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Abstract

Scientific visualization is becoming common in the
work-place; hastened by the growth in the power of
computers generating data that needs to be visualized.
There is a desire to generate quick representations of
the data, that can be used to select and specialize the
data into smaller manageable sections.

This paper describes a visualization environment
(Waltz) where the user can segment the data into inter-
esting features, select a subset of the features, interact
and manipulate the images between views: controlled
by the notion of linked abstractions. An abstraction is
a view of the data in which the data elements are trans-
formed or augmented to facilitate the understanding of
the data.

1 Introduction and Motivation

Many popular visualization systems [25, 1, 34, 3, 29]
are based on the data-flow paradigm. These environ-
ments usually provide a visual programming interface,
where the user connects a suite of modules that filter,
map and display the data. These systems are extensible
and adaptable: as user defined modules can be incor-
porated and used with existing modules. However the

visualization process is often long and involved, requir-
ing many modules to achieve a correct visualization.

Other visualization environments provide a suite of
classes, types and functions that are programmed, inter-
preted or compiled to produce the visualization result
[9, 16, 23, 14, 5]. These environments are powerful vi-
sualization tools, but require programming and specific
expertise to generate the visualization image.

Our aim is to generate a visualization system that will
shorten the visualization cycle, in that the user can im-
mediately depict a view of the data, understanding how
to generate additional views and dissections of the data.
We believe that this can be achieved using the concept
of abstractions in the design and implementation of a
visualization system.

In this paper we define an ‘abstract image’: abbre-
viated as an abstraction (section 2); explain how the
abstract notion is incorporated with the generalization
and specialization processes to form the Waltz visu-
alization Metaphor (section 3) describing the modules
and user-interface to aid the data investigation using the
paradigm. Within section 4 we review related work,
section 5 describes some examples using the Waltz en-
vironment and the paper finishes with a discussion and
conclusion about the described work.

1
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2 Abstractions

A book illustrator wishing to describe and depict a fig-
ure of a microwave oven, for example, can present
the information in many guises: as an actual photo-
graph, a photograph of the component parts, a simpli-
fied schematic-drawing or a circuit diagram of the main
electronic circuitry. Each of these diagrams depict a
view of the oven and can be used to illustrate a specific
characteristic. To fully understand the whole object, we
claim, that the object should be explained and depicted
using a number of these different methods.

Likewise, data visualizations can be generated by
many methods and displayed in multiple forms. For ex-
ample, a surface can be generated over a three dimen-
sional object in either a high or low level of detail. The
detailed display provides precise information about the
data, often taking time to understand and interrogate the
data. However, the simple form provides an overview
of the data but at the loss of detailed and precise infor-
mation. We believe that there is a need to display both
styles of images: at both levels of abstraction.

We define an abstraction to be: views that are related
to the original view but have been altered or generalized
to simplify the image. An abstraction can lose data (in a
controlled manner) in order to express the information
in a clearer and simpler way [18].

Any visualization (on a computer screen) could be
seen as an abstraction of the original data because the
data set is approximated as an image by projections,
scalings and transformations. Most visualizations are
created with a direct spatial mapping of each position
in the data onto the screen using, say, a perspective pro-
jection, but this is “less of an abstraction” than a pro-
jection that does not preserve the exact positional infor-
mation of the spatial data. Haber and McNabb [7] state
“suitable nonlinear mappings can be more effective in
revealing subtleties of structure”.

The Waltz system provides methods to segment
(generalize) the data into spatially-connected elements
(named groups), select a subset (specialization) of the
groups and display the results in multiple views (ab-
stractions). The abstractions (for a given specialization)
are inherently linked together and provide methods to
directly manipulate and select the groups for special-
ization; where an abstraction can be used to control the
orientation and appearance of another abstract view.

3 The Waltz Metaphor

The abstract views provide multiple ways to view the
data; however, some of these views are difficult to in-
terpret in isolation. Therefore, there is a requirement
to correlate the information within each view to other
views. Waltz achieves this through both object and im-
age based correlation. Each process is described below
and expanded within the following sections.

The object correlation is provided by dividing indi-
vidual data elements into similar groups and linking the
group information between views. We name this group-
ing process generalization (section 3.1), as the data can
be classed as becoming more general. Operations over
the groups of elements can include merging groups or
selecting a subset of groups. The latter operation de-
scribes the specialization operation, where the data be-
comes more specialized (see section 3.2). Waltz incor-
porates the generalization and specialization operations
to aid the abstraction process. The Waltz user gener-
alizes the data into groups, displays the information as
abstractions (section 3.3) and selects a subset of groups
(making the specialization). Additional generalizations,
abstractions and specializations can be performed on
the specialized data.

The Generalization, abstraction and specialization
processes form a complete visualization system and can
be compared to the filter, map display of the traditional
dataflow paradigm.

Waltz stores the original data in the Data File Mod-
ule (section 3.4) and the three-processes are contained
within the Grouped-Abstraction-Module (section 3.5),
Figure 1. Each Grouped-Abstraction-Module contains
(1) input and output ports that can be connected to any
other Grouped-Abstraction-Module, (2) a generaliza-
tion method that automatically inherits generalizations
from previous levels or can generate new groups, (3) ab-
straction methods that automatically display the current
data and (4) a specialization process that can generate a
new data-specialization at the request of a user.

Therefore, the specialization process provides a hi-
erarchical segmentation method where the data can be
segmented and consequently further subdivided. This
hierarchy is a tree; Waltz explicitly displays this hier-
archy within the layout and position of the modules on
the canvas (section 3.6).

Image-based correlation is provided through Linked-
manipulation (section 3.7), linking the control manipu-
lation between abstract views. Operations are provided
to highlight specific groups and directly manipulate the
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Figure 1: Generalization, Abstraction and Specializa-
tion

abstract-views.

We describe each aspect of the visualization
metaphor, within Waltz, in more detail in the following
sections.

3.1 Waltz Generalization

Waltz segments the data into ‘similar’ regions called
generalizations. Bertin [2] describes a generalization as
the spatial equivalent of simplification and that “Gen-
eralization thus involves discovering concepts which
are applicable to the available signs and which are de-
fined as similar for a certain area, such that this area
can be considered as different from neighboring areas”.
These similar regions within a generalization are named
groups.

Generalization in Waltz is achieved using a recur-
sive flood filling algorithm. The algorithm proceeds by
flooding to every adjacent voxel where the difference in
value is less than a fixed threshold; this algorithm spa-
tially segments the voxels into groups of similar values.
A merging stage then joins the smaller sized groups into
appropriate adjacent groups (similar to [12]).

3.2 Waltz Specialization

The Specialization process makes the data smaller and
more specialized. Waltz provides this mechanism
through user selection: where the user selects (High-
lights) a subset of the generalized groups.

The specialization process generates a hierarchical
data simplification model using the (algorithmic) gener-
alization and (user controlled) specialization functions;
the hierarchy being implicitly displayed by the layout
of the modules (see section 3.6).

3.3 Waltz Abstractions

An abstraction is a view that displays only certain as-
pects of the information from the data set. The view,
therefore, hides or loses information to facilitate under-
standing of the data. Moreover, the abstraction may
distort the information to achieve a simplified and in-
terpretable view of the data.

There are different levels of abstractions from very-
abstract views to lesser abstract views of the data. There
are different types of abstractions including those that
reduce the level of detail [8], throw away information,
augment and adjust the position or value of the informa-
tion and abstractions that depict information attributed
and calculated from the data (including statistical and
metadata).

Waltz uses the notion of groups from the generaliza-
tion and specialization procedures to generate the ab-
stractions of the data; each of the abstractions display
representations of the grouped data. The Waltz abstrac-
tions include:

List of Groups Abstraction A list of the group names
and respective material type is displayed.

Slice Abstraction Two dimensional slices through the
data are shown.

Surface Abstraction A three dimensional surface is
generated round each of the groups of data.
The algorithm walks around the surface bound-
ary of each three dimensional group, generating
a connected mesh of polygons using an extended
Marching Cubes Lookup table [11].

Skeleton Abstraction A skeleton of an image, like the
skeleton of an animal, is generated. The algorithm
is generated from a three dimensional extension to
the two dimensional Sherman’s algorithm (as de-
scribed by [4])
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Bounding region Abstraction Each of the groups are
displayed using a bounding box glyph. The glyph
encodes the absolute size (extent) and position of
a group.

Net-display Abstraction The net-display abstraction
depicts the data as a connected graph of nodes (a
network). Each group is represented by a spheri-
cal node with the adjacency information encoded
by connecting lines. The nodes are positioned to
represent the average position of each of the ele-
ments in the group and the diameter is related to
the number of elements in the group.

3.4 Waltz Data File Module

The Data File module holds the data, displays the file
name and provides the root module of the specialization
(tree) hierarchy. When this module is deleted each of
children are likewise removed and the remaining mod-
ules are automatically re-positioned. This module is au-
tomatically generated when a Waltz Data file is loaded.
The Waltz Data File is a metafile, containing the where-
abouts, dimensions and aspect ratio of the data file.

3.5 Waltz Grouped Abstraction Module

Each Grouped Abstraction module contains informa-
tion about the current generalization and specialization
state, details of the current abstraction methods and the
linkage states. Unique reference names are allocated to
the abstractions to match up the abstraction popup win-
dow with the Waltz Canvas. These popup windows can
be iconised into the Grouped Abstraction module, de-
picted by a ‘rubbed out’ bitmap representation of the
Abstraction Type.

The user Exports the data from level to level generat-
ing multiple Grouped Abstraction Modules that are au-
tomatically positioned according to the Right Side Rule
layout strategy.

3.6 Waltz Module Layout

Waltz automatically places the modules on the canvas,
using a Right Side Rule method, where each first child
of a parent lines up with the left side of the parent wid-
get and each of the other children are forced to the right
of that one child (Figure 2). The children of the children
are placed likewise first to line up with the parent, then
to display to the right of the older child and to the right

Data File Module Grouped Abstraction Module

Figure 2: Waltz Right Side Rule

of any other children (of this parent) that are older. The
layout consists of multiple levels and columns. Another
data set would be displayed on the right of the most
right child of the previous data set.

Each Grouped Abstraction module can contain mul-
tiple abstractions (of the same or different type). The
user can create and remove the abstraction methods
contained within a Grouped Abstraction module, so the
module automatically expands and contracts to contain
the abstraction methods. The other modules in the can-
vas move appropriately to accommodate the expanded
module.

Multiple windows are generated, containing each ab-
straction, and are uniquely labelled using numbers sep-
arated by dots; consisting of the Data File Version, spe-
cialization level, abstraction number and specialization
path. The four-tuple label correlates each separate win-
dow with its respective Grouped Abstraction Module on
the canvas. The appropriate labels are updated when an
abstraction is deleted.

3.7 Waltz Linkages and Control

Views that are depicted at a high level of abstraction are
often difficult to interpret, therefore, we claim there is a
need to join or link these abstract views together to dis-
ambiguate the abstractness of the image. An analogy
is taken from the London U.K. Underground Railway
network map. The map is drawn in an abstract form
and displays the connectivity of the railway stations and
lines, but loses information about the exact position of
a station and the distances between each station. The
user can quickly understand the connectivity of the sta-
tions and effectively navigate the network. However,
when the abstract map is used in isolation, it is diffi-
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cult to evaluate whether it is feasible to walk overground
between two stations. This distance information is re-
trieved by consulting a geographical map of the same
area; the stations represent the landmarks of correlation
and the distance evaluation becomes trivial – the lost
information has been regained.

We have discovered six close coupling methods that
are applicable to the Waltz visualization system. Each
of the linkages can be applied to a single abstraction
(Self Linked) or connected across multiple views (Local
Linked).

Linked Highlight This allows the same data elements
to be highlighted between views. Multiple groups
are highlighted in different colors.

Linked Specialization Grouping A specialization is
created when parts of the (generalized) data are
extracted. The groups are extracted when the user
initiates an Export action generating a specializa-
tion (subset) of the groups that are currently High-
lighted. If no groups are highlighted a complete
copy of the current groups is exported. The Export
request either updates a current Grouped Abstrac-
tion Module or creates a new Grouped Abstraction
Module with the new data specialization.

Linked Global Transform Direct Manipulation of ro-
tation, scale and translation in one three dimen-
sional view controls the orientation and view of
other connected three dimensional abstractions.

Linked Group Transform This allows a transforma-
tion to be allocated to a specific group, corre-
sponding views (within a generalization), having
the same transformation applied. This is useful if
a group is obscuring another group, or if a group
needs to be moved spatially away from surround-
ing elements.

Linked Attributes The color, transparency, texture
and other attributes are uniform between linked
abstractions. The user can alter the displayed at-
tributes for any group.

Linked Data Probes The position of data probes (the
displayed slice in the slice abstraction, for exam-
ple) are linked between views.

Within a Grouped Abstraction Module each of the
abstractions are initially linked together. A button on
the Grouped Abstraction module generates a popup

‘form’ to change the state of the Linkages. The form
allows each linkage type to be switched from Local (the
default state) to Self. Self linking guarantees that alter-
ations to the abstraction affect only itself; local linking
provides a mechanism to ‘side effect’ any other Linked
Abstraction (within one Grouped Abstraction module).
The ‘form’ (Figure 3) consists of five multiple radio-
buttons that can switch state between Local and Self.
The state of each Linkage is abbreviated into a Link Sta-
tus symbol, with the ‘Self’ Linkages circled. There are
only five linkages because Linked Specialization uses
the local values from Linked Highlight.

Global Linkage would also be possible, but has not
been implemented in this version of Waltz. Lines or
pipes would be drawn on the canvas to note the spe-
cific connections with connections to any Grouped Ab-
straction Module. This would be useful to link abstract
views between different generalizations and other data
sets.

Alternating the Linkage States (in the Linkages
Form) automatically updates appropriate view informa-
tion in the abstraction. When an operation, in one dis-
play, generates a linkage request (such as Highlight) the
linked displays are automatically updated.

Figure 3: Waltz Link Form

3.8 Waltz Implementation

The name Waltz is coined from the music term of
three parts in four, from the Generalization, Specializa-
tion and Abstraction processes within a graphical user-
interface.

The user controls Waltz to generalize the data into
groups; where each group is allocated a unique numeri-
cal identifier. The user interface is simplified by provid-
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ing two modules (the Data File and Grouped Abstrac-
tion modules) where the user adds (and deletes) abstrac-
tion and grouping methods to the Grouped Abstraction
Module, to control the visualization.

Waltz has been designed in C++ with classes repre-
senting the data, groupings of the data and abstractions,
and is implemented over X and Xlib using the Motif
widget set, Inventor [33, 28, 24] and Open GL [15] li-
braries.

4 Related Work

Abstractions if viewed on their own depict part of the
information, but like the analogy of the underground
map other views need to be consulted. Therefore, link-
ing mechanisms between the views are useful and im-
perative if the lost information is to be retrieved. Waltz
provides six linking mechanisms or Linkages (see sec-
tion 3.7, page 4).

Many systems allow the direct manipulation of the
output and linking between views. Martin and Ward
provide five selection or brushing techniques in their
XmdvTool [13] of: Highlight (making some points
stand out), Linking (causing data points to be selected
between displays), Masking/deleting (causing some
points to not be displayed), Moving average (to show
the average values of the selected points) and Quantita-
tive presentation (displaying the actual data values).

Klinker [10] describes a method using “Data Prob-
ing” allowing the data to be graphically filtered by
defining polygon areas of interest on the screen, using a
“Cursor Linking” technique that allows the probe infor-
mation to be linked between modules (and views).

The Visualization Input Pipeline (VIP) [6] provides a
backward control path (from the image to the data) used
to transport control information backwards up the flow
pipeline. In one example, the position of the cursors are
linked together and the translation of one pointer moves
the position of each corresponding cursor.

The Waltz visualization system simplifies the data
by generalizing the data into groups, a subset of these
groups can be selected for display and further process-
ing. Schroeder, Lorensen, Montanaro and Volpe [23]
use a similar technique, named the “Display filter”, al-
lowing the output from one display to be input to an-
other display.

Walsum and Post [30] describe a method that sim-
plifies the data by using selection criteria. There are
three stages: selection creation to feature extract; se-

lection processing applying a transformation to the se-
lected data; and selective visualization that displays the
data. They state that a selection is an area of interest to
the user and can be created by both spatially-connected
(as of Klinker [10]) and spatially-unconnected (as of
Schroeder, Lorensen, Montanaro and Volpe [23]). Their
selections are boolean arrays of data. They describe al-
gorithms of clustering, filtering the size of clusters, se-
lection of clusters, and enlarging and reducing the size
of clusters (dilation and erosion, respectively) that can
be applied to create and alter selections.

Silver [26] segments data into groups named Objects.
The objects simplify the data and can be tracked as they
evolve and move throughout the data [22].

The Abstractions within Waltz represent simplified
or transformed views of the data. Many multidimen-
sional visualization tools provide abstract representa-
tions of the data [32, 31]. Icons or glyphs provide a high
level of abstraction and data reduction and that the data
reduction is “... necessary for understanding the infor-
mation inherent in very large data sets” [17]. The Tioga
system [27] generates child abstractions (representing
subsets of the data input) on a query to the database.
The children at each level are viewed and controlled by
browsers. The browsers can also be synchronized, so
any manipulation on one browser (either slave or mas-
ter) controls a corresponding translation on the other.
Program visualization systems also use abstract meth-
ods to visualize and display working models of algo-
rithms and techniques [21].

5 Examples

The system has been used on a number of data sets.
We describe a session visualizing the data from a space
dust impact simulation (Figure 4). A stationary block
of material is bombarded with a smaller piece of mate-
rial. The data set describes the pressure of the impact
on the object; positive (expansion) and negative (com-
pression) pressures are represented by the data, and the
air is given a reference value. The data is scaled ap-
propriately so the most negative pressure is at the value
one and the reference value is set at zero. The data is
loaded into Waltz and two paths are created. The first
path selects two groups to visualize the surround of ob-
ject block. The second path provides multiple views
displaying different generalizations of the pressure in-
side the stationary block.

One of the data groups (shown in Figure 5) has been
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pulled off the remaining data. An Inventor manipulator
surrounds the group and the other connected views are
automatically updated. The top-left part (of Figure 5)
displays a view with the ‘Group Transform’ and ‘At-
tribute Linkages’ un-linked from the other views show-
ing the same data with the outer group semi-transparent.

The second example segments the brain in a reduced
version of the MRI Head data set: due to memory lim-
itations (Figure 6). Firstly, the data is partitioned into
two groups and the group representing the head is ex-
ported and further generalized into a number of groups.
The connectivity of the groups are shown in the net-
display abstraction and is used to move the brain seg-
ment away from the other tissues. The second view
displays the same data with the transparency attribute
value of the surface groups increased.

This section provided a brief introduction to the visu-
alization environment; we refer the reader to the ‘Quick
Start’ [19] and ‘User Manual’ [20] documents for more
information about ‘how to use’ the environment.

6 Discussion

The Waltz system has been evaluated by a small number
of volunteers. The multiple views with implicit linkages
were found to be useful and the Highlight (Specializa-
tion), Global Transform and Group Transform Linkages
were the most frequently used. However, other ‘user
defined’ abstract views were required.

Waltz could be enhanced to include: other abstract
methods, different grouping and segmentation tech-
niques (such as a flood fill threshold grouper), and ab-
stract linkages between any Grouped Abstraction Mod-
ule or specific abstraction.

The generalization stage is often processor intensive;
data coherence could be used to speed up this segmen-
tation phase.

The specialization process generates a fan-out hier-
archy; a merge module would provide a mechanism to
merge two or more data specializations into one. Obvi-
ously, contentions of overlapping data points and regis-
tration of the data would need to be addressed. Waltz
could also be extended to operate on data of different
dimensions (like [32]).

We propose to develop and extend the Waltz
metaphor and to provide a framework that is user exten-
sible; allowing the user to incorporate abstraction meth-
ods into the system.

7 Conclusions

We have presented a visualization system that displays
data in different linked abstract forms. The system pro-
vides a new metaphor allowing a user to segment the
data into similar regions (generalization), reduce the
amount of data (specialization) and display the data us-
ing a number of connected views at different levels of
detail via several methods (abstractions).

Some methods of visualization are more appropriate
than others to display a particular data style. The ab-
straction system would be useful if the data is large,
complex and can be viewed in a variety of methods.
Three (and higher) dimensional data sets would take
advantage of the inherent linked abstraction technique
(like [13, 31]).

The multiple linked views help disambiguate the ab-
stract views: with one abstraction controlling another
view. Some of the abstractions that provide insight into
the data are useful for navigation and others provide
mechanisms of control into related abstractions. These
‘control abstractions’ (list abstraction, for example) are
often individually meaningless and must be used in con-
junction with other abstractions to locate, select, high-
light and transform regions of interest on other abstrac-
tions.

The system simplifies the visualization process to a
series of specializations from generalized data, a Data
Module and an Abstraction Module with multiple im-
plicitly linked abstraction methods.
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Figure 6: MRI Head Scan
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