University of

"1l Kent Academic Repository

Rodgers, Peter (1998) A graph rewriting programming language for graph
drawing. In: Visual Languages, 1998. Proceedings. 1998 IEEE Symposium
on. . pp. 32-39. IEEE ISBN 0-8186-8712-6.

Downloaded from
https://kar.kent.ac.uk/17063/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/VL.1998.706131

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Proceedings paper

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/17063/
https://doi.org/10.1109/VL.1998.706131
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Graph Rewriting Programming

Language for Graph Drawing

P.J. Rodgers
Computing Laboratory, University of Kent, U.K. e#&.J.Rodgers@ukc.ac.uk

Abstract

This paper describes Grrr, a prototype visual graph
drawing tool. Previoudly there were no visual languages
for programming graph drawing algorithms despite thein-
herently visual nature of the process. The languages which
gave a diagrammatic view of graphs were not computa-
tionally complete and so could not be used to implement
complex graph drawing algorithms. Hence current graph
drawing tools are all text based.

Recent developments in graph rewriting systems have
produced computationally complete languages which give
avisual view of graphs both whilst programming and dur-
ing execution. Grrr, based on the Spider system, is a gen-
eral purpose graph rewriting programming language
which has now been extended in order to demonstrate the
feasibility of visual graph drawing.

1. Introduction

The use of graphs extends throughout computing. Ex-
amples of application areas are neural networksibdae
modelling, software engineering, communication net-
works, and microprocessor design. Graphs are wigksyl
because they enable complex interactions to beesgpd
visually. However, the visual representations qlyidie-
come unusable unless they are presented in a chensie
ble manner. This has motivated the ongoing research
graph drawing algorithms, which attempt to autoozdly
display graphs according to some aesthetic criteria

The purpose of graph drawing is to give a comprehen
sible view of complex information by producing aswal
layout of it in graph form. Hence, when programming
graph drawing algorithms it would make sense tcaugs-
ual representation of the graph being manipulatedvev-
er, the current graph drawing tools use textual
representations of graphs.

This paper describes Grrr, a visual graph rewrithmg
guage for graph drawing. The principle advantagéhef
system is to allow programmers to be closer tdittad rep-
resentation of the graph they are manipulatingowiihg

an intuitive representation of data within a progm@eans
graph drawing algorithms can be coded more quiakly
efficiently, and should encourage the developménbwel

algorithms.

There are a large variety of graph drawing algargh
for various types of graph, such as hierarchidahar and
general graphs [2]. Graph drawing algorithms attietop
improve the appearance of graphs. A good drawing de
pends on the type of graph and the application dmma
There are various desirable aesthetic criteriauaing:
minimising the number of arc crossings, minimisihg
area the graph uses, or maximising the symmetrhef
graph. Most graph drawing algorithms produce al fiaa
sult that is a compromise on several aesthetiercait

There are many tools for prototyping graph drawing
algorithms, discussed in Section 2.1. They all cglysome
form of textual representation for the graph anel aisex-
tual language for expressing graph drawing algorith
This clearly is at odds with the basic motivation §raph
drawing, which is visualising complex data in agiriaal
manner. Textual representations fail to give ariceiibn
of the interconnected nature of graphs and carefoncle-
sired structure on them, which makes programmieglyr
drawing algorithms more complex.

Graph drawing is an algorithmically complex taghkg a
requires computational completeness. Computatimorat
pleteness means that a programming language casele
to encode any algorithm encodable by a computer lan
guage. As graph drawing algorithms often make use o
complex iteration techniques, it is important thay lan-
guage designed as a general graph drawing language
should be computationally complete.

Until recent developments in graph rewriting langrua
es there was no visual language that both visualbye-
sented graph based data structures and was
computationally complete. DOODLE [5] is a visuas®m
for graph drawing, but it does not allow algorithtnsbe
encoded, instead it is designed for specifying atative
constraints on existing algorithms. Other visuablaages
such as G+ [6] and VQL [14] have a diagrammaticeep
sentation of data graphs and use a notion of tre@silo-
sure, which allows simple recursion, but does niowa
algorithms which need complex recursion to be eadod



(such as the example algorithm given in SectiormAgre
are computationally complete dataflow visual largpsa
[8], which use graphs to represent programs, butal@l-
low a visual representation of graph data strusture

Graph rewriting programming languages have been
developed over the last decade. Based on grapmuaesn
these systems attempt to program by rewriting admaph
with user defined transformations. They share dhby
process of graph rewriting and that they are coatpmrial-
ly complete visual languages. These languages diffie-
ly in programming paradigm and application areaylére
discussed in more detail in Section 2.2.

Graph rewriting languages often use graph grammars
as a theoretical base, and graph grammars for ghapir
ing, have been proposed [3, 21]. These are spssiato
certain sorts of graph (trees or DAGSs) and alloimied
class of algorithm to be applied. This contrastdwiro-
gramming languages for graph drawing which arenodie
signed to work with general graphs and allow adarg
number of different algorithms to be specified.

Section 3 discusses Grrr and the changes madfoto it
graph drawing. The main alteration is the integratf ge-
ometric operators. These allow the programmer tngu
and change the position of single nodes and ardhein
graph, or to work on groups of primitives. The @tiems
that are now built into Grrr and the issues coriogrtheir
implementation are discussed in Section 3.2. Thtagy
and semantics of Grrr that make it a practical @ogning
language are discussed in Section 3.1. Also disduare
the features that make it a suitable system fodying
complex algorithms, such as graph drawing algorithm

An example of use, detailing the implementatiora of
graph drawing algorithm for hierarchical graphgiigen in
Section 4. Section 5 contains the conclusions #suligses
possible further work to enhance this prototypaesys

2. Background
2.1. Graph drawing tools

Graph drawing tools allow users to display spedifie
graphs by programming their own graph drawing algo-
rithms or accessing already coded algorithms. Hreye-
signed to allow algorithms to be expressed as\easi
possible in textual languages, such as Java or C.

The manner in which the graph is represented assa d
structure influences the ease in which certain dypé
graph can manipulated. When working with hierarahic
graphs a term based representation can be usédhstitat
employed by daVinci [7], however this representatio
method has an implicit ordering of the nodes ingheph
and so makes cyclic graphs hard to manipulate. No#msr
systems use a variant of the GML method [10] whiak

two discrete sets, one for the nodes and anothérdarcs.
The arcs have references to the source node ardkstie
nation node. This allows more general graphs tmaeip-
ulated, but any connection between nodes is diffitou
derive by inspection of the graph representatiomother
method is the adjacency method, where the arcspee-
fied by the relationship between node definitiofisis al-
lows the arcs to be placed in context, but becausede
may be connected to any number of other nodes plaulti
redundant node definitions are required.

The most general graph drawing tools provide built
algorithms and user editing facilities as welllas tapabil-
ity to produce graph drawing algorithms. Graph@tig
one such publicly available tool. It uses the GMpnesen-
tation method. GDS [4] is a Java applet that sugpyaph
editing and graph drawing algorithms. There are roem
cial systems such as Graphviz, a suite of grapidopal-
gorithms and graph editors, and GLT, which includes
graph drawing and editing functionality, with inorental
layout of dynamic graphs.

Other graph drawing tools have algorithm creatin f
cilities but do not provide interactive graph editi VGJ
[13] is a Java based tool for graph layout and drguwwith-
out editing capabilities. DAWG [17], which usesimitar
graph definition to GML, is a Tcl/Tk based disptagl that
allows graph editing facilities to be built onto it

2.2. Graph rewriting programming languages

Graph rewriting programming languages compute by
rewriting a host graph according to user definatgfor-
mations. A key advantage to this approach is timebdoa-
tion of computational completeness and visual \aéboth
the graph being rewritten and the transformatitas te-
write the graph. These are the only forms of vidaalt
guage in which complex algorithms on graphs can be
programmed.

Graph rewriting languages vary in several important
aspects: the host graph that is to be rewritten beagny
graph, or it may be restricted by disallowing doate
nodes or arcs; there are several different metifmdee-
writing graphs given a set of transformations; trate are
alternative ways that the user can specify thesfoama-
tions. The consequence of this is that, althoughetlare
several systems that use graph rewriting, theignams
work in very different ways.

GOOD [15] is a language for database programming.
It rewrites a host graph that is restricted by meting du-
plicated node labels. This means that algebraicessmpns
are difficult to formulate, but allows GOOD to reaterthe
graph in a parallel manner, that is, all the suplgseof the
host graph that match will be rewritten in one gtbe al-
ternative is to rewrite subgraphs in a serial manrteng-



ing only one subgraph at a time). In GOOD, rewrdes
initiated by special ‘trigger’ nodes in the hosagh, which
can be viewed as corresponding to function or pioce
calls in textual programming languages. As withgsaph
rewriting, all the trigger nodes in the graph améiated in
parallel. GOOD has a single graph method for spigjf
rewrites, so that all the graph items to be matcHetéted
and added are placed on the same graph, but déspthfy
ferently (in bold, or with double outlines), whichn lead
to cluttered displays.

Progres [18] is designed for rapid prototyping aheo
puter languages and environments [19]. The graplstr
ten are general. The host graph is rewritten dgriala
non-deterministic backtracking manner, so that rgeta
graph is specified, and where more than subgraptbea
matched, one is chosen in a non-deterministic Wafe
target graph can be found the execution ends, wibeif
it is not found then the system backtracks to st lter-
nate subgraph match. Progres does not have tnggkss
in the host graph, instead rewrites are initiatea bextual
language. The rewrites contain two diagrams, aheftd
side (LHS) for the graph to be matched, and a tigtrtd
side (RHS) which specifies the changes to be madieet
host graph.

Visual A-grammar programming [11] was introduced

as a method of writing concurrent programs. Thehoeebf
specifying the productions is via a single diagrarhere
the items to be removed and added are given bybsi-
tion in relation to a triangular structure. Theteys is vis-
ual, but the requirement to place added and deleteds
and arcs in particular locations means that itasdhto
maintain the appearance of the original data siredh the
transformations. The graphs rewritten are gendath
trigger initiation and subgraph rewriting is in ptel, and
to prevent cases where the rewritten subgraphdagpyex
conflict resolution algorithm is used. This is iten for
a particular implementation, but it should seléet maxi-
mum number of rewritable subgraphs. This leavesran
portant section of the programming paradigm undigeci
A has interesting modifications to the rewriting g@ro
ess. Sections of the graph that are marked withesehe *'
operator may match a number of times in the hasphyr
Several nodes may be marked with a ‘Fold’ oper&ach
nodes may match with a single node in the hosttgrap

3. Grrr

Grrr is a development of the Spider graph rewriting

programming language [16]. Spider is a prototypsesn
for database programming. Modified, it forms theibaf

Grrr, a general purpose programming language. he i

portant changes are: true serial trigger initigti@moving
any semantic differences between node and arc;types

provements to the algorithm animation facilitiead aal-
lowing new built in triggers to be easily integmhiato the
language, such as those for graph drawing, destiibe
Section 3.2. Section 3.1 discusses the unmodifiedp®o-
gramming language.

3.1. Standard syntax and semantics

Grrr uses a two graph rewrite specification metimed
tegrated into a fully visual language. It has teggodes
and a serial newest first trigger rewrite stratéigyis com-
bined with a serial subgraph rewriting techniqueanse
programs can be structured sensibly. It does reoaumack-
tracking method for serial rewriting, rather it asedeter-
ministic subgraph matching strategy.

Grrr is deterministic in the method it uses forgra
matching. This is achieved by a graph sorting ne:that
takes into account the surrounding subgraph of geagbh
element. Once sorted, the graphs can be matchédawit
backtracking algorithm.

As with Spider, the triggers in Grrr are initiateglvest
first, which means they are applied serially. Foaraple,
Figure 4.1 shows the toplevel transformation ‘Layou
Graph’. The third rewrite calls ‘DoChildBCs’, shown
Figure 4.2. Now all the programming associated vidi+
ChildBCs’ will be completed before ‘LayoutGraph’ is
called again. This means a nested, hierarchicattsire
can be given to programs. Under parallel rewritmgiual
recursion is required to enable one trigger to passution
on to another, so the ‘Layout Graph’ trigger wolée to
be deleted at the same time as ‘DoChildBCs’ wdmied,
and recreated again later as ‘DoChildBCs’ termisate

Grrr has serial trigger initiation for triggers tlaae the
same age. In this case the next trigger node toitited
is determined by the ordering of the nodes. Preshotrig-
gers in Spider were executed in parallel which d@aluse
conflicts, forcing the restructuring of those prams.

There are other Grrr features that are designathte
it a more usable programming language: it has a/RHS
specification for the rewrites, and the rewriteshini a
transformation definition have a top-down ordenwtch-
ing, similar to that often used in textual funceéband log-
ical programming languages.

The data graph (that is the part of the host gthph
holds application data) and the nodes and archtidtas-
sociated information (that is, information derivieaim the
data graph and information concerning executiom) lma
separated using different node types. A node tppeiied
in a rewrite will only match with that node typethre host
graph, avoiding potential confusion. The examplegiin
Section 4 prevents the nodes holding associatednia-
tion about the data graph to be confused with nodése
data graph itself by using circular node typestfa data



graph and oval node types for the associated irdtiom,
such as the X and Y positions of the data nodefardags
to indicate whether data nodes have already be&rheth

The types of primitive in the language is kept to a
small number, but the addition of attractor nodes meg-
atives improves the expressive capabilities. Attnacodes
(shown with a shaded center) force arcs that haee keft
dangling by node deletion to be attached to anatbde.
This allows the easy expression of node replacezedt
algebraic expressions. Negatives (shown with thigs in
the diagrams in this paper, but on the screen éneycol-
oured red) allow the user to specify that a cesaingraph
should not be matched.

Where duplicate labels appear in the LHS or RH$ the
must be identified by the user to avoid confusithre iden-
tifier is an integer superscripted to the node llaha ex-
ample of identification is shown in Figure 4.3, wéé¢he
fourth rewrite contains identifiers for both ‘P’&fX’. The
identifiers do not affect matching, but ensure thate is
no ambiguity when duplicating or removing primitive

Graph theoretic operations, sometimes called graph
associations [1], are expressible in Grrr as actlicense-
guence of the paradigm that it uses. These opasadittow
paths through the graph to be found, or allow sdimdis-
tance to be calculated. These sort of operatiomsvately
used in graph drawing. In textual languages themsgan
tions require new primitives to be added to theismge.

Grrr algorithm animation is improved from the func-
tionality in Spider. Previously, the user had augiing
feature that allowed the user to step through ¢heiting
in the host graph. In Grrr the functionality hasieém-
proved to animate algorithms by showing the charniges
the host graph whilst the rewriting is progressangomat-
ically. Chosen node types can be selected by thetade
hidden, so ensuring an uncluttered view of chamgyade
to the graph. For example, in Section 3.2, the oeales
that represent associated information might bedrnddo
ensuring that only changes to the data graph caede.

3.2. Graph drawing facilities

To be a useable graph drawing language Grrr has bee
augmented with triggers that perform geometric aper
tions, to measure the position of nodes in thelyeam al-
low nodes and arcs to be placed in specific postidhese
use either screen pixels or the size of nodes #@s ah
measurement.

Some geometric triggers are atomic and so must be
built in. These provide basic information, suchthe: X Y
coordinate position of nodes; the height and wiftithe
nodes themselves; and the length of arcs. Correlapglsy,
to alter the appearance of the graph, there amiatinig-
gers to specify the X Y position of nodes, andghmts at

which non-straight arcs bend. The last of theseireg a
slight change to the rewriting method used by @rigive
a high priority to initiating these triggers. Thedition of
the arc bend trigger temporarily alters the grdpotetic
structure of the data graph, so that any rewritielvivould
normally match the repositioned arc would not davih
such a trigger in place, hence arc bends mustibatéa
before any other trigger.

Other operations for graph drawing can be derived
from the above triggers, but to improve efficienmgny of
these are built in. Enclosure operations in padicare in-
efficient to derive. These include finding the nsdéthin
a particular bounding rectangle, or the nodes withcer-
tain radius of a centre point. To derive thesehewe in
the graph would have to be examined, and the segrdc-
essed. Instead of this heavy computational overliezy
are hard coded in Grrr. Their analogs, finding dipalar
area, rectangular or circular, that encloses afsabdes,
are similarly built in.

There are further built in triggers. Finding thetdince
between two nodes is a common operation, and acoakrd
ed trigger to perform this operation reduces exeauime.
For other operations it is not so clear that thiare of
time spent on implementation is worth the savingxacu-
tion time. If it becomes clear that certain openadi, such
as finding the angle between two arcs, or placisgtaof
nodes in a straight line are becoming bottlendties) they
can be added as built in triggers.

Graph drawing algorithms often work on higher level
units than pixels, and operations on units basedaute
size are present, so that the node width is ortdruttie X
direction and node height one unit the Y directibime im-
plementation of these triggers shares a large amofun
code with the triggers that operate on pixels, giabove.

The use of geometric triggers can be seen in thesC
estPoint’ transformation of Figure 4.3. ‘XPixelRéacan
be seen in the fourth RHS. This puts the node lethby
a ‘move’ arc at the X pixel coordinate specifiedthg node
attached to a ‘point’ arc. There is a ‘YPixelPlaé®' the
placing nodes at a Y pixel coordinate. The posiioterms
of node width and height can be specified by ‘Xlate’
and ‘YintPlace’, the latter is used by the ‘Layouthans-
formation, not shown due to space reasons. Thee-corr
sponding triggers which find the coordinates obdaare
‘XPixelCoord’, shown in Figure 4.3 and ‘YPixelCoard
These produce a new attractor node containingabede
nate of the node attached to an ‘arg’ arc. ‘Xintfeband
‘YIntCoord’ find the X and Y coordinates in termsrmde
width and height, rounding to the nearest integer.
‘NodeWidth’ can be seen in the fourth RHS. Thisires
the width, in pixels, of the node attached by ang‘arc.
The result is an attractor node. ‘NodeHeight' firtie
height, in pixels of the ‘arg’ node.



The transformation shown in Figure 4.3 also makes ifies which nodes and arcs in the host graph abe tadded

use of ‘BBox’, which finds the bounding rectanglfeone
or more nodes attached to it by ‘arg’ arcs, andrret the
coordinates as pixels attached to the specifiadtrasde.
The values are attached to ‘min X', ‘min Y’, ‘max Znd
‘max Y’ arcs, giving the rectangle in terms of thettom
left point and the top right point. This methodrefurning
a result means that other related triggers caryemsike
use of the information returned, in particularhistfigure,
the trigger ‘OverlapBox’ uses the result. It fintie nodes
wholly or partially contained within a specifiedctangle,
given in the format above. The ‘InBox’ trigger i®tn
shown, but returns the nodes contained whollyriactan-
gle. The corresponding commands for circular aregain
not shown, use a center point specified by ‘X’ afigixel
coordinates and an integer pixel ‘radius’.

4. Graph drawing example

In this section, graph drawing in Grrr is illusgdtus-
ing a directed acyclic graph (DAG) drawing techmiqu
based first on finding the Y location of nodes adaay to
their position in the hierarchy. Then the X cooedes are
specified using multiple passes though the grapdrrate-
ly down the hierarchy sorting on child barycenténen up
sorting on parent barycenters. This is a visual{aad sim-
plified) version of the approach used Bygiyamaet. al.
[20]. The Grrr system is not restricted to DAGsjrateed
hierarchical or centred graphs. Any circular, gahgraph
may be manipulated. This example is given becduses
complex recursion, and it highlights some interegtro-
gramming and layout features of Grrr.

Figure 4.1, Figure 4.2 and Figure 4.3 show sontestra
formations in the program that lays out a hierarghi
graph. Figure 4.1 shows the top level transfornmatiay-
outGraph’. This is the entry point into the progrdfigure
4.4 shows the host graph at the start of executtware the
trigger node ‘LayoutGraph’ is attached to a nodkdating
the number of passes through the graph. In this 8gsss-
es will be made. The data graph contains unlabétieci-
lar) nodes and unlabelled arcs to improve thetglafithe
diagram. However, the manner in which the transésrm
tions are written would mean that any labels cdagdised
for data graph nodes and arcs. The diagrams shaiwing
host graph indicate the number of steps that haee lex-
ecuted from the initial host graph. Each step Engle
graph rewrite.

‘LayoutGraph’ controls the execution order of the
lower level transformations by using flag nodese Tians-
formation has four rewrites. Each rewrite has arslathd
an RHS. On each application of the transformatiaicimes
are attempted on each LHS in turn, starting with tthp-
most LHS. The difference between the LHS and RH$8-sp

or deleted. The first LHS matches when the nodechéd
by a ‘passes’ arc is ‘0’, however at the starbaaution the
number of passes is ‘3’, so the first rewrite isused. The
second LHS matches in the case where there isome W’

flag. This is because the ‘done Y’ node and coring@irc
are bold, indicating that they are negative, anthsoe will

be a match if that part of the LHS graph canndbbed in

the host graph. It prevents ‘LayoutY’ executing mtnran
once because the ‘done Y’ flag is created by terite.

The ‘X’ node is a variable, indicated by an itdiant. In

this example the start of variable labels is céipigd. The
third and fourth rewrites toggle between callingThild-

BCs’ and ‘DoParentBCs’, as the ‘done Child’ flagalter-

nately created and deleted by these two rewrites.

LayoutGrapl

passt

Figure 4.1. The transformation ‘LayoutGraph’

Each time the fourth rewrite is applied, the nundfer
passes is reduced by one. This means that eventhall
applications of ‘LayoutGraph’ will reduce it to ‘Owhen
the next application of ‘LayoutGraph’ will mean thelS
of first rewrite will now match. This first rewritef ‘Lay-
outGraph’ is the terminating case, deleting theyta-
Graph’ trigger from the host graph and replacingith a
tidying trigger,‘DeleteLevels’ which removes the nodes
holding information from the graph and leaving otihe
repositioned data graph, as shown in Figure 4.6.

Figure 4.2 shows the transformation ‘DoChildBCs
which iterates through the nodes in the data giragie or-
der of the Y level of the nodes placing them ataherage
of the X coordinates of their children. For reasohspace
other transformations are left out of this papemarticu-



lar, missing is the code for ‘LayoutY’, which séte Y lev-
els of nodes and places them appropriately,
‘DoParentBCs’ which is similar to ‘DoChildBCs'.

The trigger that initiates ‘DoChildBCs’ is creatby
the third rewrite of ‘LayoutGraph’. Because Grriregsa
newest first execution strategy, this new triggerd all
triggers that are created as a result of its apiin will
complete execution before ‘LayoutGraph’ is callgdia.

DoChildBCs| — DoChildBCs|
urrent y currenty

DoChildBCs|
gurrenty

®®

DocChildBCs;| DoChildBCs|
‘ gurrenty currenty

— frg

GetChildBC

and

done B

Figure 4.2. The transformation ‘DoChildBCs’

The first rewrite is called when there is no notle a
tached to a ‘current y’ arc. The rewrite creates‘turrent
y’ arc and attached node which has a value séettop of
the hierarchy, ‘1’. The second rewrite is the terating
case which calls a tidying transformation ‘RemoveA
matches when there is no level corresponding touhent
level, hence the bottom of the hierarchy must Hasen
passed. The third transformation matches a noithe aiur-
rent level and calls ‘GetChildBC’, which is not st It
calculates the barycenters and attempts to plac@dde
sensibly, using the ‘ClosestPoint’ transformatiae-
scribed below. The fourth rewrite increments therent
level. If the increment is more than any currentlehen
the next application of the transformation will methe
second LHS matches, and the trigger will be deleted

Figure 4.3 shows the transformation ‘ClosestPoint’
This illustrates some of the built in geometriggers. It is
designed to find a reasonably close X coordinat¢hi ar-
gument node which does not overlap with any otloeles.

It does this by alternately moving the node rigtert left
with bigger steps until a clear location is foummdis trans-
formation also illustrates the high level programgpos-
sible with Grrr, because there is a large amount of
processing performed by the five rewrites.

ClosestPointflag

Ag1
Multiply
arg:

1

¢
Arg1

Figure 4.3. The transformation ‘ClosestPoint’

‘ClosestPoint’ is designed to be called with orthe t
node to be positioned attached, so the secondtecisihe
first to be called, as the first requires ‘poimdanext’ tag
nodes to be attached. The RHS creates a ‘testgtd’*and
a ‘1’ node. It also creates three geometric triggetPix-
elCoord’, ‘OverlapBox’ and ‘BBox’. The triggers atbe
same age but ‘XPixelCoord’ is executed first acouydo
the serial trigger resolution algorithm. It retuthge value,



in pixels of the X position of the argument nodkisivalue

becomes the node attached to the ‘point’ arc, angeéd in
later calculations. ‘OverlapBox’ cannot yet be edllas
none of its RHSs will match, it requires associatedrdi-

nates, hence ‘BBox’ will be the next executed. Thtsirns,

attached to the node connected by the ‘result’ tre,
bounding box of the nodes attached by ‘arg’ arosreH
there is only one such node. The point in execuditvar

‘BBox’ is called is shown in Figure 4.5. This figualso

shows the effect of the execution of ‘LayoutY’, lwithe

nodes in their correct level in the hierarchy, avith the

tags giving the level attached.

LayoutGrapt—P3sSes, o

755

Figure 4.4. The initial host graph (Step 0)

o e
by

goint ~\flag

Figure 4.5. The host graph after Step 167

Now ‘OverlapBox’ can match, as it has the required
coordinates, and this returns attached to the codeected
by the ‘result’ arc the nodes in the graph whiahaholly
or partially contained within the given coordinatiéshere
is only one (which will be the argument node, heihdees
not overlap another node) then the third LHS ob%&ist-

Point’ will match next, and recursion will termieat!f
there is more than one, then depending on whetlanext
move is left or right, the fourth or fifth rewritegll be next
used. In this case, two steps after the host girapiigure
4.5 it is the fourth rewrite. The RHS of the fourdwrite
has an algebraic expression which calculates tvdoea-
tion of the node, according to the previous numbier
moves, the original position and the node widthufit us-
ing another geometric trigger, ‘NodeWidth’). Theufth
rewrite deletes the ‘test’ tag, so that the nextiaption of
‘ClosestPoint’ will mean the first rewrite is useahich
sets up the graph for the next test of the positicthe ar-
gument node. The fifth rewrite is similar to theifth, but
increases the amount by which the node is moved.

Figure 4.6. The final host graph (Step 1584)

Execution finishes after 1584 rewriting steps, Hisy
in the host graph as shown in Figure 4.6. Transftions
delete their associated triggers when they compéster-
sion and tidying transformations have deletedhalasso-
ciated data, leaving only the data graph as tha fasult.

5. Conclusions and further work

This paper has demonstrated the feasibility ofalisu
graph drawing by giving an example of a concisé plow-
erful hierarchical graph drawing algorithm which kea
use of the new geometric operators and previousijlea
ble implicit graph theoretic operations.

This paper has also shown a novel application farea
graph rewriting languages, an area for which tilsgseems
are uniquely suited by virtue of their visual regetation
of graphs and computational completeness.

With enhancements it is conceived that Grrr willsbe
practical tool for the graph drawing community. Thajor
further work required to turn Grrr into a seriousvdlop-
ment tool are improvements in user interface ardeton
efficiency. The former requires resources, butl#teer is



more interesting in research terms. Grrr uses argébut
sometimes expensive serial graph matching algorithm
practice most graph matching operations can beniged,
either at compile time by converting rewrites tmare ef-
ficient form, or during run time by using intelligesearch-
es through the host graph. Such efficiency gaiosishbe
achievable without altering the Grrr programmingimoel.

Further programming features could be added to. Grrr
Because the semantics have been maintained atpdesim
level there are various enhancements that the drgonp-
gram highlights. Flags are used to control the oofiexe-
cution of some lower level transformations. A melegant
method might be to add a system of ensuring sjgekcit-
writes are executed only once. Also widely usedtags,
and the situations in which tags are applied cbeldlealt
with by specifying nodes in LHS graphs that sholodd
matched only once by a particular trigger nodeiappbn.

The extensions that enable graph drawing in Greha
been designed to integrate into the language wittpeat-
ly affecting the semantics. Manipulation of graphight
be more intuitive if the operations were directighledded
into the rewriting process. For example, the rejpmsing
of a node could be specified by its position in R4S rel-
ative to the LHS. New forms of arc are also possibhese
might alter the position of the connected nodemgimg
them closer, or separating them). Grrr would thecolme
more expressive at the cost of simplicity.

Graph drawing is a large field, and work is in pexs
to discover which classes of algorithm are amenigblgs-
ual graph drawing and to compare the effort requfoe
producing visual algorithms against producing tkeitual
duals. It is also conceivable that this new visaygroach
to graph drawing will lead to the development ofelcal-
gorithms.

There are graph drawing requirements other than
cussed in this paper. In particular, it might befukto add
operations that allow automatic measuring of adistiod-
teria that is not easy to derive from current teigg This in-
cludes measuring arc crossing in a graph and tinengfry
of a graph. Work in the area of constraints on lyre@w-
ing [5] might also be applicable to this system.

There are a number of computational tasks related t
graph drawing, such as planarity testing. Intemgfi this
does not require geometric operations, only grapbretic
operations. Implementing planarity testing and otbéat-
ed tasks into Grrr is an area of further work.

dis

References

1. R. Ayres and P.J.H. King. Extending the Semdptwer of
Functional Database Query Languages with Assodalio
FeaturesCongres INFORSI D 1994. pp. 301-320. 1994.

2. G. Di Battista, P. Eades, R. Tamassia and |.@isTélgo-
rithms for Drawing Graphs: an Annotated Bibliogrgph

Computational Geometry: Theory and Applications, 4. pp.
235-282, 1994.

3. F.J. Brandenburg. Designing Graph Drawings byolay
Graph Grammar$raph Drawing '94. LNCS 894. Springer-
Verlag. pp. 266-269. 1995.

4. S. Bridgeman, A. Garg and R. Tamassia. A Grapwiiig
and Translation Service on the WW\Btaph Drawing '96.
Berkeley, CA, USA, LNCS1190. Springer-Verlag. 1996

5. LF. Cruz. Expressing Constraints for Data Dig8aecifica-
tion: A Visual ApproachPrinciples and Practice of Con-
straint Programming, eds. Vijay Saraswat and Pascal Van
Hentenryck. The MIT Press, pp. 443-468, 1995.

6. I.F. Cruz, A.O. Mendelzon and P.T. Wood. G+: Rsiue
Queries Without Recursioteroceedings of the 2nd Expert
Database Systems Conference. Benjamin-Cummings. pp.
645-666. 1989.

7. M. Fréhlich and M. Werner. Demonstration of theefactive
Graph-Visualization System daVindsraph Drawing '94.
LNCS894. Springer-Verlag. pp. 266-269. 1995.

8. D. Hils. Visual Languages and Computing SurvegtalFlow
Visual Programming Languagelkurnal of Visual Languag-
es and Computing 3(3), pp. 69-101. 1992

9. M. Himsolt. The Graphlet Syste@raph Drawing '96. LNCS

1190. Springer-Verlag. pp. 233-240. 1996

M. Himsolt. GML: A Portable Graph File Form@echnical

Report, Universitat Passau, 1997.

S.M. Kaplan, S.K. Goering and R.H. Cambell. Syeg

Concurrent Systems with-Grammars.Proceedings of the

Fifth International Workshop on Software Specification and

Design. Society Press. pp. 20-27. 1989.

E. Koutsofios and S.H. North. Drawing GraphshwitOT.

User Manual. AT&T Bell Laboratories. 1993.

C. McCreary. Visualizing Graphs with Java (V&®nual.

Available from http://www.eng.auburn.edu/department/cse/

research/graph_drawing/manual/vgj_manual.html. 1997.

L. Mohan L. and R.L. Kashyap. A Visual Query baage for

Graphical Interaction With Schema-Intensive Databas

IEEE Transactions on Knowledge and Data Engineering, 5,

5. pp. 843-858. 1993.

J. Paredaens, J. Van den Bussche, M. Andrie§ydsens

and |. Thyssens. An Overview of GOOBCM S GMOD

Record, 21,1. pp. 25-31. March 1992.

P.J. Rodgers and P.J.H. King. A Graph Rewriisgial Lan-

guage for Database Programmimige Journal of Visual Lan-

guages and Computing 8(6). Academic Press. pp. 641-674.

December 1997.

P. Rodgers, R. Gaizauskas, K. Humphreys anduidniGg-

ham. Visual Execution and Data Visualisation inuMakLan-

guage Processing.Proceedings of the VL'97 IEEE

Symposiumon Visual Languages. pp. 342-347. 1997.

A. Schirr. Rapid Programming with Graph RewRtdes.

Proceedings USENIX Symposium on Very High Level Lan-

guages (VHLL), Santa Fe. pp. 83-100. October 1994.

A. Schirr. BLD - A Nondeterministic Data Flowogram-

ming Language with BacktrackinBroceedings of the VL' 97

IEEE Symposium on Visual Languages. pp. 398-405. 1997.

K. Sugiyama, S. Tagawa and M.Toda. Methods fisud

Understanding of Hierarchical SysterisEE Trans. on Sys-

tems, Man and Cybernetics, SMC-11(2). pp. 109-125. 1981.

21. G. ZinBmeister and C.L. McCreary. Drawing Graphh At-
tribute Graph GrammarsGraph Drawing '94. LNCS 894.
Springer-Verlag. pp. 266-269. 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.



