
Modelling Robot Manipulators in a CAD Environment Using B-Splines

Colin G. Johnson and Duncan Marsh.
Department of Mathematics,

Napier University, 219 Colinton Road,
Edinburgh, EH14 1DJ, Scotland, UK

Telephone : +44 131 455 4631
Fax : +44 131 455 4232

email : colinj@maths.napier.ac.uk, dmarsh@maths.napier.ac.uk

Abstract

A major aim of robotics research is the provision of sys-
tems which simplify the programming of robots, enabling
experienced designers and engineers to implement robotic
devices as part of a larger systems without the need to be-
come expert programmers. Also in the quest for a flexible
industrial production system is it desirable to be able to re-
program robots offline, so that they can be doing one task
whilst being prepared for another. This paper describes the
mathematical and computational background to a system
which enables the development and testing of robot pro-
grams in a CAD environment in a way that is simple to use
and compatible with existing methods used in CAD systems.

1. Introduction.

One of the major themes of robotics research since its
inception has been the development of intuitive methods of
programming robots which empower experienced design-
ers and engineers to implement robotic systems without the
need to become expert robot programmers. In recent years
the idea of programming robots in a “what you see is what
you get” style environment has become an important strand
of development, using CAD models of the robot and its en-
vironment to enable the motions of the robot to be tested in
a simulated environment before it is used in practice [8, 6].

However current systems use object representations
which are good for representing static objects, yet which
can only represent moving objects approximately, or by us-
ing a different representation from the static objects. What
is needed is a system which can make use of a single rep-
resentation for all the objects found within it, including the
robots themselves, the other objects within the robots’ en-

vironment, the motions of the robots and the regions swept
out as the robots and mechanisms follow those motions.

Using this single representation it should be possible
to combine these various objects using efficient algorithms
for functional composition, projections, extrusions, tensor-
product structures and other ideas from geometry and
computer-aided design. These few algorithms could then be
implemented very efficiently and rigorously tested, rather
than many “special case” algorithms having to be written
as is often the case in robotics (for example the various
kinds of contact described in the appendix to [26]). Indeed
this small set of basic algorithms could be implemented in
hardware, as has proven successful in the development of
computer-graphics workstations.

The power of such a unified system has been advocated
strongly in the solid-modellingcommunity, for example this
paragraph by Farouki and Hinds [10]

“Since the unified approach (to geometric
modeling) guarantees the functional equivalence
of all geometric entities of a given type, geometric
operations can be performed with equal facility
on simple primitives and complex sculptured ge-
ometries. Furthermore, this versatility is realized
with considerable conciseness of coding : A small
family of geometric-function routines accepting
generic geometry inputs and yielding generic ge-
ometry outputs, forms the core of the modeler.

Our work has been concerned with using ideas from
computer-aided geometric design to study mechanisms and
robot manipulators. We have been using non-uniform ra-
tional B-splines (NURBS), a standard method of represent-
ing curves and surfaces in computer graphics, as a standard
representation [31, 9]. Recent work [37, 20, 19] has shown
that not only can static objects and swept volumes be given
this representation, but that the motions themselves can be



represented as NURBS with control points in the group of
Euclidean motions SE���.

2. Related work.

The work outlined below takes ideas from a number
of areas of robotics research, and other areas such as
computer-aided design, computer graphics and topology.
Much of the work of interest comes from the study of the
problems of robot path-planning and collision detection.

2.1. Ideas from robotics.

Several ideas from the robotics literature have inspired
and motivated the work below, in particular the robot path-
planning problem has been a major source of inspiration.
The canonical path-planning problem is this—given a de-
scription of the shape of a robot and constraints on how it is
able to move, to design a motion of the robot which moves it
from one point to another, possibly incorporating parts of a
predefined trajectory on the way [25]. Many variants on this
problem have been studied, including the motion of multi-
ple robots [1, 35] and the motion of a robot amidst moving
obstacles [2, 12].

Several approaches to these path-planning problems
have been studied. The first work in this area approached
the problems from the point of view of computational
geometry—trying to calculate the computational complex-
ity of the problems. Though much progress was made in
this area (the important papers are collected in the book
[16]) this work produced little in the way of practical so-
lutions.

Two basic ideas have come to dominate work in this area
since. The first is studying configuration spaces of mecha-
nisms [27, 25]. The configuration space is a set which maps
onto the set of all possible positions of the manipulator—in
the case of robot arm manipulators the joint space (the space
of all possible positions that the joints of the robot can take)
is the most common configuration space studied. The thrust
of these approaches has largely been to break down the con-
figuration space into a number of cells, then to form a graph
describing the connectivity between those cells. Much suc-
cess has been had with these methods, but they suffer from
the problem that a considerable amount of computation is
required before even the simplest problem can be tackled.
Also the configuration space grows rapidly in complexity
as the number of degrees of freedom of the robot increases.

Another approach to the path-planning problem is the
use of artificial potential fields, whereby the obstacles (ei-
ther in the physical space or in a configuration space) are
given a high positive potential, and the target a high neg-
ative potential [21]. Mathematical techniques for finding
a potential-minimizing path are then used, which lead the

robot from a start point to the target potential well. This
is a very successful method for the path-planning of mo-
bile robots, but it is less successful for manipulators as the
spaces involved often have concavities which can present
confusing local minima.

In order to test the unity of our model we are also study-
ing two simpler problems. The first of these is the problem
of mapping the end-effector space of a manipulator—that
is creating a visual representation of the regions of space
where the robot is able to access [5, 11] and calculating
the connectivity of this space [40]. The other problem is
collision detection—given a movement of the robot, testing
whether it is able to move freely through its environment
(which could include other robots or moving objects) [2].

The review papers [18, 32, 34] summarize different as-
pects of work on the path-planning and collision detection
problems, ranging from the abstract mathematical problems
suggested by this area to real-world implementations of sys-
tems designed to tackle these problems in real-world envi-
ronments.

2.2. Ideas from computer graphics and geometry.

One of the basic pieces of work used below is the ge-
ometry of B-splines, which are the most common method
of representing free-form curves and surfaces in computer
graphics. This method of designing curves originates with
the work of Pierre Bézier in developing methods for de-
signing free-form shapes on computers for car design. Two
recent enhancements (the use of rational functions so that
circles, conics and quadrics can be represented exactly and
the use of a piecewise polynomial scheme which allow ma-
nipulation of part of a curve while leaving other parts in-
variant) have produced the form which we use below, the
Non-Uniform Rational B-Spline, commonly abbreviated to
NURBS. Details of both the history of this and the mathe-
matics can be found in [9].

The basic idea of all of these forms is simple. A func-
tion of an appropriate number of parameters (i.e. one for
a curve, two for a surface et cetera) is created which de-
pends on a set of point in space called the control polygon
of the curve/surface. These points do not strictly interpolate
the desired curve/surface but act as control parameters by
means of which the curve/surface can be manipulated.

NURBS are used in CAD for a number of reasons. The
main motivation for their development was the desire to
have a free-form design scheme which allowed a designer
to change the shape of curves and surfaces in an intuitive
way by altering a small number of points. There also ex-
ist B-spline representations the standard shapes used in de-
sign, such as circles, conic sections, straight lines, surfaces
of revolution, extruded and ruled surfaces, and these stan-
dard shapes can be blended together and combined with



free-form curves and surfaces giving a smoothly blended
curve/surface. These (often complicated) shapes can be
stored using relatively small amounts of data.

2.3. Drawing these ideas together.

One of the major advantages of the work presented here
is that it offers a unified framework for the consideration of
a large class of common robotics problems. If this type of
system is to be used in ”real world” industry then it is essen-
tial that we have a common framework in which designers,
engineers and robot programmers can work on areas of mu-
tual interest. The ideas described in this paper also make
use of CAD standards (viz. the use of NURBSfor free-form
shape representation) in their implementation, and so can
be easily and seamlessly incorporated into an existing de-
sign system in a way which makes maximal use of existing
algorithms.

3. B-spline theory.

B-spline curves and surfaces are a computationally ef-
ficient method of representing free-form shapes commonly
used in computer-aided geometric design. The most com-
monly used form of B-spline function in current CAGD
system is the Non-uniform Rational B-spline (the NURBS),
which allow considerable flexibility in shape design (in-
cluding the exact representation of circles, conic sections,
surfaces of revolution and free-form blendings between
them) while retaining a large class of efficient algorithms
for geometric manipulation and calculation. I shall give a
brief account of B-spline theory here—more detail can be
found in the books [9, 17, 31].

3.1. Mathematics of B-spline curves.

As an example the standard NURBS space curve is given
by the following definition.

x�u� �

Pn

i�� wiPiNi�p�t�Pn

i��wiNi�p�t�
(1)

Where Pi are a set of points called control points, wi are
a set of weights, one corresponding to each point. By
changing these weights the shape of the curve can be mod-
ified [29]. Mathematically the weights can be thought of
as the fourth coordinate in a homogeneous coordinate sys-
tem, defining the projection of a 4-dimensional non-rational
space curve into 3-dimensional space [9]. The Ni�p�t� are
the B-spline rational basis functions, defined recursively by

Ni���t� �

�
� if ti � t � ti�� and ti � ti��

� otherwise (2)

Figure 1. A B-spline curve and its control
polygon.

Ni�p�t� �

t� ti

ti�p � ti
N �t�i�p�� �

ti�p�� � t

ti�p�� � ti��
N �t�i���p���t� (3)

Here the t�� � � � � tn is a non-uniform knot vector which
is a list of non-decreasing numbers, where the first and last
numbers are repeated k times, where k is the order of the
curve. We define p to be the degree of the curve (i.e. p�� �
k).

A picture of such a curve together with its control poly-
gon is given in figure 1.

3.2. Generalizing the B-spline idea.

Below we shall use NURBS to represent a broader class
of functions than the usual parameterized curves can sur-
faces. For this we will need to generalize the concept of a
NURBS function. In this more general setting we shall de-
fine NURBS as usual but with two generalizations. Firstly
we shall allow any number of parameter variables, using a
tensor-product scheme similar to NURBS surfaces and vol-
umes [23]. Secondly we will allow the control points to be
in any vector space, not just the usual Euclidean two or three
dimensional space. Then we can, for example, define a mo-
tion of a rigid body in space as a NURBS curve in SE(3).

A general n-variable NURBS-function has the following
form (where the notation is an obvious generalization of that
in section 3.1 above).

x�u�� � � � � uk� �Pn�
i���

� � �
Pnk

ik��
Pi����� �ikwi����� �ikNi��p��u�� � � �Nik�pk�uk�Pn�

i���
� � �
Pnk

ik��
wi����� �ikNi��p� �u�� � � �Nik�pk�uk� (4)



3.3. B-spline algorithms.

Perhaps the most important algorithm which can be ap-
plied to these functions is the subdivision algorithm. This
creates two control nets corresponding to the image of the
parameter space either side of a given parameter value. Be-
low this shall be used in the implementation of divide-and-
conquer strategies. Subdivision can also be seen to be nu-
merically stable—basically the algorithms for subdivision
are just repeated linear interpolation (see [9] for more de-
tail).

Another idea which is used in the work below is trimmed
NURBS [3, 33]. These arise from the problem in design
where it is desired to “cut away” part of a surface, for ex-
ample in producing a cut-away graphic or designing a small
patch to fit part of a design. The trimmed surface is de-
fined by defining a number of trim curves which are closed
curves in the parameter space of the surface. Clearly these
ideas can be generalized to multivariate NURBS—e.g. a sur-
face in the parameter space of a volume can trim away part
of the volume.

4. Theoretical foundations.

The basic approach of our method is this. The shape
swept out by a robot or mechanism as it moves can be repre-
sented in some mathematical form. In general, these forms
may analysed by using simple mathematical methods such
as trigonometry and basic Euclidean geometry. However
we are usually interested in the shape consisting of the area
which the robot can access without touching anything else
in its environment, and this shape is highly nontrivial. How-
ever we can use the techniques developed in computer-aided
geometric design (NURBS, Bézier shapes et cetera) to model
complicated shapes, and we will use these below to model
robot workspaces.

Our work to date has focused on the analysis of open-
chain mechanisms jointed together with prismatic and rev-
olute joints—the canonical example of this being the robot
manipulator arms found in industry.

In order to analyse the motion of these mechanisms from
a mathematical and computational point of view we con-
struct a number of functions describing the relationship be-
tween different aspects of the robot. These are summarized
in figure 2, and described in detail in the remainder of this
section.

Consider any link of the robot. Then there will be a set of
joint parameters such as angles and extensions which spec-
ify the position of that link. We call the space of all possible
values of these parameters the configuration space, denoted
by C. If we assign a coordinate frame to the link, we can
specify its position in space as a member of the special Eu-
clidean group SE���. The mapping from the configuration

C SE(3)

X

forward kinematic 

mapping

Projection into
operational space.

[0,1]

P

mapping
occupancy

path

Figure 2. Diagram of kinematic functions.

space to this group is called the forward kinematic mapping.
Sometimes we are not interested in the position of the

link as such, but of a particular tool. The set of all tool po-
sitions is called the operational space, and is denoted byX .
For example for a gripping tool this space isR��SO���, i.e.
we specify both a position and an orientation. For a rotating
tool such as a polishing wheel the orientation along the axis
of rotation is irrelevant, giving X � R

� � SO���, while
for some tools orientation is irrelevant, giving X � R

�.
The mapping from C � X gives different kinds of for-
ward kinematic mappings, according to the tool used. We
can calculate this mapping directly or project into X from
SE���.

Another thing we need to formalize is the notion of when
a link of the robot is interfering with an obstacle. This in-
volves a mapping from C into the physical space P, i.e. the
three dimensional space in which the robot moves. This
mapping maps from a given configuration to the surface
representing that link’s position in space. By subdividing
configuration space and studying when its image under this
mapping interferes with obstacles it is possible to break
down C into accessible and inaccessible regions, and study
its connectivity.

Finally we can specify a given motion as a mapping from
the unit interval to the configuration space.

4.1. Giving kinematic functions a NURBS structure.

We can represent all of the above as generalized
NURBS—generalized in the sense that there can be any
number of parameters, not just curves and surfaces, and that
the control points are not necessarily points in space. This
allows us to represent for example volumes [23] and mo-
tions in SE��� [20].

This representation has a number of computational ad-
vantages. Firstly it is possible to represent the obstacles
as NURBS, and efficient intersection algorithms exist for
finding the intersection of two NURBS-structures [9]. Sec-
ondly, there exists a natural subdivision of NURBS struc-
tures, which does not exist for, say, polygons, which allows
effective use to be made of divide-and-conquer strategies.
Finally, the method is easily extensible to other graphical



b)a)

Figure 3. Motion of a 2R planar manipulator.

representations, and many of the problems can be solved
by utilizing just a subdivision algorithm and bounding-box
algorithm for the obstacles. So, for example, it would be
possible to introduce polygonal obstacles without much ad-
ditional programming effort. This incorporates ideas from
the theory of object-oriented programming—the obstacles
are all derived from a “virtual class” of “geometric objects”
which have only a minimal set of nontrivial properties—
they can be subdivided and a bounding box can be calcu-
lated.

As an example of how a NURBS structure can be given to
one of the functions above consider the occupancy mapping

	 
 C �R � P�� R�� (5)

which takes a configuration c � C of the robot, a point r �
R on the robot and maps to the point in R� at which r is
found when the robot adopts the position specified by c.

We can construct a NURBS representation of this using
ideas of volumes of revolution (see figure 3. For the first
link of the arm we can construct the surface easily—we
take the shape of the arm (in the picture this is a straight
line, but the same technique applies to any shape which can
be represented in NURBS form), and swing it around the
joint between the two joint limits. There exist simple al-
gorithms for constructing this in NURBS form. Basically
we can form a circle in NURBS form (figure 4), subdivide
it at the two joint limits to produce an arc, then form the a
tensor-product structure whose control points are formed by
taking the control points of the link and duplicating them at
an appropriate place for each of the points on the arc ([31]
gives details of the geometrical constructions required).

Similarly we can construct a (hyper-)volume represent-
ing the occupancy of the second link of the manipulator.
Using a variant of the subdivision algorithm we can calcu-
late the path of the joint on the end of the first link as a
NURBS-curve in space. Then at each of the control points
of that we construct a revolution as above, then we combine

P0 = P6P3

P4

P2 P1

P5

Weight = 1

Weight = 1/2Weight = 1/2

Weight = 1

Weight = 1/2 Weight = 1/2

Figure 4. Construction of a NURBS circle.

the whole into a single volume using the same technique.
We can also handle mechanisms with prismatic joints using
extrusions rather than revolutions.

Similar constructions can be used for as many links as
is desired, producing a hierarchy of spaces representing the
occupancy space of each link of the manipulator. This prin-
ciple of building up kinematic functions and configuration
spaces of a complicated mechanism has been called mech-
anism inheritance [13, 14, 15], and has proven a power-
ful tool in the study of closed-chain mechanisms. We can
use these ideas of building up spaces in this way to give a
NURBS structure to most of the functions illustrated in fig-
ure 2.

4.2. Interaction with obstacles.

Now we can consider what happens when we introduce
an obstacle into the working environment of the manipu-
lator (figure 5). We can make use of subdivision to get a
divide-and-conquer strategy for calculating the configura-
tion space. What we are looking for is those regions of C
which interfere with the obstacle. More mathematically we
want to find (a conservative approximation to) those c � C
such that for some r � R the image 	�c� r� is a point in the
obstacle set �.

A simple strategy for this works as follows. We con-
struct the function 	 in NURBS form as above. We can then
subdivide the image of 	 using the standard subdivision al-
gorithms, and test these subdivided patches for interference
with �, using a simple bounding-box check [28]. Then if
the patches do interfere with the obstacle we can subdivide
them further, until we have reached the desired level of ac-
curacy. The results can be stored in a quadtree-like data
structure 5—we are currently investigating other more effi-
cient data structures to hold the information.



a) (physical space)

joint 1

joint 2

b) (configuration space)

Figure 5. Interference with an obstacle.

A chief advantage of this method is that it can be very
accurate in regions where it is necessary, and very rough
in regions where accuracy is not required. Further, there is
no predefined level of accuracy, and so, if necessary, this
procedure can be repeated as often as is sensible. This abil-
ity to focus on relevant areas of the problem space is an
essential requirement for an effective geometric data man-
agement system.

We are currently investigating other approaches to this
problem, centered around the idea of a trimmed NURBS as
described above in section 3.3. This would allow us to have
a more accurate description of the subset of configuration
space which is inaccessible to the robot.

5. Applications.

We have studied the application of these techniques to a
number of well-known problems in robotics.

Firstly we can consider the relatively simple problem of
constructing a model of the end-effector space—that is the
image of the function 	 over all values of c � C for a given
point r � R. Once we have the function 	 in NURBS form
there is a simple and computationally efficient algorithm
(based on the fundamental subdivision algorithm) for tak-
ing slices of the image by fixing a parameter value.

A slightly more complicated problem involves mapping
the end-effector space with parts trimmed away where the
robot would hit an obstacle. We can use the method de-
scribed above in section 4.2 to calculate the areas of C
trimmed away by the obstacles, and then use a trimmed-
surface visualization algorithm such as the one described in
[33] to obtain the image. This is a valuable tool for deciding
where to place a robot in a given environment so that it can
reach a set of desired regions.

We have recently been studying the problem of collision
detection using these methods. It is possible to obtain a
NURBS volume corresponding to the space swept out by us-
ing functional composition (the mathematics behind this is
described in [22, 7]). Basically we take a continuous NURBS

Figure 6. A frame from the simulation.

function

M 
 ��� �
� C (6)

describing a path in configuration space, i.e. a continuous
motion of the robot parameterized by time. Then we can
form the composition

	 � �M � I� 
 ��� �
�R � R
� (7)

(I is the identity map) which describes the motion of a given
point on the robot (r � R) through time. Then we can again
use standard bounding-box intersection techniques [28] to
test for intersection between the image of the motion of the
manipulator and the set of obstacles.

This idea can also be used for calibration—we can pre-
determine the path of a given point r � R anywhere on the
robot and then use this path as a reference for corrections
based on sensor data.

Our current work is concentrating on using this model
for path planning. Given a path in the configuration space,
we can construct a NURBS image of this path in the physical
space by using the methods described above. Several ideas
concerned with path-planning are currently being investi-
gated and compared. These include constructing a path in
the configuration space and modifying it as patches become
invalid, and the use of a genetic algorithm to search for op-
timal paths on the set of free configuration space patches.
The key idea in all of this is that the searching algorithm in-
teracts with the modelling process, so that if more detail is
desired in a part of the workspace then the search algorithm
can call for a greater level of subdivision in a relevant area
of the space.

In order to visualize aspects of this we have used the
computer program Maple V to produce simple animations.
A frame from one of these animations is shown in figure 6.



6. Future Work.

This paper has presented a snapshot of a research project
in progress, and there are several ways in which this work
will be extended in the future.

Firstly in order to be a practical robot programming sys-
tem the ideas developed above will have to be extended to
be part of a larger CAD system, and will also have to in-
corporate a more elaborate programming language. It is
desired that this programming system should be largely vi-
sual, allowing the user to move the robot in the simulated
workspace and test out the programs being developed using
simulated input.

The development of a robot programming environment
leads to the desire to incorporate sensor input into the sys-
tem. This could be at various levels. It would be a relatively
simple task to incorporate responses to basic range finding
and on/off sensors. At the other end of the scale the use
of NURBS for visual image reconstruction [38, 24] offers a
realm of possibility for using vision as part of the feedback
process.

One area which we have only begun to explore is the
possibility of using these techniques to analyse the motion
of robots in an environment which has other moving compo-
nents. There are three ideas at work here. Conceptually the
simplest is the motion of a mechanism in a space which is
cluttered with objects moving on predefined trajectories—
we want to know whether the objects collide, if so, when,
and how we can plan a path for the manipulator to move
around the objects.

Another aspect is robots making coordinated motions,
for example two manipulators which need to work in close
proximity or which need to collaborate on a task. Using
the techniques described above it should be possible to trim
away the free space of one robot by the motion of the other,
or else to calculate the mutual configuration space of the
two robots.

The natural mathematical framework for studying these
moving obstacles is to extrude the moving obstacles into a
four-dimensional space-time [2, 4] and study the intersec-
tions there. Figure 7 illustrates this idea by extruding two-
dimensional objects into three-dimensional space-time. The
framework of generalized NURBS described above in sec-
tion 3.2, together with the algorithms of NURBS-skinning
and extrusion [36, 30] provide a powerful set of tools for
tackling these hard problems.

The final aspect of moving obstacles is that a robot can
move obstacles itself, by use of a gripper or similar. We are
intending therefore to incorporate into our system means by
which the robot can be considered to have picked up an-
other object at a point in its trajectory, and to recalculate the
swept volumes accordingly for the new “robot � payload”
mechanism.

Time

Space

Figure 7. Two-dimensional objects extruded
into three-dimensional space-time.

Another way in which we can extend this work is to
model a wider class of mechanical systems, leading to an
integrated CAD system for the design of mechanical and
mechatronic devices. This could incorporate both the ideas
above and other recent work on the theory of mechanisms
with closed-loops [13, 14, 15].

Finally there are a number of ways in which the compu-
tational aspects of the project could be enhanced. We are
currently studying different data structures to hold the in-
formation about which patches are free and which blocked.
In the future we are looking to use parallel computers to
speed up some of the algorithms—many of the B-spline al-
gorithms, especially those concerned with subdivision and
calculating intersections are very amenable to paralleliza-
tion. Also some graphical computer workstations use dedi-
cated hardware to perform some of the standard algorithms,
this also offers exciting possibilities for future development.

7. Conclusions.

In this paper we have presented the basic mathematical
and computational framework for a new method of mod-
elling robot manipulator workspaces. This method is com-
putationally efficient and is compatible with CAD stan-
dards, which will allow the development of CAD systems
which can incorporate robots and mechanical systems on an
intuitive level, making use of the powerful algorithms which
have been developed in that field. We have shown that this
method can provide a unifying framework for approaching
a large number of geometrical problems in robotics, and in
the future we hope to extend the theory and develop com-
puter simulations which demonstrate the extended validity



of this type of modelling in an even wider range of situa-
tions.

References

[1] P. Alison, M. Gilmartin, and P. Urwin. Strategic collision
avoidance of two robot arms in the same work cell. In
A. Lenarčič and B.B.Ravani, editors, Advances in Robot
Kinematics and Computational Geometry, pages 467–476.
Kluwer, 1994.

[2] S. Cameron. Using space-time for collision detection : solv-
ing the general case. In Warwick [39], pages 403–415.

[3] M. S. Casale. Free-form solid modeling with trimmed sur-
face patches. IEEE Computer Graphics and Applications,
pages 33–43, January 1987.

[4] H. H. Cheng. Real-time four-dimensional collsion detection
for an industrial robot manipulator. In Proceedingsof the 3rd
National Conference on Applied Mechanisms and Robotics
(Cincinatti, Ohio), volume 1, pages 1–13, 1993.

[5] S. Chiaverini and C. Vicinanza. Reachable workspace com-
putation for planar revolute jointed arms. In Warwick [39],
pages 93–105.

[6] J. Craig. Introduction to Robotics. Addison-Wesley, second
edition, 1989.

[7] T. D. DeRose, R. N. Goodman, H. Haken, and S. Mann.
Functional composition algorithms via blossoming. ACM
Transactions on Graphics, 12(2):113–135, April 1993.

[8] Editorial. IEEE Robotics and Automation Magazine, 1(1),
March 1994. front cover picture and associated comment,
work from Sandia National Laboratories.

[9] G. Farin. Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, third edition, 1993.

[10] R. T. Farouki and J. K. Hinds. A hierarchy of geometric
forms. IEEE Computer Graphics and Applications, pages
51–78, May 1985.

[11] R. Featherstone. A hierarchical representation of the space
occupancy of a robot mechanism. In J.-P. Merlet and B. Ra-
vani, editors, Computational Kinematics (INRIA, September
1995). Kluwer, 1995.

[12] K. Fujimura and H. Samet. A hierarchical strategy for path-
planning among moving obstacles. IEEE Transactions on
Robotics and Automation, 5(1), February 1989.

[13] C. Gibson and D. Marsh. Concerning cranks and rockers.
Mechanism and Machine Theory, 23(5):355–360, 1988.

[14] C. Gibson and D. Marsh. On the linkage varieties of the
Watt 6-bar mechanisms. Mechanism and Machine Theory,
24(2):106–126, 1989.

[15] C. Gibson and D. Marsh. On the geometry of geared 5-
bar motion. Journal of Mechanical Design, 112(4):620–627,
1990.

[16] J. Hopcroft, J. Schwartz, and M. Sharir, editors. Planning,
Geometry and Complexity of Robot Motion. Ablex, Nor-
wood, N.J., 1987.

[17] J. Hoschek and D. Lasser. Fundamentals of Computer Aided
Geometric Design. A.K. Peters, 1989.

[18] Y. Hwang and N. Ahuja. Gross motion planning—a survey.
ACM Computing Surveys, 24(3):219–291, 1992.

[19] B. Jüttler. Spatial rational motions, March 1996. Seminar,
University of Dundee.

[20] B. Jüttler and M. G. Wagner. Computer-aided design with
spatial rational B-spline motions. Technical report, Univer-
sity of Dundee / University of California, Davis, December
1995. To appear in ASME Journal of Mechanical Design.

[21] O. Khatib. Real-time obstacle avoidance for manipulators
and mobile robots. International Journal of Robotics Re-
search, 5(1):90–98, 1986.

[22] D. Lasser. Composition of tensor product Bézier represen-
tations. Computing Supplementum, 8:155–172, 1993.

[23] D. Lasser. Rational tensor product Bézier volumes. Comput-
ers and Mathematics with Applications, 28(8):49–62, 1994.

[24] S. Lavallée and P. Szeliski. Recovering the position and ori-
entation of free-form objects from image contours using 3D
distance maps. IEEE Transactions of Pattern Analysis and
Machine Intelligence, 17(4):378–390, 1995.

[25] T. Lozano-Pérez. Automatic planning of manipulator trans-
fer movements. IEEE transactions on systems, man and cy-
bernetics, SMC-11:681–698, October 1981.

[26] T. Lozano-Pérez. A simple motion-planning algorithm for
general robotic manipulators. IEEE Journal on Robotics and
Automation, RA-3(3):224–238, 1987.

[27] T. Lozano-Pérez and M. Wesley. An algorithm for plannign
collision-free paths among polyhedral obstacles. Communi-
cations of the ACM, 22:560–570, October 1979.

[28] Q. Peng. An algorithm for finding the intersection lines be-
tween two B-spline circles. Computer Aided Design, 16(4),
July 1984.

[29] L. Piegl. Modifying the shape of rational B-splines. part 1 :
curves. Computer Aided Design, 21(8):509–518, 1989.

[30] L. Piegl and W. Tiller. Curve and surface constructions using
rational B-splines. Computer Aided Design, 19(7):485–498,
1987.

[31] L. Piegl and W. Tiller. TheNURBS Book. Springer, 1995.
[32] J. Schwartz and M. Sharir. A survey of motion planning

and related geometric algorithms. Artificial Intelligence,
37:157–169, 1988.

[33] M. Shantz and S.-L. Chang. Rendering trimmed NURBS

with adaptive forward differencing. Computer Graphics,
22(4):189–198, August 1988.

[34] M. Sharir. Algorithmic motion planning in robotics. Com-
puter, 22:9–20, March 1989.

[35] Y. Shin and Z. Bien. Collision-free trajectory planning for
two robot arms. Robotica, 7:205–212, 1989.

[36] W. Tiller. Rational B-splines for curve and surface resp-
resentation. IEEE Computer Graphics and Applications,
pages 61–69, September 1983.

[37] M. G. Wagner. Planar rational B-spline motions. Computer-
Aided Design, 27(2):129–137, February 1995.

[38] Y. Wang and J. Wang. On 3D model construction by fusing
heterogeneous sensor data. CVGIP-Image Understanding,
60(2):210–229, 1994.

[39] K. Warwick, editor. Robotics, Applied Mathematics and
Computational Aspects. Clarendon/IMA, 1993.

[40] P. Wenger and P. Chedmail. Ability of a robot to
travel through its free work space in an environment with
obstacles. International Journal of Robotics Research,
10(3):214–227, 1991.

From the Proceedings of the IEEE International Joint
Symposia on Intelligence and Systems, Washington DC,
November 1996. c	1996 IEEE.


