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ABSTRACT

Traditionally, diagrams used in software systems modelling have
been two dimensional (2D). This is probably because graphical
notations, such as those used in object-oriented and structured
systems modelling, draw upon the topological graph metaphor,
which, at its basic form, receives little benefit from three
dimensional (3D) rendering. This paper presents a series of 3D
graphical notations demonstrating effective use of the third
dimension in modelling. This is done by e.g., connecting several
graphs together, or in using the Z co-ordinate to show special
kinds of edges. Each notation combines several familiar 2D
diagrams, which can be reproduced from 2D projections of the
3D model. 3D models are useful even in the absence of a
powerful graphical workstation: even 2D stereoscopic projections
can expose more information than a plain planar diagram.
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1 INTRODUCTION

The advent of powerful and cheap graphical workstations,
enables the use of 3D modelling in many software
applications. This trend is amplified with the introduction
of standards such as OpenGL [13] and VRML [3]. There
are also several systems for visualising software execution,
for debugging and other purposes [22], [15]. Yet, perhaps
surprisingly, 3D modelling has not yet made its way into
the domain of specification and design of software and
information systems. Diagrams of various sorts are used
extensively in this domain. These include data flow
diagrams, state charts, flow charts, entity-relationship
diagrams, and the diagrams in OPEN [8] and UML [21],
which are all essentially 2D. It is only natural to ask: How
can the introduction of 3D contribute to software and
systems modelling?

This paper presents an alternative to current 2D diagrams
in the form of a series of 3D graphical notations. It should
be emphasised at the outset that the third dimension is not
a mere embellishment. The semantics it carries
considerably enhances the expressive power of graphical
notations, without resorting to the clutter of textual
annotations.

The notations presented here complement and are
compatible with existing 2D notations such as those
making up UML. In fact, each of our 3D models can be
thought of as a seamless combination of several 2D
diagrams. Conversely, the 2D diagrams can be extracted
from the 3D model by its geometric projection onto a
plane.

3D software models enable visualisation of richer
semantics than those of 2D models. For example, there are
3D models that encompass both a static and a dynamic
description of a system. Although we envisage a set of 3D
CASE tools which support the creation, editing and
manipulation of models, 3D models are useful even in the
absence of such tools. A stereoscopic projection of such a
model is semantically richer than a 2D diagram, since the
3D visual cues that the projection delivers, also carry a
semantic meaning.

Section 2 explains why many of the notations in current
use are inherently 2D and elaborates on the rationale and
techniques of 3D modelling. Section 3 reviews a number of
2D notations, mostly taken from UML, the latest standard
in graphical languages for the modelling of software
systems. Section 4 reviews constraint diagrams [14], a
newly proposed 2D notation, which plays a pivotal role in
our 3D models. Section 5 introduces the 3D notations:
contract boxes, 3D sequence diagrams, nested box
diagrams, and a 3D extension of flow charts. The
relationship between the 3D and 2D notations is also
discussed, using the metaphor of geometric projection.
Finally, Section 6 concludes the paper with a summary and
outline of future work, focusing on semantics and tool
support.

2 FROM 2D TO 3D MODELS

The immediate reason that diagrams used for software
modelling are 2D rather than 3D might seem to be that
drawing on paper is much easier than sculpturing. A
moment’s reflection will reveal that there must also be a
deeper reason. After all, paper has been used extensively
for depicting 3D models, and flat screens are effective for
rendering 3D information, as in movies, TV, and in
computer screens.

We attribute the prevalent use of 2D diagrams to the fact
that most diagramming methods are based on graphs. For
example, in flow charts the graph nodes are computational
steps and edges represent control flow. Similarly, in E-R
and class diagrams nodes are entities and edges are the



relations between them, etc.

An important advantage of graph-based- over sequential
textual description is that even a directional graph does not
impose a total ordering of the nodes, i.e., the topology of
relationship between them is not restricted to linear. In
writing a Pascal program one is immediately faced with the
dilemma of ordering, sometimes arbitrarily, the
procedures, while the real relations between them are
implicit. Not so when the program is described as a
procedure call graph.

The two dimensions of a picture serve as a visual clue to
the fact that graph node ordering is arbitrary and support
the various topologies of a graph. The third dimension
however does not contribute much to a non-textual
description of a graph. Perhaps its only benefit is in
making explicit (in non planar graphs) that edge-
intersections are not edges as demonstrated in [20]. But
this gain is all but lost when the 3D model is rendered on
2D media, unless very sophisticated rendering techniques
are employed [18].

Diagramming techniques also use various generalisations
of graphs, such as hyper-graphs and hi-graphs [10]. Again,
these mathematical creatures are not visualised
significantly better by a 3D rather than a 2D model.

As expressively powerful as graphs are, and as developed
as the mathematical theory behind them is, the complexity
of modelling large systems often requires more than vanilla
graphs. The most common extension is that there are a
number of different kinds of nodes and edges. Booch’s
original Object Diagram [2], for example, has 7 kinds of
edges; his Module Diagram has 10 kinds of nodes.

Evidently, there is little difficulty in finding a visual, iconic
representation for many different kinds of nodes. Flow
charts and electrical engineering circuits use tens if not
hundreds of node shapes.

The simple observation that prompted this paper is that it
is  immensely difficult to an adequate visual representation
of different kinds of edges, due to their one-dimensional
(1D) nature. Depiction techniques such as varying line
thickness, dashing, doubling etc. are much more limited
than the infinite variety available in 2D shape.
Additionally, all of these techniques are applicable in
drawing a 2D shape border. A 2D shape also leaves plenty
of room for placing labels, multiple connectors and other
visual adornments. In comparison, edges are limited to at
most one label and to using various kinds of arrow heads
and other kinds of connectors at each end. As convincingly
argued in [8] connectors are inconspicuous; the viewer is
forced to trace an edge to its end in order to determine its
kind.

The edge kind denotation problem becomes acute with the
multitude of relationships in object oriented systems. Class
and generic instantiation, inheritance, implementation,
sub-typing, ownership, inclusion, association, invocation,
creation, passing as argument, state transition are only a
few of the many kinds of relationships that are modelled.
To overcome this problem, several kinds of graphs are

often drawn to represent different aspects of the system.
Nodes in these are sometimes shared and sometimes not,
but almost invariably each of these graphs assigns a
different meaning to edges. For example, objects in a
collaboration diagram may also appear in an object-class
diagram, but edges in each of these diagrams have totally
different meaning. This approach ameliorates the problem
by enabling an overload of edge notations. But, the
relationships between different diagrams are not captured
by graph theory. It is probably a consequence of this that
the overall semantics of multiple diagrams is known to be
one of the weakest points of modelling languages.*

Our thesis is that the third dimension is useful for
presenting a variety of edges. The basic denotation
technique we employ in addition to the usual ones is that
edges with a Z co-ordinate component are of a different
kind than those which remain in an XY plane. Thus, it is
possible to connect together graphs of different kinds into a
single 3D model that might be viewed with a 3D browser.
However, as demonstrated in the sequel, a stereoscopic
projection leaves enough spatial information to make the
presence of a Z component of an edge easily discernible.

The technique is not limited to connecting diagrams of
different kinds. By connecting two constraint diagrams,
each residing in its own plane, we create a 3D model
describing the pre- and post-conditions of an action (see
Section 5.1). Edges residing entirely in the planes
correspond to associations between the participants before
and after the action. Edges traversing planes represent life-
lines; they show how the participants change their state by
the action.

A more advanced technique is to utilise the extra degree of
freedom in drawing 1D edges in 3D. This is exemplified in
Section 5 by a “lightning bolt” line to denote a procedure
call edge. Helix and other kinds of edge shaping in 3D are
also possible, as long as a human viewer can easily
construct the 3D image from a 2D projection relying on his
everyday familiarity with 2D rendering of 3D objects.

The border of a 2D shape is also 1D; this becomes an issue
when it is necessary to depict the semantics of a port of
connection between an edge and a node, rather than the
semantics of the node or the edge itself. In 2D modelling, it
is common to allocate an area in, or outside the shape to
represent this semantics. The alternative 3D modelling
technique we employ is that each of the geometrical edges
defining a 2D shape becomes a face of a 3D body. If at
most one graph edge emanates from the face, then, a 2D
model drawn on the face can represent the semantics of the
port. The resulting model makes more efficient use of
space, but this comes at the price of a greater difficulty in
2D rendering.

Using 3D to represent different kinds of relationships by

                                                       
*Splitting a graph to several pages, zooming and other techniques
for condensing the display of large graphs do not pose a semantic
difficulty. The danger sign of sloppy semantics is a model
assembled from graphs which are foreign to each other.



itself may not be a new idea: Harel [10], struggling with
the inability of hi-graphs to depict both set inclusion and
set membership, raises a preliminary suggestion of using
3D models to overcome it, noting that

“Visual formalisms that are predominantly two dimensional
in nature, but make some use of the third dimension, are far
from being out of the question, even if we are not willing to
wait for quality holographic workstations to show up.”

but without exploring the idea any further. Interestingly,
the specific problem he refers to, was solved in 2D
constraint diagrams. Building on these significantly
contributes to the expressive power of our 3D model.

Curiously, although 3D models have been used at least
twice in a taxonomy ([17] and [7]) of visual programming
languages, they have found very few applications in these
languages. Some exceptions though are Zhang and Zhang
[23] work on distributed systems modelling in which edges
traversing planes have (sometimes) different semantics and
Koike’s [15] Version-Module in which edges with a Z co-
ordinate denote versioning, and edges without it denote
assembly of a module from its components.

Below we use these techniques of 3D modelling in a series
of 3D diagrammatic notations building on a small set of
modern 2D notations (mostly from UML). Some readers
would probably find these useful as-is, while others’ visual
taste in selecting symbols and shapes might differ from
ours. Further research and, more importantly, experiment
and experience are required before a close to an ideal
visual modelling language is found. However, beyond the
extra visual expressive power that our notations offer to the
software engineer, the techniques should inspire further
creative developments in the field of visual formalisms.

3 BRIEF REVIEW OF UML

UML is a series of 2D diagrams for modelling software
and business systems. It is fast becoming the accepted
standard for modelling, and it is likely that it will emerge
as the official standard under the auspices of the OMG.

There is also an accompanying, precise textual language
under development for annotating UML diagrams with
constraints on a model that can not be expressed using the
diagrammatic notation alone. This is similar to languages
already proposed in the Syntropy [4] and Catalysis [5]
methods.

As space is limited, we do not attempt to introduce all the
diagrams and textual annotation language in this section.
Instead, we only describe and give examples of diagrams
that are required for purposes of comparison when the 3D
notations are introduced. For a good introduction to UML,
the reader is referred to [9].

3.1 Class Diagrams

Figure 1 shows the class diagram* of a toy library system

                                                       
*  In fact “class diagram” is a misnomer, because, as [9, pp55-6]
points out, in all but implementation models, there are no classes
only types (interfaces). All examples used in this paper refer to

which serves as a running example in this paper. The

boxes represent types and the edges, associations. The
meaning of the diagram is best explained in terms of the
invariant constraints it places on the set of possible object
configurations the model may enter.

An object configuration of a model is a collection of
objects, connected by labelled links. This may be visualised
using object diagrams (see Section 3.3). The type diagram
says that only objects and links, of the types and with the
labels appearing in the type diagram, respectively, may be
part of the configuration, links must connect objects of the
appropriate type, and the cardinalities of associations must
be preserved. The cardinalities of an association are
indicated by number ranges at either end, where * means
many. Thus the association between Copy and Loan
indicates that a Copy object may be associated with many
Loan objects, but that a Loan object must be associated
with exactly one Copy object.

3.2 State Diagrams

State diagrams in UML are based on Harel statecharts [11].
They are used to model (in part) dynamic behaviour,
specifically how the (abstract) state of the system changes
as it responds to events.

                                                                                            
specification models, or design models, hence we will only talk
about types.
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An example state diagram is given in Figure 2, showing
the states of an arbitrary Copy object, and how that object
responds to various events.

In this case the events are operations on the library system
known to the copy.*

The diagram indicates that the copy can be in one of two
states, Available or Unavailable. Those states are further
partitioned into substates. Thus when a copy is available it
may either be on hold or an a shelf.

Transitions run between states. They mean that when the
labelled event happens, the object changes state from the
source of the transition to the target. Thus if the library
associated with the copy performs a return operation and
the argument to that operation is this object, then the copy
will move from the Out to the Returned state. When the
library performs the clearReturns operation it takes all the
copies from the return bin and, for each one, either puts it
back on the shelf or puts them on hold for a reservation.
Undeterministic transitions, such as for ClearReturns, are
tolerated in a specification model.

The borrow event is also associated with a guard of the
form [expression]. The expression stipulates under what
circumstances the event triggers the transition. In this case,
the transition can not occur, if the copy is not available for
lending to the user u.

3.3 Sequence, Collaboration and Object Diagrams

Sequence and collaboration diagrams are examples of
interaction diagrams. The purpose of an interaction
diagram is to show how groups of objects work together to
perform a task. An object diagram can be thought of as a
special case of a collaboration diagram

Figure 3 gives an example of a sequence diagram. Time
runs down the diagram. Each object is represented by a
vertical dashed line, the object lifeline. The blocks on an
object lifeline represent the occurrence of an operation.
The length of the block indicates the duration of the
operation relative to other operations, and the positioning,
the (relative) time at which the operation occurs. Arrows

                                                       
*  Strictly, events in UML can not be operations, though they may
be invocations of operations. We ignore this in our more abstract
specification model.

represent the invocation of an operation by the object at the
source on the object at the target. The place where an
object is introduced marks the time it is created.

Thus the diagram shows a design for the operation borrow
on the library object, which lasts the full length of the
diagram. When the borrow operation is invoked, it creates
a new Loan object (we use Java/C++ syntax for
constructors). The creation routine in turn invokes
operations on other objects, including a callback to the
library object (addLoan) and an operation on itself
(addUser).
The sequence diagram doesn’t give a visual indication of
the fact that the copy passed as an argument to the Loan, is
the same copy which is sent a message by the loan later.
One just surmises from the diagram that it is. Similarly, it
doesn’t show whether there are any existing relationships
(associations) between the objects involved. A
collaboration diagram tries to solve this problem by
showing message passes and links between objects in the
same diagram. Figure 4 shows Figure 3 as a collaboration
diagram.

In a collaboration diagram the relationships between
objects are shown, at the cost of losing a visual
representation of time. Messages are shown as arrows from
the source object to the target along the link used to send
the message. Timing of messages is achieved by a Dewey-
like numbering scheme. Some of the link labels have a
«parameter» or «local» prefix, indicating that the link
between the objects is by virtue of a parameter or local
variable, so is transitory, rather than by virtue of a
permanent association. Some of the links have two labels,
indicating there are two routes between the linked objects.
For example, the library knows about the copy both as one
of those in its collection and via the parameter c.

A collaboration diagram is useful if the object structure
remains reasonably static. However, if the structure is
dynamic, that is when links and objects are continually

takeOut(this)
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Loan(u,c,this)
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Figure 3 - UML Sequence Diagram
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created and destroyed, a collaboration diagram completely
ineffective. Various techniques to get around this problem
have been suggested including textual annotations (used
here to show that a Loan object is created), colour coding
message passes and rendering their effects in the same
colour, and animation in a CASE tool, where changes are
shown as time progresses. None are ideal: textual
annotations are not visually appealing and require much
decoding of labels, there is only a limited number of clearly
distinguishable colours, and animation is transient - it
loses the “whole picture”.

The diagrams are also not good at showing conditional
statements and looping, as emphasised by [9]:

“One of the principal features of either form of interaction
diagram is its simplicity … if you try to represent something
other than a single sequential process without much
conditional or looping behaviour, the technique begins to
break down.”

The edge denotation problem is the reason for this
difficulty. A proper visual representation of operations with
control structures such as loops or parallelism requires two
fundamentally different kinds of edges: one to indicate the
different execution paths the operation may take (similar to
flow charts) and the other to show the inter-relationships
between the participants. Collaboration diagrams only
show the relationships. Sequence diagrams which
concentrate on time progression, make a less efficient use
of 2D in using the X co-ordinate to denote objects, and
therefore cannot show the potential paths of control.

In Section 5 we show how the third dimension may be used
to solve many of these problems.

An object diagram is simply a collaboration diagram with
the message passing and parameter links removed. It gives
a snapshot of (a part of) the system state at a point in time.
It is useful for illustrating states that the system may and
may not be in, which can be helpful in deriving invariants,
including constraints on associations. Snapshots can also
be strung together in a sequence to form a filmstrip, to
show how the state of the system changes through time.
This technique is used extensively in the UML compliant
Catalysis method [5].

3.4 Activity Diagrams

An activity diagram is a form of flowchart extended with
notation to show processes working in parallel. It
complements sequence and collaboration diagrams, as it is
able to show iteration and choice, both of which are very
hard to show on those diagrams. On the other hand, it is
difficult to depict a message passing between objects using
an activity diagram. The diagrams are similar enough to
flowcharts to make an example unnecessary.

4 CONSTRAINT DIAGRAMS

[14] introduces a new notation, called constraint diagrams,
which derives its name from its ability to express a wider
range of sophisticated constraints on a model than is
possible with diagrammatic notations used for object-
oriented and structured systems modelling. Constraint
diagrams can be thought of as an application of Harel’s hi-

graphs [10] in the domain of specification of object-
oriented systems, with several important extensions, the
main ones being the ability to show set membership, and
the ability to quantify both universally and existentially
over set members, in addition to set plain containment.
This is achieved in part by introducing notation for
showing singletons (and sets of other cardinalities).

The notation is summarised here, using the example in
Figure 5 for illustration.

Figure 5 documents an invariant which can not be
expressed using the diagrammatic notations of UML, even
enhanced with ideas from other OO notations such as [6].
The only other way to express these precisely is through
the use of a textual, mathematical language, such as that
suggested for [4], [5], or [19]

Informally, the invariant may be stated as follows:

For any library and any copy in that library’s collection, if
the copy is on the shelf then it is available for borrowing to
all active users registered with the library. If, however, the
copy is on hold for a particular reservation that had been
made, then it is only available to the registered user that
made the reservation.

Let us now proceed to explain how this invariant can be
read from the diagram, and in so doing introduce the main
parts of the notation.

Before we begin, it should be noted that the notation is
highly dependent on sets. Thus a type is treated as the set
of objects of that type and is indicated by the same symbol
as a type on a type diagram. A state is treated as the set of
objects in that state, and is indicated by the symbol used to
represent states on a state diagram. Indeed, enclosing the
state diagram of Figure 2 in a type box labelled Copy, and
removing the transition arrows, would result in a
constraint diagram. Other sets are introduced below. The
other main piece of notation is the link, which corresponds
to associations in type diagrams.

The starting point for reading Figure 5 is x. This is an
arbitrary singleton set (i.e., object) of the type Library. It is
the starting point because it is the least defined set on the
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Figure 5 - Constraint Diagram



diagram*. The fact that it is a singleton is indicated by a
small filled circle. A set with zero or one elements is
shown by , and an empty set by  (null pointer) or

. Other sets may have any number of elements,
including zero, unless an explicit numerical expression
(e.g., ≥ 2 & ≤ 10) indicating otherwise is attached as a
label.

x is the least defined set because it is universally quantified
(it has no incoming arrows, is not a state, type, an
intersection or existentially quantified), and the set in
which it is contained (a type) is defined by default. In
contrast, the sets y and z are also universally quantified,
but are more defined than x because they are contained in
sets which themselves are partly defined by the collection
link from x. Specifically y is an arbitrary object of the set
that is the intersection of the set of objects in the state
OnShelf and the set coll, which, by the link from x,
represents the collection of copies for x. (coll could instead
have been referred to using the navigation expression
x.collection.) This is indicated by placing y inside the a
projection of OnShelf, shown by using a dashed line for
the boundary. A projection is defined to be the intersection
of the set being projected (in this case the state OnShelf)
with the smallest set that contains it, in this case
x.collection.

Similarly, z is an arbitrary Copy object which is OnHold
and in the library’s collection. Thus so far we have read the
following part of the invariant:

For any library and any copy in that library’s collection, if
the copy is on the shelf then …. If, however, the copy is on
hold for a particular reservation that had been made,
then….

The rest of the invariant comes from following the links
from y and z. Following from y, we see that the users to
which y is available is the projection of Active into the set
x.registered, i.e., all active users registered with the
library. Thus we derive the constraint that y is available to
all active users registered with the library. Following the
links from z, we see that the set at the end of the
availableTo link (z.availableTo) is a single object, and
that this is the same as if we had followed the onHoldFor
link to the reservation it is on hold for, and then the link to
the user associated with the reservation. In our model this
is the user who made the reservation. Hence z is only
available to the (active) user who made the reservation it is
on hold for. It is a small step to rewrite the invariant in its
final form from the partial invariant above and the
constraints on y and z.

A formal rendering of this invariant could be derived in a
similar way.

The full notation also includes symbols for showing
different set cardinalities, inheritance relationships
between types, nesting of states and existentially quantified
                                                       
*  In general, there can be more than one least defined set, in
which case there is a choice of where to start.

elements. The reader is referred to [14] for the details.

5 3D MODELLING NOTATIONS

This section describes the 3D notations we have developed
so far: contract boxes, 3D sequence diagrams, nested and
structured box diagrams. Also discussed are the
relationships between these diagrams and the UML
diagrams introduced in Section 3. The metaphor of
geometric projection is used to explain how the latter may
be retrieved from the former.

5.1 Contract Boxes

In methods such as Catalysis and BON [19], a precise
mathematical language is provided for placing static and
dynamic constraints on a model, that can not be expressed
diagrammatically in languages such as UML. As we have
seen above, constraint diagrams may be used to
characterise static, invariant constraints. Contract boxes
allow constraints on dynamic behaviour to be expressed
that would otherwise require textually expressed pre/post
contracts (as in traditional formal methods, see e.g., [12])
on operations.

The notation is actually quite simple. It can be thought of
as a box, hence the name contract box, with a constraint
diagram pasted to the lid and another pasted to (the inside
of) the bottom, as illustrated by Figure 6. The constraint

diagram on the top constrains the pre state, and the one on
the bottom the post state. Thus the top diagram contributes
both to the pre-condition and part of the post condition
(which is a predicate of both states), and the bottom
diagram contributes only to the post condition. If desired,
the top diagram could be thought of as a layering of two
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Figure 6 - Contract Box



diagrams - one for the pre-condition and one for the post
condition. Making this layering explicit might be necessary
for complex specifications.

The constraint diagram notation is extended slightly with a
special symbol for input parameters of the operation. In
this stereoscopic projection a diamond symbol has been
used*.

In Figure 6, two parameters of the actions are shown, a
copy and a user. The pre-condition constraint represented
by this diagram is that the copy, which must be an
available one in the collection of the library on which the
operation is being invoked, must be available to a set of
users including the parameter to the operation, which in
this model is the one borrowing the copy.

The object on which the operation is being invoked is
shown by a message send which is depicted by a “lightning
bolt” to that object, labelled with operation being invoked.

The post-state diagram shows the change in state that the
operation has caused. Object lifelines are used to show that
an object taking part in the post-state is the same as
another depicted in the pre-state. In general, lifelines can
be used to connect sets. Here, the effect of the operation is
to:

• change the state of the input copy object to Out, which
is shown by moving the object from the projection of
the Available state to the projection of the Out state;

• ensure that the set of objects the copy is availableTo
is empty ( );

• create a new loan object in the OnGoing state
(indicated by a ); and

• associate the loan object with the user and the copy.

This illustrates a further extension to the constraint
diagram notation, specifically to indicate the creation of
objects. The creation of a single object is indicated through
the use of a , of a set with 0 or 1 objects by , and of a

set with an arbitrary number of objects by .

Some of this behaviour, namely the pre condition that the
copy object must be in the available state and the fact that
it changes state during the operation could be shown by a
state diagram in UML. Indeed a projection of this diagram
would be a part of the state diagram for Copy given in
Figure 2. It would be constructed as follows. Focus on the
copy object that changes state (if there was more than one,
then repeat the process for each). Draw a state diagram
with a single transition labelled library.borrow(u.this) (the
operation being performed is borrow on the library object
obtained by navigating backwards down the collection link
from the copy object under consideration). The source of
the transition is the state in which the copy object appears
in the pre-state diagram, and the target is the state in
which it appears in the post-state diagram. Finally, place a

                                                       
*  In a true 3D rendering, we envisage using “pits” in the top
plane for input parameters, and “pegs” sticking out of the bottom
plane for output parameters.

guard on the transition to the effect that the copy (this)
must be available for lending to u.

A textual (informal or formal) version of the contract could
also be derived from the diagram in a similar way to the

derivation of invariants from constraint diagrams.

5.2 3D Sequence Diagrams

This section shows how the third dimension can usefully
be employed to provide much richer visualisations of
action designs, than is possible with UML sequence and
collaboration diagrams. Indeed, we contend that both of
these kinds of diagram are projections of a single 3D
sequence diagram.

Figure 7 gives an example of the 3D sequence diagram for
the borrow action. Each plane represents the state of the
system at which an object is sent a message. As before,
lightning bolts represent message sends. A constraint
diagram may be used at each plane to show the context of
input parameters, and, if desired, pre-condition

Copy

Available

Library

User

Loan

ava i l ab leTo

Borrow

col lec t ion

addLoan

addUser

takeOut

Figure 7 - 3D sequence diagram



information. Thus the top plane in Figure 7 shows the
parameters of the operation borrow, invoked on the library
object together with their context, which happens in this
case to also correspond to the pre-condition of that action.
In subsequent planes, that context need not be repeated, as
it doesn’t really change. Parameters have been shown both
by the diamond notation and by lines linking them to the
lifeline of the object on which the operation is invoked.
The latter helps to highlight which objects, or sets of
objects, are involved in the operation being invoked. They
can be included as there is little risk of “edge clutter”.

Lifelines trace the life of an object, or set of objects,
through time. The length of actions is shown by cylinders
running down the object lifelines. Cylinders may be
wrapped in the case of callbacks. Thus there is a cylinder
running the full length of the diagram down the library
object lifeline corresponding to the borrow operation. The
third message pass (addLoan) is a callback to the library
object and is shown as cylinder wrapping that for borrow.

If necessary an additional plane may be inserted where an
action completes, to show output parameters and their
context. However, this should be done only where
necessary. If that level of detail is regularly required, then
a nested box diagram (see below) should be used instead.

A 2D sequence diagram is clearly a projection of the richer
3D variant, as exemplified by this and Figure 3. In the 2D
version, object lifelines and operation cylinders are mapped
into lifelines and operation blocks attached to them,
respectively. The lightning bolts are mapped into message
sends. The main information that is lost is about the
players in the game, which is here provided by the
constraint diagrams in the horizontal plane. However, in a
2D sequence diagram, copious labelling of lifelines and
action parameters is required to show that a message send
is to an object that has previously been passed as an
operation parameter, resulting in a cluttered and clumsy
representation Not so here, where it is also possible to
show information about the context of each parameter, for
example that the copy is assumed available to the user and
in the library’s collection.

In UML some of this contextual information is instead
provided by collaboration diagrams, though at the cost of
losing the visual depiction of time flow. However, even in
collaboration diagrams it is still necessary to use labelling
to identify operation parameters with objects appearing in
the diagram.

An alternative projection would be to collapse the diagram
on the time dimension, using the cylinder information to
devise a scheme for numbering message sends. The result
would be an extended form of UML collaboration diagram;
extended because a constraint diagram would be used to
characterise the static configuration of the players in the
game, in a much more general way than is possible with an
object diagram.

In conclusion, the 3D sequence diagram brings together
both the sequence and collaboration diagrams of UML,
into a single diagram, whilst retaining the advantages of
both. In addition it carries more information about the

static configuration of the major players, by its use of
constraint diagrams in place of object diagrams.
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5.3 Nested Box Diagram

The 3D sequence diagram shows message passes between
objects and sets of objects, and allows the various players
in the game to be easily identified. It shies away from
actually specifying the behaviours of the actions involved.
Of course these could be specified using a series of contract
boxes in separate diagrams. However, it is also possible to
combine the contract box specifications with the sequence
diagram resulting in a visualisation of the complete action
design, called nested box diagram, which includes the
specifications of the sub-actions involved. Figure 8 shows
this for the borrow action.*

Each box corresponds to an action. Nested operation
invocations are shown by nesting boxes, so cylinders down
object lifelines are no longer required. Furthermore, the
full detail of the behaviour of each operation is shown on
the diagram, as each box characterises an operation
contract, describing the behaviour of that operation for this
context. An edge connecting a set to a singleton parameter
denotes an implicit loop of calls for each set member. This
convention minimises the need for denoting control
structure.

However, including this much detail on the diagram makes
it hard to read. The problem would be exacerbated if deep
nesting of boxes was required. Nevertheless, we can
imagine a sophisticated visualisation tool which would
allow one to view such a diagram at different levels of
detail, zooming in on certain features, opening up boxes to
see the those nested inside it, and so on.

Another way of looking at this diagram is as a visual
representation of the underlying semantic model that ties
the various perspectives on the specification and design of
the borrow operation together.

Nested box diagrams provide the specifications of all
operations used in the design, and of the borrow operation
itself. State diagrams could be projected from these boxes
as described in Section 5.1. A 3D sequence diagram could
be projected from these to show more clearly the message
passing between objects. UML sequence and collaboration
diagrams could, in turn, be projected from this (the 3D
diagram).

What is missing is a fuller specification of the static
behaviour: types, associations, invariants and states. These
could be included by layering the top and bottom of each
box, as suggested in Section 5.1. A single constraint
diagram in Figure 8 would be replaced by a stack of
constraint diagrams, some corresponding to pre/post
conditions and some corresponding to invariants, noting
that type diagrams may be mapped into constraint
diagrams, and states are already included on constraint
diagrams.

5.4 Structured Box Diagrams

Structured Box Diagrams can be thought of as a 3D
generalisation of flow charts of block structured programs
                                                       
*  This diagram has been reduced in size just so we can fit it on
the page. At full size all the details are visible.

(or UML activity diagrams). They are also an extension of
nested box diagrams. In such flow charts, program-block
nesting could be read from the chart if the graph layout
obeys some simple rules. A visual representation of block
nesting is also given by the famous Nassi-Schneiderman
(N-S) diagrams [1], but these take a more geometric than a
graph-like approach.

Figure 9 demonstrates one possible hybrid alternative in
which the steps of a flow chart can be grouped together in
rectangles to denote nesting. Dotted rectangles denote
anonymous program blocks, while a solid named rectangle,
andrectangle containment corresponds to block nesting.
Figure 9 (b) gives the pseudo-code semantics of the chart
in Figure 9 (a). The other conventions used are simple: a
circled condition asserts the next rectangle is executed in a
‘while’ loop guarded by that condition; a condition in a
lozenge indicates that the following rectangle is executed
at most once contingent on that condition, (as in condition
u and operation e1). A choice between two (or more)
options is denoted by a lozenge with several multiple exits.
All exits from a lozenge except for one must be labelled.
An exit must lead to a single rectangle, and the exit points
of all these rectangles must merge. If the branch does not
consist of a single operation then an anonymous block is
introduced, which is denoted by a dashed rectangle. All
other dashed rectangles are strictly optional.

By adding a third dimension to a nested rectangle chart we
obtain a structured box diagram. This is done by replacing
each operation rectangle with its contract box. Circles are
replaced with spheres and lozenges with tetrahedra. Thus,
the nested rectangle chart remains a 2D projection of the
box diagram. Constraint diagrams can also be used
effectively to define conditions for choice and loop guards.
These would appear inside the sphere representing a loop
and on the appropriate faces of the tetrahedron

Operation A
a;
while x do b;
c;
if y then begin

d1;
while z do d2;

end else e;
end A;

Operation e
if u then e1;
e2;

end e;

y

x

a

b

c

ed

e1

e2
d

z

A

true

(a) (b)

u

Figure 9 - Structured Flow Chart



representing a choice.* It is also possible to extend N-S
diagrams to 3-D in much the same way.

6 CONCLUSIONS AND FURTHER WORK

We have used the third dimension to illustrate a different
kind of arrow in the same diagram. This has been
illustrated by a series of 3D notations, which have a
number of advantages over their 2D counterparts.

Contract boxes visualise behaviour that in UML can only
be shown using a combination of state diagrams and
precise textual language. 3D sequence diagrams visualise
collaboration between objects in a way that avoids
confusing labelling schemes, (e.g., of parameters), and is
able to show visually both the flow of time and the key
players and their context. UML requires 2 kinds of
diagram to show this information. Nested box diagrams
combine 3D sequence diagrams and contract boxes into
one diagram. Structured box diagrams extend nested box
diagrams to visualise looping and conditional behaviour,
incorporating constraint diagrams to visualise conditionals
and loop guards. Thus structured box diagrams show all
aspects of the model on a single diagram. All other
diagrams may be regarded as either sub-diagrams or
projections of these.

The primary goals of future work are to refine the notation
and provide tool support, with both activities informed by
feedback from the use of the notations in practice.

Formal work is required to check the expressiveness and
integrity of the notation, to define a calculus for composing
models, (which is particularly important for component-
based development), to develop techniques for checking the
semantic integrity of models and their compositions, for
mapping models to current OO programming languages,
for defining projections from the 3D notations, and so on.

Some of this work should be directed toward the provision
of CASE tools. These are essential to the use of the
notation for “real-world” projects, (even stereoscopic
projections take much longer to draw than simple 2D
diagrams), and this is a prerequisite for obtaining informed
feedback. Specifically we envisage tools to assist with
model visualisation and model construction.

Visualisation. We imagine a sophisticated 3D rendering
system which would allow developers to “walk through”
and, possibly manipulate, the model, probably viewed as a
box diagram. The system would allow the model to be seen
from different perspectives, and allow developers to zoom
in on and uncover more detailed aspects, for example
opening up a box to reveal its implementation, which
would itself be another box diagram. At its outermost level,
a model would be a collection of boxes, the operations that
it is able to perform. The encoding of the diagrams in
VRML [vrml] could enable a prototype to be built
relatively cheaply.

The visualisation tool should also allow projections of the
model to be taken. That is extract the UML diagrams, 3D

                                                       
*  In the case of a simple yes/no choice the constraint diagram
would appear on the central, horizontal plane of the tetrahedron.

sequence diagrams, contract boxes etc. The static object
structure of the system could be constructed, by e.g.,
combining the invariant constraint diagrams layered in the
operation boxes. Other projections might not be visual: for
example, it might be possible to construct textual
specification in English legalise (e.g., [1]) from the
constraint diagrams and contract boxes.

Model construction. Building the models by drawing the
3D diagrams is untenable, excepting the possibility of
direct manipulation through a VR interface. Instead, it
should be possible to do the reverse of projection, and build
2D and simpler 3D diagrams which are then used to
construct the complete 3D model, which in turn is
visualised by the tool. For example, we imagine that the
constraint diagrams for a contract box would be
constructed by drawing up the first diagram and then
marking the changes by direct manipulation (e.g., moving
an object from one state to another). This should provide
enough information for the tool to render the box in 3D.

Alternatively, formal textual descriptions could be used to
describe the changes - this object moved from here to there,
and the tool would proceed to construct diagrams from this
textual description.

A third possibility is to generate the generic
characterisation of the model, e.g., type diagrams,
constraint diagrams, contract boxes, state diagrams etc.,
from the specific, e.g., snapshots (object diagrams) and
filmstrips. Kent [14] discusses this idea further.
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