as a
whole� Contand is used� for instance� to combine contexts resulting from di�erent actual
parameters to a function application� This is discussed in Section 	��� There are the
following restrictions upon the de
nition of the � operator�

�� The ABSENT context must be an identity for � � This re�ects the idea that if a
parameter is not computationally needed by one sub�expression then the context for
the parameter will only depend on other sub�expressions�
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�� � should be associative and commutative so that

a� �b� c� � �a�b�� c

and

a�b � b� a

Associativity and commutativity guarantee the fact that the deduction of abstract
properties can be computed in an order�independent way� if a parameter is needed in
an application� for instance� then it is irrelevant whether that results from the 
rst
or last applicand�

	� � should be monotonic so that

a�b v a� c

whenever b v c� This stipulation means that the combination of properties must
preserve the information ordering� This is what we would demand intuitively as
contexts higher up the lattice re�ect less precise information than those lower down�

The companion operation to contand� contor �t �� should� unlike contand� always be
identical to the join operation �	� on the context lattice� Consequently� t is associative�
commutative and monotonic� and it has CONTRA has its identity� As the name implies
this is somewhat similar to a disjunction of contexts� In sharing analysis� it does indeed
correspond to set union� We use t to denote uncertainty in� for example� pattern�
matching clauses� guarded expressions and if�then�else statements and� more generally� for
computation rules which are de
ned by more than one clause� This re�ects the fact that
we do not know in advance which branch of a conditional expression will be evaluated�

����� The strict operator

We also need a unary operator that can remove absence from a context so that the context
which pertains to a parameter in the case that it is used in a computation will be produced�
This will be convenient for the calculation of context functions over structured data�
The operator to do this we call strict�

De�nition �

strict c � inf fc
�

j c
�

tABSENT � ctABSENTg

This de
nes strictc uniquely since the set above must contain c at least and so must have
an inf�

For example� in the sharing analysis lattice� and where t corresponds to set union� this
operation corresponds to subtracting the set f�g� the ABSENT context� from a context
such as f�� �g� In this case� f�g will be the result of strictf�� �g� For the neededness
analysis lattice strict is simply the identity function as AB � CR�
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��� Lattices for the analysis of TT

We now present the context lattices used to analyse programs in TT �

����� The neededness analysis lattice

Neededness analysis consists of a two�point context lattice as its basic abstract domain�
This lattice allows distinctions to be made between those parameters which might be re�
quired by a computation and those which de�nitely will not be� It is the latter property
which is essential to our study of computational redundancy in TT� We seek to determine
which parameters are de
nitely computationally redundant �with respect to lazy evalua�
tion� and those which may not be� For example� for the simple function const� which is
de
ned as�

const x y �df x

we can readily see that the parameter y is unused by the computation� whilst x is always
needed whenever the result of const is required by a computation� We assign the context
U to denote the property of a parameter� such as y� being unused by the computation�
Here� ABSENT corresponds to the abstract value U�
There is no decision procedure to show exactly which parameters are required by a

computation and those which will de
nitely be unused� Consequently� the other point� N�
in this lattice is less precise in terms of its informative content� It denotes the property
that a parameter may or may not be used by a computation� In the example above� the
context pertaining to the parameter x is N� Below is an example of a function where� in
order to provide an abstraction that is sound� we have to assign the N context as the
abstract value of the parameter x when in fact it may be unused�

condfn b x y �df if b then �x" �� else y

Here� b must be used in evaluating condfn and so its context is N� However� it is not
necessarily the case that either x or y will de
nitely be used at all �although one of the
two must be if condfn is called�� For instance� condfn might only ever be called where b
reduces to False� Consequently� y would in such a program be used but the parameter x
would be unused� However� since both x and y might be used �we assume that addition
always uses its arguments� they must each be assigned the abstract value N�
We order the two values by U � N� Thus more precise information is ordered below the

less precise� This re�ects the idea of contexts as sets of possible continuations� U denotes
all continuations where a parameter is not used� However� the context N denotes every
continuation� both those where the parameter is unused and those where the parameter is
evaluated� Consequently�U is a subset ofN and hence the ordering that we have presented
corresponds to 
 on sets�
Since CR and AB are equal� the � and t operations are consequently identical on

this lattice� The strict operation is simply the identity function over contexts�
Once we detect a parameter has having the context U� we can then remove it from the

transformed version of the function�
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����� The sharing analysis lattice

When implementing type theory we would like a mechanism which detects�

� Expressions that do not actually need to be evaluated during the computation �i�e�
#absent$ objects��

� Expressions that must be evaluated �so that we gain e�ciency in places where the
value of an expression may be stored rather than its code��

� Expressions to be shared �so that we may optimise call�by�need to call�by�name in
the cases where an expression is used only once��

Sharing analysis is a form of abstract interpretation which 
nds such information�
it subsumes strictness and absence analysis whilst also telling us which objects may be
shared by di�erent parts of the evaluation� Details of an actual implementation of this
method are given in �����
The sharing analysis lattice of context values consists of the power set of f�� ��Mg with

the join and meet operations on this lattice being set union and intersection� respectively�
This lattice is shown in Figure �� �� ��M are called usage values� They refer to how often
a parameter is used in a computation�

� � means that the parameter is not used�
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� � means that the parameter is used exactly once�

� M means that the parameter is used more than once�

Sets of these values denote uncertainty� f�� �g� for instance� indicates that the object in
question may not be used or may be used just once�
The following illustrates the contexts that we would expect to derive for a single call

of condshar�

condshar b x y �df if b then ��x" �� � x� else �x" y�

Here� the context of b should be f�g as it is used precisely once� The context of x should
be f��Mg since x may be used once or a multiple of times and the context of y should be
f�� �g since it may be used once only or not at all�
Since the existence of di�erent usage values within a set denotes uncertainty about

possible continuations� we identify t with set union� which is the join �	� on the lattice�
f�g is the ABSENT context and it follows from De
nition � that on the sharing analysis
lattice�

strict c � c� f�g

� is more involved as it does not correspond to the meet or the join on this lattice�

Description of the � operator in sharing analysis The contand operator �� �
combines two contexts in a manner similar to that of logical #and$� we wish to produce
a resulting context which is equivalent to the meaning of both operands being true� For
example� if one context tells us that a parameter must be used just once �i�e� the context
f�g� whilst another tells us that the same object may not be used or may be used a multiple
of times �i�e� f����Mg� then if both these contexts are true then the resulting context should
tell us that the object in question is used once or a multiple of times� We are thus� in a
sense� adding usage values to re�ect this combination of contexts� �Here it is useful to
remember that contexts are sets of possible program continuations��
We thus arrive at the following de
nition of � in sharing analysis�

De�nition �

The contand �� � context operator is de
ned in sharing analysis as follows�

c�d � fa"b j a 
 c� b 
 dg

�a and b are usage values��
#"$ is de
ned so that we form a simple� commutative monoid of usage values� with � as
the obvious identity�

�"� � �

�"M � M

�"� � M

�"M � M

M"M � M
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��� Structured data and contexts

��	�� Introduction to structured contexts

So far we have dealt only with atomic contexts  contexts which refer only to a variable
as an object without structure� Often� however� we wish to 
nd out information about the
components of a term of structured type� For example� we may want to 
nd out information
about the head of a list or the second part of a pair� This becomes particularly relevant
when we consider functions de
ned by pattern matching on the structure of the type of a
parameter�
To do this we introduce structured contexts� We thus broaden the domain of contexts

so that contexts re�ect the structure of the type in the actual syntax and so we have types
of contexts in one�to�one correspondence with the types of the language� Each of these
structured contexts has constructors akin to those in the syntax of type theory�
These structured contexts have two parts�

�� An atomic part which gives the context for the object as a whole e�g� for an entire
list�

�� A structured part which gives the contexts of the components of the object e�g� the
head and tail of a list parameter� These contexts are #glued$ together by context
constructors� If a type has more than one constructor then it is necessary to
enumerate the di�erent cases e�g� the empty and non�empty cases for lists�

��	�� Examples of structured contexts

The following are examples of structured contexts�

� f�g
�f�g�f�g�

Tuple structured context� The two subscripted contexts refer to each element of the
pair� In this case� the 
rst part of the pair will be used exactly once� but the second
part of the pair will be unused�

� f�� �g
��� f�g�� f���g

List structured context� the head of the list will de
nitely be used if the list itself
is� �We include the empty list context for completeness to show that the expression
may evaluate to the empty list and hence that the contexts for the head and the tail
of the list will not be relevant in that case��

Note that nullary context constructors such as � and �� are included in the above examples�
Since these do not contain any extra contextual information �they will be present in all
structured contexts of the relevant types� we shall often omit them for the sake of notational
convenience�
Note that we thus have typed contexts where the subscripted parts indicate the contexts

of the components of the di�erent head normal forms that may occur for each type� A
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complete list of the context types which may occur in the backwards analysis of TT is
given in �	
� Section ������

��	�� The at and str functions

We often wish to refer to the atomic part of a structured context� �Indeed� due to pattern
matching upon a structured object� the atomic part of a context is quite often unchanged
during the backwards analysis of a function�� In order to do this we introduce the functions
at and str to denote the atomic and structured parts of a context� respectively�

��	�� Semantics of the structured parts

It is possible for an atomic part of a context to be greater than or equal to ABSENT� Of
course� if the atomic part was actually unused by the computation then the subscripted
contexts would be meaningless� Hence� the structured part of a context is taken to be
meaningful for the strict part of the atomic context� That is� the part of the context which
describes possible continuations where the data structure will be used by the computation�
For example� if we have the list context�

f�� �g
��� f�g�� f�g

the subscripted contexts mean that both the head and the tail must be used if the list
itself is used�
When combining contexts� however� we have to factor in the possibility that the atomic

parts do indeed correspond to ABSENT� This is why the de
nition of � below is not
simply pointwise� as is the case with t �
This semantics of structured contexts is the reason also for the de
nition of the calcu�

lation of context functions which allows the strict part of input contexts to be propagated
to the structured components�

��	�	 De�nition of � upon structured contexts

Suppose we have c and c� of the following form�

c � a
C c����cm

c� � a�
C c�����c

�
m

�In other words c and c
�

are structured contexts with the structured part consisting of
the combination of m contexts �which themselves might be structured�� These subscripted
contexts are combined using the context constructor� C��
We then� using � upon atomic contexts� de
ne � upon such structured contexts as

follows�

c� c� � �at�c��at�c���
C ���
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where % is the combination of contexts given below�

% �

����
���
�ly c� c�� t �ly c c��� t �c�� c

�
���

���
�ly c� cm� t �ly c c�m� t �cm� c

�
m�

and

ly ed �

�
d � if e w ABSENT
CONTRA � otherwise

where CONTRA is the bottom of the context domain that includes d� ��ly ed� means
#the context d with respect to the laziness of the atomic context e$�� Note that � is still
monotonic after this adjustment� since for any given context e� if a v b then

ly e a v ly eb

The results of � are approximated as detailed below�

��	�� Recursive data structures and context approximation

A problem arises with backwards analysis when we consider recursive data structures in
type theory� The di�culty occurs because such structures may be of arbitrary size� we
do not know in advance� for example� how long an arbitrary list may be� Whilst such
structures are not in
nite in the sense that a list such as ����� is in Haskell �in type
theory we need co�inductions to obtain such streams�� their arbitrary size gives rise to
in
nite contexts� For example� a list context has� as its structured part� contexts for both
the head of the list and the tail of the list� The tail of list context is� itself� a list context
which is therefore structured and has a tail�of�list context which is again a list context and
so on� We may retain a 
nite lattice of contexts by assuming that all head contexts and
all tail contexts are the same for a particular list i�e� a list context is assumed to be of the
form�

c
d ��e

d ��e
d ��e���

The above is represented as simply�

c
d ��e

Nevertheless� we must remember that e is a list context and that its �implicit� subscripted
contexts must be used during a computation of contexts� During a computation we often
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nd that a resulting context is not of the correct form� The results will in general be as
follows�

c
d ��e

d� ��e�
d� ��e�
���

The repetition in the result is guaranteed by the restriction we have placed upon the form
of structured contexts� In such a situation we approximate such a context in order to
maintain the convention of having 
nite structured contexts of the form�

c
d ��e

We achieve this by taking the join of the head contexts to produce a 
nal head context and
similarly with the tail contexts i�e� using the notation above we have� as an approximation�

c
�dtd

�
� �� �et e��

We use the symbol
�

� to denote the fact that this approximating process has been applied
and that the resulting context is safely ordered above the original one� That is� if e is the
context that would actually result from the combination of two �
nite� contexts and e

�

is
an approximation to e then�

e v e
�

where v partially orders the lattice of structured contexts that contains both e and e
�

� In
other words� our approximate result will remain valid with regard to the actual semantics
of a language based upon type theory but potentially there will be a reduction in the
precision of the information we obtain� The approximation process is an example of a
widening operation �
� ��� in that it serves to 
nd a 
xpoint more readily� even if in
general it will not be the least one�
We focus in this paper upon the recursive type of lists� The approximation techniques

given above generalise to other types such as binary trees� as is discussed in �	
��

��� Context functions

Context functions are used to calculate the context which pertains to each parameter of
every function de
ned for a program in TT� That is� there will be a one�to�one correspon�
dence between parameters of TT functions and context functions� If a function in TT has
the name f then we shall denote its context functions by f� � � � fn� assuming that f has n
parameters�
We shall see how context functions are derived from expressions in TT in Section 	�
Context functions may be evaluated over atomic contexts so that a context function

g will have the type C � C where C is the context lattice being used� With structured
contexts� however� the types of the input and output may di�er� We impose the following
additional constraints upon context functions�
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�� Absence i�e�

f ABSENT � ABSENT

This must be preserved as otherwise we may deduce that an expression must be
evaluated when it need not be�

�� Contradiction i�e�

f CONTRA � CONTRA

This must be preserved as otherwise we would be adding possible program continu�
ations which were not possible in the original expression that we are analysing�

	� Uncertainty i�e�

f �ctd� � �f c�t �f d�

This is not a constraint as such� but simply follows from the fact that context func�
tions are de
ned by the � and t operations�

The above properties were stipulated by Hughes in ���� for concrete context domains�
The sharing lattice is an example of a concrete context domain� where the ABSENT and
CONTRA elements are made distinct from the other elements of the lattice�
We also have to make an alteration to the method by which context functions are

calculated� in order to be consistent with the semantics of structured contexts�

fi c �
�
E�c��v�tABSENT� if ABSENT v c
E�c�v�� otherwise

In the above� c� � strict c �strict is de
ned in Section ��	�	�� E is the de
ning expression
of the context function� fi�
If we did not do this then only lazy contexts �i�e� those ordered above ABSENT�

would appear in the structured parts of the result� if the input context was lazy� However�
we desire that the contexts of the structured parts should be predicated on the assumption
that the whole structure is used�

� Detecting computational redundancy

We now show how computational redundancy may be de
ned in our backwards analysis�
Suppose then that we have some closed expression E� a variable� x� and some initial context�
c� c is the context of the entire expression E� The information that we are attempting to
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gain about x is itself a context� we call this mapping context propagation� It is described
by the following notation�

c
E
�� x

This represents a context that depends upon the value of the input context� c�
We give an inductive de
nition of the formation of such context expressions� Amongst

the base types� we shall focus particularly upon the �� � and equality types� It is these
types that are one source of computational redundancy�
Thus the abstract property of computational redundancy will be traced through the

program by our backwards analysis�
Computational redundancy occurs where we are simply interested in whether a type is

inhabited or not� For example� if we have t � � then both the syntactic form of t and its
computation to normal form are unimportant since� if the program is well�formed� then it
must be the case that

t � Triv

since � is inhabited by one element only� As is stated in ����

The important point to note about such types� and those exhibiting computa�
tional redundancy in general� is that their objects can always be transformed
to equal objects containing no free variables�

We build upon the de
nitions of the base cases by showing how abstract values may be
propagated throughout a type theoretic program� Consequently� we can detect automati�
cally the computational irrelevancy of function parameters�

��� The type �

The type theory selector abort provides us with a witness to ex falso quodlibet� It is in�
cluded� for the sake of completeness� to guard against the possibility of an incorrect program
derivation occurring� �The abort construct provides extra strength to programming in type
theory� not only will any program which is correct in the system of type theory terminate
 a syntactically correct Miranda program may not terminate  but programming errors
may also be dealt with elegantly in the system logic rather than by some run�time system
call��

Abort constructs an arbitrary object of a type A� eliminating p � �� thus�

p � �

abortA p � A
�� Elim�

The term abortA p has no computation rule associated with it and is in normal form� it is
nonsensical to try to reduce the pathological proof object p� Since p and abortA p� where
p � �� may not be reduced further� any parameter must be computationally irrelevant with
respect to such closed expressions� Since we have a consistent theory� it will be impossible
to construct a closed expression p of type ��
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De�nition �

For an initial context c� an arbitrary type A and an object of type bottom� p�

c
p
�� x � ABSENT

and

c
abortA p
������ x � ABSENT

Here ABSENT will be reduced to the AB context of the type corresponding to x�

An example of how computational redundancy may be detected with regard to proof
objects of type � and abort expressions may be seen in the analysis of the index function
in Section ��

��� The type �

The single element type� �� may be seen as corresponding to the judgement #P is true$ in
the subset theory� It has the following elimination and computation rules in the theory�

x � � l � C�Triv�

case x c � C�x�
�� Elim�

case Triv c� c

We assume that we are dealing with closed terms� Hence� any occurrence of the expression
case p c must compute to the value of c since p� being of type �� must compute to Triv�
Thus reducing the term p is unnecessary since we know that it may be of one form only
and we make the following de
nition�

De�nition 	

c
case p c
����� x � c

c
�� x

for any variable� x�

Note that this is saying that� if we regard the case selector as a function�

case� c � ABSENT

It should be observed that the di�erence between the case selector over the � type and
the general cases selector over the 
nite types in general �i�e� Nn� lies in the fact that we
have a unique pattern that must be matched for a term of the � type�
Also� the propagation of contexts means that if any function has � as its output type

then the ABSENT context will pertain to the parameters of that function as well�
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��� Equality types

The equality types� which are written in the form I�A� a� b�� denote the equality of two
terms a and b of type A� The elimination rule is

c � I�A� a� b� d � C�a� a� r�a��

J�c� d� � C�a� b� c�
�Equal Elim�

The above is equivalent to the Leibnitz law that equals may be substituted for equals  
some occurrences of a are replaced by b in C� The computation rule states that

J�r�a�� d�� d

Again� assuming that we are dealing with closed terms� A� a� b and c must all be bound
with respect to an enclosing abstraction in the expression J�c� d� and so a and b must
be bound variables in d� Also� all closed terms of an equality type can be proved to be
convertible �see ���� Section ��������� so that for any a� b of type A�

r�a� � r�b�

Here the a and b which occur in the terms exist only as labels for the purposes of complete
presentation �so that we know how each equality term originated� and to ensure that each
term in the TT system has a unique type  if we had a generic eq equality witness then
that would belong to every equality type� Nevertheless� it should be stressed that the
witnesses of each equality type are unique and have no internal structure� We can avoid
computing the equality witness due to it being the sole inhabitant of its type�
Consequently� for closed terms� we state that it is not necessary to evaluate c � I�A� a� b�

�cf p��� of �	�� which says that c should be 
rst be evaluated to compute the open term
J�c� d�� and hence we have the following de
nition for our analysis�

De�nition �

c
J�c� d�
���� x � c

d
�� x

for any variable x�

It follows that computational redundancy from all equality types such as I�A� a� b� will be
propagated through a TT program� In neededness analysis� equality type parameters will
be detected as unused�

��� Variables

Computational redundancy may be introduced even more simply when an expression does
not contain the parameter in question�

��



De�nition 


For any variable� x� where x is not of the type �� we have�

c
x
�� x � c

where x is an arbitrary variable�

We use ABSENT in our de
nition for the converse situation where the variable whose
context we are trying to 
nd is not present in the TT expression� For example� the context
which propagates to x from the expression y " � will be ABSENT�

De�nition �

c
y
�� x � ABSENT

where x and y are distinct variables�

��� Conditionals

As noted in Section ��	��� the contand operation� � � is used to combine together contexts
in a manner similar to logical conjunctions� Also� the contor operation� t � is used to de�
note uncertainty and joins contexts together like disjunctions� These operations are useful
in de
ning context propagation with respect to Booleans and selection over 
nite types�
since we know that exactly one sub�expression must be evaluated in order to determine
which other sub�expression will be the result of the conditional�
Boolean conditionals are thus handled by the following de
nition�

De�nition �

c
if b then c else d
������������ x � �c

b
�� x�� ��c

c
�� x�t �c

d
�� x��

The above de
nitions capture the intuition that we must evaluate the boolean expres�
sion in an if�then�else expression before evaluating one of the branches� However� we cannot
know in advance which branch will be evaluated� We can extend the above de
nition to
any 
nite type�

�	



��� Applications

In a functional language based upon type theory we will often want to ascertain the context
of x with respect to a function application of the form�

f E� � � � En

where E� � � � En are expressions� E� � � � En are the actual parameters which will be substi�
tuted for f �s formal parameters� x� � � � xn� We thus wish to 
nd�

c
f E� � � � En
�������� x

Naturally x may occur in any of the subexpressions of the application of f � It is thus
necessary to deduce the context of a formal parameter� xi of f which will consequently
give us the context to be propagated through the corresponding Ei to x� Starting with the
context c� as above� we denote the context of f �s ith formal parameter as

fi c

We may form an expression� given in terms of c� for fi c� as described below� As mentioned
above� fi c is then used as the initial context to be propagated through Ei� the ith actual
parameter of f � to x� That is� the resulting context is expressed as�

�fi c�
Ei
�� x

Naturally� applying this procedure to each parameter we end up with n contexts� These
contexts have to be combined using contand� � � to produce the context which is derived
from the original application  the resulting context represents the information common

to all n contexts of the form� �fi c�
Ei
�� x� Thus we have�

De�nition ��

c
f E� � � � En
�������� x � ��f� c�

E�
�� x�� ��f� c�

E�
�� x�� � � � ���fn c�

En
�� x�

��	 Function de
nitions

We may form an expression� given in terms of c� for fi c  we thus call fi c the context
function of f �s ith argument� If f has n parameters it will have n context functions�
Furthermore� context types may be formed in correspondence to the types of the concrete
semantics� Thus if we have a function f where�

f � T� � T� � � � � � Tn � T

��



then fi has the following context type�

fi � CT � CTi

Here� CT is the type of contexts corresponding to the output type� T � of the original
function� CTi is the type of contexts corresponding to the type of the ith input� In general�
the basic procedure to 
nd an expression for a context function is de
ned as follows�

De�nition ��

If f is de
ned in the following way�

f x� � � � xn � E

then we have�

fi c � c
E
�� xi

where E is the expression over which f is abstracted�

This method can easily be extended to functions de
ned by pattern matching� as is shown
in �	
�� This will also be apparent in our examples�

��� Primitive recursive functions

It is essential to analyse the primitive recursive functions� such as lrec� which operate over
types with inductive de
nitions such as lists� However� these functions are higher�order�
as is shown by the computation rules for primitive recursion over natural numbers�

prim � c f � c

prim �Succ n� c f � f n �prim n c f�

As can be seen� the third argument is applied to the predecessor of the second and the result
of recursively applying prim� It follows that the contexts of the 
rst and second arguments
must be dependent on the context functions that will correspond to the parameter� f � For
example� if f is absent in its second argument then this will mean that the expression c
may not necessarily be evaluated� The theory that we shall outline will parameterise the
context expressions that we derive with respect to a list of actual context functions� The
contexts that will be derived for each parameter will thus depend not only on the input
context but also on the context functions that are used�
Further details can be found in �	
�� where it is shown that the method can be adapted

to cope with functions de
ned by partial application but cannot provide useful abstract
values with regard to functions extracted from data structures�

��



� Analysis of types

In type theory� unlike in languages such as Miranda� types are #
rst�class citizens$ i�e�
types may be the inputs and results of functions� Also� terms may occur in types� Such
mixing of types and terms is facilitated by two constructs of higher�order logic which occur
in the theory� equality types and universes� The equality types� of the form I�A� a� b�� allow
terms to occur within types� whilst the system of universes allows every type to be given
a type itself� For example� bool � U� where U� is the base universe in a hierarchical system
of non�cumulative universes�
For example� we may form the following function �taken from p���� of ������

nonempty � �A�� U�

nonempty �� �df �

nonempty �a �� x� �df �

This de
nition may be taken a step further� The function ranges over a type variable A�
We may quantify over this variable as follows�

nonempty � � ��A � U����A�� U�

nonempty � A �� �df �

nonempty � A �a �� x� �df �

Note that the type variable may be seen to be unused with respect to the de
nition of
function� but is required by the type de
nition� It should also be noted that we may go
further if we admit trans
nite universes� such as U�� since we may then range over the
indices of universes�
Whilst there would appear to be less of a scope for optimisations with regard to the

analysis of type information� it may be useful to determine how much a term has to be
evaluated in order to typecheck another term of a dependent type� Also� expressions may
be detected as being shared by a type and its associated term�
The analysis of types in terms is as before� with atomic contexts representing whether

a type variable is needed or unused� strict or lazy and so forth� For example�

nonempty��c � �c
�
��A�t �c

�
��A�

Types such as � or N �natural numbers� may be viewed as constants so that� using the
previous theory� we may see that the above will evaluate to AB and consequently we can
optimize nonempty � so that it is in a form with implicit rather than explicit polymorphism
i�e� with the 
rst parameter removed�
Those types which are formed from a number of components� such as �� �� 	 may be

analysed by taking the combination of the contexts propagated from each component� For
instance� for equality types we have�

c
I�A� a� b�
������ x � �c

A
�� x�� �c

a
�� x�� �c

b
�� x�

��



The remainder of the analysis of type expressions is constructed in an analogous way to
that for terms given earlier� We refer the reader to �	
� for a fuller description�

� Analysing the Index function

This section presents a backwards analysis performed on the arguments of index � The
analysis shows that the 
rst two arguments may or may not be used �i�e� they are lazy�
but that the third argument� which witnesses the fact that the given index is less than the
length of the list� is not actually relevant to the computation� We may thus produce an
optimized form of the object code for this function which does not compute the value of
the third argument� and which indeed does not involve this proof term at all�

��� De
nition of the function in TT

index � ��l � �A�����n � N����n � !l�� A�

index �� n p �df abortA p ���

index �a��x� � p �df a ���

index �a��x� �n " �� p �df index x n p ���

Here the ! function gives the length of a list� whilst the � operator is a function which
produces a type� either � �denoting a true proposition� or � �an absurd proposition�� The
de
nition of � is as follows�

� � N � N � U�

m � � �df �

� � �n" �� �df �

�m" �� � �n" �� �df m � n

��� Analysis of the 
rst argument

We 
rst formulate the context function of the 
rst argument of index for an arbitrary
initial context c� The index function may be divided into two parts� the 
rst which deals
with the case that the 
rst argument evaluates to �� �clause ��� of the index function�
and the second which deals with a non�empty 
rst argument� We� naturally� do not know
which of these parts will apply in the actual execution of the function� this uncertainty is
shown in the sharing analysis by the t operator� In other words� we are joining together
the contexts which result from each of the possible two parts� Here the structured part
has two context variables which have to be evaluated� namely the arguments of ��  these
context variables give us information about the head and tail parts of the argument� We
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may thus form the following expression for the context function of the 
rst argument of
index �

index� c � at�c�

��� �c

���� ���
�����a� �� �c

���� ���
�����x�

The head and tail contexts may� as they refer to clauses ��� and ��� of index � be split into
two parts� Here the two cases arise from the form of the second argument which may be
zero or not� For this part of the analysis we thus have�

c
���� ���
����� a � �c

a
�� a�t �c

index xn p
�������� a�

� ctAB

The above follows from a not being present in the expression index xn p� Also�

c
���� ���
����� x � �c

a
�� x�t �c

index xn p
�������� x�

� ABt index�c

For the sake of notational convenience� we shall leave out the �� context constructor as
this information is invariant in what follows� We have thus to solve the following recursive
equation�

index�c � at�c�
�ctAB� �� �ABt index�c�

The above may be solved by performing the following 
xpoint iteration� using the ascending
Kleene chain of pre�
xpoints� The zeroth approximation to the 
xpoint is de
ned to be
CR whilst the �n " ��st approximation is formed by substituting the nth approximation
to the 
xpoint for every occurrence of �index� c�� As shown below� the third in a series
of 
xpoint iterations gives the result�

�index� c�
� � CR

�index� c�
� � at�c�

�ctAB� ��AB

�index� c�
� � at�c�

�ctAB� �� �ABtat�c�
�ctAB� ��AB

�

�

� at�c�
�ctAB� �� �ABtat�c��

�index� c�
	 � at�c�

�ctAB� �� �ABtat�c�
�ctAB� �� �ABtat�c��

�

�

� at�c�
�ctAB� �� �ABtat�c��

Note that we have to make approximations to the resulting context after the second iter�
ation since the context has more than one level of subscripting� we assume that the list
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contexts have the non�empty list subscript d �� e� The latter case means that we assume
that e represents a list context of the form e

d ��e�

As an example of a concrete rather than an algebraic result� the following is the result
produced when the context function is applied to a strict� single�use argument�

index� f�g � f�g
�f���g�� �f�gt f�g��

� f�g
�f���g�� f���g�

��� Analysis of the second argument

index� c � c
abortA p
������ nt �at�c�

�� �Succ�index� c��
�

� AB t at�c�
�Succ�index� c��

The solution to this is again found by a 
xpoint iteration and we 
nd that�

index� f�g � f�� �g
���Succ�f���g�

This illustrates the fact that the second argument is lazy and even if it is used it may not
be fully evaluated� However� it should be noted that the second parameter will be fully
evaluated in the two non�pathological cases�

��� Analysis of the third argument

The analysis of the third argument� which witnesses the fact that the index is not greater
than the length of the list� is straightforward�

index� c � ABt �ABt index� c�

� ABt index� c

The least 
xpoint solution of the above is�

index� c � AB

We then have that�

index� f�g � f�g

We thus conclude that the third argument is not necessary when computing an application
of index to normal form�

�




��� Functions de
ned using index

The value of the approach that we have taken is emphasised when we analyse function
which are de
ned in terms of others such as index � For example� suppose that we have the
function third which is a specialisation of index in that it extracts the third element from
a list� To be de
ned in TT such a function requires an extra argument which proves that
a given list has at least three elements� A suitable de
nition of third would be�

third � ��l � �A������ � !l�� A�

third l p �df index l � p

Here�

third� c � index� c

It follows that since the analysis will detect the third argument of index as being unused�
the second argument of third will also be unused�
This applies to other expressions that include applications of the index function� For

example� we may have�

�index ��� �� �� � p� " �index ��� �� � q�

where p and q are proofs that the indices make sense for each list� A backwards analy�
sis of this expression should again show that both p and q may be eliminated from the
transformed code�

� A set theoretic semantics for TT

Martin�L�of type theory can be given a naive set�theoretic semantics� since we know from
meta�theoretic results that all expressions are de
ned �see ���� for further references�� In
this section we explain the semantics which we will be using in later sections to show
the safety of our analysis of neededness of function arguments� The set theory we use is
standard� a good introduction is provided by ��	�� while wider and deeper coverage is given
by �����
The base types of the system are interpreted by the following sets

����� � �

����� � f�g

��Nn�� � f�� �� � � � �n� ��g

��N �� � �

��bool�� � fTrue�Falseg

	�



while the type constructors are given by

��A 	B�� � ��A�� &� ��B��

��A �B�� � ��A��� ��B��

��A� B�� � ��A��� ��B��

��listA�� � ��A���

where we use &� for disjoint union� � for Cartesian product�� for the set of �total� functions
from the domain to the range and a superscript � for the set of 
nite sequences of elements
of a given set�
In interpreting the quanti
ers by means of families of sets we need environments �such

as e� which record the bindings of free variables to sets� a binding �such as �x �� a�� is
added to the environment by the � operator�

����x � A�B��e � f�a� p� j a 
 ��A��e� p 
 ��B��e��x��a�g

����x � A�B��e � ff 
 A�
�

a���A��e

��B��e��x��a� j f�a� 
 ��B��e��x��a� for all a 
 ��A��g

Note that these interpretations are those of A � B and A� B when B does not contain
x as a free variable�
The interpretations of the canonical constructors for these types can be read o� from

the interpretations of the types� non�canonical elements are constructed by the appropriate
elimination operations over the sets� For instance� functions are interpreted as set�theoretic
functions� that is as relations�

����x � A�b��e � f�a� ��b��e��x��a�� j a 
 ��A��g

That functions can be de
ned by primitive recursion over � is a theorem of ZFC� and using
this theorem we can interpret functions over N � similarly structural recursion over ��A��� is
a consequence of the set�theoretic result that well�founded recursion is derivable in ZF�
Since our theory is intensional we interpret identity types as follows

��I�A� a� b���e
� � if nf �a� �� nf �b�
� f�g if nf �a� � nf �b�

where nf �a� is the normal form of the expression a which is guaranteed to exist since the
system is strongly normalising �ML�	�� an extensional interpretation is given by

��I�A� a� b���exte

� � if ��a��e �� ��b��e
� f�g if ��a��e � ��b��e

In what follows we shall omit the environment subscript when either it is empty or it can
easily be inferred from the context�
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The construction given here interprets types in the 
rst universe� U�� in Zermelo�Frankel
set theory with the Axiom of Choice �ZFC�� To interpret the theory with a hierarchy of
universes �Un�n�� we augment ZFC with � inaccessible cardinals� ��n�n�� which gives a
cumulative hierarchy of inner models of ZFC� V�n � which can be used to interpret the
universes Un�

Theorem �

If x is not free in the term b then for all a and a� in ��A�� and all environments e�

����x � A�b��e a � ����x � A�b��e a
�

Proof

��b��e��x��a� � ��b��e��x��a��

for all expressions b and a� a� and e� by induction over the construction of the term b�

�

� Correctness

We now give a characterisation of neededness of expressions in the theory� In particular� it
is shown how the backwards analysis that has been developed may be demonstrated to be
safe with respect to neededness� that is to be consistent with the semantics of type theory
presented in Section ��
We need to be able to show that the analysis that has been developed is correct since if

it is not then there will be potentially catastrophic consequences for the program optimised
as a result of the analysis� It may well be the case that the resulting program may not be
strongly normalising if we incorrectly remove arguments that are� in fact� needed by the
computation�
In order to de
ne safety rigorously� a de
nition of an unused function argument must


rst be given� Since this property of neededness is undecidable� in general� we cannot show
that the analysis will always detect an unused argument �i�e� that the analysis is complete��
Instead it remains to prove that the analysis is sound i�e� that any function which does
require an argument� x� in order to be evaluated� will be shown by the analysis to have x
as a needed parameter� This proof is done for each of the constructs of type theory�
Our characterisation of an unused argument is slightly di�erent from that usually pre�

sented for functional programming languages� For instance� a function is termed strict in
its argument i� �

��f ��� � �
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where � is the unde
ned element that inhabits every semantic domain� Similarly� a func�
tion parameter is termed unused or absent i� �

��f �� a � ��f ���

for every possible a� However� we do not have the element � inhabiting every type in TT�
Hence the de
nition of a computationally absent parameter has to be modi
ed�
We need to ensure safety at two levels� The 
rst level is the atomic one� where the

need to evaluate parts of the sub�structure of a parameter is not considered� It then
remains to examine the structured level� where the safety of the analysis with respect to
the components �e�g� the head of a list� of a parameter is considered�
We do not need to prove the safety of the analysis with respect to strictness since

TT is strongly normalising and has the Church�Rosser property� This means that every
reduction sequence for a term must terminate with the same normal form� Consequently�
in TT� unlike in programming languages such as Haskell� making a function strict in an
argument cannot a�ect the semantics of a type theoretic program� In this sense� therefore�
strictness analysis must be safe with respect to the semantics of type theory� which may
be formulated in terms of simple set theory� Similarly� the only optimisations that can be
performed based upon sharing information are ones to do with the allocation of storage in
the machine that will run the resulting transformed program�
In the discussion that follows we shall simply be concerned with the contexts N and U

i�e� whether a parameter �or component of a parameter� is needed or unused� Information
on whether a parameter is needed is embedded within the sharing lattice� we need to
perform an abstraction on the contexts of this lattice to give contexts in fN�Ug� These
abstractions of the context lattices are as follows for atomic values�

abscxt c �
�
U� if c v AB
N� otherwise

So� for instance� abscxt f�g � U and abscxt f�� �g � N� The idea of abstractions of
context domains'lattices comes from �����

	�� De
nitions of safety

De�nition ��

We say that a single parameter function f � of the generalised function space type ��x �
A��B� is independent of its argument i�

�� ��B���x��a� � ��B���x ��b�

�� ��f �� a � ��f �� b

for any a�b of type ��A��� We also say that in this case the 
rst parameter of f is unused�

		



Note that we are primarily concerned with term reduction rather than type checking�
which we shall assume has been done as a separate phase� Consequently� the use of the
input element within the type of the output shall not be considered� Also� the de
nition
of independence ensures that if a parameter is unused then we will be dealing with the
non�dependent function space� Also� in the de
nitions which follow� we shall implicitly
assume that the type equality of condition ��� holds so that the assertions of equality
between applications of a function to di�erent arguments is meaningful� The above may
be extended naturally to functions of more than one argument�
It is necessary to show that if a function�s jth argument is needed then the backwards

analysis will show that the context for that parameter will be N� We shall use the symbol

N

to denote a context whose atomic part� and the atomic parts of its components� are all N�
An abstraction map� abstr� from the de
nition of �in�dependent parameters in the set

theoretic semantics to the neededness context lattice is de
ned as follows�

De�nition ��

abstr fj �
�
N� if f is dependent on its jth parameter
U� if f is independent of its jth parameter

Theorem � 
Correctness of the neededness analysis�

Our neededness analysis is safe with respect to the absence property� That is� if the
analysis detects a parameter as being unused then that parameter will not be required
during computation with a lazy evaluation strategy� Formally�

abstr f j v at�fj N �

where fj is the context function of f �s jth parameter�
Also� where the data is structured� the analysis is sound for each component of the data�
That is�

abstrprj f j v �at � prj � str � fj�N

In the above� abstrprj is the abstraction function with respect to the component of the
parameter extracted via the projection� prj� prj is the projection over contexts which is
the counterpart to prj�

	�� Proof outline

We prove correctness for the terms of TT by employing the method of structural induction
over the types and expressions of TT � just as in the de
nition of Section �� In certain cases
it is necessary to prove correctness for both atomic objects and their components should
they have them� We present� as illustration of the correctness argument� three cases� Two
of these deal with types exhibiting computational redundancy� whilst the third� lists shows
how correctness is proven for components of a structured type�
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���� Empty type

�� the absurd proposition� is interpreted by the empty set

����� � �

and in its elimination rule�

p � �

abortA p � A
�� Elim�

abortA is interpreted by an inhabitant of the empty function type with domain �� in other
words� given the consistency of ZFC the type is uninhabited�
Since we have no interpretation of abortA we can say that it is independent of any closed

term argument of type ��
Thus the safety condition must also hold as

abstr f j � U

where the jth parameter is of type ��


���� Single Element type

The type �� which may be viewed as the #true$ proposition� contains just one element�
Triv� and this type is interpreted as the set f�g in the set�theoretic semantics� Its forma�
tion� introduction� elimination and computation rules are as follows�

� � U�
�� Form�

Triv � �
�� Intro�

x � � c � C�Triv�

case x c � C�x�
�� Elim�

case Triv c � c

Since the semantics speci
es that there is only one inhabitant of ������

��f �� a � ��f �� b

for any elements a� b 
 ������
This analysis applies particularly to the 
rst argument of case and consequently�

abstr case � � U

Hence the safety condition is satis
ed with regard to the 
rst argument to case�
For the second argument of case� the abstract interpretation gives the following�

at�case� N � � N

and so it must follow that the safety condition is met i�e�

abstr case � v at�case� N �
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���� Functions

In analysing a function ��x � A�b we deduce that the variable x is unused if it is not free in
the body of the function b� By the semantic Theorem � in such a case the interpretation of
the function will be a constant set�theoretic function� and so by De
nition �� our analysis
is safe�


���� Lists

The computation rules for lrec show how primitive recursion over lists is reduced�

lrec ��s f � s

lrec �a �� l� s f � f a l �lrec l s f�

Due to the de
nition via pattern matching on the 
rst argument� the analysis will indicate
that the list argument will de
nitely be used� Similarly� the second and third arguments
will be detected as used �due to the result of the 
rst clause and the application in the
second clause� respectively�� Consequently� the analysis must be safe at the atomic level
with regard to recursion over lists�
Since the analysis also attempts to determine whether the head and tail components

of a list parameter are used� we require the following de
nitions �which naturally may be
extended to functions of any number of parameters��

De�nition ��

If f � �A�� C and for any a� b � ��A�� and l � ��A���

f �a(��l� � f �b(��l�

�where (�� is the interpretation of the cons operation� ��� then we say that f is independent
of the head component of its argument� We can de
ne independence of the tail
component in a similar way�

An examination of the semantic cases shows that our analysis is safe in these component
cases as well as in the case of the complete argument�
Corresponding to the above de
nitions there is an extension to the abstr mapping so

that safety may be characterised by the following equations�

abstrhd f j v �at � hd � str � fj�N ���

abstrtl f j v �at � tl � str � fj�N �
�

�Naturally� the above only apply when the argument of list type reduces to a non�empty
value� Also� in ���� hd projects from the structured part of C�A� to CA and� in �
�� tl is a
projection from the structured part of C�A� to C�A���

	�



For tail components� if the function f �the third parameter to lrec�� does not use its
second or third parameters then certainly�

abstrtl lrec � � U

Consequently�

abstrtl lrec � v �abstr f ��t �abstr f 	�

Again� it may be assumed as an induction hypothesis that�

�abstr f �� v at�f� c
��

and

�abstr f 	� v at�f� c
���

where c� and c�� are arbitrary contexts of the appropriate types� It follows that�

abstrtl lrec � v �abstr f ��t �abstr f 	�

v at�ABt �f�N t f� �Fix �lrec� �f �N ����

� �at � tl � str � �lrec� �f ���N

In the above� lrec� �f � denotes the context function of the 
rst parameter of lrec� relative
to the context functions that are deduced from the input function f � Fix gives the least

xpoint solution of the recursive context function de
nition of lrec�� Hence it has been
proven that the analysis is safe with respect to list recursion and tail components of lists�


���	 Other cases

Other cases in the analysis are examined in a similar way� with arguments for both the
atomic and structured parts� It is clear in each case that the semantic description from
Section � matches the intuition behind our earlier de
nitions and thus ensures the safety
of the earlier analysis�

	 Implementation

This scheme of backwards analysis has been implemented within a prototype compiler for
a functional language Ferdinand� based upon type theory ����� Due to the fact that the
compiler produces FLIC code ���� it was not possible to make optimisations based upon
sharing analysis information� However� the code produced was optimised according to both
neededness and strictness information� These experimental results showed that neededness
analysis information could produce signi
cant increases in speed in itself� although� as
would be expected� best results were obtained from combining strictness with neededness
information� For example� with a permutation sort program� a speed up of 
��) was
observed with neededness optimisation whilst code enhanced using both strictness and

	�



neededness information produced a speed increase of �	���) with respect to unoptimised
code� Strictness optimisation alone produced a speed up of �����)� We believe that
further optimisations can be made with respect to neededness information since we have
implemented monovariant specialisation of functions� This has meant that we use only
one set of backwards analysis results for each function� We could instead produce di�erent
versions of object code for each function according to the di�erent contexts in which the
function may be called� This idea of polyvariant specialisation is explained further with
regard to partial evaluation in ����� It should also be mentioned that the FLIC compiler
that we used� fc� was specially optimised to deal with the strictness information that was
supplied �����
Further information on the implementation of backwards analysis within the Ferdinand

compiler may be found in �	
� Chapter ���


 Related work

Paulin�Mohring �	�� has presented a method of extracting programs� with computationally
irrelevant material removed� from proofs in the calculus of constructions ��� with a scheme
for realizations added� This system makes a distinction between propositions that have
a #computational informative$ content and those that have only #logical$ content� The
process of realizing proofs is performed by marking parts of the propositions that are
redundant computationally� Takayama �	�� followed up Paulin�Mohring�s work in designing
a partially automated technique for pruning natural deduction proof trees as a prelude to
the realization of executable functions in a non�type�theoretic version of constructive logic�
QPC �	��� Berardi and Boerio ��� �� built upon this by casting a lambda expression as a tree
to be pruned� This was improved upon in �	� where a notion of subtyping was developed
to produce a simpli
cation relation which allowed optimized ��terms to be deduced� Their
algorithm detects and removes #useless computations$ from a ��calculus system based
upon G�odel�s system T ����� They develop a notion of subtyping where *�types are used
to develop a simpli
cation relation� The base *�type consists of the natural numbers
identi
ed together i�e� one solitary element� The set of natural numbers� N � is considered
as a subtype of * and each type of the simply typed lambda calculus is a subtype of some *�
type� Optimisation consists of replacing computationally redundant terms of a type A with
dummy constants of the corresponding *�type of which A is a subtype� Whilst it would
appear that their method could be extended to type theory to deal with computational
redundancy� the system which we present has a signi
cant advantage over theirs in that
it is more modular �analysis and optimisation phases are separate� and can be used to
obtain optimisations in addition to the elimination of computational redundancy� such as
strictness detection� Moreover� we would suggest that our system is more easily extensible
to new constructs in type theory than their algorithm�
Systems based upon Feferman�s theory of types ���� may also be contrasted with this

work� Such systems �e�g� TK ���� and PX ��
�� separate entirely the theory of functions and
operations and the theory of types� with a scheme of logical assertions being de
ned over

	�



the simple types� Moreover� programs� which� unlike those of Martin�L�of�s type theory�
are not strongly normalising� are extracted from proofs by a process of realizability� Of
particular note is the paper by Henson ���� which discusses how the realizability process
removes computationally redundant proof objects�
Turner has proposed a particular paradigm of functional programming whereby termi�

nation will be guaranteed ����� This system of elementary strong functional programming�
which is the subject of work in progress� has the advantage of not requiring the programmer
to develop any computationally irrelevant proof objects in order to guarantee termination�
strong normalization is guaranteed by syntactic restrictions upon the forms of recursion
that are permitted� However� such a system may be seen to have the drawback of restrict�
ing the expressive power of a Miranda�like language whilst not providing the rich system
of types and the #programs as proofs$ correspondence present in type theory�

�� Conclusion

We have shown that static analysis techniques� in particular the backwards analysis form of
abstract interpretation� may be used to optimise type theoretic programs� Speci
cally� we
have developed an analysis which is capable of providing an automatic means of detecting
both computational redundancy and properties used to perform optimisations on lazy
functional languages such as Haskell� Consequently we conclude that modi
cations to the
theory in order to remove computational redundancy� such as the subset type and the
subset theory of �	��� are unnecessary and we may adhere to a type theory based upon the
original ideas of Martin�L�of ��
� ��� which identi
es logical propositions and types�
One of the important properties of type theory is strong normalisation� This has the

e�ect of simplifying the semantics of terms in the theory and consequently makes proofs
of correctness of the abstract interpretation more straightforward� This work therefore has
both improved the viability of future functional programming systems based upon type
theory and demonstrated the theory�s ability to incorporate both programming and formal
reasoning�
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