University of

"1l Kent Academic Repository

Boiten, Eerke Albert and Derrick, John (1998) Grey Box Data Refinement.

In: Grundy, J. and Schwenke, M. and Vickers, T., eds. International Refinement
Workshop & Formal Methods Pacific 1998. Discrete Mathematics and Theoretical
Computer Science . Springer, Heidelberg, Germany, pp. 45-59. ISBN 981-4021-16-4.

Downloaded from
https://kar.kent.ac.uk/21607/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Held as a joint conference. Also known as IRW/FMP '98. Also incorporates the 7th Australasian refinement workshop and the 4th
New Zealand formal program development colloquium

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21607/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Grey Box Data Refinement

Eerke Boiten and John Derrick

Computing Laboratory, University of Kent
Canterbury, CT2 7NF, U.K.
(Phone: +44 1227 764000,

Email: E.A.BoitenQ@ukc.ac.uk)

Abstract. We introduce the concepts of grey box and display box data
types. These make explicit the idea that state variables in abstract data
types are not always hidden. Programming languages have visibility rules
which make representations observable and modifiable. Specifications in
model-based notations may have implicit assumptions about visible state
components, or are used in contexts where the representation does mat-
ter. Grey box data types are like the “standard” black box data types,
except that they contain explicit subspaces of the state which are modifi-
able and observable. Display boxes indirectly observe the state by adding
displays to a black box. Refinement rules for both these alternative data
types are given, based on their interpretations as black boxes.

1 Introduction

Programming languages that support modularisation and encapsulation of data
types with their operations have various ways of dealing with the variables that
represent the “state” of the data type. The method which is most often adopted
by specification language designers and other theorists is the one where all state
components are invisible to any program part outside the encapsulated data
type (“black box”, “representation hiding”). This gives the cleanest semantics,
the most explicit interface, and the fewest headaches in terms of reuse and reim-
plementation. Some object-oriented programming languages, e.g. Smalltalk [7],
and most model-oriented specification languages, like Z [17,19], take this ap-
proach.

However, representation hiding is conceptually nice but in practice some-
times cumbersome. For example, object-oriented languages have to deal with
the problem of binary methods [4]: how to view and implement an operation
that conceptually takes two abstract objects as its input, given that neither of
the objects should be seeing the other’s representation? In C++ for example,
this has given rise to the notion of friends, with complicated visibility rules. In
any case, having an explicit distinction between “private” and “public” compo-
nents as in C++ or Java reduces the complexity of the specification of interfaces:
no explicit functions for observing and modifying public components have to be
specified. A consequence of having visible components is also that they need to
be preserved in inheritance — which may be viewed as a kind of data refine-
ment. If one wants to develop executable programs from formal specifications,

it is useful if the formal specification notation has features which approximate
those of the programming language. In that context, it is important to note that
“observability” in specification languages is a weaker notion than “visibility” in
programming languages: the latter normally implies “modifiability” as well.

Refinement rules [8] for model-oriented languages have been derived with
the black box style of specification in mind. However, users of model-oriented
specification languages actually do not always assume their representations to
be invisible, even if they use the “states and operations” style. For example,
the specification of an editor in [11] (not a paper that is concerned with re-
finement — but that is not the issue) has state components that represent the
current state of an editor display. Implicitly it is assumed that these are in some
way “visible”, even though there are no operations which observe it. In multi-
language specification frameworks (e.g. ODP [10] or the various combinations of
Z and a behavioural notation [12,18,16,5]), Z is often used as an “information
viewpoint” language (in ODP terminology), which only describes the data types
present in the system, possibly with the operations on them. Other notations are
then used for describing the actual sequencing of operations. In such a set-up,
the data type representation used in the Z sublanguage cannot always assumed
to be hidden. As a consequence, due to assumed visibility of state components,
the standard data refinement rules only apply to a limited extent. This means
that systems of this type cannot be developed stepwise using the standard rules:
the state variables which are (implicitly) designated to be visible may not be
removed in data refinement steps. Refinements of such specifications should be
“grey box” refinements, in which it is assumed that certain state components
remain present throughout.

This paper illustrates how specifications in which certain state components
are assumed to be visible (and possibly modifiable), so-called “grey box data
types”, can be interpreted in terms of the standard black box data types. From
this interpretation we derive simple data refinement rules for grey box data
types. These rules contain the restriction that the observable state components
must remain part of the state. This restriction disappears when adapting a more
general approach, viz. that of displays or views, which are operations which
indirectly observe the state of a data type. However, in that approach, defining
modifiable displays is an instance of the well-known view update problem.

The notation used in this paper will be Z, but analogous constructions can
be given for other model-based specification languages.

The next section will define the notion of a grey box data type. Section 3
will then present data refinement rules for such types. In Sect. 4 we will define
a variation of such types, called “display box” data types, and define refinement,
rules for those. The final section contains our conclusions.

2 Black Boxes and Grey Boxes

The assumed specification style in model-oriented languages like Z is the black
box abstract data type style, commonly known as “states-and-operations”, with

the familiar refinement relation on it (cf. Appendix A). A black box data type
is specified by a tuple (State,Ops,Init) in which State is a definition of a state
space, consisting of a collection of typed variables and a predicate' on those
variables. Ops is a set of operations, each of which is specified as a relation
between the state before, the state after, and possibly inputs and outputs. Init
is the initialisation: a satisfiable predicate on the state variables describing the
possible initial states of the type. The more abstract description of refinement,
on which the refinement rules for e.g. Z are based [8,9] contains besides an
initialisation also a finalisation, which relates the final state of the abstract
data type to the “global state”. This finalisation is ignored in most presentations
of Z refinement (recent work by Woodcock et al [19] being a notable exception).
Its use is to report information from the “run” of the system back to the global
state when the system terminates.

In actual use of Z, especially when systems are modelled which are not wholly
within a computer, one often deviates from the strict black box approach.

Example 1 If we presented the following state schema:

—_CM
money:N
display:String

money=0 = display="Insert 35p then press Coffee"
money > 35 = display="Press Coffee"

O<money<35 = display ="Insert" ~ (shownum (35—money))

~n

p more then press Coffee"

(where shownum is an assumed function for turning integers into strings) it
would be immediately clear that display represents a part of the state which is
intended to be observable. Hardly anyone would object to the coffee machine
internally maintaining its balance in Eurocents, but the displayed text could not
be changed to French without causing customer complaints. a

The grey box approach to data types aims to make such distinctions explicit,
and to provide safe refinement rules for specifications like the above. Because
we want to model both the specification language notion of “observability” and
the programming language based notion of “visibility” (i.e. observability plus
modifiability), the state of a grey box data type should in general be partitioned
into three parts: readable components, modifiable components, and private com-
ponents. The meaning of modifying a component is more complicated than in
a programming language, because states of grey box data types have predicates
on their components which need to be preserved. Thus, we need to ask: when

! We will call this predicate the state predicate and not the state invariant, because
the state predicate is an invariant but not necessarily the strongest invariant that
actually holds.

should modification be allowed, and what effect should it have on other compo-
nents which are linked to it by the state predicate? This is an instance of the
well-known framing problem discussed in e.g. [3,11]. In terms of the refinement
calculus [14], the question we need to ask is: what is the frame F in our de-
sired specification F:[p , (z'=z7 A p)] where p is the state predicate? Our choice
is the following (possibly rather arbitrary): non-modifiable variables cannot be
changed indirectly, and modifiable components only explicitly (i.e., the frame
F contains only the variable =z itself). In order to allow modifiable components
which are “linked” by the predicate to be changed together, we allow simulta-
neous changes. Thus, we assume the following principle:

The values of a collection of modifiable components can at any time be
changed to values such that the state predicate is maintained by leaving
all other components unchanged.

This is not an ideal solution, ideally one would want to specify that a change
in one component should induce a minimal change in the other components
certainly private components should be allowed to be affected. However, any
specification of “minimal change” would become unwieldy. The solution above
satisfies at least two desirable properties: it induces no restrictions if the state
predicate is true, and it results in moderately simple specifications and refine-
ment rules further on.

To properly express grey box data types, we have to introduce some 7
specifics, which we will assume are familiar to the reader from now on state
spaces, operations, initialisations, etc. are schemas. Let a subspace of a schema
S be any schema A such that A < S [A (the operation | denotes projection of
a schema onto the components of another one — we will sometimes use a brack-
eted list of variables for its second argument; projection is defined as existential
quantification over the “other” components). Two schemas are disjoint if they
have no common components.

Definition 1 (Grey box) A grey box data type is a tuple
(State,Read,RW ,Ops,Init) such that (State,Ops,Init) is a black box data type
(called the wunderlying black box), and Read and RW are disjoint subspaces
of State, denoting the read-only components and the modifiable (read-write)
components. O

Example 2 A grey box specification using our earlier coffee machine state
schema, making explicit that display is observable and money is not, is
(CM ,CM | (display),[],{Coin,Cof fee},Init) where

CoinValues={1,2,5,10,20,50,100}

_Coin _Init
ACM CcCM'
coin?:CoinValues

money’ =0

_Coffee
ACM

money' =money + coin?

money’ =money—35

The read-only components are given by the projection of C M to the component
display, which is a schema containing display as its only component and as its
predicate that display has one of the values that C M might assign to it. Thus,
display is always observable.

[] represents the empty schema, so there are no modifiable components in
this example. It would not make sense to attempt to make money modifiable,
because modifying money would only be allowed when that had no effect on
display, e.g. when money > 35. Besides, it would allow changing the balance by
an arbitrary amount, even a negative one. O

A grey box data type (State,Read,RW ,Ops,Init) can be interpreted as a
black box data type based on the underlying one, which has an extended set
of operations: observing operations for every component in Read A RW, and a
simultaneous modification operation for all components in RW.

Definition 2 (Interpretation of a grey box) The black box interpreta-
tion of a grey box (State,Read,RW ,Ops,Init) is (State, OpsU{ M od}UObs, Init)
where Obs contains for every component z:T of Read /A RW the operation

_ Obsx
Z State
AR A

=2z

Let the components of RW be z;:T; (i=1..n), then Mod is given by

— Mod
ARW
=(State \ RW)
z?:T; (i=1..n)

Vi:l..nexg' =x7?

O

Note that this is not the only possible interpretation of a grey box as a black
box: the observability of components could also be represented by extending the
underlying black box by a finalisation. We will further discuss this in Sect. 5.

Example 3 In the coffee machine (Example 2) the interpreting black box
contains as the only extra operation:

—_Obsdisplay
=ECM
display!: String

display! =display

This corresponds to our initial intuition that display really was observable. Now
this is made explicit by the operation Obsdisplay which can always be performed
and outputs the observable value. O

Example 4 An (imaginary) ancient machine for displaying four bit numbers
has four switches, a handle, and a display. When you turn the handle, the display
changes to the number represented by the current setting of the switches. This is
specified by the grey box (Anc, Anc [(disp) ,Anc\ (disp),{Handle},Init) where

bit={0,1} .
_Anc —Im‘f
swl,sw?2,sw4,sw8: bit Anc
dZSpN d?:SpIZO
_Handle
AAnc

Z(Anc \ (disp))
disp' = swl + 2xsw2 + 4xsw4d + 8*sw

The interpretation as a grey box contains observation operations

_ Obsdisp — Obsswl
EAnc EAnc
disp!:N swll:bit
disp!=disp swl!=swl

(and similarly for the other switches), plus a modification operation

__Mod

AAnc
swl? sw2?, swd? sw8? : bit

disp' =disp

swl'=swl? A sw2' =sw2? A swd’ = swd? A\ sw8& = sw&?

3 Refinement of Grey Box Data Types

To use grey box data types in developments, we need to define a refinement
relation for them. Clearly we could take the approach that all grey boxes need
to be replaced by their interpreting black boxes, and do refinement on those.
This is always a possibility, however we would like to be able to stay within the
grey box domain as long as possible. The grey box refinement relation will be
based on refinement of their interpreting black boxes: two grey boxes are in the
grey box refinement relation when the black boxes that interpret them are in
the standard black box refinement relation.

Operation refinement (i.e., refinement in which the state space does not
change) of grey boxes is not a very interesting issue. The rules for the operations
are just the same as for black box operation refinement, which follows from the
fact that every operation in the grey box becomes an operation in the black
box and the fact that the rules for operation refinement are really independent
between the various operations. In the interpretation as black boxes, non-trivial
operation refinement of operations Obsz is not possible because these operations
are already total and deterministic. Operation refinements of the modification
operation M od are possible, however they will not normally result in black boxes
that represent grey boxes. (But they could implement some of the more sophis-
ticated methods for modification of linked variables, which is reassuring.)

Example 5 Consider the grey box (S,S [(z),[],9,Init) where

_S _ Init
z,y,2:N S’
y=1+ 2 z=y=0

Even if it does define z to be modifiable, its modification operation Mod is very
limited because it only allows z to change when that incurs no change in y or z,
i.e. when z “changes” to its current value. However, one could imagine a more
sophisticated modification operation on z which leaves z unchanged and changes
y accordingly

_ Mod?2
AS
z7:N

which is an operation refinement of Mod (but no longer the modify operation of
any grey box data type). |

In data refinement of grey box interpretations, we cannot change any of the
observable state components. This fits with the interpretation of grey box data
refinement as inheritance, however we will see how it can be removed in a later

section. It follows from two issues: first, the type of z! in Obsz cannot change in
data refinement, because inputs and outputs are not changed in data refinement.
Second, the predicate of Obsx can change in data refinement, but when it no
longer has the shape £ =z! it is no longer an observation operation introduced in
the black box interpretation of a grey box. Thus, Obsx will have to keep variable
z, and as a consequence so will the state. Thus, data refinement between two
grey boxes will in the most general case be between (AS,Read, RW ,AOps,AI)
and (CS,Read,RW ,COps,CI), using a retrieve relation R whose signature is
ASACS (with AS and C'S sharing all but their private components). The rules
for initialisation and between AOps and C'Ops will be the same as those for the
underlying black box. For completeness, these have been included in Appendix A.
Now we need to investigate what refinement conditions derive from the implicit
operations.

Observation operations The precondition of any observation operation is true for
all possible states. Thus, the applicability condition for observation operations
reduces to true. The correctness condition for observation operations also reduces
to true because the state is unchanged and the output equals a component that
is unchanged in data refinement.

Modification operation The analysis for the modification operation is slightly
more complicated. Two crucial observations are that it is a deterministic oper-
ation, whose precondition is that its after-state is allowed.

Definition 3 For schemas A and B, the schema A?pg denotes the schema
obtained from A by decorating every component from B with a “?”. Also, A7 4
gets abbreviated to A?. O

Using this convention, pre Mod=State?gw. Applicability then becomes
AS?rw AR = CS?gw, and correctness between AMod and C M od becomes
RAAModANCMod = R' — informally, changing the same modifiable variables
to the same values in two linked states should result in linked states afterwards.

Definition 4 (Grey box data refinement) The grey box data type
(CS,Read,RW ,COps,CI) is a data refinement of (AS,Read,RW ,AOps,Al)
when there exists a retrieve relation R whose signature is ASACS such that

underlying black boxes (CS,COps,CI) is a black box data refinement of
(AS,AOps,AI) using retrieve relation R (cf. Appendix A).

modifiability Any modification in the concrete type is possible when it is pos-
sible in the abstract type:
VAS; CS; RW? e ASTpwAR = CS?rw

correct modification For AMod and CMod the modification operations of
the two types (cf. Definition 2):

VAS; CS; AS'; CS'; RW? e RAAModNCMod = R’ |

First we will present (contrived) examples of data refinements that fail to hold
due to either of the grey box specific conditions, these demonstrate that the
new conditions are independent. Then we will give one example of correct data
refinement.

Example 6 The grey box data type (CS,[],[z:N],COps,CI) is not a data
refinement of (AS,[],[z:N],AOps,AI) for the given retrieve relation R:
_AS _CS _R
z,y:N z,2:N AS
cs
r=yVz=y+1 T=2
y=z

It fails on the modifiability condition, because in the state where z=y=2 in AS,
z may be modified to 3, whereas in the corresponding state in C'S, i.e. where
z=z=2, it may not. In terms of the interpretation, the modification operation
allows £?=3 in the first but not in the second. |

Example 7 Consider the grey boxes (5,5 | (z),[],0ps,InS) and
(T.T | (),]],0ps, InT)
_S T
z,y:N z,2:N

z=yVz=y+1

r=zVzr+1=z

_InS

Sl

z'=1

_InT
T/
z'=1

with retrieve relation R = [S; T ‘ T:U] When z,y=5 in S, z may be modified
to 6 (leaving y unchanged). A related state in T is 2=>5,z=6 and also here x
may be modified to 6 leaving z unchanged. However, the resulting states are
unrelated. Thus, in this case refinement fails on the condition of modification
correctness. o

Example 8 A first attempt to extend the machine of Example 4 with negative
numbers could be to add a third, “-1” position to all of the switches. This would
result in the grey box (Anc2, Anc2 [(disp), Anc2\ (disp) ,{ Handle} , Init) where

bit={0,1,-1} .
_Anc2 —Init ;
swl,sw2,sw4,sw8: bit Anc2
dZSpZ d?:SpIZO
_Handle
AAnc2

Z(Ane2 \ (disp))
disp' = swl + 2xsw2 + 4xsw4d + 8*sw8

Using Anc itself as the retrieve relation, the underlying black boxes are clearly
related by data refinement. Both modification operations are total, so the modi-
fiability condition is satisfied. Correct modification follows from the fact that the
concrete modification operation coincides with the abstract one on their com-
mon domain, and that the retrieve relation is the identity on that domain. (We
do not need to consider the observation operations in the interpretations at all
because they will be refinements thanks to the grey box formalisation.) O

The data refinement rule given above for grey boxes is not complete. Clearly a
grey box which has an ezplicit operation of the form Obsx = [ES szl T ‘ z! :.7:]
for a private variable z is equivalent (in the interpretation as a black box, at
least) to the grey box which has included z in the observable variables instead.
Thus, for a complete refinement rule one should consider the interpreting black
boxes rather than the grey boxes but we cannot think of any examples of
incompleteness which are less artificial than the one given.

A more serious issue with grey box refinement is that it requires, throughout
stepwise development, every observed variable to remain present as a state vari-
able, even if the information that is to be “observed” could also be constructed
from the state in another way. This problem is overcome by using so-called dis-
play boxes instead.

4 Display Boxes

A variant on the grey box data type is the “display box” data type, which has
no directly observable components and no modifiable components, but explicit
“observations” or displays. These observations relate the state to some output
type, and should be total, i.e. there is no situation in which the observable aspect
of the state can not be observed.

Example 9 The state space of our initial coffee machine could be cleaned up
by separating out the display field and having that as a display instead:

~ CM2
money:N

___Display
CM2
display!: String

money=0 = display!="Insert 35p then press Coffee"
money > 35 = display!="Press Coffee"

O<money<35 = display! ="Insert" ™ (shownum (35—money))

~n

p more then press Coffee"

Definition 5 (Display box) A display box data type is a tuple
(State,Ds,Ops,Init) such that (State,Ops,Init) is a black box data type, and
every element D of the set Ds is a schema on State and some other (“output”)
type, such that D is total, i.e. D | State= State. O

The informal interpretation of a display D is that it gives an output for every
possible state. If each of the displays outputs the value of one state variable,
the display box has the same interpretation as a grey box without modifiable
variables. (Modifiable displays form an instance of the view update problem, and
will be discussed later on.) The interpretation as a black box is very close to the
display box: it just involves making = State explicit in every display.

Definition 6 (Interpretation of a display box) The display box
(State,Ds,Ops,Init) is interpreted as the black box (State,Ops U Disps,Init)
where Disps contains for every element D of Ds the operation DA = State. O

Example 10 The coffee machine could be specified as the display box
(CM2,{Display},{Coin,Cof fee},Init) and its interpretation would be the black
box (CM2,{Coin,Cof fee,(DisplayN=CM2)},Init). (The only specification
freedom that is lost by turning a state component into a display is the pos-
sibility to specify, for a non-functional display, which of the possible display
values is to be chosen in the initial state.) |

As in the case of grey boxes, we need to define refinement for display boxes,
by translating back refinements of interpreting black boxes. For this purpose, we
will employ the technique of calculating most general data refinements [19, 2].
The correctness and applicability conditions for the most general data refinement
of a display operation reduce to true.

Definition 7 (Display box refinement) The display box
(AS,ADs,AOps,AI) is data refined by display box (CS,CDs,COps,CI) using
retrieve relation R with signature ASAC'S if

underlying black box (AS,AOps,Al) is data refined by (C'S,COps,CI) using
retrieve relation R.

displays The displays in ADs and C'Ds can be matched in pairs AD,C D such
that CD is an operation refinement of (3 AS ¢ ADAR)V—- (3AS e R). O

The calculated most general data refinement of AD is actually (3 AS ¢ ADAR),
however, this is not a total operation, which is required for displays. The given
expression is the most general total data refinement of that, totalising it by
allowing any display for states that are unrelated by the retrieve relation.

Example 11 Having redefined the coffee machine of Example 2 as a display
box in Example 3, we can now present the internal adaptation of the European
common currency as a display box refinement. With retrieve relation

___Exchange
money,geld:N

geld=3xmoney

we have that the display box (CM2,{Display},{Coin,Cof fee},Init) is data
refined by (KM {Zeige},{Muenze,Kaf fee},Anfang) where

CoinValues={1,2,5,10,20,50,100}

_Muenze —Anfang
AKM KM
coin?:CoinValues geld' =0
geld = geld + coin?3 _Kaffee
AKM
geld = geld—105
___Zeige
KM

display!: String

geld=0 = display!="Insert 35p then press Coffee"
geld > 105 = display!="Press Coffee"

0<geld<105 = display! ="Insert" ™ (shownum ((105—geld) div 3))
“"p more then press Coffee"

The calculated data refinement for Display would leave display! unspecified
when geld is not divisible by 3, the operation Zeige is the (syntactically) simplest
deterministic operation refinement of that.

The link to the grey box example of the same coffee machine is also given
by a display box refinement. If we refine CW2 to CW using CW as the retrieve
relation, this introduces display as a state component with the obvious value,
then the calculated new display will be

__NewDisp
CwW2
display!: String

display! =display

whose black box interpretation is of course identical to the implicit operation
Obsdisplay in the grey box. |

Display boxes have the advantage over grey boxes that they allow indirect ob-
servations of variables, which in turn allow a broader range of data refinements.

However, there is also a downside to using display boxes: defining modifiable
displays is problematic. This is very similar to the well-known and extensively
studied view update problem in databases [1], and to linking displays and up-
dates in visualisation systems [13,15]. Displays are defined in terms of state
variables, but it is usually not clear how an explicit change in a display should
be translated back to changes in those variables.

Example 12 Given the display box data type
(WCFinal,{Voor,ByShearer},{Doelpunt,Goal},KickO f f) where

team = Engl | Holl
_WCFinal — Doelpunt
goals:team — N ﬁinal
KickOff goals' Holl =goals Holl + 1
_WC’Final’ goals' Engl=goals Engl
goals' Holl=0 —Goal -
goals' Engl=0 ﬁmal
ByShearer goals' Engl=goals Engl + 1
_WC’Final goals' Holl=goals Holl
scored!: N Voor
Scored!:goals Engl WCFinal
lead!:Z
lead!=goals Holl—goals Engl

we could not make any of these displays modifiable: it is impossible to determine
the number of goals scored by either side from the difference between the two,
or from the number of goals scored by one side only. As it happens, from both
displays together we can draw enough information, but in general even this need
not be the case. |

Another example of a display that could not be made modifiable is the one in
the coffee machine: how much money is in the machine when the display reads
"Press Coffee"?

We could introduce a data type with updateable displays by introducing the
restriction that updateable displays are injective. However, this would result
in seriously constrained data refinement rules, and thus we have omitted this
alternative.

5 Summary and Conclusions

We have defined the concepts of grey box and display box data types, by giv-
ing interpretations of these in terms of the traditional black box data types. By
use of many examples we have shown that our alternative types can be used

to simplify specifications, and to formalise informal styles of specification and
development which assume that certain state components are hidden. In partic-
ular, we have given refinement rules which operate on grey boxes and display
boxes directly, whose soundness follows from black box refinement rules between
their interpretations. The derived refinement rules were considerably simplified
from the original black box interpretation refinement conditions, due to the ex-
tra structure of the specifications. In particular, observability of variables in grey
boxes is defined in a way which ensures that it imposes no conditions on data
refinement. Grey boxes have the advantage that they may include modifiable
variables, and the disadvantage that only limited forms of data refinement (viz.
those that change only private variables) are possible. In display boxes, the latter
disadvantage disappears, at the price of losing the option for implicit modifica-
tion. However, since both are defined in terms of their underlying black boxes
with extra operations added to them, a mixture of grey box and display box
data types seems well possible.

The paper has left unexplored the possibility of defining observable variables
and displays in terms of a finalisation. The standard presentation of black box
data types has an empty finalisation, which means that the only way for the
system to communicate values to its environment is by the outputs of operations.
In the most general model [8] this communication also (or only) happens after the
system has completed its “run” in a finalisation step. Any state component (for
observable variables) or expression in terms of state components (for displays)
that is included as a system output in the finalisation has to be viewed as
“observable”, because finalisation may happen at any time. Thus, in interpreting
grey and display boxes as black boxes, we could have included displays and
observation of variables in a finalisation rather than in new operations. This
may be somewhat “cleaner” although semantically there should be no difference,
because the rules for refinement between operations with outputs are derived
from those for systems where all output occurs at finalisation [19].

References

1. E. Bertino and G. Guerrini. Viewpoints in object database systems. In A. Finkel-
stein and G. Spanoudakis, editors, SIGSOFT ’96 International Workshop on Mul-
tiple Perspectives in Software Development (Viewpoints '96), pages 289-293. ACM,
1996.

2. E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Coupling schemas: data refine-
ment and view(point) composition. In D.J. Duke and A.S. Evans, editors, Northern
Formal Methods Workshop, Electronic Workshops In Computing. Springer, 1997.

3. A. Borgida, J. Mylopoulos, and R. Reiter. And nothing else changes: The frame
problem in procedure specifications. In Proc. 15th International Conference on
Software Engineering, Baltimore, Maryland, May 1993. IEEE Computer Society
Press.

4. K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G.T. Leavens, and
B. Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221—
242, 1996.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

. C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-based Distributed Systems,
volume 2, pages 423-438. Chapman & Hall, 1997.

M.-C. Gaudel and J. Woodcock, editors. FME’96: Industrial Benefit of Formal
Methods, Third International Symposium of Formal Methods Europe, LNCS 1051.
Springer-Verlag, March 1996.

A. Goldberg. Smalltalk-80 — The language and its implementation. Addison-
Wesley, 1983.

He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In B. Robi-
net and R. Wilhelm, editors, Proc. ESOP 86, LNCS 213, pages 187 196. Springer-
Verlag, 1986.

He Jifeng and C.A.R. Hoare. Prespecification and data refinement. In Data Refine-
ment in a Categorical Setting, Technical Monograph PRG-90. Oxford University
Computing Laboratory, November 1990.

ITU Recommendation X.901-904 ISO/IEC 10746 1-4. Open Distributed Pro-
cessing - Reference Model - Parts 1-4, July 1995.

D. Jackson. Structuring Z specifications with views. ACM Transactions on Soft-
ware Engineering and Methodology, 4(4), October 1995.

V. Kasurinen and K. Sere. Integrating action systems and Z in a medical system
specification. In FME’96 [6], pages 105-119.

G.J. Klinker. An environment for telecollaborative data exploration. In Proceedings
Visualization '93 — sponsored by the IEEE Computer Society, pages 110-117, 1993.
C. C. Morgan. Programming from Specifications. Prentice Hall International Series
in Computer Science, 2nd edition, 1994.

J.C. Roberts. On encouraging multiple views for visualization. In Information
Visualization IV’98, London, July 1998. IEEE Computer Society.

G. Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, FME’97:
Industrial Application and Strengthened Foundations of Formal Methods, LNCS
1313, pages 62 81. Springer-Verlag, September 1997.

J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

M. Weber. Combining statecharts and Z for the design of safety-critical control
systems. In FME’96 [6], pages 307 326.

J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice
Hall, 1996.

A Data Refinement Rules for Black Boxes

Given black box data types A=(AS,AOps,AInit) and C=(CS,COps,CInit),

th

is

en C is a data refinement of A if? using retrieve relation R (whose signature
ASACS) if the following conditions hold:

initialisation VCS e CInit = (3 AS e AInitAR)

2

“if” but not “iff”, these are the conditions for forwards simulation, which are only

sufficient for data refinement in combination with those for backwards simulation (cf.
[8,19]). However, operations introduced in this paper are deterministic, for which
case forwards simulation is sufficient.

and the operations in AOps and COps can be matched in pairs AOp,COp both
with input z7: X and output y!: Y, such that for each of those pairs the following
two conditions hold:

applicability C'Op should be defined on all representatives of AS on which
AOp is defined:
VAS; CS; z?7:X e pre AOpAR = preCOp

correctness wherever AOp is defined, COp should produce a result related by
R to one that AOp could have produced:

VAS; CS; CS"; z7:X; yl: Y e
pre AOpACOpAR = FAS e« RFAAOp

