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Nested collections and polytypism

Eerke Boiten� and Paul Hoogendijky

November ����

Abstract

A point�free calculus of so�called �collection types� is presented� similar to the
monadic calculus of Tannen� Buneman and Wong� We observe that our calculus is
parametrised by a monad thus making the calculus �polytypic�� A novel contribution
of the paper is to discuss situations in which a single application involves more than
one collection type� In particular� we outline the contribution to database research
that may be obtained by exploiting current developments in polytypic programming�

� Introduction and overview

�Collection types� such as trees� lists� and bags have been studied extensively in computing
science� In particular� in the research area of formal program development� the observation
�attributed by L�Meertens ���	 to H�Boom
 that these types form a hierarchy has proved
fruitful� The most important aspect of this so�called Boom hierarchy is that a calculus of
higher order functions �like map� reduce and �lter
 can be de�ned on all its types� This
calculus is commonly known as the Bird�Meertens Formalism �BMF
 ���� 
	� and it is
widely used for the development and description of functional and parallel ���	 programs�
A generalisation of this calculus was found in the category theoretic ���	 and relational
���	 approaches to abstract data types� and it was observed that the Boom hierarchy types
form an instance of another popular category theoretic concept� the monad � This provided
a new syntax and calculus for comprehensions on these types�

In the area of databases� the interest in these types arises from the quest for query lan�
guages for databases containing structured data� The traditional ��at� relational database
model ��	 only describes sets of tuples� whose attributes are assumed to be of atomic type
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�the so�called First Normal Form
� Various �nested� relational calculi� �i�e� calculi pro�
viding for set�valued attributes
 have been proposed ���� �� �	� The most general of these
is the �monadic� calculus described by Tannen� Buneman and Wong ��� ��	� �The obser�
vation that collection types �are� monads with additional properties ��ringads�
 can be
attributed to Wadler ���	 and Trinder ���	�
 They prove that their calculus �using the set
monad
 is equivalent to �the� nested relational calculus ��	�

The calculus we present here is inspired by �and can be instantiated to
 that �monadic
calculus�� Thus� this paper does not claim to directly advance research in database query
languages� Rather� our intent is to present the �state of the art� in that area in such a
way that it connects more easily with recent developments in formal program development�
This explains the di�erences between our calculus and the monadic calculus� our calculus
is non�extensional ��point�free�
 to facilitate equational reasoning� the monad �functor

involved is an explicit parameter� and instead of an underlying signature of basic functions
we assume a category of partial functions with a few extra properties� The importance
of these di�erences has to do with the emerging interest in the area of so�called polytypic
programs� the current focus of research in the BMF ��� �� ��� �
� ��	� Such programs
are parametrised by type constructors �as opposed to polymorphic programs which are
parametrised by types
� Beginning with the work of Malcolm ���	 it has been observed
that several programming concepts and building blocks can be pro�tably formulated in
polytypic terms thus enhancing their �re
usability�

The presentation of the elements of our calculus is such that it amounts to a constructive
proof that it is �in our setting
 the smallest orthogonal calculus that can describe the �at
relational calculus � or� in other words� our calculus �instantiated with the set monad

is the extension of the �at relational calculus with sets as ��rst class citizens�� The
presentation is in two layers� the �rst layer identi�es �tuples� and the basic operations on
them in a category of partial functions with a special product� The second layer �lifts�
these operations to operations on sets of tuples� Partiality of the basic operations requires
some special attention in this lifting procedure�

In the �nal section of this paper we describe issues for further research� and their
relation to research issues in formal program development�

� Special products� the tuple operations

In relational database theory� a tuple is either a function from a set of labels to a set of
�values�� or a member of a product type� We choose the latter approach� con�dent that
the strict categorical typing will provide the labels�

We work in a category of partial functions� and write the typing of arrows in such a
way that it looks natural for compositions� if f �A�B and g �B�C� then f � g �A�C�
Sets are represented as identity arrows� as usual� In particular� for each arrow f �A�B

�Any reference to 
relational calculus� in this paper �except for this footnote� � � � should be taken to
refer to relational database calculus �and the corresponding algebra� rather than Tarski�s calculus of binary
relations� even though that plays a crucial r�ole in polytypic programming�
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we assume the existence of an arrow f� �B�B ��domain�
 which equals the identity on
f �s domain and is unde�ned elsewhere� We assume a particular product� whose unique
mediating arrow �written as f �g
 is characterised by the following

Axiom � �Product� f �g � h � f � g� � �A�B � h � g � f� � �A�B � h

assuming that f �A�C � g �B�C� with �A�B and �A�B the projections on A�B� We
make product a bifunctor by setting f�g � �f � �
��g � �
� We take �� to be a terminal
object in the category� with �A the unique total arrow of type ���A�

In database theory� tuples are elements of n�ary products for arbitrary n� To de�ne
unique n�ary products� we make the binary product associative with unit element ��� This
is axiomatised by equating the relevant isomorphisms to the appropriate identities�

Axiom � assA �B �C �def �idA��B �C 
���B �C � �A�B�C 
 � idA�B �C

Axiom � �A�idA � idA � idA� �A

Arrows can only be equal if their types are� thus � is associative on objects as well� which
justi�es writing A�B�C without brackets above�

From the desire to address any �eld of an n�ary product directly �for example the B
�eld in A�B�C
 with a single projection it follows that product should be commutative
as well� However� if there are multiple �elds of one and the same type it seems likely that
we would wish to distinguish those� So we introduce the following

Axiom � �Semi�commutativity� Let swapA �B � �A�B ��A�B � the isomorphism be�
tween A�B and B�A� If A and B are relatively prime� then swapA �B � idA�B �

Two types are relatively prime when their greatest common divisor is ��� In order to be
able to de�ne division� �� and greatest common divisors� we complete our axiomisation of
product by postulating�

Axiom 	 All objects have a unique prime factorisation�

Now we can address any �eld directly provided it occurs once� the projection on B in
A is �B�A�B� Since sets are represented by partial identity arrows� it makes sense also to
represent predicates for selection ���ltering�
 in the same way� In particular� we assume
the existence of equalA �A�A�A�A which is de�ned exactly on those pairs �a�b
 of
type A�A such that a � b� As an abbreviation for the inverse of the duplicating function
idA�idA we use diagA � �A�A � equalA� These give us the building blocks for projection
and selection on the level of sets in the next section� A �nal basic operation is �natural

join of two tuples� which is only de�ned if they have matching values for �elds of the same
label �type
� and in that case contains the combination of all their �elds� Using division�
we de�ne it as

joinA �B � idA�C � idB�C �diagC

where C is the greatest common divisor of A and B� and A�C and B�C are both required
to be relatively prime with C� The result type of joinA �B is the least common multiple
of A and B� For A and B relatively prime� the join equals the Cartesian product� as one
might expect�
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� Second layer� lifting to sets

Intuitively� we would like to de�ne the operators at the set level as fairly simple set com�
prehensions� For example� projecting a set S over the type A�B on A is �using � for
function application
�

�A�B�S � f�A�B�x j x � Sg

The �map� or �apply�to�all� operation on sets will do exactly this� i�e� �A�B � mapP��A�B

where we index the map operation with the functor involved� here it is P� for powerset�
�Also we have ��A�B � mapP��A�B which may di�er from �B �A when A and B are not
relatively prime�


However using mapP for comprehensions is not good enough in general� For total
operations� like projections �A�B there is no problem� However� some of the other functions
we would like to lift to the level of sets are partial �for example� predicates encoded as
partial identity functions
 and that needs to be taken into account� The lifted de�nition of
selection as a comprehension is �assuming selectQ is the partial identity representing the
predicate Q


�Q�S � fx j x � S �Def��selectQ �x 
g

where Def is a meta�predicate accounting for the partiality of selectQ � The function mapP
would produce the wrong result if we used it to lift such functions to the level of sets� it
would deliver functions that are unde�ned whenever any of the elements in the set does
not satisfy the predicate�

Using some more basic functions on sets we can resolve this problem� The results of
the partial function will be �packed� using the singleton set former �unitP � PA�A
� we
return the empty set �zeroP � PA�B
 for values on which the function is unde�ned� and
�atten ��attenP � PA� PPA
 the resulting set of sets�

liftP�f � �attenP �mapP�TotP�f

where

�TotP�f
�x �

�
unitP�f �x if Def��f�x

zeroP�x otherwise

It is easy to prove that this makes liftP �the arrow part of
 a functor that coincides
with mapP on objects and total functions�� liftP being a functor is a kind of healthiness
criterion� it means we can use equational reasoning on the level of function compositions
for expressions involving liftP� in particular distribution of functors over composition�

Using liftP� we can de�ne selection by �Q � liftP�selectQ � For join� however� we need to
assume one more basic function� The function liftP�joinA �B has type PC� P�A�B
 for
some type C� but the natural join �A�B has type PC� PA�PB� We need a transformation
from PA�PB to P�A�B
 now� viz� the �crossproduct�� This will be de�ned using the

�Actually� TotP is also a functor� viz� from the base category into the corresponding Kleisli category�
TotF can for any F be expressed without applications and case distinctions if the base category is a boolean

division allegory �	
��
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function that pairs all elements of a set with one particular value� also known as the strength
of the powerset functor� De�ned as a comprehension� it is

strP��S �x 
 � f�y �x 
 j y � Sg

In general the strength of a functor F is a natural transformation from �FA
�B to F�A�B
�
which has interesting links with the concept ofmembership ��	� A related function� de�nable
in terms of the strength� is stlP��x �S 
 � f�x �y
 j y � Sg�

stlP �A �B � mapP�swapB �A � strP �B �A � swapA �PB

The crossproduct can then be computed by two applications of these functions� one of
each� one nested� �At the level of sets� it does not matter which one is chosen in which
position� since there is no order between the elements�
�

crossP � �attenP �mapP�stlP � strP

With this we can de�ne join at the set level�

�A�B � liftP�joinA �B � crossP �A �B

At this point all standard operators of relational algebra that operate elementwise have
been lifted to sets� Finally� one wishes to have the �normal� set operations available as
operations on databases� Union is not de�nable with the current set of primitive operations
so we add a primitive unionP with one of its characteristic properties� that it forms a
monoid with zeroP � Intersection can be de�ned using cross�product�

�A � liftP�diagA � crossP �A �A

and set di�erence is also expressible using equality �in fact by encoding boolean false as
the empty set�
� Let notmem be the partial identity function which is only de�ned on
pairs of an element and a set such that the element is not in the set�

notmem � �diagPA � �zeroP �A��liftP�diagA � stlP �A �A


�

we then have that
�A � liftP���A�PA � notmem
 � strP �A �PA

�Note that here follows another Kleisli composition�
�Even though we allowed equality test for all types� it must be taken into account that it is an expensive

operation on sets� Comparing to the empty set is still 
cheap��






� The complete calculus �a single monad�

Let us summarise the calculus as we have de�ned it thus far�
The �rst layer consists of a category of partial functions with a special product �asso�

ciative with unit ��� semi�commutative� unique prime factorisation
� which includes arrows
equalA for all objects A� and f� for all arrows f �

The second �monadic
 layer consists of

� a functor P from the category of the �rst layer into a category of total functions� whose
arrow part is denoted by liftP�

� operations unitP � PA�A and �attenP � PA� PPA�

Because these operations on sets satisfy the relevant properties for all f �B�A�

�attenP �A �mapP��attenP �A � �attenP �A � �attenP �PA

�attenP �A �mapP�unitP �A � �attenP �A � unitP �PA � idPA

unitP �B � f � mapP�f � unitP �A

�attenP �B �mapP��mapP�f 
 � mapP�f � �attenP �A

the structure up to this point is a monad �
Additionally� we have

� an operation strP �A �B � P�A�B
� �PA
�B

Because this operation on sets satis�es the relevant properties�

strP � �mapP�f 
�g � mapP��f �g
 � strP

strP �A ��� � idA

strP �A �B�C � strP �A�B �C � �strP �A �B� idC 


strP �A �B � �unitP �A� idB
 � unitP �A�B

strP �A �B � ��attenP �A� idB
 � �attenP �A�B �mapP�strP �A �B � strP �PA �B

the structure up to this point is a strong monad �
Finally� we also have

� operations zeroP � PA�B and unionP � PA� PA�PA

satisfying the following properties�

unionP � �unionP� id
 � unionP � �id�unionP
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zeroP � � � zeroP

unionP � �zeroP�id
 � id

unionP � �id �zeroP
 � id

mapP�f � zeroP � zeroP

�attenP �mapP�zeroP � zeroP

�attenP �mapP�f � unionP � unionP � ���attenP �mapP�f 
���attenP �mapP�f 



making the entire structure a strong ringad ���	�
This equals the calculus M��� �cond
 of Tannen et al ��� �	� whose expressive power

equals that of the nested relational algebra with equality test ���	� see ��� �	 for a proof� An
important property of this calculus is that the complexity of a query is exponential in the
size of its input� The nesting and unnesting operations� speci�ed using comprehensions�
are�

nest �S � f�x �T 
 j T � fy j �x �y
 � Sg �T �� 	g

unnest �T � f�x �y
 j 
�S � �x �S 
�T � y � S 
g

In our calculus they are the beauty�

unnestP �A �B � �attenP �A�B �mapP�stlP �A �B

and the beast �translated from ���	
�

nestP�A�B � mapP���A�P�A�B�
�f 
 � strP�A�P�A�B� � ��A�B �idP�A�B�
 where

f � ��A�A�B � liftP��equalA� idB
 � stlP�A�A�B

Note that this nested algebra came about naturally from the wish to express the standard
operations of relational algebra as extensions of operations on tuples� That we are now
able to express the entire nested relational algebra tells us that this algebra is in a sense the
smallest orthogonal extension of the �at relational algebra� An informal corollary of this
is the conclusion that ��rst normal form� is a rather arti�cial restriction �in this setup
�

Moreover� we have not needed any other properties of the operations used� besides
those listed above� Thus� a monadic calculus of this form can be de�ned for any strong
ringad� Important examples of these are lists and bags with their obvious �certainly for
Boom hierarchy adepts
 operations� For this reason� Trinder ���	 and Tannen et al ��� ��	
have argued that strong ringads describe the essence of so�called bulk� or collection types

in databases�
As an aside� not all operations de�ned above generalise from sets to other collection

types all that well� Consider for example nesting�unnesting on lists� where L is the list
functor� For sets we had that unnestP � nestP � id � For lists nestL is an injective function�
but unnestL is not its left inverse�

�



unnestL�nestL���a �� 
 ��b �� 
 ��a �� 
	

� f de�nition nestL g

unnestL���a � �� �� 	
 ��b � �� 	
 ��a � �� �� 	
	

� f de�nition unnestL g

��a�

 ��a��
 ��b��
 ��a�

 ��a��
	

One could argue that either the nest operation on lists should discard the duplicates �mak�
ing it no longer injective since order information is lost
 or that unnesting should do so
�which means that unnest no longer has a simple de�nition
�

� Multiple monads� research issues

So far� we have only shown that we can de�ne the same calculus for each monad separately�
However� ideally one should have several of these collection types available in one language�
and be able to write mixed expressions� From simply combining the set and list versions
of the calculus� we already get expressions like mapP�mapL�f � PLB � PLA but there is no
option yet to move from one datatype to another in general� To our knowledge� this has
not been an issue for research in the database programming languages community�

Can general conversion functions between arbitrary strong ringads exist� Unfortu�
nately� the answer to that question is �no�� For example� to de�ne a deterministic con�
version from bags to lists one needs an order on the element type� which need not exist�
On the other hand� a rather pessimistic approach to this issue is based on the observa�
tion that all well�known examples of collection types can be viewed as implementations
of sets� This implies that for each such type F a polymorphic function �i�e�� a natural
transformation
 setifyF � PA� FA exists� We could impose the existence of setify as an
additional requirement on collection types � ��	 gives a de�nition of setifyF in terms of the
membership relation of F� which is strongly related to the strength of F� So� within the
current context� this may not be a severe restriction� However� more polymorphic trans�
formations are known to exist� e�g� there is also a polymorphic transformation from lists to
bags� Generalizing this we could end up with something like a category of collection types
�extending the Boom hierarchy
� with polymorphic data type transformations as arrows
and possibly the powerset type P as a terminal object with setifyF as its unique arrow�

A completely di�erent class of useful operations for interfacing several data types is
formed by operations that commute functors� i�e� that convert FG�structures into GF�
structures� Our group has studied such operations ��	� and called them �zips�� after the
well known operator that turns a pair of lists of equal length into a list of pairs� The
special case where G is the powerset functor P has been studied by de Moor ���	 under
the name of �cross operators�� Most zips are not de�nable in our language� an exception
being zipP ��� which is identical to crossP on its domain�� �In general crossF is not related

�The crossproduct of one empty and one non�empty set is empty� but the zip of those two is unde�ned
since they are not of the same shape�
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to zipF �� though� as can be observed for F being the list functor L�
 Another interesting
example is zipF �F which is a kind of transpose operator� zipL �L turns a list of m lists of
length n into a list of n lists of length m in the obvious way��

A �nal example of the use of zips is in the approach to query languages for databases
with partial information advocated by Libkin and Wong ���� ��	� They combine a collection
type �sets or bags
 with a version of sets that has a non�standard interpretation �but is
otherwise identical
� the so�called or�sets� An or�set conceptually represents one of the
values in it� For normalisation of expressions containing tuples� ordinary sets�bags and
or�sets� the �atten and str operations for or�sets can be used �check that these preserve
the conceptual meaning of such expressions
� At the heart of normalisation is an operation
called � of type Or�PA
� P�OrA
 which essentially translates conjunctive normal form
into disjunctive normal form� It can be de�ned in terms of the corresponding operator
for bags� b� �Or�BagA
�Bag�OrA
 which is zipBag �Or on bags of non�empty or�sets� It
should be noted� though� that unlike any of the other operators� zip can have a complexity
that is exponential in the size of its arguments�

Altogether� it seems that more research is needed into zips and other data type trans�
formations before a more conclusive form of a query language with multiple collection
types can be established� We expect that research done in formal program development on
zips ��	� the Boom hierarchy ���� ��	 of datatypes� and polytypic programming in general
��� ��� �
	 will provide a basis for this further research�

	 Concluding remarks

We have presented a monadic calculus for querying nested collections� inspired by �and
in some sense equivalent to
 the ones de�ned by Tannen� Buneman and Wong ��� �	 and
Trinder ���	� Our presentation was designed to connect theories from formal program
development with the state of the art in database query languages� Thus� a set up of
functors over partial functions with associated natural transformations was chosen� Large
portions of equational �point�free
 calculi for category theory� for �total
 functions ���� 
	�
and for binary relations ��	 are directly applicable to our calculus� Much of these will
translate directly to well�known or possibly even new optimisations of �nested
 relational
database queries� The calculus instantiated to a single monad appears to be complete and
well understood� cf� ��	� However� having the monad �functor
 as an explicit parameter
induces the question of how these calculi could be combined for several monads� leading
to a query language for databases involving multiple collection types� Our partial answer
to this question showed that this strongly relates to several issues currently studied in the
area of formal program development� most importantly to polytypism ��	�

We hope that future research will continue the cross�fertilisation of these two areas� with
investigation of data types� their operations� and transformations between them taking a
central place�

�For zipF �G we have zipF �G
� mapF�stlG � strF � mapG�strF � stlG� This clearly relates the de�nition

of cross with the alternative one where 
the other index runs faster��
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