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.ch2 Department of Computer Science, University of Milano, Via Comelico 39/41, 20135Milano, Italy.E-mail: tettaman@dsi.unimi.it, Web: eolo.usr.dsi.unimi.it/�tettaman/.3 Institute of Computer Science, University of Lausanne, 1015 Lausanne, Switzerland.E-mail: Marco.Tomassini@iismail.unil.ch, Web: www-iis.unil.ch.Abstract. Parallel evolutionary algorithms, studied to some extent overthe past few years, have proven empirically worthwhile|though thereseems to be lacking a better understanding of their workings. In this pa-per we concentrate on cellular (�ne-grained) models, presenting a numberof statistical measures, both at the genotypic and phenotypic levels. Wedemonstrate the application and utility of these measures on a speci�cexample, that of the cellular programming evolutionary algorithm, whenused to evolve solutions to a hard problem in the cellular-automata do-main, known as synchronization.1 IntroductionParallel evolutionary algorithms have been studied to some extent over the pastfew years. A basic tenet of such parallel algorithms is that the population has aspatial structure. A number of models based on this observation have been pro-posed, the two most important being the island model and the grid model. Thecoarse-grained island model features geographically separated subpopulations ofrelatively large size. Subpopulations exchange information by having some indi-viduals migrate from one subpopulation to another with a given frequency andaccording to various migrational patterns. This can work to o�set prematureconvergence, by periodically reinjecting diversity into otherwise converging sub-populations. In the �ne-grained grid model individuals are placed on a toroidald-dimensional grid (where d = 1; 2; 3 is used in practice), one individual per gridlocation (this location is often referred to as a cell, and hence the �ne-grainedapproach is also known as cellular). Fitness evaluation is done simultaneouslyfor all individuals, with genetic operators (selection, crossover, mutation) tak-ing place locally within a small neighborhood. From an implementation pointof view, coarse-grained island models, where the ratio of computation to com-munication is high, are more adapted to multiprocessor systems or workstationclusters, whereas �ne-grained cellular models are better suited for massively



parallel machines or specialized hardware. Hybrid models are also possible, e.g.,one might consider an island model in which each island is structured as a gridof locally interacting individuals. For a recent review of parallel evolutionaryalgorithms (including several references) the reader is referred to [16].Though such parallel models have empirically proven worthwhile [1, 4, 7, 8,10, 15, 17], there seems to be lacking a better understanding of their workings.Gaining insight into the mechanisms of parallel evolutionary algorithms callsfor the introduction of statistical measures of analysis. This is the underlyingmotivation of our paper. Speci�cally, concentrating on cellular models, our ob-jectives are: (1) to introduce several statistical measures of interest, both at thegenotypic and phenotypic levels, that are useful for analyzing the workings of�ne-grained parallel evolutionary algorithms, and (2) to demonstrate the appli-cation and utility of these measures on a speci�c example, that of the cellularprogramming evolutionary algorithm [12]. Among the few theoretical works car-ried out to date, one can cite M�uhlenbein [9], Cant�u-Paz and Goldberg [2], andRudolph and Sprave [11]. The latter treated a special case of �ne-grained cellularalgorithms, studying its convergence properties; however, they did not presentstatistical measures as done herein.We begin in Section 2 by describing the cellular programming evolutionaryalgorithm and the synchronization task. Section 3 introduces basic formal def-initions, and various statistical measures used in the analysis of cellular evolu-tionary algorithms. In Section 4, we apply the statistics of Section 3 to analyzethe cellular programming algorithm when used to evolve solutions to the syn-chronization problem. Finally, we conclude in Section 5.2 Evolving Cellular Automata2.1 Cellular automataOur evolving machines are based on the cellular automata model. Cellular au-tomata (CA) are dynamical systems in which space and time are discrete. Acellular automaton consists of an array of cells, each of which can be in one ofa �nite number of possible states, updated synchronously in discrete time steps,according to a local, identical interaction rule. The state of a cell at the next timestep is determined by the previous states of a surrounding neighborhood of cells.This transition is usually speci�ed in the form of a rule table, delineating thecell's next state for each possible neighborhood con�guration [12]. The cellulararray (grid) is d-dimensional, where d = 1; 2; 3 is used in practice; in this paperwe shall concentrate on d = 1. For such one-dimensional CAs, a cell is connectedto r local neighbors (cells) on either side, where r is a parameter referred to asthe radius (thus, each cell has 2r + 1 neighbors, including itself).The model investigated in this paper is an extension of the CA model, termednon-uniform cellular automata [12,14]. Such automata function in the same wayas uniform ones, the only di�erence being in the cellular rules that need not beidentical for all cells. Our main focus is on the evolution of non-uniform CAs to



perform computational tasks, using the cellular programming approach. Thus,rather than seek a single rule that must be universally applied to all cells in thegrid, each cell is allowed to \choose" its own rule through evolution.2.2 The cellular programming algorithmA cell's rule table is encoded as a bit string (the \genome"), containing the next-state (output) bits for all possible neighborhood con�gurations. In our case, theCAs are of radius r = 1, and thus the genome consists of 8 bits: the bit atposition 0 is the state to which neighborhood con�guration 000 is mapped toand so on until bit 7 corresponding to neighborhood con�guration 111. Ratherthan employ a population of evolving, uniform CAs, as with genetic algorithmapproaches, our algorithm involves a single, non-uniform CA of size n, wherethe population of cell rules is initialized at random. Initial con�gurations arethen generated at random, in accordance with the task at hand, and for eachone the CA is run for M time steps. Each cell's �tness is accumulated over C =300 initial con�gurations, After every C con�gurations evolution of rules occursby applying crossover and mutation. This evolutionary process is performed ina completely local manner, where genetic operators are applied only betweendirectly connected cells. It is driven by nfi(c), the number of �tter neighbors ofcell i after C con�gurations. For a fuller description see [12,13].2.3 The synchronization taskThe one-dimensional synchronization task was introduced by Das et al. [5] andstudied by Hordijk [6], and Sipper [12,13], the latter using non-uniform CAs. Inthis task the CA, given any initial con�guration, must reach a �nal con�guration,within M time steps, that oscillates between all 0s and all 1s on successive timesteps. The synchronization task comprises a non-trivial computation for a small-radius CA.3 Statistical Measures3.1 Basic de�nitions and notationIn this section we formally de�ne the basic elements used in this paper. A popu-lation is a collection of individuals, each represented by a genotype. A genotypeis not necessarily unique|it may occur several times in the population. In ad-dition, as the population considered has a topology, the spatial distribution ofthe genotypes is of interest. Let n be the number of individuals in the system.Let Ri, 1 � i � n be the genome of the ith individual. Let � be the space ofgenotypes and G(� ) be the space of all possible populations. Let f(
) be the�tness of an individual having genotype 
 2 � . When the cells are arranged ina row, as is the case in the example of Section 2, a population can be de�ned asa vector of n genotypes x = (R1; : : : ; Rn); then we have G(� ) = �n.



For all populations x 2 G(� ), an occupancy function nx:� ! N is de�ned,such that, for all 
 2 � , nx(
) is the number of individuals in x sharing thesame genotype 
, i.e., the occupancy number of 
 in x. The size of populationx, kxk, is de�ned as kxk �P
2� nx(
).We can now de�ne a share function qx:� ! [0; 1] giving the fraction qx(
)of individuals in x that have genotype 
, i.e., qx(
) = nx(
)=kxk.Consider the probability space (�; 2� ; �), where 2� is the algebra of theparts of � and � is any probability measure on � . Let us denote by ~� theprobability of generating a population x 2 G(� ) by extracting n genotypes from� according to measure �. It can be shown that it is su�cient to know either ofthe two measures|� (over the genotypes) or ~� (over the populations)|in orderto reconstruct the other.The �tness function establishes a morphism from genotypes into real num-bers. If genotypes are distributed over � according to a given probability measure�, then their �tness will be distributed over the reals according to a probabil-ity measure � obtained from � by applying the same morphism. This can besummarized by the following diagram:� f�! IRo o� � (1)The probability �(v) of a given �tness value v 2 [0;+1) is de�ned as theprobability that an individual extracted from � according to measure � has�tness v (or, if we think of �tness values as a continuous space, the probabilitydensity of �tness v): for all v 2 [0;+1), �(v) = �(f�1(v)), where f�1(v) � f
 2� : f(
) = vg.An evolutionary algorithm can be regarded as a time-discrete stochastic pro-cess fXt(!)gt=0;1;2;:::; (2)having the probability space (
;F ;P ) as its base space, (G(� ); 2G(� )) as itsstate space, and the natural numbers as the set of times, here called generations.
 might be thought of as the set of all the evolutionary trajectories, F is a�-algebra on 
, and P is a probability measure over F .The transition function of the evolutionary process, in turn based on thede�nition of the genetic operators, de�nes a sequence of probability measuresover the generations.Let ~�t denote the probability measure on the state space at time t; for allpopulations x 2 G(� ), ~�t(x) = Pf! 2 
 : Xt(!) = xg: (3)In the same way, let �t denote the probability measure on space (�; 2� ) at timet; for all 
 2 � , �t(
) = P [� = 
j� 2 Xt(!)]: (4)



Similarly, we de�ne the sequence of probability functions �t(�) as follows: forall v 2 [0;+1) and t 2 N , �t(v) = �t(f�1(v)): (5)We shall now introduce several statistics pertaining to cellular evolutionaryalgorithms in the next two subsections: �rst, genotypic statistics, which embodyaspects related to the genotypes of individuals in a population, and secondly phe-notypic statistics, which concern properties of individual performance (�tness)for the problem at hand. Keeping in mind the synchronization problem stud-ied herein, we concentrate on a one-dimensional spatial structure. We presenta more complete set of measures as well as detailed proofs of the propositionsgiven below in [3].3.2 Genotypic statisticsOne important class of statistics consists of various genotypic diversity indices(within the population) whose de�nitions are based on the occupancy and sharefunctions delineated below.Occupancy and share functions. At any time t 2 N , for all 
 2 � , nXt(
)is a discrete random variable with binomial distributionP [nXt(
) = k] = �nk��t(
)k[1� �t(
)]n�k; (6)thus, E[nXt(
)] = n�t(
) and Var[nXt(
)] = n�t(
)[1� �t(
)]. The share func-tion qXt(
) is perhaps more interesting, because it is an estimator of the prob-ability measure �t(
); its mean and variance can be calculated from those ofnXt(
), yieldingE[qXt(
)] = �t(
) and Var[qXt(
)] = �t(
)[1 � �t(
)]n : (7)Structure. Statistics in this category measure properties of the populationstructure, that is, how individuals are spatially distributed.Frequency of transitions. The frequency of transitions �(x) of a population x ofn individuals (cells) is de�ned as the number of borders between homogeneousblocks of cells having the same genotype, divided by the number of distinctcouples of adjacent cells. Another way of putting it is that �(x) is the probabilitythat two adjacent individuals (cells) have di�erent genotypes, i.e., belong to twodi�erent blocks.Formally, the frequency of transitions �(x) for a one-dimensional grid struc-ture can be expressed as�(x) = 1n nXi=1 �Ri 6= R(imodn)+1� ; (8)where [P ] denotes the indicator function of proposition P .



Diversity. There are a number of concievable ways to measure genotypic diver-sity, two of which we de�ne below: population entropy, and the probability thattwo individuals in the population have di�erent genotypes.Entropy. The entropy of a population x of size n is de�ned asH(x) = X
2� qx(
) log 1qx(
) : (9)Entropy takes on values in the interval [0; log n] and attains its maximum,H(x) = log n, when x comprises n di�erent genotypes.Diversity indices. The probability that two individuals randomly chosen from xhave di�erent genotypes is denoted by D(x).Index D(Xt) is an estimator of quantityX
2� �t(
) (1� �t(
)) = 1�X
2� �t(
)2; (10)which relates to the \breadth" of measure �t.Proposition 1 Let x be a population of n individuals with genotypes in � . Then,D(x) = nn� 1 X
2� qx(
)(1 � qx(
)): (11)Proof. See [3].We observe that for all populations x 2 G(� ),D(x) � H(x)log n : (12)One can observe that D(x) rises more steeply than entropy as diversity increases.An interesting relationship between D and � is given by the following propo-sition.Proposition 2 Given a random one-dimensional linear population x of size n,the expected frequency of transitions will be given byE[�(x)] = D(x): (13)Proof. See [3].3.3 Phenotypic statisticsPhenotypic statistics deal with properties of phenotypes, which means, primarily,�tness. Associated with a population x of individuals, there is a �tness distribu-tion. We will denote by �x its (discrete) probability function.



Performance. The performance of population x is de�ned as its average �tness,or the expected �tness of an individual randomly extracted from x, E[�x].Diversity. The most straightforward measure of phenotypic diversity of a pop-ulation x is the variance of its �tness distribution, �2(x) = Var[�x].Structure. Statistics in this category measure how �tness is spatially dis-tributed across the individuals in a population.Ruggedness. Ruggedness measures the dependency of an individual's �tness onits neighbors' �tness. For a one-dimensional population, x, of size n, x 2 �n,ruggedness can be de�ned as follows:�2(x) = 1n nXi=1 �1� 1 + 2f(Ri)1 + f(R(imodn)+1) + f(R(i�2modn)+1)�2 : (14)Notice that �2(x) is independent of the �tness magnitude in population x,i.e., of performance E[�x].4 Results and AnalysisUsing the di�erent measures presented in the previous section we analyzed theprocesses taking place during the execution of the cellular programming algo-rithm presented in the Section 2. This was carried out for the synchronizationtask for CAs of size 150. The results are based on 75 runs. (Additional tasks arestudied in [3].)The evolutionary dynamics of the synchronization task were found to exhibitat most three �tness phases: a low-�tness phase, followed by a rapid-increasephase, ending with a high-�tness phase. Note that for this task a successful runis considered to be one where a perfect �tness value of 1.0 is attained. The evo-lutionary runs can be classi�ed into four distinct classes, two of which representsuccessful runs (Figures 1a and 1b), the other two representing unsuccessful runs(Figures 1c and 1d). The classi�cation is based on the number of phases exhib-ited during evolution. Let us now present some general trends, and then detailedresults of our experiments according to these three �tness phases.In all runs the entropy (H) falls from a high of approximately 0.8 to a lowof approximately 0.7 within the �rst 20 generations, and from then on generallytends to decline. Though this decline is not monotonous the entropy always endsbelow 0.4. This fall in entropy is due to two factors. First, we can observe inall runs a steep drop in the transition frequency (�) in the �rst few generations,followed by an almost continuous drop in the subsequent generations. Thoughit may be intuitive that, given the possibility of rule replication between neigh-boring cells after each generation, blocks will tend to form, our measures nowprovide us with quantitative evidence. Note that the transition frequency (�)



progresses towards an oscillatory state about values below 0.3. The second fac-tor involved in the lower entropy is the number of rules. One can see directlythat a low � implies few rules. This is corroborated by the diversity (D) measuredecreasing trend.For the the task studied herein the objective is to reach a high average �tnessover the entire population, rather than consider just the highest-�tness individualcell. Thus, intuitively we can expect that the phenotypic variance will tend tobe minimized, and we can factually check that both the �tness variance (�2)and ruggedness (�2) are always very low towards the end of an evolutionary run.Usually the evolved CA had less than 10 di�erent rules out of the 256 possibleones. We now detail the �tness phases.
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Fig. 1. The evolutionary runs for the synchronization task can be classi�ed into fourdistinct classes, based on the three observed �tness phases: phase I (low �tness), phaseII (rapid �tness increase), and phase III (high �tness). (a) Successful run, exhibitingbut the �rst two phases. The solution is found at the end of phase II. (b) Successfulrun, exhibiting all three phases. The solution is found at the end of phase III. (c)Unsuccessful run, \stuck" in phase I. (d) Unsuccessful run, exhibiting all three phases.Phase III does not give rise to a perfect solution.
Phase I: Low �tness. This phase is characterized by an average �tness of 0.5,with an extremely low variance. However, while exhibiting phenotypic (�t-ness) \calmness," this phase is marked by high underlying genotypic activity:the entropy (H) steadily decreases, and the number of rules strongly dimin-ishes. An unsuccessful type-c run (Figure 1c) results from \genotypic failure"



in this phase. To explain this, let us �rst note that for the synchronizationtask, only rules with neighborhoods 111 mapped to 0 and 000 mapped to 1may appear in a successful solution. Let us call this the \good" quadrant ofthe rule space, and de�ne the \bad" quadrant to be the one that comprisesrules mapping 111 to 1 and 000 to 0. In some experiments, evolution fallsinto the bad quadrant, possibly due to a low �tness variance. Only the mu-tation operator can possibly hoist the evolutionary process out of this trap.However, it is usually insu�cient in itself, at least with the mutation rateused herein (0.001). Thus, in such a case the algorithm is stuck in a localminimum, and �tness never ascends beyond 0.53 (Figure 1c).Phase II: Rapid �tness increase. A rapid increase of �tness characterizesthis phase, its onset marked by the attainment of a 0.54 �tness value (atleast). This comes about when a su�ciently large block of rules from thegood quadrant emerges through the evolutionary process. In a relativelyshort time after this emergence (less than 100 generations), evolved rulesover the entire grid all end up in the good quadrant of the rule space; this iscoupled with a high �tness variance (�2). This variance then drops sharply,while the average �tness steadily increases, reaching a value of 0.8 at theend of this phase. Another characteristic of this phase is the sharp dropin entropy. On certain runs a perfect CA was found directly at the end ofthis stage, thus bringing the evolutionary process to a successful conclusion(Figure 1a).Phase III: High �tness. The transition from phase II to phase III is not clearcut, but we observed that when a �tness of approximately 0.82 is reached,the �tness average then begins to oscillate between 0.65 and 0.99. Duringthis phase the �tness variance also oscillates between approximately 0 and0.3. While low, this variance is still higher than that of phase I. Whereasin phases I and II we observed a clear decreasing trend for entropy (H), inthis phase entropy exhibits an oscillatory pattern between values of approx-imately 0.3 and 0.5. We conclude that when order (low entropy) is too high,disorder is reinjected into the evolutionary process, while remaining in thegood quadrant of the rule space; hence the oscillatory behavior. On certainruns it took several hundred generations in this phase to evolve a perfectCA|this is a success of type b (Figure 1b). Finally, on other runs no per-fect CA was found, though phase III was reached and very high �tness wasattained. This is a type-d unsuccessful run (Figure 1d) which does not di�ersigni�cantly from type-b successful runs.5 Concluding RemarksIn this paper we introduced several statistical measures of interest, both at thegenotypic and phenotypic levels, that are useful for analyzing the workings of�ne-grained parallel evolutionary algorithms in general. We then demonstratedtheir application and utility on a speci�c example, that of the cellular program-ming evolutionary algorithm, which we employed to evolve solutions to the syn-
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