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Abstract 
This paper presents the basic DTW-algorithm and the manner it can be used as a similarity measure for two 

different series that might differ in length. Through a simulation process it is being showed the relation of 

DTW-based similarity measure, dubbed 𝜌𝐷𝑇𝑊, with two other celebrated measures, that of the Pearson’s 

and Spearman’s correlation coefficients. In particular, it is shown that 𝜌𝐷𝑇𝑊 takes lower (greater) values 

when other two measures are great (low) in absolute terms. In addition a dataset composed by 8 financial 

indices was used, and two applications of the aforementioned measure are presented. First, through a 

rolling basis, the evolution of 𝜌𝐷𝑇𝑊 has been examined along with the Pearson’s correlation and the 

volatility. Results showed that in periods of high (low) volatility similarities within the examined series 

increase (decrease). Second, a comparison of the mean similarities across different classes of months is 

being carried. Results vary, however a statistical significant greater similarity within Aprils is being 

reported compared to other months, especially for the CAC 40, IBEX 35 and FTSE MIB indices. 

1. Introduction 

Various measures can be used in order to measure the similarity between two series of 

observations, like the Pearson’s 𝑟, the Spearman’s 𝜌, Kendall’s 𝜏 and Kruskal’s 𝛤. However, in 

view of finance applications, it might be required to measure the similarity between two series 

that differ in length (e.g. measuring the similarity between two different months). One solution to 

this problem might be found in the context of data mining by using the Dynamic Time Warping 

(DTW). 

DTW is an algorithmic technique mainly used to find an optimal alignment between two 

given (time-dependent) sequences under certain restrictions (Muller 2007). First introduced in 

1960s, DTW initially became popular in the context of speech recognition (Sakoe and Chiba 

1978 ), and then in time series data mining, in particular in pattern recognition and similarity 

measurement (Berndt and Clifford 1994). Indicatively, we refer to two of the few academic 

papers that implement DTW in finance applications. First, in (Wang et al. 2012), DTW was used 
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to study the topology of similarity networks among 35 currencies in international FX markets, by 

using the minimal spanning tree approach. Second, Tsinaslanidis and Kugiumtzis (2014) used 

perceptually important points (Chung et al. 2001; Fu et al. 2007) to dynamically segment price 

series into subsequences and DTW to find similar historical subsequences. Subsequently 

predictions were made from the mappings of the most similar subsequences. 

This paper highlights the manner that DTW can be used as a similarity measure, while 

presenting simulated and empirical applications as cases. In particular Section 2 presents the 

DTW algorithm with a simplified example. Section 3 presents the DTW as a similarity measure 

and its relation with the Spearman’s and Pearson’s correlation coefficient. Section 4 presents an 

application whereby DTW is used to measure and compare the similarity across daily returns of 

different classes of months. Finally Section 5 makes a conclusion. 

2. The Dynamic Time Warping Algorithm 

Dynamic Time Warping (DTW) is an efficient scheme giving the distance (or similarity) of 

two sequences 𝑄 ≡ {𝑞1, 𝑞2, … , 𝑞𝑛, … , 𝑞𝑁} and 𝑌 ≡ {𝑦1, 𝑦2, … , 𝑦𝑚, … , 𝑦𝑀}, where their lengths N 

and M may not be equal. An example of two sequences 𝑄 and 𝑌 is given by (1) and (2): 

𝑞𝑛 = sin(𝑥𝑛) + 0.2𝜀𝑛, 𝜀𝑛~𝐼𝐼𝐷(0,1), 𝑥𝑛𝜖[0,2𝜋] 𝑎𝑛𝑑 𝑁 = 35 (1) 

𝑦𝑚 = sin(𝑥𝑚) + 0.2𝜀𝑚, 𝜀𝑚~𝐼𝐼𝐷(0,1), 𝑥𝑚𝜖[0,2𝜋] 𝑎𝑛𝑑 𝑀 = 50 (2) 

Clearly, both (1) and (2) represent a sine with Gaussian white noise in the closed interval [0,2𝜋] 

but with different lengths. First, a distance between any two components 𝑞𝑛 and 𝑦𝑚 of 𝑄 and 𝑌 is 

defined, forming the distance (or cost) matrix 𝑫 ∈ ℝ𝑁×𝑀 (Fig. 1b). Various distance measures 

can be used for this purpose, however for this simplified illustration we use the absolute value of 

the difference, i.e. 𝑑(𝑞𝑛, 𝑦𝑚) = |𝑞𝑛 − 𝑦𝑚|. 

The goal is to find the optimal alignment path between 𝑄 and 𝑌 of minimum overall cost 

(cumulative distance). A valid path is a sequence of elements 𝑍 ≡ {𝑧1, 𝑧2, … , 𝑧𝑘 , … , 𝑧𝐾} with 𝑧𝑘 =

(𝑛𝑘 , 𝑚𝑘), 𝑘 = 1, … , 𝐾, denoting the positions in the distance matrix 𝑫 that satisfy the boundary, 

monotonicity and step size conditions. The boundary condition ensures that the first and the last 

element of 𝑍 are 𝑧1 = (1,1) and 𝑧𝐾 = (𝑁, 𝑀), respectively (i.e. the bottom left and the top right 

corner of 𝑫, see Fig. 1b). The other two conditions ensure that the path always moves up, right or 

up and right of the current position in 𝑫, i.e. 𝑧𝑘+1 − 𝑧𝑘 ∈ {(1,0), (0,1), (1,1)}.  

To compute the total distance of each valid path, first the cost matrix of accumulated 

distances 𝑫̃ ∈ ℝ𝑁×𝑀 is constructed with initial condition 𝑑̃(1,1) = 𝑑(1,1), and accumulated 

distance for every other element of 𝑫̃ defined as 

𝑑̃(𝑛, 𝑚) = 𝑑(𝑛, 𝑚) + min {𝑑̃(𝑛 − 1, 𝑚), 𝑑̃(𝑛, 𝑚 − 1), 𝑑̃(𝑛 − 1, 𝑚 − 1)}, (3) 

where 𝑑̃(0, 𝑚) = 𝑑̃(𝑛, 0) = +∞ in order to define the accumulated distances for all elements of 

𝑫̃ (see Fig. 1c). At this stage we keep the indexation regarding the adjacent cell with the 

minimum distance, and then starting from 𝑑̃(𝑁, 𝑀) we identify backwards the optimal path. In 



particular, if the optimal warping path is a sequence of elements 𝑍∗ ≡ {𝑧1
∗, 𝑧2

∗, … , 𝑧𝑘
∗ , … , 𝑧𝐾

∗ } with 

𝑧𝐾
∗ = (𝑁, 𝑀), then conditioning on 𝑧𝑘

∗ = (𝑛, 𝑚), we choose 𝑧𝑘−1
∗  as 

𝑧𝑘−1
∗ = {

(1, 𝑚 − 1), 𝑖𝑓 𝑛 = 1
(𝑛 − 1,1), 𝑖𝑓 𝑚 = 1

argmin{𝑑̃(𝑛 − 1, 𝑚 − 1), 𝑑̃(𝑛 − 1, 𝑚), 𝑑̃(𝑛, 𝑚 − 1)}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4) 

The process terminates when 𝑛 = 𝑚 = 1 and 𝑧𝑘
∗ = (1,1) (Muller 2007). The optimal path for our 

example is illustrated in Fig. 1b,c with the white solid line. Having identified the optimal path the 

initial sequences 𝑄 and 𝑌 are aligned by warping their time axis (Fig. 1d).  

 
Fig. 1 a 𝑄 and 𝑌 price series of unequal length, b Colormap of the distance (cost) matrix, c 3D illustration 

of the accumulated distance (cost) matrix, d Sequences 𝑄 and 𝑌 aligned with DTW. In b and c the white 

solid line is the optimal warping path. 

3. DTW as a similarity measure 

In this section we use the DTW algorithm to measure diachronically the similarity evolution 

across 9 different major financial indexes Table 1. Daily values for the trading years 2005 until 

2012 were downloaded from the Bloomberg data base. In this experiment we used daily 

logarithmic returns, defined as, 

𝑟𝑖,𝑡 = ln 𝑃𝑖,𝑡 − ln 𝑃𝑖,𝑡−1 = ln(𝑃𝑖,𝑡 𝑃𝑖,𝑡−1⁄ ). (5) 

Here, 𝑟𝑖,𝑡 (𝑃𝑖,𝑡) is the logarithmic return (price) of the ith index at time 𝑡. 

Regarding the cleaning data process we followed, missing values where filled with linear 

interpolation, whereas outliers where winsorized by adopting a compressing algorithm, pulling 

them towards the mean and replacing them with a value at a precpesified limit of three standard 

deviations. This process was implemented on a rolling basis, with a window length of 250 trading 

days and a one-day step, in order to consider time-varying volatility exhibited in the examined 

dataset (Kumiega and Van Vliet 2008).  



  

Table 1. Major EMEA indexes 

idxi Bloomberg Ticker Index 

idx1 SX5E Index EURO Stoxx 

idx2 UKX Index FTSE 100 

idx3 CAC Index CAC 40 

idx4 DAX Index DAX 

idx5 IBEX Index IBEX 35 

idx6 FTSEMIB Index FTSE MIB 

idx7 AEX Index AEX 

idx8 OMX Index OMX STKH30 

idx9 SMI Index SWISS MKT 

 

Empirical evidence suggests a link between correlation and volatility of financial assets’ 

returns. In particular, correlations between returns on financial assets tend to be greater in highly 

volatile periods, compared with those observed in less volatile periods (Loretan and English 

2000). This change in correlation may be attributed to structural breaks in the underlying return 

generating mechanisms, like contagion effects between markets.  However, Boyer et al (1999) 

proved that when random variables evolve with more volatility, their sampling correlations 

should also increase even if the underlying generating mechanism remains unchanged. This 

implies that there is a “natural” relation between correlation and volatility, and thus correlation 

patterns can be predicted, by simply modelling volatility. Implications of this relation are 

significant, especially for finance practitioners dealing with the portfolio construction, and risk 

management. 

For the indexes presented in Table 1, three different measures were computed on a rolling 

basis with a window of 21 days and a step of one day. First, an equally weighted theoretical 

portfolio consisting of the 𝜆 = 9 examined indexes was constructed and 21-day variance 𝜎2 was 

estimated as,  

𝜎2 = 𝑾𝜮𝑾𝑇 

 (6) 

 In (6) 𝑾 is a (1 × 𝜆)  row vector containing the weights attributed to each index, 𝜮 is the (𝜆 ×
𝜆) covariance matrix and 𝑾𝑇 is the transpose of 𝑾, with a size of (𝜆 × 1). Second for each 

subperiod we calculated the (𝜆 × 𝜆) correlation matrix |𝝆| where each component |𝜌𝑖,𝑗| is the 

absolute value of the correlation coefficient between indexes 𝑖 and 𝑗. The mean similarity 

measure we define equals with,  

 

|𝜌|̅̅ ̅̅ =
2

𝜆(𝜆 − 1)
∑ ∑ |𝜌𝑖,𝑗|

𝜆

𝑗=𝑖+1

𝜆−1

𝑖=1

. 

 (7) 



The correlation coefficient measures the relation between the returns of two financial assets 

in a linear manner. Averaging values with different signs would result in meaningless measures. 

For example assume that 𝜌1,2 = 1, 𝜌1,3 = −1 and 𝜌2,3 = −1. Taking the averages would result in 

a value of -0.33 whereas we are interesting in a measure that tells as whether there are linear 

relations between the examined series, which in this hypothetical example there are (|𝜌|̅̅ ̅̅ = 1). 

Finally, the DTW algorithm measures the similarity in the examined series in a nonlinear manner. 

At each subperiod an (𝜆 × 𝜆) DTW-based similarity matrix 𝒄 is constructed, where each 

components 𝑐𝑖,𝑗 is the total average similarity cost, 𝑐𝑖,𝑗 = 𝑑̃(𝑁, 𝑀)/𝐾, between indexes 𝑖 and 𝑗, 

𝑑̃(𝑁, 𝑀) is the total cost of the optimal warping path identified by the accumulated cost matrix 

and 𝐾 is the length of the optimal warping path 𝑍∗. The greater the similarity between two 

subsequences the lower the 𝑐𝑖,𝑗 and apparently, 𝑐𝑖,𝑗 = 0 when  𝑖 = 𝑗. In a similar manner with (7) 

the mean DTW-similarity measure for our examined dataset equals with, 

 

𝑐̅ =
2

𝜆(𝜆 − 1)
∑ ∑ 𝑐𝑖,𝑗

𝜆

𝑗=𝑖+1

𝜆−1

𝑖=1

. 

 (8) 

Fig. 2 illustrates the evolution of logarithmic returns, 𝜎2 (6), |𝜌|̅̅ ̅̅  (7) and 𝑐̅ (8) of the examined 

indexes. Obviously, periods of high volatility, are characterized by high |𝜌|̅̅ ̅̅  values and low 𝑐̅.  

 
Fig. 2 a logarithmic returns, b logarithmic scaled variance, c mean Pearson similarity measure, d mean 

DTW-similarity measure. For a, b and c a 21-days rolling window was adopted with a rolling step of one 

day. 

Fig. 3 shows the relation between the |𝜌|̅̅ ̅̅  and 𝑐̅ for the examined dataset. As expected there is a 

negative curve relation between these two measures. This implies that when great in values linear 

correlations occur within a number of series their nonlinear similarity as measured by the DTW 

increases (recall that the lower the 𝑐̅ the greater the similarity). 



 
Fig. 3 Scatter plot of |𝜌|̅̅ ̅̅  against 𝑐̅. 

Except from the empirical results presented above, it was also examined the relation 

between the similarity measure derived by the DTW and the Pearson correlation coefficient, 𝜌𝑝, 

as well as the Spreaman’s rho coefficient, 𝜌𝑠, through a simulation experiment. While 𝜌𝑝 

measures the linear relation between two variables, 𝜌𝑠 is a nonparametric measure and assesses 

whether the relation between two variables can be described using a monotonic function (Best 

and Roberts 1975; Hollander and Wolfe 1973). For this simulation experiment,  2,000 pairs of 

randomly generated series with 21 observations each, were generated in a manner that they 

exhibit various 𝜌𝑝 within the closed interval [−1,1]. For each pair the 𝜌𝑝, 𝜌𝑠 and the DTW-based 

similarity measure, dubbed 𝜌𝐷𝑇𝑊 were calculated. Let Q and Y be the randomly created series, 

with a predefined 𝜌𝑝. The 𝜌𝐷𝑇𝑊 was defined as the minimum total average cost of the two 

optimal warping paths obtained by comparing series Q with Y and Q with –Y. Formally this is:   

𝜌𝐷𝑇𝑊 = min(𝐷𝑇𝑊(𝑄, 𝑌), 𝐷𝑇𝑊(𝑄, −𝑌)) (9) 

The reason for considering (9) is that series that exhibit perfect negative (or generally 

negative and great in absolute values) correlation, either with 𝜌𝑝 or with 𝜌𝑠 are classified as 

dissimilar when compared with the DTW algorithm. Our aim is that DTW should be able to 

identify similar series, where similarity is defined by great in absolute values 𝜌𝑝 and 𝜌𝑠 regardless 

their sign. The relation between the three similarities measures is presented in Fig. 4, where DTW 

approaches zero (takes maximum values), i.e. indicating great (low) similarity, when 𝜌𝑝 and 𝜌𝑠 

take great (low) absolute values. 



 

Fig. 4. 3D scatter plot illustrating the relation between Pearson’s correlation coefficient, Spearman’s 

correlation coefficient and DTW-based similarity measure.  

4. Measuring similarities in months 

The benefit of using DTW to measure similarities between two time series is mainly 

apparent when the series considered differ in length. For example, adopting DTW methodology 

allows a similarity comparison between months, where trading days observed from month to 

month may differ. Implications of this allowance are significant, especially for applications where 

we need to assess the existence of calendar effects. In this section an additional experiment on the 

same dataset is carried where similarities across different months are compared. 

To be more specific, for each idxi we compared with (9) all series of daily returns that 

correspond to the same month but different year (i.e. we measured the similarity between all 

Januaries pairs, all Februaries pairs and so on for each index). Since the examined years were 8 

(2005-2012) for each index and for each month we performed 8 × (8 − 1)/2 = 28 comparisons. 

This means that for each index 12 distributions (one for each month) of 28 observed similarities 

measures where obtained. Subsequently we multi-compared pairwise1 these 12 distributions by a 

two sample, one-tailed, unequal variance student’s t-test and the resulted p-values are presented 

in Table 2. P-values in bold highlight significant cases at the 95% significance level where the 

mean of  𝜌𝐷𝑇𝑊 obtained from one class of months mLow, is lower than the mean of  𝜌𝐷𝑇𝑊 

obtained from another, different class of months mHigh. Comparisons between different classes of 

months that did not reject the null hypothesis in any index were omitted for brevity reasons. 

 

 

                                                           
1 For each index 12 × 11 = 132 comparisons were implemented between different classes of months. 



 

Table 2. P-values from two-sample, one-tailed, unequal variance (heteroscedastic) Student’s t-

test. The null hypothesis states that there is no difference in  𝜌𝐷𝑇𝑊 means of classes mLow  and 

mHigh, whilst the alternative hypothesis states that 𝜌̅𝐷𝑇𝑊 of mLow  is lower than that of mHigh. 

mLow mHigh idx1 idx2 idx3 idx4 idx5 idx6 idx7 idx8 idx9 

Jan May 0,949 0,113 0,772 0,996 0,828 0,963 0,760 0,991 0,012 

 
Dec 0,107 0,337 0,059 0,637 0,381 0,478 0,291 0,365 0,017 

Feb Jan 0,748 0,028 0,290 0,758 0,706 0,285 0,489 0,470 0,936 

 
May 0,997 0,004 0,594 1,000 0,937 0,880 0,762 0,978 0,309 

 
Dec 0,233 0,028 0,013 0,833 0,575 0,281 0,276 0,349 0,278 

Mar Jan 0,571 0,266 0,314 0,011 0,765 0,453 0,406 0,372 0,137 

 
Feb 0,340 0,856 0,476 0,002 0,589 0,673 0,413 0,417 0,009 

 
May 0,952 0,063 0,547 0,620 0,948 0,951 0,678 0,992 0,001 

 
Aug 0,613 0,499 0,476 0,638 0,928 0,547 0,704 0,766 0,013 

 
Sept 0,893 0,970 0,778 0,799 0,998 0,972 0,735 0,990 0,024 

 
Dec 0,163 0,193 0,035 0,044 0,649 0,434 0,212 0,209 0,002 

Apr Jan 0,032 0,023 0,000 0,000 0,000 0,004 0,311 0,042 0,557 

 
Feb 0,002 0,564 0,001 0,000 0,000 0,015 0,313 0,069 0,082 

 
Mar 0,031 0,157 0,011 0,120 0,000 0,005 0,396 0,051 0,888 

 
May 0,297 0,003 0,002 0,179 0,000 0,095 0,566 0,710 0,017 

 
Jun 0,051 0,227 0,005 0,005 0,000 0,001 0,358 0,294 0,342 

 
Jul 0,276 0,278 0,008 0,127 0,000 0,299 0,242 0,438 0,732 

 
Aug 0,033 0,123 0,002 0,247 0,000 0,005 0,594 0,201 0,149 

 
Sept 0,212 0,849 0,035 0,374 0,034 0,234 0,641 0,755 0,181 

 
Oct 0,073 0,276 0,000 0,054 0,000 0,000 0,634 0,395 0,297 

 
Nov 0,142 0,082 0,008 0,006 0,001 0,137 0,704 0,035 0,606 

 
Dec 0,001 0,027 0,000 0,003 0,000 0,006 0,147 0,008 0,023 

May Jan 0,051 0,887 0,228 0,004 0,172 0,037 0,240 0,009 0,988 

 
Feb 0,003 0,996 0,406 0,000 0,063 0,120 0,238 0,022 0,691 

 
Mar 0,048 0,937 0,453 0,380 0,052 0,049 0,322 0,008 0,999 

 
Jun 0,084 0,970 0,564 0,034 0,136 0,016 0,287 0,132 0,967 

 
Oct 0,113 0,994 0,098 0,229 0,212 0,005 0,589 0,200 0,890 

 
Nov 0,224 0,929 0,493 0,045 0,614 0,524 0,673 0,006 0,986 

 
Dec 0,002 0,723 0,009 0,021 0,121 0,047 0,097 0,001 0,437 

Jun May 0,916 0,030 0,436 0,966 0,864 0,984 0,713 0,868 0,033 

 
Dec 0,047 0,122 0,008 0,386 0,457 0,607 0,248 0,043 0,041 

Continued… 

 

 

 



Table 2. (continue) 

Jul Jan 0,096 0,079 0,166 0,002 0,185 0,012 0,560 0,054 0,319 

 
Feb 0,014 0,753 0,304 0,000 0,068 0,043 0,575 0,085 0,023 

 
Mar 0,084 0,302 0,369 0,399 0,056 0,016 0,662 0,067 0,775 

 
May 0,576 0,011 0,389 0,538 0,533 0,226 0,835 0,768 0,002 

 
Jun 0,155 0,409 0,454 0,027 0,146 0,005 0,616 0,345 0,135 

 
Aug 0,105 0,273 0,314 0,571 0,435 0,018 0,855 0,243 0,029 

 
Oct 0,169 0,517 0,070 0,228 0,227 0,001 0,853 0,455 0,144 

 
Nov 0,307 0,198 0,399 0,035 0,649 0,275 0,883 0,046 0,391 

 
Dec 0,006 0,070 0,006 0,017 0,130 0,016 0,328 0,012 0,005 

Aug Jan 0,456 0,232 0,303 0,008 0,227 0,405 0,218 0,174 0,887 

 
Feb 0,204 0,884 0,501 0,001 0,089 0,635 0,215 0,220 0,251 

 
May 0,948 0,042 0,589 0,462 0,595 0,945 0,467 0,927 0,075 

 
Jun 0,608 0,622 0,644 0,045 0,179 0,274 0,263 0,607 0,739 

 
Dec 0,081 0,169 0,017 0,030 0,160 0,390 0,085 0,071 0,085 

Sept Jan 0,123 0,001 0,074 0,001 0,010 0,021 0,198 0,010 0,854 

 
Feb 0,020 0,228 0,144 0,000 0,002 0,069 0,195 0,020 0,297 

 
Mar 0,107 0,030 0,222 0,201 0,002 0,028 0,265 0,010 0,976 

 
May 0,663 0,000 0,206 0,284 0,058 0,308 0,405 0,417 0,128 

 
Jun 0,197 0,047 0,261 0,012 0,008 0,009 0,236 0,115 0,716 

 
Jul 0,574 0,050 0,299 0,231 0,046 0,584 0,136 0,197 0,941 

 
Aug 0,136 0,014 0,158 0,346 0,034 0,031 0,431 0,066 0,524 

 
Oct 0,207 0,040 0,028 0,103 0,018 0,003 0,499 0,171 0,598 

 
Nov 0,367 0,008 0,234 0,015 0,091 0,350 0,589 0,007 0,865 

 
Dec 0,008 0,003 0,002 0,007 0,008 0,027 0,081 0,001 0,126 

Oct Jan 0,406 0,055 0,720 0,027 0,478 0,731 0,207 0,069 0,743 

 
Feb 0,190 0,755 0,871 0,005 0,290 0,889 0,205 0,103 0,240 

 
May 0,887 0,006 0,902 0,771 0,788 0,995 0,411 0,800 0,110 

 
Dec 0,081 0,056 0,189 0,086 0,370 0,694 0,088 0,018 0,106 

Nov Feb 0,059 0,919 0,428 0,050 0,035 0,138 0,164 0,521 0,062 

 
Mar 0,183 0,589 0,463 0,910 0,030 0,064 0,220 0,625 0,815 

 
May 0,776 0,071 0,507 0,955 0,386 0,476 0,327 0,994 0,014 

 
Jun 0,324 0,705 0,561 0,412 0,086 0,025 0,197 0,888 0,257 

 
Oct 0,313 0,830 0,130 0,830 0,147 0,010 0,413 0,939 0,232 

 
Dec 0,022 0,233 0,020 0,304 0,078 0,059 0,071 0,343 0,018 

 

Results vary across different indices, but we can spot some consistent cases. For example, 

similarity observed within Aprils is statistically significant greater than similarities observed 

within Decembers in 8 out of 9 indices. The second most consistent difference in similarities is 

observed when Aprils and Januaries are compared (7 out of 9 cases).  For ease of observation, 

and in order to get an aggregate picture, we counted the number of significant cases reported in 

Table 2 by rows and we present the corresponding counts in Fig. 5.  



 

Fig. 5. Aggregate significant differences in 𝜌̅𝐷𝑇𝑊 across different months for all indices examined.  

 

  



Results indicate that similarities within Aprils are statistically significant greater than those 

observed within other classes of months and more than any other comparison (47 significant 

cases). This implies that generally, predictability within daily returns for an April based on 

historical returns of an earlier April can be superior to predictability for another month. This 

implication is more apparent for indices idx3, idx5 and  idx6 where Aprils’ 𝜌̅𝐷𝑇𝑊 is significantly 

lower than the corresponding mean similarity measures obtained from most other months.  

5. Conclusions 

In this paper we briefly presented the DTW algorithm and described the manner it can be used as 

a similarity measure between two series of observations. Initially we presented diachronically, on 

a rolling basis, the evolution of the DTW-based similarity measure, dubbed  𝜌𝐷𝑇𝑊, along with the 

volatility and the Pearson’s correlation coefficient, 𝜌𝑃 , for 6 financial market indices. Our results 

corroborate previous empirical findings, and show that in periods of higher volatility financial 

indices present greater similarity, both in terms of linear relation as expressed with the 𝜌𝑃 but also 

in terms of nonlinear relation as described by the 𝜌𝐷𝑇𝑊. Subsequently, the relation of  𝜌𝐷𝑇𝑊 with 

two celebrated similarity measures, 𝜌𝑃 and Spearman’s 𝜌𝑆 has been examined through a 

simulation, and we showed that 𝜌𝐷𝑇𝑊 approaches zero when 𝜌𝑃 and 𝜌𝑆 take greater absolute 

values whilst 𝜌𝐷𝑇𝑊 takes its maximum values when correlation approaches zero. 

The benefit, of using DTW as a similarity measure can be traced in cases where the 

candidate series differ in length whereby the implementation of traditional correlation measures 

in not possible. Implications of this characteristic in finance applications are significant, since 

DTW can be used to study market seasonalities by comparing the dynamics of returns series 

evolutions across different months which might differ in length. Subsequently, it might be 

possible to develop prediction algorithms based on this notion. But these are left for future 

investigation. Finally we presented an empirical assessment, by measuring pair-wisely similarities 

within same months of different years. Our results, showed that similarities within Aprils are 

greater compared with other months especially for CAC 40, IBEX 35 and FTSE MIB indices. 
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