
Boiten, Eerke Albert and Derrick, John (1998) IO - refinement in Z. In: 3rd
Northern Formal MethodsWorkshop,, 1998.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21600/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
http://www.ewic.org.uk/

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21600/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

IO-refinement in Z

Eerke Boiten and John Derrick
Computing Laboratory, University of Kent

Canterbury, Kent, U.K.�

Abstract

We present a generalisation of data refinement in Z, calledIO-refinement, that allows changes in input and output
parameters of operations. Several informal motivations for the desirability of such a refinement relation are given,
followed by a formal derivation that demonstrates its theoretical soundness. It is proved that IO-refinement indeed
generalizes data refinement. Several theorems are presented that give sufficient conditions for IO-refinement to hold
in simpler situations, e.g. just adding inputs and outputs. Some examples of the use of IO-refinement are also given.

Keywords: data refinement, Z, interface refinement, input/output

1 Introduction

Data refinement is a well-established technique for transforming formal specifications in an abstract data type style
into ones which are perceived to be closer to an eventual implementation. In particular, for the formal specification
notation Z [16, 18] rules for data refinement have been given. These rules also allow for the operations of an abstract
data type to have input and output parameters. However, they allow only very limited changes to these parameters in
refinement. (In fact, most representations of these rules suggest no change is possible at all. See for an example of
what is allowed Section 3.1 of this paper.)

Our particular interest in Z refinement is for its use as a semantics for partial specification in Z, as we will explain
in more detail in Section 2.1. In brief, a collection of (“partial”) specifications is satisfied by any (full) specification
which is adevelopmentof each of them. Traditional data refinement in Z comes very close to having all desirable
properties for such a development relation. One problem, however, is that it forces us to specify all possible inputs and
outputs of every operation in each partial specification. This does not seem very convenient, and thus we have looked
for a generalisation of Z data refinement which allows a little more freedom in this respect. Such a generalisation
(called IO-refinement) is discussed in this paper, and we expect its relevance goes beyond providing semantics to
partial specification in Z.

The next section extensively discusses possible motivations for allowing change of IO-parameters, by giving vari-
ous answers to the question “Why IO-refinement?”. The last of these is that it is possible to generalise the derivation
of Z refinement given in the most authoritative account of Z refinement [18]. Section 3 contains this generalised
derivation. In subsequent sections, a definition of IO-refinement is given, based on this derivation. We show that it
generalises ordinary Z refinement. The conditions for IO-refinement turn out to be very general, and as a consequence
of that, fairly hard to use. For this reason, we also present rules for using IO-refinement in a restricted way which are
much easier to use. Also, some examples of its use are presented.

Before we move on to answering “Why IO-refinement?”, let us recall the conditions for data refinement as given
in [16], and presentthe traditional Z example, so some of the answers can refer to that.

�This work was partially funded by EPSRC under grant number GR/K13035. More information about our work can be found at
http://www.cs.ukc.ac.uk/people/staff/eab2/refine/ .

3rd Northern Formal Methods Workshop, 1998 1

IO-refinement in Z

1.1 Traditional Data Refinement: Conditions

Given abstract data typesA=(AState;AOps;AInit) andC=(CState;COps;CInit), thenC is a (forwards simula-
tion1) data refinement ofA if there exists an abstraction schema

Abs
AState; CState

Pred

such that the following conditions hold:

initialisation 8CState � CInit) (9AState � AInit^Abs)

and the operations inAOps andCOps can be matched in pairsAOp;COp both with inputx?:X and outputy! :Y, such
that for each of those pairs the following two conditions hold:

applicability COp should be defined on all representatives ofAState on whichAOp is defined:

8AState ; CState ; x?:X � preAOp^Abs) preCOp

correctness whereverAOp is defined,COp should produce a result related byAbs to one thatAOp could have
produced:

8AState ; CState ; CState0 ; x?:X ; y! :Y �
preAOp^COp^Abs) 9AState0 � Abs0^AOp

The abstraction schema is often given as an additional implicit parameter of the data refinement relation, and is
sometimes called aretrieverelation; the applicability condition is sometimes calledtermination. If the concrete and
abstract state spaces are identical, the latter two conditions reduce to

applicability COp should be defined wheneverAOp is defined:

8AState ; x?:X � preAOp) preCOp

correctness whereverAOp is defined,COp should produce a result thatAOp could have produced:

8AState ; x?:X ; y! :Y � preAOp^COp) AOp

and we call thisoperationrefinement.

1.2 Infamous Example

Every area in formal methods has its canonical examples. For Z, it is not the factorial function, nor the alternating
bit protocol. Any new technique for Z should preferably be illustrated with Spivey’sBirthdayBook example [16],
which is

[NAME;DATE]

BirthdayBook
known : PNAME
birthday :NAME 7! DATE

known= dombirthday

AddBirthday
�BirthdayBook
name?:NAME
date?:DATE

name? 62 known
birthday0=birthday [fname? 7! date?g

1Not all valid refinements can be proved using forwards simulation, in the most general case one needs in addition the rules forbackwards
simulation (cf. [12]). Most presentations of refinement in Z including this one concentrate on forwards simulation only ([18] being an exception).
We suspect however that the solution may not lie in giving additional rules for backwards simulation, but rather that a definition of action refinement
in Z will encompass both.

3rd Northern Formal Methods Workshop, 1998 2

IO-refinement in Z

In a section of the book called “Strengthening the specification” Spivey describes how an indication of success or
failure can be added to this:

REPORT ::= ok j already-knownj not-known

Success
result! :REPORT

result!=ok

AlreadyKnown
�BirthdayBook
name?:NAME
result! :REPORT

name? 2 known
result!=already-known

Now a robust version ofAddBirthday is given by:

RAddBirthday b= ((AddBirthday^Success)_AlreadyKnown)

Formally, however, none of the operations described so far is a refinement ofAddBirthday2, so in what sense is
it strengthened? Maybe a notion of refinement exists which formalises the “strengthening” that Spivey had in mind
there.

2 Why IO-refinement?

We could think of (at least) six possible reasons for wanting or allowing refinement of input and output parameters in
Z operations. One aspect of the question can be rephrased as: why would we callAddBirthday^Success (which
only adds a constant output) a refinement ofAddBirthday? However, some of the answers indicate the possibility or
desirability of IO-refinements much more radical than that – for example, to match notions of conformance of object
interfaces.

A reader who is already convinced of the usefulness of IO-refinement may safely skip the rest of this section.

2.1 The Non-conformist Answer

Surely it’s only a convention?

We have a particular interest in alternative definitions of refinement for Z, because we wish to use Z forpartial
specification(or viewpointspecification), as explained in [4, 3]. In our framework [7], the meaning of a partial
specification is the set of all its possible developments according to a particular development relation – and the obvious
development relation for Z is (data) refinement. Composition of two partial specifications, in that approach, is finding
their most general common refinement. In [4] we have shown how to generate a least common refinement of two Z
specifications with this purpose in mind. This type of partial specification, however, only allows viewpoints which
satisfy the following restrictions:

1. Each operation in every partial specification can be invoked by the environment, i.e. none of them are internal.
(Refinement allows weakening of preconditions, which is undesirable for internal operations. At ZUM’97 [6],
there were at least four papers which touched upon this issue.)

2. All partial specifications are at the same level of granularity, e.g. no single operation in one partial specification
corresponds to a larger collection of operations in another.

3. All partial specifications of one operation have exactly the same inputs and outputs.

2However,RAddBirthday is a refinement ofAddBirthday^Success and ofAlreadyKnown. In fact, due to the preconditions of these
operations being disjoint, it is their least common refinement.

3rd Northern Formal Methods Workshop, 1998 3

IO-refinement in Z

The first of these restrictions is removed by a slight generalisation of Z refinement, calledweak refinement[9]. The
second one suggests a move towardsaction refinement. This paper aims at relaxing the third restriction, which ap-
pears to be orthogonal to the other two. We wish to allow viewpoints which need only describe part of the required
functionality of an operation – it seems logical to apply this principle to inputs and outputs as well, particularly in the
object-based contexts in which we wish to use viewpoint specification (cf. [7]). For example, in a system which logs
all user requests, the specification of a particular request in the “user” viewpoint should not have to have alog! output
– these should only occur in the specification of that same request in the “logger” viewpoint.3

A comparable argument can be found in [11], which demonstrates the usefulness of separating user interface and
functionality in Z. Our work can be viewed as a natural extension of theirs, in that it studies how refinement combines
with this separation.

Clearly one way out for us would be to leave Z refinement for what it is, and define a “new” refinement relation for
Z from scratch. It might solve our problem, but we think it would be much more profitable to stay as close as possible
to generally accepted approaches. Fortunately, as will be made clear later, this poses no serious problems.

2.2 The Informal Answer

Adding a constant output shouldn’t hurt, should it?

From the perspective of “information content”, there is no difference at all between observing that a particular op-
eration occurs, and observing that it occurs with a particular output which is known always to have the same value.
This seems similar to giving an operation a different name – whichis allowed in Z data refinement. Also, one might
wonder whether thenameof an output should have relevance in Z refinement – in most languages outputs do not have
names, only types. Another branch of our research is concerned with relating specifications in Z with specifications in
other formal notations. For some of these, e.g. LOTOS [8] we have indeed needed to adopt the convention that names
of outputs (and inputs) are irrelevant in Z.

The argument here will be continued in a more formal way in other answers. “There is no difference at all” would
suggest more than just refinement – it suggests equivalence, for example in the sense of refinement in both directions.
Note that here we talk about “observing” an operation happening – this is fully in accordance with the model used in
[18] to derive Z refinement, which we will also be using later to derive a more general refinement relation.

2.3 The Perspective of Operation Interfaces

If no one is looking atresult!, there is no difference.

The standard Z view of refinement (simulation) between abstract data types is that the environment observes the
occurrence of operations, and for each of those, all its inputs and outputs with their names and types. As a consequence
of this, thetypesof input and output parameters may not be changed4, though the refinement conditions do allow their
declarations to change5.

Looking at these restrictions from the perspectives of operation interfaces and object-oriented style typing, this
all seems more restrictive than necessary. We would, like in interface definition languages, an operation’s interface,
viewed as a type, to be satisfied by operations whose interfaces aresubtypesof that type: taking inputs and outputs from
extended sets; adding inputs and outputs (by generalising imagined constant inputs and outputs to variable ones). The
type system of Z (being essentially flat) is not well suited for defining subtyping directly. We will instead (implicitly)

3One might point out that this could be resolved by having the log as a state variable in the logger viewpoint only, which is correct. However,
such a quasi-solution illustrates exactly the point we wish to make: Z refinement allows near-unlimited change of state variables, and none of
input/output variables.

4Strictly speaking, in this interpretation the names of operations should not be changed in refinement either. However, giving the “concrete” and
“abstract” operations different names solves the problem of determining which “version” the operation name (e.g. in a refinement proof obligation)
refers to. A somewhat cleaner approach to this is taken in B [1], where operation names are explicitly required to be the same after refinement, but
there the proof obligations need to refer to more constituents of the operation definition than the ones for Z.

5This is an obvious consequence from the possibility to move information between declarations and predicates of a schema. The sets the input
and output parameters are taken from may be extended to any larger set lying within the same type, or restricted to any subset containing all values
actually allowed by the operation.

3rd Northern Formal Methods Workshop, 1998 4

IO-refinement in Z

define subtyping as the existence of functions with particular properties that relate the types. The conditions that
emerge for inputs and outputs are different, as one might have expected from issues of covariance and contravariance
in function subtyping.

In the research area of object-oriented languages, the need for interface refinement has indeed been acknowledged.
The most striking example of this is the work of Mikhajlova and Sekerinski [14] on class refinement and interface
refinement, which independently of our work comes up with very similar rules and conditions for alteration of inputs
and outputs in refinement.

2.4 A Schema Calculus Answer

Schema conjunction generally precludes refinement – but through applicability, not through correctness.

It is well known in the Z community that the interplay between refinement and the schema calculus is not always
smooth. The conjunction of two operations, for example, may not be a refinement of either even when a common
refinement of the two exists [4]. Conversely, the disjunction of two operations is only the least common refinement of
both if their signatures are identical and they are identical where their preconditions overlap (e.g. when the precondi-
tions are exclusive [2], like forAlreadyKnown andAddBirthday^Success above). A more positive result is the
following.

Theorem 1 The operationCOp b= (AOp^P) is an operation refinement ofAOp if

1. COp has the same signature asAOp, i.e.P does not refer to variables not inAOp;

2. preCOp= preAOp, i.e.P does not have the effect of excluding before-values thatAOp allowed.

Proof The correctness condition is automatically guaranteed by the second condition. The second condition above
is only aformal strengthening of the applicability condition, since pre(AOp^P)) preAOp follows from the first
condition. 2

Of the two conditions of the above theorem, surely the second one should be considered the major one. Now look at
AddBirthday andAddBirthday^Success . . . Their preconditions are equal, so they only fail to be in the refinement
relation because of the first, minor syntactical, condition. Clearly from this perspective removing that condition, and
thus putting these operations in a refinement relation, would not be very revolutionary.

This line of reasoning, however, will not be pursued much further in the rest of this paper, because even if we
manage to overcome the problem described above, it still seems impossible to completely remove all problems between
schema calculus and refinement.

2.5 A Mathematical Answer

A�11 �= A

Contrary to what was suggested by the previous answer, in moving fromAddBirthday toAddBirthday^Success,
“conjunction” is really irrelevant, being only a consequence of Z’s syntactical conventions. Consider the following
tautologies on sets (in mathematics, not in Z):

A=fx j x 2 Ag B=fy j y 2 Bg

Now combine these set comprehensions in a particular syntactic way, by concatenating their declarations and taking
the conjunction of their predicates:

fx;y j x 2 A^y 2 Bg

3rd Northern Formal Methods Workshop, 1998 5

IO-refinement in Z

Now would we call the resulting setA^B ? Of course not – what is being constructed is aproductset. The same
goes forAddBirthday^Success – maybe we should say that it isunfortunatethat product schemas in Z appear as
conjunctions6, because products as a concept are too important to be lumped in with conjunctions.

Once we have established thatAddBirthday^Success denotes a product schema, let us consider its factors.
Success is peculiar, in that it has only one possible inhabitant. Viewed as a set of bindings, it is a singleton set.
One notion of equivalence in a theory of products is that ofisomorphism, and the product of a setA with a singleton
set is isomorphic toA. (This formalises the argument given in the “informal” answer.) There is another pair of
isomorphic types involved in these schemas. Consider the type of all outputs ofAddBirthday – there are none. One
way of modelling a value from an empty product type is by defining it to be the anonymous unique value * of the
predefined type11. The output signature ofSuccess is Success itself, and the product of these two output signatures
is isomorphic (if not equal!) toSuccess, and isomorphic to11.

Isomorphisms between state schemas in Z induce data refinements in both directions. Isn’t it strange that isomor-
phisms between input- or output types do not?

As a response to this question we expect to hear “inputs and outputs are observed, whereas states are not”. This
is an acceptable answer within certain limits, as will be explained in Section 3.1. However, taking a different view on
this introduces no inconsistencies or new anomalies.

“Isomorphism” again suggests IO-refinement in both directions. It is clear that less stringent conditions will
suffice for having IO-refinement in one direction only. Such conditions will emerge from the derivation given in the
next section.

Finally, we would like to point out the similarity between this issue and thegeneralisationor embeddingstrategy
in program transformation [15] (or indeed in proofs in general): input types can be extended by generalising constants
to variables; output types can be generalised as long as the originally required output can be reconstructed from it.

2.6 A Methodical Answer

We can derive it, so it must be okay.

Woodcock and Davies [18] motivate the Z data refinement conditions by deriving them from a characterisation of
simulations between abstract data types, modelled as binary relations. Using exactly the same set up, by generalising
identity functions to more general functions in their derivation, we managed to obtain conditions for a generalised type
of refinement, which we call IO-refinement. This involves only a very marginal relaxation in the “rules of the game”,
very similar to the implications of having initialisations observable.

Of course, a formal derivation, however reassuring, on its own means nothing. However, the generalisation we
choose is the obvious one given Woodcock and Davies’ derivation (replacing explicit occurrences of identity functions
by more general functions), and the resulting refinement relation encompasses all the relaxations suggested by the
answers above, and possibly quite a few more.

Stepney, Cooper and Woodcock in recent work [17] have also observed that more powerful rules than the standard
rules for Z can be derived from the binary relation characterisation.

3 A Derivation of the Conditions for IO-refinement

In this section we will derive conditions for IO-refinement in a derivation that generalises the derivation of refinement
from simulation in [18, pages 254-255]. In order to appreciate the subtleties of IO-refinement, we first need to dis-
cuss the issue ofunwinding– transforming a system where all input occurs at initialisation and all output occurs at
finalisation into one where every operation can have input or output.

3.1 Unwinding: the Relation between Initialisations and Input

The canonical theory of simulations on which the notion of refinement in Z is based [12, 13] is one of binary relations.
A “run” of the system consists of three parts: an initialisation, a sequence of operations, and a finalisation. If the state

6There is a strong analogy here with products in relational (database) algebra appearing as natural joins.

3rd Northern Formal Methods Workshop, 1998 6

IO-refinement in Z

space of the environment isG and the state space of the system isS, then initialisation is a relation betweenG and
S; every operation is a relation onS; and the finalisation is a relation betweenSandG. As in [18], let us concentrate
on a system which has only one operation – multiple operations, each with their own input/output types, would make
everything that follows unnecessarily complicated. This simplification has the additional consequence that, apart from
the initialisation condition for data refinement (which is unaffected by our modified derivation), IO-refinement is a
condition on a single pair of operations. We will sometimes say that anoperationIO-refines another one when strictly
speaking we are talking about thesystems, each consisting of one operation and the implied state, refining each other.

The first part of the derivation in [18] (“relaxing”) results in conditions for data refinement of a system as described
above, i.e. one with no individual inputs or outputs for every operation. These conditions are the relational versions
of the correctness and applicability conditions given in Section 1.1. For a relationco to refine a relationao given
abstraction relationr:

(domao)C (r o
9 co) � ao o

9 r (2)

ran(domao C r) � domco (3)

A particular class of such systems is interpreted as modelling a system with inputs and outputs for every operation,
namely ones where the following is the case. The state contains two sequences, an input sequence and an output
sequence. Initially, the output sequence is empty; in the final state, the input sequence is empty. Every time an (the)
operation is executed, the first value is removed from the input sequence, and a value is added to the end of the output
sequence. The outcome of the operation does not (directly) depend on any other value in the input or output sequence.

Example 4 The system (call itA)

State
x:S

Init
State0

x0=a

Op
�State
y?:A

p

(it has no outputs, to simplify the presentation) is modelled by the system (let us call itA�) where all inputs are
provided at initialisation time, which is

State
x:S
inps : seqA

Init
State0

x0=a

Op
�State

p[hd inps=y?]
inps0=tl inps

2

The description at the level of binary relations of this construction uses a number of auxiliary functions defined
below, which will also be used in our modified derivation.split removes one input from the input sequence;k is a
kind of parallel composition;merge adds an output to the output sequence.

[A;B;C]
split : A� (seq

1
B � seqC) ! (A� B)� (seqB � seqC)

8 s:A ; is : seq
1

B ; os : seqC �
split (s;(is;os))=((s;head is);(tail is;os))

[W;X;Y;Z]
k : (W$ Y) � (X $ Z) ! W� X $ Y� Z

8 � :W $ Y ; � :X $ Z ; w:W ; x:X ; y:Y ; z:Z �
(w;x) 7! (y;z) 2 �k� , w 7! y 2 � ^ x 7! z 2 �

3rd Northern Formal Methods Workshop, 1998 7

IO-refinement in Z

[A;B;C]
merge : (A� C)� (seqB � seqC) ! A� (seqB � seqC)

8 s:A ; o:C ; is : seqB ; os : seqC �

merge ((s;o);(is;os))=(s;(is;osa hoi))

Using these operations, the relation between an operationop in a system with IO and its counterpartops in a system
without IO is

ops=split o9 (opkid) o
9merge

where the identity relationid ensures that the rest of the input and output sequence are unaffected in the current
operation.

The second part of the derivation then translates the refinement conditions betweenaos andcos (substituting these
for ao andco in (2) and (3)) into conditions betweenao andco, using as a retrieve relation on the extended state

rs = r kid[seqInp]kid[seqOutp] (5)

whereInp andOutp are the types of the input and output ofop. The conditions that result, when translated to
conditions on Z schemas, are those given in Section 1.1.

Note, however, that there is a small problem with representing a system with input in the way described above.
(This is not observed in [18], but solved by the more general rules in [17].) It is best illustrated by means of an
example.

Example 6 Continuing from Example 4, assume thatA, the set from which the input parametery? is taken is
properly contained in another setB. Clearly the first system can be refined by replacing the declaration ofy? in Op by
y?:B, and let us call this systemB. Now B� is equal toA�, except for the declaration ofinps, which is now of type
seqB. However,B� fails to be a forward simulation refinement ofA�! Consider the condition

8CState0 � CInit) 9Astate0 � AInit^Abs0

which in this particular case (abstraction relation is injection of abstract state space into the concrete one) translates to
8 x0 :S; inps0 : seqB � x0=a) inps0 2 seqA which is false forA being a proper subset ofB: 2

Conclusion: after “unwinding”, refinements are allowed that were not allowed before.
The relevance of this problem is as follows. When using input-refinement, the initialisation condition for “all input

at initialisation” translates to: for every concrete input, there is an abstract input which is linked to it by the input-
transformer. This implies that new inputs may freely be added, but that no input may have its type extended. This is
clearly undesirable given our motivations, but the issue needs to be resolved for “standard” Z refinement as well.

Of course the problem is in viewing the initialisations as independent. For the “input as initialisation” notion, it
is important to realise that the inputs are provided by the environment. In the original relational refinement set-up,
initialisation and finalisation are functions from- and to the environment, respectively. In other words, a fair model of
A� would have as its initialisation:

Init
State0

inps?: seqA

x0=a
inps0=inps?

such that, with appropriately modified refinement rules for initialisations with inputs,A� would still be refined byB�.
This construction solves the paradox inherent in [18] – in the following derivation we assume that a similar construction
can also be given to discharge the undesirable condition for IO-refinement deriving from the initialisation condition.
[17] presents a solution which is essentially similar, by always keeping a reference to the global environmentG in the
refinement rules.

3rd Northern Formal Methods Workshop, 1998 8

IO-refinement in Z

3.2 The Derivation

In this section we paraphrase the second part of the derivation in [18], allowing for an easy comparison between the
two. The crucial step lies in generalising the identity functions in (5) to arbitrary maps. We will use the following
relational generalisation of “map”:

[A;B]
� :(A$ B)! (seqA $ seqB)

8 � :A$ B ; as : seqA ; bs : seqB �
(as;bs) 2 �� , #as=#bs^ 8 i : domas � (as i;bs i) 2 �

The starting point of our derivation is the assumption that we have refinement rules for a particular relation between
concrete and abstract states for a set of operations that have no inputs or outputs. If we want to derive similar condi-
tions for operations that do have inputs and outputs, we need to apply the standard method: the state contains extra
components representing the sequence of inputs still to be dealt with and the sequence of outputs already computed.

Assume we wish to compare operationsao andco which consume input and produce output. Their equivalent
operations that expect input and output sequences are given by

aos=split o9 (aokid)
o

9merge

and similarly forcos. Given a relationr between states without input and output sequences, we must construct an
equivalent relation that acts on the enhanced form of the state. Ifr is a relation of type

AState$ CState

then we require a relationrs of type

AState� (seqAInp � seqAOutp) $ CState� (seqCInp � seqCOutp)

in order to compareaos andcos. For the comparison to make sense, the two operations should have lists of outputs and
inputs that are equally long. Moreover, the relation between input and output sequences should be between elements
in comparable positions only. Not to assume that would imply the system cheated in some way – by making use of
“future” input or “past” output, for example. If the relation between individual input elements isit and that between
individual output elements isot, the relationrs between enhanced states is then defined by:

rs=(r kit�kot�)

For rs not to exclude combinations of states inr, we need to require thatit andot are total on the abstract input and
output types. (This condition is formally a little too strict – it rules out input and output transformers which reduce the
input and output types to the values that can actually occur. However, this can still be done as operation refinement,
using just predicates.)

The rules for the correctness of a forwards simulation require that

(domaos)C (rs
o
9 cos) � aos

o
9 rs

which requirement is equivalent to

(domao)C ((rkit) o
9 co) � ao o

9 (rkot)

The other requirement, thatcos is defined everywhere thataos is defined, leads to a second constraint7:

ran((domao)C (rkit)) � domco

7[18] hasid[Output] in the corresponding condition – it should beid[Input].

3rd Northern Formal Methods Workshop, 1998 9

IO-refinement in Z

The first derivation in [18] also contains an initialisation condition that needs to hold between the initialisations of
the two systems involved, which is claimed to be independent from the “unwinding” construction and thus does not
change for the second derivation. This is not strictly true, as demonstrated above. Similarly, this condition would have
its effect on our modified version of unwinding. The resulting condition would be that for every concrete input, an
abstract input exists. (Compare with the situation in Example 6.)

In addition, afinalisationcondition exists for a simulation to hold between two systems with no inputs or outputs.
This condition becomes moot in Woodcock and Davies’ unwinding, but in our modified approach it has an important
consequence:

(ot o
9 ot

�) � id[AOutp]

which is to say,ot needs to be injective. This condition guarantees that different abstract (“original”) outputs can be
distinguished in the concrete cases because their concrete representations will be different as well.

The next section will define the analogues of the retrieve relation for changing inputs and outputs in refinement
steps, calledIO-transformers, and some other notations useful for expressing the IO-refinement rules at the Z schema
level.

4 IO-transformers

For convenience, we first define the notion of a signature.

Definition 7 (Signatures) For a schemaS, its signature�Sand its input and output signatures?Sand!Sare given
by

�S=S_ :S

!S= �(9“all components of S whose names don’t end in !”� S)

?S= �(9“all components of S whose names don’t end in ?”� S) 2

By definition of schema negation, a signature schema has all components declared as being from theirtype(rather
than a subset of it) and an everywhere true predicate (which we usually forget about). IfShas no inputs,?S turns out
to be[true], the schema whose only inhabitant is the empty binding (similarly for!S if Shas no outputs.) This schema
plays the role of the unit type11 mentioned in Section 2.5.

The following operations on names, which extend componentwise to signatures (similarly to the standard conven-
tion for decorations) are defined.

Definition 8 (Decorations for input and output) For all x, x?=x!; x!=x?. 2

(The overline operator is chosen in analogy with CCS - in piping communication when they are both present in the
right direction,x andx become hidden.)

We will need to change inputs and outputs of operation schemas without (directly) affecting their changes on the
state. For that purpose we will use schemas which contain inputs and outputsonly, which will be connected to the
operations usingpiping�. Hayes and Sanders [11] use piping in much the same way: to represent the equivalent of
relational composition for inputs and outputs in Z schemas. They use the term “representation schema” for what we
call “transformers”.

An input transformer for a schema is an operation whose outputs exactly match the schema’s inputs, and whose
signature is made up of input- and output components only; similarly for output transformers.

3rd Northern Formal Methods Workshop, 1998 10

IO-refinement in Z

Definition 9 (Input and output transformer) SchemaS is an input transformer for schemaT iff

�S=(!S^?S) ^ !S=?T

and it is an output transformer forT iff

�S=(!S^?S) ^ ?S=!T

2

An IO-transformer will normally have a predicate relating its inputs and outputs. For every schema, input- and
output transformers can be defined that act as identities with piping:

Definition 10 (Input and output identity) For a schemaS its input identity is defined by

Iid S = [?S; ?Sj all x in ?S� x=x]

and its output identity by

Oid S = [!S; !Sj all x in !S� x=x]

whereall x in S � P[x] denotes universal quantification over all component names inS, i.e. P[x] ^ P[y] ^ P[z] if the
components ofSarex, y andz. 2

Clearly Iid S � S=SandS � Oid S=S. Another special kind of IO-transformers are terminators and generators,
IO-transformers that only consume input or only produce output.

Definition 11 (Terminator and generator) For IO-transformerS:

� S is aterminatoriff �S=?S

� S is ageneratoriff �S=!S 2

Example 12 Consider schemas

State
x:N

Op
�State
y?:N

x0 = x + y?

Gen
y! :N

y!=17

ThenGen is a generator, since�Gen=!Gen=[y! :Z]. A generator used as the first argument of a piping fixes an
input value, e.g.Gen� Op is (no renaming needed):

9 y?:Z ; y! :Z � [Gen; Op j y?=y!]

which simplifies to

�State

x0=x+ 17

2

It is most obvious to have generators as input transformers, and terminator as output transformers. However, the
reverse is possible as well for operations that have no inputs or no outputs.

Example 13 Continuing the birthday book example from Section 1.2,Success is a generator. It is not an input trans-
former forAddBirthday however (it has no componentname!), but it is an output transformer forAddBirthday (be-
cause it has no inputs). Its use inRAddBirthday is as an output transformer indeed, observe thatAddBirthday �
Success=AddBirthday^Success. 2

3rd Northern Formal Methods Workshop, 1998 11

IO-refinement in Z

5 Conditions of IO-refinement

Now we have defined the equivalent of schema composition for input and output parameters, we can rephrase the
conditions of IO-refinement as conditions on Z schemas.

Definition 14 (IO-refinement) Given abstract data typesA=(A;fAOpg;AInit) andC=(C;fCOpg;CInit), thenC
is an IO-refinement ofA if there exists an abstraction schema

R
A; C

Pred

such that the following conditions hold:

initialisation 8C � CInit) (9A � AInit^R)

and schemasIT andOT exist such that

transformers IT is a total input transformer forAOp; OT is a total and injective output transformer forAOp.

applicability COp is defined on all representatives ofA and?COp on whichAOp is defined (modulo retrieve relation
and inverse input transformation):

8A; C; ?COp � pre(IT � AOp)^R) preCOp

correctness whereverAOp is defined,COp with the input transformation should produce a result related byR and
the output transformation to one thatAOp could have produced:

8A; C; ?AOp ; C0 ; !COp � preAOp^R^(IT � COp)) 9A0 � R0^(AOp� OT)

2

This definition easily extends to multiple operations.
A very important point about IO-refinement is that, when we have done a refinement step using transformersIT and

OT, we cannot forget about them (unlike the abstraction schema). We will need to administrate all IO-transformers
used, so they can be “plugged in” in the final result of our refinement derivation in order to get inputs and outputs as
they were originally specified.

Observe that we have chosen for both IO-transformers to have abstract inputs and concrete outputs, so that they
are typically used in opposite directions. Strangely enough, the correctness condition looks like the corresponding
condition for normal data refinement between (IT � COp) and (AOp � OT), whereas the applicability condition
looks like the corresponding condition betweenCOp andIT � AOp.

Example 15 For the birthday book example, in order forRAddBirthday to be an IO-refinement of
AddBirthday, we need (instantiationsR=A=C=BirthdayBook; OT =!RAddBirthday=�Success;
?AddBirthday=?RAddBirthday=[name?:NAME]; !AddBirthday=[true]; IT= Iid AddBirthday =
[name?; name! :NAME; date?; date! :DATE j name? = name! ^ date? = date!]) for correctness:

8BirthdayBook ;BirthdayBook0 ;?AddBirthday ; !RAddBirthday �
name? 62 known ^RAddBirthday) 9BirthdayBook0 � AddBirthday � �Success

or, as observed above, “correctness” of operation refinement between the following two operations:

3rd Northern Formal Methods Workshop, 1998 12

IO-refinement in Z

IidAddBirthday � COp

date?

name?

date!

name!

-

-

-

-

date?

name?

date?

name?

=

=

RAddBirthday -

report!

-

-

date?

name?

AddBirthday �Success -

report!

�AOp OT

and for applicability:

8BirthdayBook ;?RAddBirthday � name? 62 known) preRAddBirthday

which both obviously hold.
This implicitly also proves thatAddBirthday � Success refinesAddBirthday. The reverse can also be proved,

making these two IO-refinement equivalent. 2

An obvious observation is that IO-refinement is a proper generalisation of data refinement (of course it already
follows from the derivation being a generalisation).

Theorem 16 IO-refinement generalises data refinement.

Proof For IT substituteIid COp, for OT substituteOid AOp, this reduces the first condition to the traditional one.
For the second condition, observe thatIid COp= Iid AOp and thatIid S= Iid S for anyS, then it also reduces to the
traditional condition. 2

The next thing to be proved is that, compared to data refinement, it has equally nice properties. The previous theorem
ensures one of these already:

Corollary 17 IO-refinement is reflexive. 2

The following theorem does not follow directly.

Theorem 18 IO-refinement is transitive.

Proof The proof is completely analogous to a proof that data refinement is transitive. The witnessing abstraction
relation for the two-step refinement is a composition of the two abstraction relations (conjunction of both, hiding
components of the intermediate state), the input and output transformers for the two-step refinement are constructed
by piping the transformers of the individual steps together.

Proofs like these are best done in the set up of binary relations as in Section 3, rather than in the schema formula-
tion. 2

Now if the conditions for data refinement were already complicated, the ones for IO-refinement add an extra level of
complication to them. Even if the relevant input and output transformers are fixed, the formulas are quantified over
two more variables than the data refinement ones. The complexity of the rules for data refinement has been observed
before, and a solution has been proposed which separates out the “most general data refinement”, which is completely
determined by the abstract type and the abstraction relation. The operation refinement implicit in the data refinement

3rd Northern Formal Methods Workshop, 1998 13

IO-refinement in Z

rules is then carried out in a separate step. This strategy is originally described in [13], and more explicitly for Z in [5,
section 4]; the chapter on calculating data refinements in [18] describes a special case of it.

We will make IO-refinement more tractable by proposing a similar strategy: first do an IO-refinement step in
which no data refinement occurs (often resulting in, holding where the conditions require)), and then do any
data refinement. Unlike with the solution for most general data refinement described above, we will make no claims
about completeness of this strategy. In other words, not all IO-refinements allowed by the general rules can actually
be described as a restricted IO-refinement followed by data refinement. Further investigation may provide a complete
rule that is nevertheless easy to use.

The essence of our suggestion for restricted IO-refinement lies in the following theorems, which givesufficient
conditions for IO-refinement.

First, the result of applying bijective IO-transformers to an operation will always be a refinement, i.e. inputs and
outputs can be replaced by “isomorphic” values:

Theorem 19 (Isomorphic IO) If IT is a total injective functional input transformer forOp andOT is a total
injective output transformer forOp, thenIT � Op� OT IO-refinesOp.

Proof Considering the conditions of IO-refinement as in Definition 14, abstract stateA, concrete stateC and ab-
straction relation are all identical. TakingCOp=IT � AOp � OT , observe that for injective functionalIT ,
IT � IT = Iid AOp, and for totalOT , pre(IT � AOp� OT)= pre(IT � AOp). 2

Also, we can add inputs and outputs to an operation which previously did not have any.

Theorem 20 (Inventing inputs and outputs) If AOp=Gen� COp� Term, Gen is afixedgenerator which is
an input transformer forCOp, Term is a terminator and output transformer forCOp, thenCOp IO-refinesAOp.

Proof Let IT=Gen, andOT=Term (which is injective). Observe that, for applicability,Gen� Gen= Iid Gen)
Iid COp and for correctness,Term� Term=�(Oid COp) (Oid COp. 2

Moreover, inputs and outputs can also be added to an operation which did have some already.

Theorem 21 If, for a fixed generatorGen such that�Gen\?COp=? and a terminatorTerm such that�Term\
!COp=? it is the case thatAOp=Gen� COp� Term, thenCOp IO-refinesAOp.

Proof Note thatGen andTerm are not necessarily input and output transformer forCOp, so the IO-refinement rule
cannot directly be used. This can be fixed by taking the equivalent(Gen^ Iid AOp)� COp� (Term^Oid AOp).
Then forIT=(Gen^ Iid AOp) andOT=Term^Oid AOp the conditions of IO-refinement are satisfied, analogous
to the proof of Theorem 20. 2

A pictorial representation of this theorem illustrates how by IO-refinement we can change the boundaries of a
system while we are developing it:

AOp

COp

--

?AOp
- -

!AOp

Gen -
!Gen
� !Gen Term-

?Term
�?Term

IidAOp OidAOp?AOp !AOp

In the above diagram,COp IO-refinesAOp, using a fixed generatorGen and a terminatorTerm.

3rd Northern Formal Methods Workshop, 1998 14

IO-refinement in Z

Theorems 19 and 21 can also be viewed in the context of [11]: they give a kind of soundness conditions for
separating out the user interface from the functionality of an operation.

In summary, using IO-refinement we can

� add inputs;

� add outputs;

� change inputs and outputs by applying injective functions to them;

and of course all possible combinations of the above, resulting in a quite powerful refinement calculus.

6 Examples

6.1 Coffee machine

A very simple and, in our view, convincing example of the usefulness of IO-refinement is that of coffee machines
which have more buttons and outputs than “strictly needed”. Consider the (stateless) machine for black coffee

Black
coin? : COIN
drink! : fBlackCoffeeg

coin? � 10p

and the advanced machine

Coffee
coin? : COIN
milk?; sugar? : Boolean
drink! : COFFEE
receipt! : PAPER

coin? � 10p
milk? ^ sugar?) drink! = WhiteCoffeeWith
milk? ^ :sugar?) drink! = WhiteCoffee
:milk? ^ :sugar?) drink! = BlackCoffee
:milk? ^ sugar?) drink! = BlackCoffeeWith

These two are indeed related by IO-refinement: defineTermandGenby

Gen
milk!; sugar! : Boolean

:milk! ^ :sugar!

Term
receipt? : PAPER

thenBlack = Gen� Coffee� Term and thus by Theorem 21,Coffee is an IO-refinement ofBlack.

3rd Northern Formal Methods Workshop, 1998 15

IO-refinement in Z

6.2 Sequences

A datatype of sequences of natural numbers could be defined by a typeSeq with initialisation InitSeq and sample
operationAdd:

Seq
s: seqN

InitSeq
Seq0

s0=h i

Add
x?:N
�Seq

s0=sa hx?i

Now a very general sorting operation, which takes a binary relation as a parameter, is defined by:

Permute
�Seq

items s=items s0

Sort
Permute
leq?: P(N � N)

8 i;j : doms0 � i<j) (s0[i] ; s0[j]) 2 leq?

How does the normal sorting operation on sequences of natural numbers relate to this operation, in terms of IO-
refinement? This can be answered using a generator:

FixLeq
leq! : P(N � N)

8 x;y:N � (x;y) 2 leq! , x� y

NowFixLeq � Sort is the obvious unparameterised sorting on sequences of natural numbers. By Theorem 20,Sort
is thus an IO-refinement of that.

Continuing this example, clearly not all binary relations are sensible as inputs to the sorting operation. We will
add some error handling to this, using a new type for output reports calledmsg:

msg ::= wrong j ok

The error case, and a more robust version of the sorting operation are now described by:

CantSort
leq?: P(N � N)
�Seq
report! :msg

report!=wrong
: (leq? o

9 leq? � leq? ^ N � N � leq?)

Success
report! : msg

report! = ok

RSort b= (Sort ^ Success)_ CantSort

RSort may appear to be an IO-refinement ofSort. However, it is not, becauseRSort is not a data refinement of
Sort ^ Success. (The preconditions ofSort andCantSort overlap.) Nevertheless,RSort is an IO-refinement of
FixLeq � Sort becauseFixLeq � CantSort is empty, andFixLeq � RSort � Shred=FixLeq � Sort for
the following terminator:

Shred
report?:msg

3rd Northern Formal Methods Workshop, 1998 16

IO-refinement in Z

7 Conclusions and Related Work

We have presented a generalisation of Z refinement which is derived from the same theoretical framework that Wood-
cock and Davies used for deriving the conditions of Z refinement, in a similar way. The conditions that emerge are
fairly complex, but they appear to be reasonable. We have given a few theorems that simplify the conditions for IO-
refinement in particular cases. More examples need to be studied in order to decide whether IO-refinement is suitable
for all uses suggested in Section 2, and to investigate whether the simplifying theorems cover enough “practical” cases.
The example in the previous section at least suggests that IO-refinement opens the road for formally allowing imple-
mentations in terms of standard components with pre-derived implementations. It also gives a semantic interpretation
for the standard technique of adding “diagnostic” outputs to Z operations.

Input and output transformers play a role which is slightly different to that of abstraction relations in data refine-
ment. This is due to the fact that in the final specification a way must be found to convert abstract inputs into inputs for
the concrete system, and a way to convert concrete outputs into abstract ones. Thus, in a derivation by IO-refinement,
all input and output transformers used need to be administrated in order to create these conversions for the final system.

These combined transformers are very similar to the representation schemas Hayes and Sanders [11] use in order to
separate user interface from functionality. Like in our approach, these will have to be combined with the “core” spec-
ification using schema piping. Their work concentrates on specification issues and ours concentrates on development
through refinement, and as such they are complementary.

Woodcock and Davies [18, Example 17.6] include one example of a refinement in Z in which input parameters
are different for the concrete and abstract specifications. However, this appears to be possible only because their
refinement conditions do not quantify over inputs, and because the operations involved do not actually use the inputs.
We do not think that our rules for IO-refinement justify their claim of refinement in that example, one probably needs
a complete action refinement for that.

Recent work by Stepney, Cooper and Woodcock [17] also addresses generalisation of the standard data refinement
rules for Z, deriving from the binary characterisation of refinement. Their rules (which were given without a deriva-
tion) also allow refinement of inputs and outputs, by adding what we would call output transformers to non-trivial
finalisations (and presumably also input transformers to initialisations). This amounts to the same construction as we
have presented in Section 3, which may be confirmed by an article cited as “in preparation”. The paper [17] does not
have simplified refinement theorems as presented in this paper.

Independently of our work, Mikhajlova and Sekerinski [14] have recently investigated class refinement and in-
terface refinement for object-oriented languages. Their results have a few very reassuring similarities to ours. First,
their “interface refinement” condition generalizes their “class refinement” condition in much the same way as our
IO-refinement generalises data refinement. Also, they conclude that sensible input-transformers should be surjective
and output-transformers functional, which is exactly what we required (their transformers operate in the opposite
direction). Also, the need to administrate the transformers that have been used appears in their notion of “wrappers”.

References

[1] Abrial J-R. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996

[2] Ainsworth M, Riddle S, Wallis PJL. Formal validation of viewpoint specifications. Software Engineering Journal
1996; 11(1):58-66

[3] Boiten EA, Bowman H, Derrick J, Steen MWA. Viewpoint consistency in Z and LOTOS: A case study. In
FME’97 [10], pp 644-664

[4] Boiten EA, Derrick J, Bowman H, Steen MWA. Consistency and refinement for partial specification in Z. In:
Gaudel M-C, Woodcock J (eds) FME’96: Industrial Benefit of Formal Methods, Third International Symposium
of Formal Methods Europe. Springer-Verlag, 1996, pp 287-306 (Lecture Notes in Computer Science No. 1051)

3rd Northern Formal Methods Workshop, 1998 17

IO-refinement in Z

[5] Boiten EA, Derrick J, Bowman H, Steen MWA. Coupling schemas: data refinement and view(point) compo-
sition. In: Duke DJ, Evans AS (eds) Northern Formal Methods Workshop, Springer-Verlag, 1997 (Electronic
Workshops In Computing)

[6] Bowen JP, Hinchey MG, Till D (eds). ZUM ’97: The Z Formal Specification Notation. Springer-Verlag, 1997
(Lecture Notes in Computer Science No. 1212)

[7] Bowman H, Boiten EA, Derrick J, Steen MWAS. Viewpoint consistency in ODP, a general interpretation.
In: Najm E, Stefani J-B (eds) First IFIP International workshop on Formal Methods for Open Object-based
Distributed Systems, Chapman & Hall, 1996, pp 189-204

[8] Derrick J, Boiten EA, Bowman H, Steen MWAS. Translating LOTOS to Object-Z. In: Duke DJ, Evans AS (eds)
Northern Formal Methods Workshop, Springer-Verlag, 1997 (Electronic Workshops In Computing)

[9] Derrick J, Boiten EA, Bowman H, Steen MWAS. Weak refinement in Z. In: ZUM’97 [6], pp 369-388

[10] Fitzgerald J, Jones CB, Lucas P (eds). FME’97: Industrial Application and Strengthened Foundations of Formal
Methods. Springer-Verlag, 1997 (Lecture Notes in Computer Science No. 1313)

[11] Hayes IJ, Sanders JW. Specification by interface separation. Formal Aspects of Computing 1995; 7(4):430-439

[12] He Jifeng, Hoare CAR, Sanders JW. Data refinement refined. In: Robinet B, Wilhelm R (eds) Proc. ESOP 86,
Springer-Verlag, 1986, pp 187-196 (Lecture Notes in Computer Science No. 213)

[13] He Jifeng, Hoare CAR. Prespecification and data refinement. In: Data Refinement in a Categorical Setting.
Oxford University Computing Laboratory, 1990 (Technical Monograph PRG-90)

[14] Mikhajlova A, Sekerinski E. Class refinement and interface refinement in object-oriented programs. In FME’97
[10], pp 82-101

[15] Partsch H. Specification and Transformation of Programs - a Formal Approach to Software Development.
Springer-Verlag, Berlin, 1990

[16] Spivey JM. The Z notation: A reference manual. Prentice Hall, 1989

[17] Stepney S, Cooper D, Woodcock J. More powerful Z data refinement. In: Bowen J, Fett A, Hinchey M (eds)
ZUM’98: The Z Formal Specification Notation. Springer-Verlag, 1998, pp 284-307 (Lecture Notes in Computer
Science No. 1493)

[18] Woodcock J, Davies J. Using Z: Specification, Refinement, and Proof. Prentice Hall, 1996.

3rd Northern Formal Methods Workshop, 1998 18

