
Boiten, Eerke Albert and Hoogendijk, P.F. (1996) Nested collections and
polytypism. Technical report. Department of Computing Science, Eindhoven
University

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21323/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21323/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Nested collections and polytypism

Eerke Boiten� and Paul Hoogendijky

November ����

Abstract

A point�free calculus of so�called �collection types� is presented� similar to the
monadic calculus of Tannen� Buneman and Wong� We observe that our calculus is
parametrised by a monad thus making the calculus �polytypic�� A novel contribution
of the paper is to discuss situations in which a single application involves more than
one collection type� In particular� we outline the contribution to database research
that may be obtained by exploiting current developments in polytypic programming�

� Introduction and overview

�Collection types� such as trees� lists� and bags have been studied extensively in computing
science� In particular� in the research area of formal program development� the observation
�attributed by L�Meertens ���	 to H�Boom
 that these types form a hierarchy has proved
fruitful� The most important aspect of this so�called Boom hierarchy is that a calculus of
higher order functions �like map� reduce and �lter
 can be de�ned on all its types� This
calculus is commonly known as the Bird�Meertens Formalism �BMF
 ����
	� and it is
widely used for the development and description of functional and parallel ���	 programs�
A generalisation of this calculus was found in the category theoretic ���	 and relational
���	 approaches to abstract data types� and it was observed that the Boom hierarchy types
form an instance of another popular category theoretic concept� the monad � This provided
a new syntax and calculus for comprehensions on these types�

In the area of databases� the interest in these types arises from the quest for query lan�
guages for databases containing structured data� The traditional ��at� relational database
model ��	 only describes sets of tuples� whose attributes are assumed to be of atomic type

�Now at Computing Laboratory� University of Kent� Canterbury Kent CT� �NF� UK� email�
E�A�Boiten�ukc�ac�uk� research was carried out at Eindhoven University of Technology�

yDepartment of Mathematics and Computing Science� Eindhoven University of Technology� P�O� Box
�	
� ���� MB Eindhoven� The Netherlands� email�paulh�win�tue�nl�

�

�the so�called First Normal Form
� Various �nested� relational calculi� �i�e� calculi pro�
viding for set�valued attributes
 have been proposed ���� �� �	� The most general of these
is the �monadic� calculus described by Tannen� Buneman and Wong ��� ��	� �The obser�
vation that collection types �are� monads with additional properties ��ringads�
 can be
attributed to Wadler ���	 and Trinder ���	�
 They prove that their calculus �using the set
monad
 is equivalent to �the� nested relational calculus ��	�

The calculus we present here is inspired by �and can be instantiated to
 that �monadic
calculus�� Thus� this paper does not claim to directly advance research in database query
languages� Rather� our intent is to present the �state of the art� in that area in such a
way that it connects more easily with recent developments in formal program development�
This explains the di�erences between our calculus and the monadic calculus� our calculus
is non�extensional ��point�free�
 to facilitate equational reasoning� the monad �functor

involved is an explicit parameter� and instead of an underlying signature of basic functions
we assume a category of partial functions with a few extra properties� The importance
of these di�erences has to do with the emerging interest in the area of so�called polytypic
programs� the current focus of research in the BMF ��� �� ��� �
� ��	� Such programs
are parametrised by type constructors �as opposed to polymorphic programs which are
parametrised by types
� Beginning with the work of Malcolm ���	 it has been observed
that several programming concepts and building blocks can be pro�tably formulated in
polytypic terms thus enhancing their �re
usability�

The presentation of the elements of our calculus is such that it amounts to a constructive
proof that it is �in our setting
 the smallest orthogonal calculus that can describe the �at
relational calculus � or� in other words� our calculus �instantiated with the set monad

is the extension of the �at relational calculus with sets as ��rst class citizens�� The
presentation is in two layers� the �rst layer identi�es �tuples� and the basic operations on
them in a category of partial functions with a special product� The second layer �lifts�
these operations to operations on sets of tuples� Partiality of the basic operations requires
some special attention in this lifting procedure�

In the �nal section of this paper we describe issues for further research� and their
relation to research issues in formal program development�

� Special products� the tuple operations

In relational database theory� a tuple is either a function from a set of labels to a set of
�values�� or a member of a product type� We choose the latter approach� con�dent that
the strict categorical typing will provide the labels�

We work in a category of partial functions� and write the typing of arrows in such a
way that it looks natural for compositions� if f �A�B and g �B�C� then f � g �A�C�
Sets are represented as identity arrows� as usual� In particular� for each arrow f �A�B

�Any reference to
relational calculus� in this paper �except for this footnote� � � � should be taken to
refer to relational database calculus �and the corresponding algebra� rather than Tarski�s calculus of binary
relations� even though that plays a crucial r�ole in polytypic programming�

�

we assume the existence of an arrow f� �B�B ��domain�
 which equals the identity on
f �s domain and is unde�ned elsewhere� We assume a particular product� whose unique
mediating arrow �written as f �g
 is characterised by the following

Axiom � �Product� f �g � h � f � g� � �A�B � h � g � f� � �A�B � h

assuming that f �A�C � g �B�C� with �A�B and �A�B the projections on A�B� We
make product a bifunctor by setting f�g � �f � �
��g � �
� We take �� to be a terminal
object in the category� with �A the unique total arrow of type ���A�

In database theory� tuples are elements of n�ary products for arbitrary n� To de�ne
unique n�ary products� we make the binary product associative with unit element ��� This
is axiomatised by equating the relevant isomorphisms to the appropriate identities�

Axiom � assA �B �C �def �idA��B �C
���B �C � �A�B�C
 � idA�B �C

Axiom � �A�idA � idA � idA� �A

Arrows can only be equal if their types are� thus � is associative on objects as well� which
justi�es writing A�B�C without brackets above�

From the desire to address any �eld of an n�ary product directly �for example the B
�eld in A�B�C
 with a single projection it follows that product should be commutative
as well� However� if there are multiple �elds of one and the same type it seems likely that
we would wish to distinguish those� So we introduce the following

Axiom � �Semi�commutativity� Let swapA �B � �A�B ��A�B � the isomorphism be�
tween A�B and B�A� If A and B are relatively prime� then swapA �B � idA�B �

Two types are relatively prime when their greatest common divisor is ��� In order to be
able to de�ne division� �� and greatest common divisors� we complete our axiomisation of
product by postulating�

Axiom 	 All objects have a unique prime factorisation�

Now we can address any �eld directly provided it occurs once� the projection on B in
A is �B�A�B� Since sets are represented by partial identity arrows� it makes sense also to
represent predicates for selection ���ltering�
 in the same way� In particular� we assume
the existence of equalA �A�A�A�A which is de�ned exactly on those pairs �a�b
 of
type A�A such that a � b� As an abbreviation for the inverse of the duplicating function
idA�idA we use diagA � �A�A � equalA� These give us the building blocks for projection
and selection on the level of sets in the next section� A �nal basic operation is �natural

join of two tuples� which is only de�ned if they have matching values for �elds of the same
label �type
� and in that case contains the combination of all their �elds� Using division�
we de�ne it as

joinA �B � idA�C � idB�C �diagC

where C is the greatest common divisor of A and B� and A�C and B�C are both required
to be relatively prime with C� The result type of joinA �B is the least common multiple
of A and B� For A and B relatively prime� the join equals the Cartesian product� as one
might expect�

�

� Second layer� lifting to sets

Intuitively� we would like to de�ne the operators at the set level as fairly simple set com�
prehensions� For example� projecting a set S over the type A�B on A is �using � for
function application
�

�A�B�S � f�A�B�x j x � Sg

The �map� or �apply�to�all� operation on sets will do exactly this� i�e� �A�B � mapP��A�B

where we index the map operation with the functor involved� here it is P� for powerset�
�Also we have ��A�B � mapP��A�B which may di�er from �B �A when A and B are not
relatively prime�

However using mapP for comprehensions is not good enough in general� For total
operations� like projections �A�B there is no problem� However� some of the other functions
we would like to lift to the level of sets are partial �for example� predicates encoded as
partial identity functions
 and that needs to be taken into account� The lifted de�nition of
selection as a comprehension is �assuming selectQ is the partial identity representing the
predicate Q

�Q�S � fx j x � S �Def��selectQ �x
g

where Def is a meta�predicate accounting for the partiality of selectQ � The function mapP
would produce the wrong result if we used it to lift such functions to the level of sets� it
would deliver functions that are unde�ned whenever any of the elements in the set does
not satisfy the predicate�

Using some more basic functions on sets we can resolve this problem� The results of
the partial function will be �packed� using the singleton set former �unitP � PA�A
� we
return the empty set �zeroP � PA�B
 for values on which the function is unde�ned� and
�atten ��attenP � PA� PPA
 the resulting set of sets�

liftP�f � �attenP �mapP�TotP�f

where

�TotP�f
�x �

�
unitP�f �x if Def��f�x

zeroP�x otherwise

It is easy to prove that this makes liftP �the arrow part of
 a functor that coincides
with mapP on objects and total functions�� liftP being a functor is a kind of healthiness
criterion� it means we can use equational reasoning on the level of function compositions
for expressions involving liftP� in particular distribution of functors over composition�

Using liftP� we can de�ne selection by �Q � liftP�selectQ � For join� however� we need to
assume one more basic function� The function liftP�joinA �B has type PC� P�A�B
 for
some type C� but the natural join �A�B has type PC� PA�PB� We need a transformation
from PA�PB to P�A�B
 now� viz� the �crossproduct�� This will be de�ned using the

�Actually� TotP is also a functor� viz� from the base category into the corresponding Kleisli category�
TotF can for any F be expressed without applications and case distinctions if the base category is a boolean

division allegory �	
��

�

function that pairs all elements of a set with one particular value� also known as the strength
of the powerset functor� De�ned as a comprehension� it is

strP��S �x
 � f�y �x
 j y � Sg

In general the strength of a functor F is a natural transformation from �FA
�B to F�A�B
�
which has interesting links with the concept ofmembership ��	� A related function� de�nable
in terms of the strength� is stlP��x �S
 � f�x �y
 j y � Sg�

stlP �A �B � mapP�swapB �A � strP �B �A � swapA �PB

The crossproduct can then be computed by two applications of these functions� one of
each� one nested� �At the level of sets� it does not matter which one is chosen in which
position� since there is no order between the elements�
�

crossP � �attenP �mapP�stlP � strP

With this we can de�ne join at the set level�

�A�B � liftP�joinA �B � crossP �A �B

At this point all standard operators of relational algebra that operate elementwise have
been lifted to sets� Finally� one wishes to have the �normal� set operations available as
operations on databases� Union is not de�nable with the current set of primitive operations
so we add a primitive unionP with one of its characteristic properties� that it forms a
monoid with zeroP � Intersection can be de�ned using cross�product�

�A � liftP�diagA � crossP �A �A

and set di�erence is also expressible using equality �in fact by encoding boolean false as
the empty set�
� Let notmem be the partial identity function which is only de�ned on
pairs of an element and a set such that the element is not in the set�

notmem � �diagPA � �zeroP �A��liftP�diagA � stlP �A �A

�

we then have that
�A � liftP���A�PA � notmem
 � strP �A �PA

�Note that here follows another Kleisli composition�
�Even though we allowed equality test for all types� it must be taken into account that it is an expensive

operation on sets� Comparing to the empty set is still
cheap��

� The complete calculus �a single monad�

Let us summarise the calculus as we have de�ned it thus far�
The �rst layer consists of a category of partial functions with a special product �asso�

ciative with unit ��� semi�commutative� unique prime factorisation
� which includes arrows
equalA for all objects A� and f� for all arrows f �

The second �monadic
 layer consists of

� a functor P from the category of the �rst layer into a category of total functions� whose
arrow part is denoted by liftP�

� operations unitP � PA�A and �attenP � PA� PPA�

Because these operations on sets satisfy the relevant properties for all f �B�A�

�attenP �A �mapP��attenP �A � �attenP �A � �attenP �PA

�attenP �A �mapP�unitP �A � �attenP �A � unitP �PA � idPA

unitP �B � f � mapP�f � unitP �A

�attenP �B �mapP��mapP�f
 � mapP�f � �attenP �A

the structure up to this point is a monad �
Additionally� we have

� an operation strP �A �B � P�A�B
� �PA
�B

Because this operation on sets satis�es the relevant properties�

strP � �mapP�f
�g � mapP��f �g
 � strP

strP �A ��� � idA

strP �A �B�C � strP �A�B �C � �strP �A �B� idC

strP �A �B � �unitP �A� idB
 � unitP �A�B

strP �A �B � ��attenP �A� idB
 � �attenP �A�B �mapP�strP �A �B � strP �PA �B

the structure up to this point is a strong monad �
Finally� we also have

� operations zeroP � PA�B and unionP � PA� PA�PA

satisfying the following properties�

unionP � �unionP� id
 � unionP � �id�unionP

�

zeroP � � � zeroP

unionP � �zeroP�id
 � id

unionP � �id �zeroP
 � id

mapP�f � zeroP � zeroP

�attenP �mapP�zeroP � zeroP

�attenP �mapP�f � unionP � unionP � ���attenP �mapP�f
���attenP �mapP�f

making the entire structure a strong ringad ���	�
This equals the calculus M��� �cond
 of Tannen et al ��� �	� whose expressive power

equals that of the nested relational algebra with equality test ���	� see ��� �	 for a proof� An
important property of this calculus is that the complexity of a query is exponential in the
size of its input� The nesting and unnesting operations� speci�ed using comprehensions�
are�

nest �S � f�x �T
 j T � fy j �x �y
 � Sg �T �� 	g

unnest �T � f�x �y
 j
�S � �x �S
�T � y � S
g

In our calculus they are the beauty�

unnestP �A �B � �attenP �A�B �mapP�stlP �A �B

and the beast �translated from ���	
�

nestP�A�B � mapP���A�P�A�B�
�f
 � strP�A�P�A�B� � ��A�B �idP�A�B�
 where

f � ��A�A�B � liftP��equalA� idB
 � stlP�A�A�B

Note that this nested algebra came about naturally from the wish to express the standard
operations of relational algebra as extensions of operations on tuples� That we are now
able to express the entire nested relational algebra tells us that this algebra is in a sense the
smallest orthogonal extension of the �at relational algebra� An informal corollary of this
is the conclusion that ��rst normal form� is a rather arti�cial restriction �in this setup
�

Moreover� we have not needed any other properties of the operations used� besides
those listed above� Thus� a monadic calculus of this form can be de�ned for any strong
ringad� Important examples of these are lists and bags with their obvious �certainly for
Boom hierarchy adepts
 operations� For this reason� Trinder ���	 and Tannen et al ��� ��	
have argued that strong ringads describe the essence of so�called bulk� or collection types

in databases�
As an aside� not all operations de�ned above generalise from sets to other collection

types all that well� Consider for example nesting�unnesting on lists� where L is the list
functor� For sets we had that unnestP � nestP � id � For lists nestL is an injective function�
but unnestL is not its left inverse�

�

unnestL�nestL���a ��
 ��b ��
 ��a ��
	

� f de�nition nestL g

unnestL���a � �� �� 	
 ��b � �� 	
 ��a � �� �� 	
	

� f de�nition unnestL g

��a�

 ��a��
 ��b��
 ��a�

 ��a��
	

One could argue that either the nest operation on lists should discard the duplicates �mak�
ing it no longer injective since order information is lost
 or that unnesting should do so
�which means that unnest no longer has a simple de�nition
�

� Multiple monads� research issues

So far� we have only shown that we can de�ne the same calculus for each monad separately�
However� ideally one should have several of these collection types available in one language�
and be able to write mixed expressions� From simply combining the set and list versions
of the calculus� we already get expressions like mapP�mapL�f � PLB � PLA but there is no
option yet to move from one datatype to another in general� To our knowledge� this has
not been an issue for research in the database programming languages community�

Can general conversion functions between arbitrary strong ringads exist� Unfortu�
nately� the answer to that question is �no�� For example� to de�ne a deterministic con�
version from bags to lists one needs an order on the element type� which need not exist�
On the other hand� a rather pessimistic approach to this issue is based on the observa�
tion that all well�known examples of collection types can be viewed as implementations
of sets� This implies that for each such type F a polymorphic function �i�e�� a natural
transformation
 setifyF � PA� FA exists� We could impose the existence of setify as an
additional requirement on collection types � ��	 gives a de�nition of setifyF in terms of the
membership relation of F� which is strongly related to the strength of F� So� within the
current context� this may not be a severe restriction� However� more polymorphic trans�
formations are known to exist� e�g� there is also a polymorphic transformation from lists to
bags� Generalizing this we could end up with something like a category of collection types
�extending the Boom hierarchy
� with polymorphic data type transformations as arrows
and possibly the powerset type P as a terminal object with setifyF as its unique arrow�

A completely di�erent class of useful operations for interfacing several data types is
formed by operations that commute functors� i�e� that convert FG�structures into GF�
structures� Our group has studied such operations ��	� and called them �zips�� after the
well known operator that turns a pair of lists of equal length into a list of pairs� The
special case where G is the powerset functor P has been studied by de Moor ���	 under
the name of �cross operators�� Most zips are not de�nable in our language� an exception
being zipP ��� which is identical to crossP on its domain�� �In general crossF is not related

�The crossproduct of one empty and one non�empty set is empty� but the zip of those two is unde�ned
since they are not of the same shape�

�

to zipF �� though� as can be observed for F being the list functor L�
 Another interesting
example is zipF �F which is a kind of transpose operator� zipL �L turns a list of m lists of
length n into a list of n lists of length m in the obvious way��

A �nal example of the use of zips is in the approach to query languages for databases
with partial information advocated by Libkin and Wong ���� ��	� They combine a collection
type �sets or bags
 with a version of sets that has a non�standard interpretation �but is
otherwise identical
� the so�called or�sets� An or�set conceptually represents one of the
values in it� For normalisation of expressions containing tuples� ordinary sets�bags and
or�sets� the �atten and str operations for or�sets can be used �check that these preserve
the conceptual meaning of such expressions
� At the heart of normalisation is an operation
called � of type Or�PA
� P�OrA
 which essentially translates conjunctive normal form
into disjunctive normal form� It can be de�ned in terms of the corresponding operator
for bags� b� �Or�BagA
�Bag�OrA
 which is zipBag �Or on bags of non�empty or�sets� It
should be noted� though� that unlike any of the other operators� zip can have a complexity
that is exponential in the size of its arguments�

Altogether� it seems that more research is needed into zips and other data type trans�
formations before a more conclusive form of a query language with multiple collection
types can be established� We expect that research done in formal program development on
zips ��	� the Boom hierarchy ���� ��	 of datatypes� and polytypic programming in general
��� ��� �
	 will provide a basis for this further research�

	 Concluding remarks

We have presented a monadic calculus for querying nested collections� inspired by �and
in some sense equivalent to
 the ones de�ned by Tannen� Buneman and Wong ��� �	 and
Trinder ���	� Our presentation was designed to connect theories from formal program
development with the state of the art in database query languages� Thus� a set up of
functors over partial functions with associated natural transformations was chosen� Large
portions of equational �point�free
 calculi for category theory� for �total
 functions ����
	�
and for binary relations ��	 are directly applicable to our calculus� Much of these will
translate directly to well�known or possibly even new optimisations of �nested
 relational
database queries� The calculus instantiated to a single monad appears to be complete and
well understood� cf� ��	� However� having the monad �functor
 as an explicit parameter
induces the question of how these calculi could be combined for several monads� leading
to a query language for databases involving multiple collection types� Our partial answer
to this question showed that this strongly relates to several issues currently studied in the
area of formal program development� most importantly to polytypism ��	�

We hope that future research will continue the cross�fertilisation of these two areas� with
investigation of data types� their operations� and transformations between them taking a
central place�

�For zipF �G we have zipF �G
� mapF�stlG � strF � mapG�strF � stlG� This clearly relates the de�nition

of cross with the alternative one where
the other index runs faster��

�

Acknowledgements

Val Tannen�s support in our exploration of this research area is much appreciated� Our
colleagues in the Mathematics of Program Construction section in Eindhoven and Simon
Thompson at UKC gave many useful comments on this paper and other presentations
we have given of this material� We thank Leonid Libkin for his helpful responses to our
questions on or�sets�

References

��	 C�J� Aarts� R�C� Backhouse� P� Hoogendijk� T�S� Voermans� and J� van der Woude� A rela�
tional theory of datatypes� Available via anonymous ftp from ftp�win�tue�nl in directory
pub�math�prog�construction� September �

��

��	 S� Abiteboul� C� Beeri� M� Gyssens� and D� van Gucht� An introduction to the completeness
of languages for complex objects and nested relations� In Nested Relations and Complex

Objects in Databases� volume �
� of Lecture Notes in Computer Science� pages ��������
Springer Verlag� �
���

��	 R�C� Backhouse� H� Doornbos� and P� Hoogendijk� A class of commuting relators� In
Lecture Notes of the STOP ���� Summer School on Constructive Algorithmics� Ame�

land� STOP� �

�� Available via anonymous ftp from ftp�win�tue�nl in directory
pub�math�prog�construction�

��	 Richard Bird� Oege de Moor� and Paul Hoogendijk� Generic functional programming with
types and relations� J� of Functional Programming�
��������� January �

�

��	 R�S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of Programming

and Calculi of Discrete Design� NATO ASI Series Vol� F�	� pages ����� Springer�Verlag�
Berlin� �
���

�
	 V� Breazu�Tannen� P� Buneman� and L� Wong� Naturally embedded query languages� In
Proceedings of International Conference on Database Theory� volume
�
 of Lecture Notes

in Computer Science� pages �������� Berlin� �

�� Springer�Verlag�

��	 P� Buneman� S� Naqvi� V� Tannen� and L� Wong� Principles of programming with complex
objects and collection types� Theoretical Computer Science� To appear�

��	 E�F� Codd� A relational model for large shared databank� Communications of the ACM�
���
���������� �
���

�
	 L�S� Colby� A recursive algebra for nested relations� Information Systems� �������
������
�

��

���	 O� de Moor� Categories� Relations and Dynamic Programming� PhD thesis� Oxford Univer�
sity Laboratory� Programming Research Group� April �

��

��

���	 Oege de Moor� A generic program for sequential decision processes� In Manuel Hermenegildo
and S� Doaitse Swierstra� editors� Programming Languages
 Implementations� Logics and

Programs� �th International Symposium� PLIPS ��
 Utrecht� The Netherlands� September

���
� volume
�� of Lecture Notes in Computer Science� pages ����� Springer Verlag� �

��

���	 H� Doornbos� Reductivity arguments and program construction� PhD thesis� Eindhoven
University of Technology� Department of Mathematics and Computing Science� June �

�

���	 P�J� Freyd and A� Scedrov� Categories� Allegories� North�Holland� �

��

���	 P�F� Hoogendijk and R�C� Backhouse� Relational programming laws in the tree� list� bag�
set hierarchy� Science of Computer Programming� ���
������ �

��

���	 J� Jeuring� Polytypic pattern matching� In S� Peyton Jones� editor� Proceedings Functional
Programming Languages and Computer Architecture� FPCA ��
� June �

��

��
	 L� Libkin� Normalizing incomplete databases� In PODS��
� �

��

���	 L� Libkin and L� Wong� Semantic representations and query languages for or�sets� In PODS�

��� pages �����

� �

��

���	 G�R� Malcolm� Data structures and program transformation� Science of Computer Program�

ming� ���������
� �

��

��
	 L�G�L�T� Meertens� Algorithmics � towards programming as a mathematical activity� In
J�W� de Bakker� M� Hazewinkel� and J�K� Lenstra� editors� Proc� CWI Symposium on Math�

ematics and Computer Science� volume � of CWI Monographs� pages ��
����� �
�
�

���	 H��J� Schek and M�H� Scholl� The relational model with relation�valued attributes� Infor�

mation systems� �������������� �
�
�

���	 D� B� Skillicorn� The Bird�Meertens formalism as a parallel model� In J�S� Kowalik and
L� Grandinetti� editors� NATO ARW �Software for Parallel Computation�� volume ��
 of
Series F� NATO ASI Workshop on Software for Parallel Computation� Cetraro� Italy� June
�

�� Springer�Verlag NATO ASI� �

��

���	 V� Tannen� Tutorial� Languages for collection types� Slides for the ��th ACM Conference
on Principles of Database Systems� Available via anonymous ftp from ftp�cis�upenn�edu�
�le pub�papers�db�research�pods��t�slide�ps�Z� �

��

���	 P�W� Trinder� Comprehensions � a query notation for DBPLs� In Proceedings of the ����

Glasgow Database Workshop� pages
������ Glasgow� Scotland� March �

��

���	 P� Wadler� Notes on monads and ringads� Unpublished note� �

��

��

