University of

"1l Kent Academic Repository

King, Andy (1995) Share x Free Revisited. University of Kent, School of
Computing, University of Kent, Canterbury, UK

Downloaded from
https://kar.kent.ac.uk/21294/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21294/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Share x Free Revisited

Andy King

Computing Laboratory,
University of Kent at Canterbury,
Canterbury, CT2 7NF, UK.

e-mail: amkl@ukc.ac.uk

Abstract

Analyses for possible variable sharing and definite freeness are important both in
the automatic parallelisation and in the optimisation of sequential logic programs. In this
paper, a new efficient approach to analysis is described which can infer sharing and freeness
information to an unusually high degree of accuracy. The analysis exploits a confluence
property of the unification algorithm to split the analysis into two distinct phases. The two
phase analysis improves efficiency by enabling each phase of the analysis to manipulate
relatively simple data-structures. The precision follows from the combination of domains.
The analysis propagates groundness with the accuracy of sharing groups and yet infers
sharing and freeness to a precision which exceeds that of a normal freeness analysis. High
precision compoundness information can be derived too. The usefulness of the analysis is
demonstrated with worked examples. Correctness is formally proven.

1 Introduction

Abstract interpretation for sharing and freeness are important topics of logic programming.
Sharing (or aliasing) analysis conventionally infers which program variables are definitely
grounded and which variables can possibly be bound to terms containing a common variable.
Freeness analysis usually infers which program variables are free, that is, which variables
can never be bound to non-variable terms. Compoundness analysis [21, 9] is the dual of
freeness analysis in that it detects which variables are guaranteed to be bound to non-variable
(compound) terms. Compoundness analysis, as applied in [9], additionally traces the principal
functor of variable bindings. Compoundness information can aid indexing. Applications of
sharing and freeness information are numerous and include: the sound removal of the occur-
check [25]; optimisation of backtracking [5]; the specialisation of unification [27]; and the
identification [28, 13] and efficient exploitation [23, 14, 24] of independent and-parallelism.
Early proposals for sharing, freeness and compoundness analyses include [29, 12, 20], [23] and
[21].

This paper is concerned with a semantic basis for sharing, freeness and compoundness
analysis, and in particular, the justification of a high precision abstract unification algorithm.
Following the approach of abstract interpretation [10], an abstract unification algorithm (the
abstract operation) is constructed by mimicking the substitutions (the concrete data) which
arise in a standard unification algorithm [17] (the concrete operation) with finite sharing,
freeness and compoundness abstractions (the abstract data).

The accuracy of the analysis depends, in part, on the substitution properties that the
sharing abstractions capture. The popular sharing and freeness domain Share x Free [23],
for instance, captures possible sharing and definite groundness in its Share component; and
definite freeness in its Free component. The structure of Share is particularly rich, implicitly
encoding covering information [9]. Covering, in short, permits groundness to interact nicely
with sharing to remove redundant aliasing. For finiteness, Share X Free is parametrised by
a finite set of program variables, Pvar, which typically equate to the variables of a clause.
To be precise, Sharepy.r = @(p(Pvar)) and Freepya, = p(Pvar). If Pvar = {z,y,z}, for
instance, the substitution ¢ = {z — f(a,y,b), 2 — g(y)} would be encoded by the pair
(¢°,¢7) where ¢° = {{z, y, 2}, 0} and © = {y}. The pair indicates that a variable occurs
through z, y and z, that is, they share; and that y is free.

Tracking freeness often brings a two-fold win: first, it enlarges the class of ensuing optimi-
sations [28, 13]; second, it improves the groundness and sharing [23]. Groundness and sharing
is refined since freeness relates to the structural or type properties of a substitution. Precision
is improved as a result of the synergy between sharing and type analysis. By keeping track
of type information, it is possible to infer more accurate sharing information. Conversely,
more accurate type information can be deduced if sharing is traced. Specifically, by tracking
freeness [23, 9, 26] (or alternatively a type property called linearity [25, 7, 15]), a sharing
analysis does not always have to assume that aliasing is transitive [7]. If variables can be
inferred to be free, worst case aliasing need not be assumed in an analysis.

Sharepyar X Freepyqr, however, only captures shallow type information: it traces the
freeness of terms to which a variable can be bound but not the freeness of sub-terms. The
usefulness of tracing sharing and freeness to the level of sub-terms has been reported before
[16] but the analysis proposed in [16] is difficult to implement efficiently. This paper remedies
this deficiency by augmenting the domain Sharepyq, X Freepyq, with a simple but powerful
type component Sub%vw, and by adopting a new, modular approach to analysis. The domain
Sub%vm, consists of a set of canonical substitutions on Pwvar which encode structure. The
composite domain is a subset of Sub%vm, X Sharepyar X Freepyq,, denoted Typepyqer, and
might typically represent ¢ by

(bc ={z — f(a, a?, b),y — 3/)\7 Z = 9(21)}7

(b]: = {xzv @/)\}
The triple indicates sharing between the second argument of term bound to z (22), y (y*),
and the first argument of the term bound to z (2!). The triple also records the freeness of
both 22 and y*. It thus represents sharing and freeness to the precision of sub-terms. In
addition, it captures useful compoundness information too, for instance, that = is bound to a
term with a principal functor f and an arity of 3.

In contrast to other approaches [16], high precision does not come at the expense of gross
inefficiency. The analysis exploits a confluence property of the unification algorithm (that all
unifiers are equal up to renaming [17]) to split the analysis into two distinct phases. In the
first phase compoundness information is tracked. In the second phase sharing and freeness
is traced. The compoundness phase only operates on the compoundness component of the
domain. Similarly, the sharing and freeness phase only operates on the sharing and freeness
component of the domain. Since each phase of the analysis need only manipulate its own
(relatively simple) data-structure, efficiency is maintained without sacrificing precision. The
modularity also leads to a well-structured proof of correctness.

The exposition is structured as follows. Section 2 describes the notation and preliminary
definitions which will be used throughout. In section 3, the focus is on abstracting data. An
abstraction for substitutions is constructed which expressively captures sharing, freeness and
compoundness properties of substitutions. In section 4, the emphasis changes to abstract-
ing operations. Abstract analogs for renaming, unification, composition and restriction are
defined in terms of an abstract unify operator [14]. An abstract unification algorithm is
defined which, in turn, describes an abstract analog of unify. (Once an abstract unify op-
erator is specified and proved safe, a complete and correct abstract interpreter is practically
defined by virtue of existing abstract interpretation frameworks [2, 18, 24].) Correctness is
also proved. For reasons of brevity and continuity, however, the proofs are relegated to an
appendix, section 7. Finally, sections 5 and 6 present the related work and the concluding
discussion.

2 Notation and preliminaries

To introduce the analysis some notation and preliminary definitions are required. The reader
is assumed to be familiar with the standard constructs used in logic programming [19] such
as a universe of (possibly super- and sub-scripted) variables (u,v €)Uwvar; the set of terms
(t €)Term formed from Uwvar and the set of functors (f,g,h €)Func (of the first-order
language underlying the program), and the set of program atoms Atom. Func is considered
to include the set of constants C'onst. It is sometimes convenient to abbreviate f(#1,...,%,)
to f(t).

Let Pvar denote a finite set of program variables — the variables that are in the text
of the program; and let var(o) denote the set of variables in a syntactic object o. Also
suppose that the set of finite sequences of positive integers is denoted by § = {1,2,...}*. S
is considered to include the empty sequence A. If - denotes concatenation of sequences, the
application of a term ¢ to the sequence s, t[s], can be defined by the partial mapping t[A\] = ¢
and f(t1,...,t,)[¢s] = t;[s]. Hence, f(u,g(v))[21-A] = v, f(u,g(v))[1-A] = u, and f(u, g(v))[A]
= f(u,g(v)).

2.1 Substitutions

A substitution ¢ is a total mapping ¢ : Uvar — Term such that its domain dom(¢) =
{uw € Uvar| ¢(u) # u} is finite. The application of a substitution ¢ to a variable u is denoted
by ¢(u). Thus the codomain is give by cod(¢) = Uuedom(gyvar(p(u)). A substitution ¢ is
sometimes represented as a finite set of variable and term pairs {u — ¢(u) | u € dom(¢p)}. The
identity mapping on Uwvar is called the empty substitution and is denoted by e. Substitutions,
sets of substitutions, and the set of substitutions on Uwvar are denoted by lower-case Greek
letters, upper-case Greek letters, and Sub.

Substitutions are extended in the usual way from variables to functions, from functions
to terms, and from terms to atoms. The restriction of a substitution ¢ to a set of variables
U C Uwar and the composition of two substitutions ¢ and ¢, are denoted by ¢ [U and ¢o¢
respectively, and defined so that (¢o)(u) = ¢(¢(u)). Restriction lifts to sets of substitutions
by: @ [U ={¢ | U|¢p€ ®}. The preorder Sub (C), ¢ is more general than ¢, is defined by:
¢ C ¢ if and only if there exists a substitution ¢» € Sub such that ¢ = 1 o ¢. The preorder
induces an equivalence relation &~ on Sub, that is: ¢ ~ ¢ if and only if ¢ C ¢ and ¢ C ¢.

A useful related preorder Sub (Epyq,) is defined by: ¢ Cpyqr ¢ if and only if there exists a
substitution ¢ € Sub such that ¢ [Pvar = (1o ¢) [Pvar.

2.2 Equations and most general unifiers

An equation is an equality constraint of the form @ = b where a and b are terms or atoms.
Let (e €) Fgn denote the set of finite sets of equations. The equation set {e} U F, following
[7], is abbreviated by e: E. There is a natural mapping from substitutions to equations, that
is, eqn(¢) = {u = t,|u— t, € ¢}. Thus, when unambiguous, substitutions will be expressed
as equations. The set of most general unifiers of F, mgu(F), is defined operationally [14]
in terms of a predicate mgu. The predicate mgu(F, ¢) which is true if ¢ is a most general
unifier of F.

Definition 2.1 (mgu) The set of most general unifiers mgu(E) € p(Sub) is defined by:
mgu(E) = 16| mgu(E,)} where

)
n(E),()Avgvar(t)An={v — t}
b {ti=t} UE. Q)

By induction it follows that dom(¢) N cod(¢) = 0 if ¢ € mgu(F), or put another way, that
the most general unifiers are idempotent [17].

Following [14], the semantics of a logic program is formulated in terms of a single unify
operator. To construct unify, and specifically to rename apart program variables, an
invertible substitution [17], T, is introduced. It is convenient to let Rvar denote a universe of
renaming variables distinct from Uvar, UvarN Rvar = (), and suppose that T : Uvar — Rvar.
T is assumed to consistently rename super-scripted variables, that is, T(u®) = T(u)®.

Definition 2.2 (unify) The partial mapping unify : Atom x Sub x Atom x Sub — Sub is
defined by:

unify(a,¢,b,4) = (po @) [Pvar where p € mgu({¢(a) = T(¢(D))})

To approximate the untfy operation it is convenient to introduce a collecting seman-
tics, concerned with sets of substitutions, to record the substitutions that occur at various
program points. In the collecting semantics interpretation, unify is extended to umnify©,
which manipulates (possibly infinite) sets of substitutions.

Definition 2.3 (unify®) The mapping unify® : Atom x p(Sub)x Atom x p(Sub) — p(Sub)
is defined by:

unify*(a,®,b,0)= {66 € ® A Y eV A 8= unifyla,é,b,1)}

2.3 Linearity

Linearity relates to the number of times a variable occurs in a term [25, 7, 15]. A term is
linear if it definitely does not contain multiple occurrences of a variable; otherwise it is non-
linear. The significance of linearity is that the unification of linear terms only yields restricted
forms of aliasing. This is exploited (in proof 7.10) to simplify the proof of correctness. To be
more precise about linearity, it is necessary to introduce the variable multiplicity of a term ¢,
denoted x(t).

Definition 2.4 (variable multiplicity, x [7]) The variable multiplicity operator x : Term
— {0,1,2} is defined by:

0 if v does not occur in t
X(t) = max({xu(t) | u € Uvar}) where x,(t) = < 1 if u occurs only once in t
2 if u occurs many times in t

Lemma 2.1 states one restriction on a most general unifier which follow from unification
with a linear term.

Lemma 2.1 x(b) # 2 A var(a)Nvar(b)=0 A ¢ € mgu({a =0b}) =

1. Yu,u' € Uvar.u # u' A var(é(uw)) Nvar(p(u')) #0 = u & var(a) vV v’ ¢ var(a).

Lemma 2.1 represents one case of a three part result which is formally established in [15]. The
lemma differs from the corresponding lemma in [7] (lemma 2.2) because lemma 2.1 requires
that ¢ and b do not share variables. This is essentially a work-around for a subtle mistake in
lemma 2.2 [11].

3 Abstracting substitutions

Abstract interpretation clarifies how data is represented in the abstract by requiring the
relationship between the data and the abstract data to be made explicit. Because of the
compositional nature of Typep,q, this relationship is detailed in three steps. In the first step,
section 3.1, the focus is on the Sub%vm, component and its abstraction and concretisation
mappings. Section 3.2, the second step, is concerned with the Sharep,q, X Freepyq, compo-
nent. Finally the third step, section 3.3, explains how the Sub%vm,, Sharepyq, and Freep,q,
components fit together to produce Typepyar-

3.1 Abstracting substitutions with SubS

Puoar

The ¢ example of section 1 captures the compoundness of ¢ in ¢ = {z — f(a,22,b),y
v, 2 — g(z")} and the sharing and freeness of the variables cod(¢¢) = {22, y*, 2!} by ¢® and
&7 . The intuition behind the compoundness abstraction ¢C is that it represents substitutions
¢ for which: ¢ is more general than any ¢. One advance of this approach is that it permits
compoundness to be expressed in simple terms. One disadvantage, however, is that since Sub
is a pre-order (rather than a poset), the compoundness of ¢ could equally be represented by
{z — fla,u,b),y — v,z — g(w)}. Thus, in general, there is not a unique best substitution
for representing the compoundness of ¢.

. C
3.1.1 On the domain Subp,,,

Representation problems can be straightforwardly avoided, however, by defining the com-
poundness domain to coincide with a poset of substitutions. One suitable and particularly
simple poset can be constructed from substitutions with codomain variables super-scripted
by integer sequences drawn from §.

To be more precise, if Uvar® denotes the variables of Uvar which are super-scripted by
S, then the substitutions of the poset are defined to map variables of Uwar into a set of
terms with super-scripted variables dubbed Term®. Term? is formally defined by: Term®
= {t € Term|var(t) C Uvar®}. In fact, to conform to a poset, the variables must be
consistently super-scripted. The particular notion of consistency is formalised by the term
set Term)

u*

Definition 3.1 (T'erm?) Term? is the least set defined by:

f € Func A
Term? = {u’} U {f(tl, ooy ty) € Term), 1 € Terms' A AL € Termsn

In Term?, variables are consistently super-scripted in the sense that the position p of a
variable in a term ? is give by its super-script, that is, t[p] = u*P.

Example 3.1 Returning to the ¢ example of section 1, observe that the terms ¢¢(x), ¢¢(y)
and (bc(z) are consistently super-scripted in that

fla,z%,b) € Term), o€ Termz‘, g(z') € Term?

To flag the domain and codomain of a substitution, it is helpful to identify three classes of
substitution. Specifically, let ¢P € Sub? denote substitutions for which ¢ : Uvar® — Term:
let ¢“ € Sub® denote substitutions such that ¢¢ : Uvar — Term®; and finally let ¢® € Sub®
denote substitutions with ¢® : Uvar® — TermS. Informally, the D, C and B indicate whether
or not the domain, codomain or both annotated with sequence information.

The domain Sub%,,, is finally fleshed out by restricting the variable term bindings u — t,,
of Sub® to a particular form where u € Pvar and t, € Term).

Definition 3.2 (Sub%,,.) The domain Sub%, . is defined by:

Puoar Puoar

Puoar

Sub%, = {(bc € Sub®

dom(¢*) = Pvar A
Yu — t, € ¢¢. t, € Term)

The significance of the construction is that Sub%vm, (Cpyar) is a poset rather than a
pre-order. Moreover, when equipped with a top element fail¢, a lub L (corresponding to
unification) and a glb M€ (corresponding to anti-unification [17]), Sub%,,, U {fail°} (Cpoar)
is a complete lattice.

C

Puoar

3.1.2 On the mappings « and ’ylcjvar

The mappings a%,,, and 7%,,, are introduced to explain how compoundness abstractions
connect with substitutions.

Definition 3.3 (a%wr and ’ylcjvar) The abstraction and concretisation — mappings
0%pr 2 (Sub) — Sub%, ., and 7%,,, : Sub%,,, — ©(Sub) are defined by:

a%v(ﬂ’(é) = I—IC{¢C E SUb%UaT | ¢C EPUQT ¢ /\ ¢ E Q}
Vovar(6°) = {6 € Sub| ¢ Cpyar ¢}

Notice that a%, ({e}) = € where € = {u — u*|u € Pvar} and more generally u + t, €
a%, ., (®) for all u € Pvar.

Example 3.2 If p = {z — f(a,y,b), 2 — g(y)} and v = {z — f(y,z,¢)} with Pvar =
{z,y,2} then
par({i}) = {o = fla, 2% b),y = o 2 = g(21)}

0P ({V}) = {2 = f(z',2%,¢),y = y*, 2 = 2}
0Ppar ({1 v}) = {2 = f(a',2%,2%),y =y, 2 = 2}
3.1.3 On finiteness

For a given program Func is finite and therefore termination can be enforced by represent-
ing compoundness information to a predetermined depth bound k. The notion of depth is
formalised by a mapping depth : Term — {1,2,...} defined by:

depth(t) = 1 ift € Uvar vt € Const
ep] 1+ max({depth(t;)}y)ift € Func At = f(ty,... 1)

A natural depth-k widening can be defined by extending the depth mapping to substitutions:
depth(t) = max({depth(t,)|u— t, € ¢})

Definition 3.4 (/%) The widening /5 : Sub%,,, — Sub%,,, is defined by:

V) = LE{GE € Sulpuny | Cruar 6 A depth(oF) < k)
Observe that 5, (¢€) C %, .. (V$(4°)) as required for correctness.
Example 3.3 Adopting the p of example 3.2

Vi(@p ({1}) = {o = 2ty =yt 2 = 24
V(@ ({1})) = {& = fla,2®,0).y =y, 2 = g(=)}

3.2 Abstracting substitutions with Sharepye, X Freepya,

To keep the paper self-contained the Sharep,q, X Freepye, domain and its mappings will be
briefly reviewed.

3.2.1 On the domain Sharepye, X Freepyar

Sharepyq,y is formulated in terms of sharing groups [14, 24] which record which program
variables potentially share variables. A sharing group is a (possibly empty) set of program
variables. Freepyq,, on the other hand, represents the free program variables as a set.

Definition 3.5 (Sharepy,q, and Freepyq,) The domains Sharepyq, and Freepy,, are
defined by:
Sharepyar = p(p(Pvar)), Freepyar = p(Pvar)

The intuition is that a sharing group records which program variables are bound to terms

that share a variable. Sharepy,, X Freepy,, is finite since Pvar is finite.

3.2.2 On the mappings a‘]%far and 'VPvar

In the spirit of [24], the abstraction and concretisation mappings are constructed by lifting
two mappings, shpyar and frpyqr, to sets of substitutions. The mappings shpyar and frpyar
detail how a single substitution is abstracted.

Definition 3.6 (shpye and frpye,) The abstraction mappings shpya, @ Sub — Sharepyq,
and frpyar @ Sub — Freepyq, are defined by:

shppar (@) = {occpar(u, @) | u € Uvar}, occpyar(u,d) = {v € Pvar|u € var(¢(v))}
frevar(@) = {v € Pvar|var(¢(v)) € Uvar}

Example 3.4 Using the u, v and Pvar = {x,y,z} of example 3.2

ShPUaT(:u) = {OCCPUM(yv :u)v Q)} = {{xv Y, Z}v Q)}
$hpyar (V) = {0¢Cppar(y, V), 0¢cpyar(z,v), 0} = {{z,y},{z,z},0}
Irpvar(t) =4y}, frrvar(v) = {y, 2}

The abstraction shpyq, is analogous to the abstraction A used in [24]. Observe that for

¢ ~ @, 8thar(¢) = Sthar(SO) and fTPvar(¢) = fTPvar(@o)- The mapplng anar and 7Pvar
follow directly from shpyqr and frppar.

Definition 3.7 (anar and 'VPvar) The abstractz'on and concretisation mappings

a}%far D p(Sub) — Sharepyar X Freepye, and 'VPvar Sharepyar X Freepyar — o(Sub)

are defined by:

a}SDfGT(Q) = <a}sjvar(q))7 a]];—U(lT(Q)>7 7PU(IT(¢SF) 7]§UGT(¢S) m 7]§UGT(¢7)

where

a}sjvar(q)) = U¢€q>8hpva7°(¢)7 ’)/Ié;var(gbs) = {¢ | 8hPU0””(¢) g ¢$}
a]};var(q)) = m(beq)fTPvar(Qb), ’}/Ijj:var(qb]:) = {¢ | Qb]: g fTPvar(¢)}

Note that a®(0) = whereas a®(®) = {0} if ® is a set of substitutions which all ground
Puvar. This distinction is preserved in both Sharepyqa, X Freepyer and Typepyar.

Example 3.5 Continuing with example 3.4

aPtar({psv}) = (Ha,y, 2} {z ydo {2, 23,03, {y))

3.3 Abstracting substitutions with T'ypep,q,

The domain Typepyar is a strict subset of Sub%vm, X Sharepyar X Freepyqr, crafted so that

Typepyar is a complete lattice. The construction proceeds by first specifying the structure

of Typepyqr in section 3.3.1. Second, in section 3.3.2, the concretisation mapping ’ylcj‘gg';

introduced to formalise the relationship between T'ypepyqr and @(Sub). Third, in section 3.3.3,

the lattice p(Sub) (C)is used to induce a poset Typepyar (E€°7) which, when equipped with

a lub L7 and a glb M7 is elevated to a complete lattice. Fourth, in section 3.3.4, the glb
LCS7 and the 7637 are used to finally formulate the abstraction mapping a%2, , and thus
complete the construction of a Galois connection [10].

18

3.3.1 On the domain T'ypep,qr

The domain Typepyq, is formulated so that ’ylcj‘gg'; is injective. An injective concretisation

mapping is useful since it can be used to straightforwardly induce a poset (rather an a pre-
order) on Typepyq, from Sub (C). In short, the domain is constructed so that different
domain elements (in the abstract) represent different sets of substitutions (in the concrete).

Definition 3.8 (Typepyar) The abstract domain, Typepyar, is defined by:

¢C S Suz}%var/\

Typepoar = {(fail, 0,0)} U S (¢, U, U) | U € Shareqgey N U F# D A
U € FT@@COd((bC)

CSF

Puoar

3.3.2 On the mapping ~v
CSF

Puoar:

The relationship between T'ypepyqr and p(Sub) is made explicit by the mapping v

Definition 3.9 (7£37) The concretisation mapping v%57. : Typepyar — 9(Sub) is defined
by:

Yhar((6°,6%,¢7)) =
& | Pvar = ¢P o ¢ | Pvar A
Sheoaisc)(97) C ¢° A 67 C fropaeey(67)

It is assumed that y$37 ({ fail,0,0)) = 0. Notice how the definitions of a$37 requires the
Shpyar and frpyq, mappings to be parametrised by Pvar. The parameter is required because
the Share and Free components of Typep,q- record the sharing and freeness of the variables
of cod(¢“) which is not fixed. Note also that for ¢ = ¢, ¢ € Y557 (¢°57) if and only if

p € v%f(ﬁ,(qb“f). This follows because shpyer(0) = shpyar(9) and frpuar(0) = frpve(9) if
0 ~ 9.

Example 3.6 To illustrate the expressiveness of Typepyar, consider the properties of an
arbitrary substitution ¢ taken from ¥&57 (6“7 where

Puoar

{22 {22 21,0, {2 7))

sharing: The first argument of ¢(z) and @(z) do not share. This follows because z' and
2 do not occur in a sharing group of ¢°. Likewise, x never has any internal aliasing
under ¢. Put another way, x is linear [25, 7, 15], which in this case means that the
first, second and third argument of x are independent.

groundness: The third argument of ¢(z) is ground. This follows since the variables of
cod(¢Y) which ¢ ground, do not appear in ¢°.

freeness: The variable y is free under ¢ and the second argument of ¢(x) is also free. This
follows immediately from ¢” .

compoundness: Compoundness is captured in that ¢° shows that ¢(x) is compound with a
principal functor of [and an arity of 3.

covering: Covering is also implicitly captured by virtue of ¢°. For instance, x covers both v,
or more exactly, the first and second arguments of x cover y. Thus grounding x grounds
y; or more precisely, grounding the first and second arguments of x grounds y.

3.3.3 On the domain Typep,q, (continued)

A natural ordering T'ype pyar (ECS]:) can be induced from Sub (C) by ’yjc;gf;.
Definition 3.10 The preorder Typepya, (CCS7) is defined by: ¢°7 CCSF oS if and only
Zf ,}/CS}— (¢C$f) g ,}/CS}— (QOCS]:).

Puoar Puoar

Note that ’ylcj‘gg'; is monotonically increasing by definition. Typepyq, is carefully engineered
so that the preorder Typepyar (E¥°7) is also a poset. This is formally stated as lemma 3.1
and established by proof 3.1.

ECS]-')

Lemma 3.1 Typepyar (C 1S 6 poset.

The poset has a top element T¢S7 = (€, o(p(cod(¢°))),0) and a bottom element 157
= (fail,§,0) since 7557 (TCS7) = Sub and 7457 (1.°97) = . The bottom element is mean-
ingful and, in fact, represents goal failure. Specifically, in a top-down abstract interpretation
framework [2, 18, 24], it is possible for a goal to fail if it is called with some abstract substitu-
tions. Returning 157 for the success abstract substitution indicates that the goal can never
be satisfied under any calling substitution which the calling abstract substitution abstracts.

For the purposes of abstract interpretation [10], Typepya, (C°S7) is required to be a

complete lattice, preferably equipped with a lub L% which is straightforward to compute.

|_|C$]: (CSF

To succinctly define and later a widening 7;°7) it is convenient to introduce an

auxiliary mapping. The mapping is formulated as a substitution. More exactly, if ¢* =
{2 — a,2% — b,2" — g(z')}, it is helpful to define (ﬁ; = {z' — 2}, Informally, (EB
is constructed to map the codomain variables of ¢¥ to the domain variables of ¢*. More
formally, QZB = {up v u®|u® — t,, € V5 Aup € var(tys)}. A sufficient condition for QZB
to be well-defined is that t,, € Term? for all u; +— t,« € ¥". This, in fact, will always be

guaranteed by the context.

10

Definition 3.11 (U°S7) The mapping U7 : o(Typepyar) — Typepoar is defined by:

LEST (@957 = (€, 65, o) where

SOC — |—|C({ A(bC |¢CS]-' c (I)CS}'})
¢C=U ({ 8B(¢%) |67 € 8T AP o | Poar = ¢°))
S0}': N ({(b}' \ COd((bB) |¢C$}' c (I)CS}' A ¢B o SOC r Povar = ¢C})

It is assumed that M°(0) = fail so that U7 () = 197, Computationally, the lub L7
inherits much of its simplicity from the pair-wise union and intersection lub of Sharepyqr X
Freepyqr. The main novelty is that anti-unification [17] is required to compute the glb for
the Sub$,,, component.

Lemma 3.2 Typepyar (ECS]:) has a lub LUCST,

Example 3.7 To illustrate the calculation of LI°ST consider UCST ({uCSF €57 }) where Pvar
={z,y,2} and

pr = {a = fla,2hb), y =y, 2 — g(zH)}, {2 v, 21,0}, {2% y?, 21}

{et, 9} {2 223,03, {at 2%, 94, 7))

For conciseness put ©57 = UCST ({7 157 Y) and thus
= pt S = o= f(ah 0?2,y =yt 2 2

¢S = 1B UrBS) = ({a, o'}, Lo o, Y, (a2, 2, 0)
¢ = (1 \ cod(uP)) N (V7 \ cod(vP)) = {22, ™}

since

B =zt = a,2® = b, 20— g(2h), VP = {2t =)

/;B:{ZIHZA}v ;EIG

with pB o ¢ | Pvar = pu€ and vB o ¢ | Pvar = 1°.

The glb M7 can be defined (in the standard way [1]) in terms of the lub L°®7. To be more

precise, MESF(QUST) = ICSF ({OST | YpCoF ¢ 9UST (08 COSF ¢CSF) Corollary 3.1 and

ECS]:)

proof 7.3 document that T'ypepyqr (C is a complete lattice as a consequence.

ECS]:)

Corollary 3.1 Typepyar (C is a complete lattice.

CSF

Puoar

3.3.4 On the mapping «

CSF

Once the glb M7 is defined, the concretisation mapping determines the abstraction

Puvar
mapping a%‘zfr. This is spelt out in definition 3.12. The reason for explicitly introducing
o857 (rather than leaving its definition implicit) is to aid the synthesis of a constructive

: CSF
version of a7,

11

CSF

Puoar

Definition 3.12 (a$37) The abstraction mapping
by:

t p(Sub) — Typepyar is defined

CSF CSF CSF CSF (,CSF
anar(q)) =T ({¢ | ®C 7Pvar(¢)})
Poar N°S% is monotonically decreasing. Further-

more & C 75637 (o857 (@) for all @ € p(Sub) and a2 (Y637 (57) ECS7 ¢C57 for all
¢C$f € Typepvar-
Following [10], the relationship between T'ypepyq, and @(Sub) can thus be stated as a

Galois connection. This gives lemma 3.3. The corresponding proof, numbered 7.5, is almost

Note that a$57 is monotonically increasing since

immediate.

Lemma 3.3 (Galois connection) o557 and v$37 form a Galois connection between

Typepvar (ECS]:) and p(Sub) (g)

CSF

Puoar

In fact, to be precise, a and 7557 form a Galois insertion [22] since v£57 is injective.

In more pragmatic terms, an insertion means that the abstract domain does not contain any
redundant elements.
Returning to the abstraction mapping, lemma 3.4 presents one constructive version of

a%‘zfr. Interestingly, the reformulation not only details how a%‘zfr can be computed, but it
also emphases the connection between a%‘zfr and a}sjfar. Correctness is established in proof 7.4

and example 3.8 demonstrates one application of the new, constructive abstraction mapping.

Lemma 3.4

A (@) =
<¢C7 U Shcod(ch)((bD)v ﬂ chod(¢C)(¢D)>
¢PogC | Pvar€® | Pvar éPogC | Pvare® | Pvar

where ¢¢ = a%, . (®).

Puoar

Example 3.8 Building on ezample 3.2, let ¢¢ = %, . ({u,v}) and consider the calculation
of o537 (@) where ® = {u, v} and Pvar = {z,y,2}. Thus

Puoar
P (P) =

(¢, Shcod(¢c)(HD) U Shcod(¢c)(VD)a frcod(¢c)(HD) N chod(¢C)(VD)>

where
2!l —a, 2=y,
22—y, 2%z,
pP =< 23—, . P =4 2P,
A A
¥y =1, y =y,
A g(y) Az
Hence

a%‘zaﬁ(‘l’) =({z — f($1,$2,$3),@/ = 3/)\72 = ZA}?
{{ah, b ey, A {22 220,03, {2 v
Notice that o537 (@) tallies with the ¢°S7 of example 3.6. A comparison of the ® (of ex-

Puoar

ample 3.8) to the Y537 (o537 (®)) (of ewample 3.6) demonstrates the precision with which

Puvar
Typepyar captures sharing, groundness, freeness, compoundness and covering information.

12

3.3.5 On finiteness

Since widening is required to induce termination on Sub%vw, widening is also necessary to

obtain finiteness on Typep,q-. A suitable widening can be constructed from V%, however, by
borrowing some machinery from U7, Specifically, if Vg details how the Sub$

Puvar
can be widened, then U7 explains how the Share and Free components can be amended
to fit with the widened Sub%vm, component.

domain

Definition 3.13 (V%S}—) The widening V%S}— : Typepoar — TYpepyar is defined by:
VET(05) = (TEH(69),65(6%), 67\ cod(67))
where ¢B o 7¢57(¢°) | Poar = ¢°.

Note that the & does not necessarily need to be fixed but can be varied during analysis — just
so long as termination is achieved. The correctness of the widening is stated as lemma 3.5
and proven in proof 7.6.

Lemma 3.5 (bCS]: CesF VgSF(CbCS]:)

4 Abstracting unification

Abstract interpretation can help to focus the development of an analysis by illuminating the
connection between an operation (like unification) and its abstract counterpart. In this case,
the abstract counterpart for unification is divided into two distinct algorithmic phases. This
is a consequence of exploiting confluence. The first phase, detailed in section 4.2, traces com-
poundness information; whereas the second phase, documented in section 4.1, infers sharing
and freeness information. The order of presentation reflects the construction of the analy-
sis: first, an efficient sharing and freeness analysis is synthesised in section 4.1; second, the
analysis is extended to trace compoundness to bounded depth in section 4.2.

4.1 Abstracting unification with Sharep,e X Freepyer

The sharing and freeness component of the analysis is, in fact, interesting within its own right.
It is interesting for a number of reasons. First, the sharing and freeness analysis can used by
itself, stand-alone. Second, although the analysis applies many of the ideas of [23], it is both
simple and efficient. Third, the analysis has been proved correct. In short, the analysis can
be regarded as a systematic and efficient reformulation of the abstract unification algorithm
of [23].

Unification is abstracted by tracing the steps of a standard unification algorithm [17]. To
trace unification, the abstract algorithm mimicks the recursive simplification steps of mgu,
relegating the solution of simplified equations of the form v = ¢ to a mapping mgu®” . Similar
simplification steps, dubbed pre-unification in [7], are applied in other abstract unification
algorithms [23, 7]. The mapping mguS” is defined to abstract a slight variant of mgu.
Specifically, if ¢ € mgu({p(v) = #(t)}) and ¢ € 757 (¢57) then mguS7 (u,t,¢°%) abstracts
the composition ¢ o ¢ (rather than), that is, ¢ o ¢ € v87 (mgu®” (u,t,°7)). This spares
the need to define an extra (composition) operator.

13

Definition 4.1 (mgu®”) The relation mgu®” : Equx(Sharepya, X Freepya,)X (Shareppar X
Freepyar) is defined by:

)
mgusj:(u =u:F (bsj: SEY (
mgu” (t = u : E (bS}—,cpS]:) if mgu®”(
mgu®’ (u =1 : SEY (

mguST (f(t) = f(1) : E ¢577€PSF) (

where ¢ = mgu®(u,t,¢57) and 77 = mgu” (u,t, ¢°7).

To define the mappings mgu® and mgu” (and thus the relation mgu®*) a number of
standard auxiliary operators are required [14, 24]. First, rel(t,4°) represents the sharing
groups of ¢° which are relevant to the term ¢, that is, those sharing groups of ¢ which
share variables with ¢. Second, in the absence of useful freeness information worst-case aliasing
is assumed. Thus, as in [14, 24], a closure under union operator, *, is employed to enumerate
all the possible sharing groups that can possibly arise in unification. Third, to succinctly
define mgu®”, it is convenient to lift U to sets of sharing groups with a pair-wise union
operator, denoted .

Definition 4.2 (rel, * [14, 24] and O)
rel(t, %) = {U € ¢% | U nwar(t) # 0}
ST =S U {U U | U U €5, SO ={UVU |Ue AU € ¢S}

The mappings mgu® and mgu” apply different analysis strategies according to the freeness of
B(v) and ¢(1) for ¢ € Y557 (#57). The default strategy of mgu® corresponds to the standard

Puar
treatment in the abstract solver amgu of [14].

Definition 4.3 (mgu® and mgu”)

mgus(u,t,¢57) = { P© U(rel(u,zs) Drel(t’zs) Yifu € F Vi oF

VS U (rel(u, ¢y Orel(t, »°)*) otherwise
where S = ¢\ (rel(u, %) Urel(t, ¢%)).
¢ if uwedt Ated”
(b]:\var(rel(u,(bs)) else ifu € ¢”

mguf(%%(bSF) = (b}—\var(rel(t,(bs)) else ift € (b}—

¢ \var(rel(u, ¢%) Urel(t, ¢°)) otherwise

Note that rel(u, ¢%)Orel(t, ¢°) = O and rel(u, ¢V O rel(t, ¢5)* = O if rel(u, %) = 0. Thus,
in case one of mgu®, rel(t, ¢°) need not be calculated if rel(u,) =) and similarly in case
two, rel(t,¢°) need not be computed or closed under union if rel(u,¢®) = @. Analogous
refinements follow if rel(t,¢%) = @. In addition, observe that mgu® applies the refinement
suggested in [23], that is, if either u or t are free, then the calculation of a closure can
be avoided. This contrasts with other freeness algorithms, for example [26], which always
calculate a closure unless both w and ¢ are free. The correctness of the mappings mgu® and
mgu” is asserted in lemma 4.1 and 4.2. The corresponding proofs are numbered 7.7 and 7.8.

14

Lemma 4.1

6 € Vhuar(0%) A @ € mgu({o(u) = &(1)}) A
{u} Uvar(t) C Pvar A u & var(t) = ¢ 0 ¢ € V9 par (mgu’ (u, t,¢°7)

Lemma 4.2

¢ € Vouar(¢7) N @ € mgu({d(u) = ¢(t)}) A
{u} Uwar(t) C Pvar A u ¢ var(t) = ¢ o ¢ € vh,.(mgu” (u,t,¢57)

The correctness of the relation mguS” follows from lemma 4.1 and 4.2 and is stated as
theorem 4.1. The corresponding proof is numbered 7.9.

Theorem 4.1

¢ € 7Pvar(¢$f) A ZBS mgu(¢(E)) N

u(E,¢°7 157) A var(E) C Pvar = ¢ o ¢ € Yoo, (1)

mgu

It is convenient shorthand to regard mgu®” as a mapping, that is, mgu®”* (E,¢%) =

VS it mguST (B, 057 57, Strictly, it is necessary to show that mgus” (E, ¢, 457) is
deterministic for mgu®” (E, $°7) to be well-defined. Like in [7], the conjecture is that mguS”
yields a unique abstract substitution ¥ for ¢°7 regardless of the order in which I is solved
(though, in practice, any ¢57 is safe).

Example 4.1 illustrates that the simplicity of the analysis is not gained at the expense of
precision. Indeed the analysis seems to possess much of the power of the original sharing and
freeness analysis of [23].

Example 4.1 Adapting an example from [23], consider the computation of mgu®” (E,$57)
where

Ty = f(ylv y?)v
I ST 2 g0, (e) (o),
E= ys = x;) {vi,v2d, {y2). {yst, {yst {ws
_ 7 {9517902790373/173/373/573/6}>
Yo = T2,
Yo = f(21,23)
Thus, putting ¢57 = ¢57, and considering each equation of E = {u; = #;}5_, in turn, then

f—lﬁ — <mgu (ui, l,qﬁS}—) mgu (u,, ,,¢SF)> where

77 = ({0, {z1}, {xa}, {a}, {yn, w2}, {y2), {ws}, {ws} {we}
{$17$27$373/173/373/573/6}>

‘QSF = <mgu$($17f(y173/2)7(bff)vmguf(xlvf(y17y2)7¢ff)>

= ({0, {z1,y1, v2}, {x1, v}, {2}, {wa}, {ws} {ys), {we))

{72, 23,91, 93, Y5, Yo })

37 = ({0, {z1, y1. 92, ys}, {z1, v, s} {22}, {2s} {us). {we}

{962,96373/573/6}>

= ({0 {w2}. {as}. {ys}: {ve}}, {22 23, 5. v6})

<{@ {962,3/5} {963} {3/6}} {962,96373/573/6}>

‘gf = ({0, {z2,y5, y6}, {23} }, {z2. 23, ¥5, Y6 })

= ({0,{22, 23,95, y6} }, {3})

ot
1

15

Therefore mgu®” (E,¢57) = ({0, {z2, 23,95, Y6} }, {23}). The freeness analysis of [23] simi-
larly infers (modulo a projection operation [23]) that only x4, 3, ys and yg are possibly aliased
and that x3 s free.

4.2 Abstracting unification with Typepq.

The task of extending abstract unification from Sharepyqr X Freepyar to Typepyqr boils down
to defining a mapping mgu*S”. The specific requirement is for a mapping mgu®s” such that
if ¢ € mgu(¢(E)), ¢ € 7555,(¢°%7) and p5F = mguS7(E, ¢°57) then po¢ € 1557, (17,
As with mgu®”, the problem is cast in a way so as to avoid a composition operation.

The mapping mgu®S” builds on mgu®? by detailing how € can be computed. In addition,
mguS7 explains how pS7 can be calculated with mgu®” from u¢, ¢57 and E. Interestingly,
pC is calculated by applying (concrete) unification to solve the equation set ¢¢(E). The
intuition is that if ¢ is a unifier of mgu(¢S(E)) then p® o ¢¢ I Pvar is a likely to be a good
candidate for u¢. Omne technical point, however, is that the substitution ¢% o ¢¢ | Pvar is
not always an element of Sub%,,, .

Example 4.2 Consider, for ezample, the abstraction of mgu(F, ¢) where ¢ is represented by
ST, E is defined in example 4.1 and ¢ = {x1 — 27, 23 — 23, 23— 23, Y1 — ¥, ...,
Yo — yot. Thus, calculating o® € mgu(¢(E)) and ¢ o ¢¢ | Pvar yields

x{‘Hf(a,y%), lef(avy%)v
2y = f(fla,93), 23), zo = f(f(a,93),23),
yl)\'_>a7 nr—a,

@B: y§‘|—>a, , choqbc I Pvar = Y3 — a,
Yy — 95, Y1 3,
v = f(fla,93),23), ys — f(f(a,93),3),
yéHf(f(a,yQA),xé) yGHf(f(avy%)vx?):)

Therefore, in general, 1 o ¢¢ | Pvar ¢ Subt

Puvar-*

One way to capture the compoundness of ¢ o ¢¢ | Pvar in terms of Sub%vm, is to find

a substitution ® such that % C ©f with the required 9" o ¢¢ | Pvar € Sub%vm,. Safety
follows since ¥% C ¢f. To maximise the precision, however, it is important to choose the
least general ¥ with the /% T " property. This observation on precision and ordering leads

to the definition of the poset Subgvar (Croar)-

Definition 4.4 (Sub¥,) The poset Sub®, .. (Cppar) is defined by:

Puoar

Subb, . = {¢B € Sub®

dom(¢¥) C Pvar A
Yu® v t, € 8.1, € Term?,

Subgwr (Epyar) is a poset (rather than a preorder) by virtue of its restricted variable term
bindings. Also, when equipped with a top element fail®, a lub U® (corresponding to unifi-
cation) and a glb M? (corresponding to anti-unification [17]), Sub® , U {fail®’} (Cpyar) is a
complete lattice.

With the aid of the lub, a mapping subp,q- can be formulated which calculates the most

accurate, safe substitution ©? such that 5 o ¢¢ | Pvar € Sub§

Puoar*

16

Definition 4.5 (subpya,) The mapping subpyq, : Sub®, — — Subgvar is defined by:

Puoar
SUvaar(¢B) = l—IB{S‘QB € SUb]%var | S‘QB EPU‘" ¢B}

Although the mapping subpyq, is defined in terms of the lub of a possibly large set, subpyq;
can be implemented efficiently.

Example 4.3 Continuing with example 4.2, put ¥° = subpvar(ch) and thus

${"—>f(a,$%), lef(avx%)v
o3 = [(f(are}?), 23), v2 [(f(asak?),23),
B _ Yy —a, B € _ Y1 — a,
7 = W e a, , YT o | Pvar s a,
g2 f(fla,yt?),y2), ys — f(fla,yt?),y2),
v f(flasyd?), vd) Yo — f(f(a,¥5?), v5)

Observe that 5 o ¢¢ | Pvar € Sub%,,, as required.

With the compoundness component u¢ = 150 ¢¢ | Pvar computed, the problem reduces
to calculating the sharing and freeness component 457 . The sharing and freeness component
is computed by transforming the Typep,q, problem into a Sharepyq, X Freep,q problem.
The idea is that if mguS” is efficient and fast, then mguS” should be used wherever possible.
The transformation is under-pinned by lemma 4.3 and theorem 4.2. In theorem 4.2 confluence
is used to show that [¢Po(¥50dC | Pvar)] | Pvar = po¢ where /P = mgu(dorpPogt(E)Ud)
and v = mgu(0U¢B). This closes the gap between Typep,qr and Sharepyq,r X Freepyq, since

if it is possible to find a ¥ such that 9 € Vfofl—(d)gwc erar)wS]:) then it is also possible to

compute p5 with mgu®”. More exactly, mgu®” (¢F o ¢°(E),957) = 5. This is the first
result. The second result, lemma 4.3, asserts that an auxiliary operation mgu®S” can provide

the required 957 . To be precise, if mguPS7 (5, 57 957) then ¥ € ’yfogwgwc [Pvar)(ﬂs}—)'

Thus both results, when applied together, define a procedure for computing ;. In short,
MS]-' — mgu$}'(¢8 o (bC(E)a 195]—') where mguBSF(¢B, ¢$]—'v 195]—')‘

The operation mgu®®” is designed to calculate an abstraction for ¥ = mgu(0U¢B). This,
in fact, can be calculated relatively straightforwardly because of the simple structure of 5.
First, the domain variables of /% do not share in ¥®: var(v¥®(u)) N var(¥®(v)) = @ for any
pair of distinct variables u, v € dom(%*). Second, the domain variables of ¥° are guaranteed
to be linear: x(1"(u)) = 1 for all u € dom(4"). This means that mgu®>% can calculate an

accurate abstraction for 9.

Definition 4.6 (mgu®%7) The relation mgu®S” : Subb = x (Sharepyar X Freeppa) x
(Sharepyar X Freepyay) is defined by:

7nguB$]:(®7 (be’ (bS]-')
mguBST (u = 11 B,657, 57) if mguBST (1,757, 557

where 5 = mguP®(u,t,¢57) and 77 = mgu® (u,t, ¢57).

Definition 4.7 (mgu®® and mgu®’)

S ; F
S s/) U U OU) ifue ¢
mgu” (u,t,¢77) = { S U (U, OUy) otherwise

17

where 7¢ = ¢° \ rel(u, ¢°)
Uy = {U,\ {u}| Uy € rel(u, %)}
Up={{ue} | ue € var(t)}
Uy ={U; Cvar(t)| U # 0}

BF sry_) (67 \var(rel(u,¢%))) Uvar(t) if u € ¢~
mgu (4, 677) = { (o7 \ var(rel(u, ¢°))) otherwise

The irregular structure of mgu®® and mgu®” stems from the requirement that ¥ €

7505(11)60& erar)wS;}_) whereas ¢7 ¢ 7i§(¢C)(¢SF) (referring to the ¢P of lemma 4.3). Put
v

another way, the is expressed in terms of the variables cod(¢Bo & 1 Pvar) whereas o is
represented in terms of the variables cod(¢). This means that mgu®®” has to incrementally
extend from Share ,qgcy X Free ,qgey 10 Share ,qupbos tPoar) X Fre€ooqyBosttpoar)- Lhis
is the main technicality involved in establishing lemma 4.3 in proof 4.3.

As with mguS” , it is a convenient shorthand to regard mgu®®” as a mapping. Like before,

mguBSF (B, ¢ 957 yields a safe 957 regardless of the order in which ¥ is solved.

Puoar

Lemma 4.3

& | Pvar = ¢P o ¢ | Pvar A
¢" € mgu(¢°(E)) A
VB = subpyar (¢7) A
Y € mgu(F U ¢P) A
mguBST (B, 57 95T -
Ve Viﬁwﬁo& [PUar)(ﬂS]:)

S

Definition 4.8 and theorem 4.2 summarise how mgu®S7 and mguS” fit together to form

mguS7 . The corresponding proof is labelled 7.11.
Definition 4.8 The mapping mgu®S” : Eqn X Typepoar — Typepoar is defined by:

mguCST(E, 657y = (48 o ¢€ | Pvar, i, i) where

¢" e mgu(¢©(E)) A
QbB = SUvaar(QOB) A
5 = mgu (58 0 6 (), mguBSF(y5, 7))

Theorem 4.2

¢ € VPan(¢°57) N @ € mgu(¢(E)) A
var(E) C Pvar = po¢ € ’VCSF(mgUCS}—(Ea ¢C$f))

Puoar

Example 4.4 Consider the calculation of mgu®S7(E,¢°57) = utS* adopting the E of
example 4.1 and where

C_ A A A A A
o —{901 = Zy,02 — T5,T3 — T3,Y1 '—>3/17---73/6'—>3/6}

¢ ={0, {o1}, {22} {oa}, {nd) (e {wdd {wsd {wd 13

Fo_ A A A A A A A
o —{$17$27$373/173/373/573/6}

18

Thus, using the ¢® € mgu(¢°(E)) and ¥® = subpyar(
is simplified to E' through pre-unification

©P) of example 4.3, then if 5 o ¢ (F)

T =93,
fla,z}) = fa,p3), e1 =95,
fla,21) = fla,y3), yéz=:w%2,

BO CE — a=a, \ E/: Ys = X3,
PROCENZ (a0, 02) = F(k) a3, o =at?,

(f(arye™),58) = ([0, 23%), 3), yg =3,
f(f(avyé.z)vyg):f(f(avx%)vxiﬁ) yé'2:$%7
2 _ A
Yg = T3

Moving onto the calculation of mguBS7 (P, ¢57), putting ¥ = ¢*S% | and considering each

equation of ¢® = {u; = ;35| in turn
9% = ({0, {21}, {2}, {3}, (o, 2} (w2} {93}, {03} {wd}

955 = (mguBS|

= ({0, {21}, {22} {23}, {nq)

{901790%‘790:)3‘7yf‘73/373/573/6}>

o fla, 2), 055, mgu(

{17%7$37y17y37y57y6}>

A
L1

fla, 1), 95%))

yo b {ua b {wad, {2}, {wd})

21). Thus

M {2d 23, vE vl

95% = ({0, {ei} {22} {23}, {22} {ud wo b {wa) {wa b {we). {we),
{xlvx% 27$%7$37y17y37y57y6}>
9§% = ({0, {o1}, {232} {o3) {3} v} (w3} (w3} {d)),
{xlvx% 27$%7$§7y37y57y6}>
U = <§@ {w}% {2%2} {23}, %fé} At w3 vl
a1, 7902795373/573/6
965 = ({0, {w1}, {237}, {wz} {wé} {2 s {3} ve),
{$1,$%2,$%,$3,y5 73/573/6 7y6}>
95 = <§@ {xlé {2%2} {wz} {wé} {y%§>{y§2} Avid ws 3 vdt)
$17$2 7$27$37@/5 73/573/ 73/6
V[C/?]}_l_ 195]: — 19‘75']:’ mguS}—(E’,ﬂ‘S}—) — HS]: — <{®,{$%,$§7@/§7@/g
T s given by
lef(avx%)v
x2|—>f§f(a,$% 2)7$%)7
$3'—>$3,
h—a, :usz {Qv{xngg\vyg?yg}}v
:uc = y2'_>y5\7 ’
Y r—a, = {$%,$§‘,y§,yg}
y4'_>yiv
ySHf(f(avyé.z)vyg)v
yo — F(fa,y?): 43)

Clearly p°S”

addition to recording the sharing between x4, x3, ys and ys and freeness of x5, p
term structure in uC, details sharing to the precision of sub-terms in p®

sub-terms are free in p”

19

CSF

is a refinement of the ({0, {x2,23,¥5,ys6}}, {x3}) derived in example 4.1. In

records

, and infers which

Example 4.5 By widening %, finiteness can be enforced and the precision of the analysis
can be adjusted to suit the application. Thus, returning to the calculation of mgucsj:({a =

b}, 8°S7) = uCS7 in example 4.4, consider the effect of throttling 1»* to depth-0 and depth-1
to obtain

zy = f(a,z}),
@y = f(ag, 23),
B __ yl)\'_>a7 ¢B_ yl)\'_>a7
T e [T T g,
y5)‘v—>f(y§,y§),
o — f(96,93)

Like before, leB o qbc(E) can be simplified via pre-unification to obtain E!

w%zyzi,
1
T1=Y
- b
. wszga,yzl), . y?:x%
Ey = Ys = T3, , by = 11
v =) Ky
b
A A A Yo = T2,
= X X
o=t es) = fa.a}).
2 A
Y = T3

Caleulating mgu®7 (v F, ¢57) = 987

6% = ({0, a1}, (o2} o3} {ma), s {me)} Aot 22, 23, 02)

0§ = ({0, o1}, {23} {3}, {23} {0}, {udd {2} {wd} {nd}

1 1 2 A1 2,1 .2
{$1, L9,L9,23,Ys5, Y5, Yg, y6}>

Finally mguS” (E!L 987 defines u$” and F o ¢¢ defines u$
wo” = ({0, {23, 23, u3, wg 1} {33)

M‘lsj: = <{®7 {$%7 wg? yg? yg}}? {$%7 wg? yg? yg}>

Gives

xln—wc{‘, z1— f(a,zl),
x2|—>x%‘, zy = f(2d,23),
$3I—>$§\, $3I—>$§\,
h—a, h—a,

Ho =19 v2—93, ¢y S =9 va—ud,
Yz a, Ys—a,
3/4'—>3/i‘7 3/4'—>3/i‘7
3/5'—>@/5)‘7 3/5'—>f(3/§73/§)7
Yo — Yo Yo [(Y5 ¥8)

Note that even at depth-0, the analysis captures compoundness information that cannot be
derived by a conventional Share X Free analysis. Note too that since variables only occur
i pwoat level 1, then in terms of sharing and freeness, depth-1 analysis is just as accurate as
depth-2 analysis. Finally observe that depth-0 analysis fails to infer the sharing and freeness
of sub-terms.

20

Note that mgu®S? and each of its constituent parts are independent of k. Thus mgu®s” is

an abstract equation solver for depth-£ abstractions of arbitrary k. However, arbitrary k& can
lead to non-terminating computations and therefore, in general, some method for enforcing
convergence and finiteness is required. One simple way of ensuring termination is to widening
at the level of mgu®®”. This approach requires just one additional construction, mgucs}—
which thresholds the abstract unifier to depth-k. This approach compares very favourably
with the finiteness machinery which is detailed in [16].

Definition 4.9 (mguiS}—) The mapping mguiS}— : Egn x Sub%‘zfr — Sub%‘zfr s defined by:

%S]—'(Ev7 (bCS]-') CS]-'(

= CST(E7¢CSF))

mygu mygu

Then, with the addition of some renaming machinery, mguiS}— defines a depth-k version
of unt fy°, unifyg‘”:. To define um'fyg‘%— and prove safety it is necessary to introduce an
abstract restriction operator.

Definition 4.10 (abstract restriction) The abstract restriction operator, [CSF

defined by:

-, 18

¢ U =¢"1T
G NI U = (10 G 17U, 67 MU where ¢° 15 U ={UNU' U € 65}
T U=UNn¢"
The definition of unify,g‘%— is given below with its safety stated as theorem 4.3. Theo-
rem 4.3 assumes var(a)Uvar(b) C Pvar and is established by proof 7.12.

Definition 4.11 (umfy,g‘%—) The mapping unify,g‘%— : Atom X Type pyar X Atom X Typepyar
— Typepyar s defined by:

uni fy> (a, 6557, b, 057) = mgui™ ({a = T(0)}, 677 UL (077)) 1997 Pvar

Theorem 4.3 (local safety of unifyi”)

d C ,}/CS]-'((bCS]:) AV C ,}/CS]-'(QbCS]:) =

Puoar Puoar
unify(a, ®,b,9) C Y5 (uni fy>7 (a, 6757, b, 0057))

Example 4.6 For the sake of comparison with the freeness analysis of [23], consider the
caleulation of uni fy$S% (a, ¢557, b, ¢€57) for k =1, 2 and 3 where a = p(zx1, vy, a, 2, T3,
f(9617903)); b = p(f(21,22), f(23,24), x3, T5, T6, 6) and

{961'—”6{‘7 2'—>9027 3'—>903} ¢g={9€1'—>9€{‘7---79€6'—>9€é‘}7
—{(Z),{w }o {22} {231}, ¢ = {0, {1, 23}, {23}, {23}, {23}, {23}),
qbf = {1, 03, 23}, o = {21, 23, 25, 23}

Thus, supposing Y(z;) = y; where z; € Pvar and y; € Rvar, then the computation re-
duces to mgu$ST ({a = Y(b)}, ¢557 U Y(¢£57)) 1957 Pvar which, in turn, simplifies to
vg‘”—(mgucsr(, ¢YSF)) 197 Pvar adopting the E and ¢°S7 of example 4.4. Thus, by
example 4.4, it follows that unifySS” (a, 557, b, $557) = 557 where

Tl = ${‘,

C S A A F A A
Y1 = T2 I—>$%‘, y 1= {®7{$27$3}}7 1 = {$27$37}
$3'—>$§‘,

21

lef(avx%)v
S A F A
Yo = T2 Hf(xévxg)v y P2 = {@,{wé,fg}}, P2 = {wévxiﬁv}
$3'—>$§,
lef(avx%)v
C . S A F A
Y3 = L2 Hf(f(avx% 2)7$%)7 y P33 = {@,{$§,$3}}, Y3 = {xgvx?)v}

By comparison, the freeness analysis of [23] likewise infers that x3 is free and that x9 and x3
share. However, the analysis of [23] cannot infer the compoundness of x1 and x5, nor which
sub-terms of xo and x3 share, nor which sub-terms of xo are free.

5 Related and future work

Recently, four relevant proposals for computing freeness information have been put forward
in the literature. In the first proposal [8], multiple domains and analyses are run in lock step.
At each step, the abstract substitutions derived by the different analyses are compared and
refined in order to improve the precision. This paper follows the trend for simultaneously
tracing different properties (namely sharing, freeness and compoundness), explaining how
accuracy and efficiency can be further improved by exploiting confluence. In particular the
paper reports a depth-k analysis which cannot be synthesised in terms of the combined domain
approach.

In the second proposal [6], the correctness of a sharing and freeness analysis is considered.
An abstract unification algorithm is proposed as a basis for constructing accurate freeness
analyses with a domain formulated in terms of a system of abstract equations. Safety follows
because the abstract algorithm mimics the unification algorithm in an intuitive way. Correct-
ness is established likewise here. One important distinction between the two works is that
this paper uses the domain Sub%vm, to potentially encode more accurate sharing and freeness
information than the abstract equations of [6]. Consequently, a depth-k analysis cannot be
derived from the abstract equations of [6]. Also, as pointed out in [3], “it is doubtful whether
it (the abstract unification algorithm of [6]) can be the basis for a very efficient analysis”.

Third, in [16], the format of sharing groups is revised to capture structural properties
of substitutions. An abstract substitution is represented as a set of sharing groups where a
sharing group is a (possibly empty) set of program variable and path pairs. The paths permit
sharing groups to record the positions of shared variables within a binding, that is, where the
shared variable occurs in the terms to which the program variables are bound. Correctness is
proved. The usefulness of the approach, however, is compromised by its potential inefficiency.
The essential problem is that paths are required to be concatenated, compared and truncated
at almost every stage of abstract unification algorithm. This can be expensive. Moreover,
because of the way paths are widened, much of the formal analysis machinery has to be
duplicated: first, a depth-oo analysis is formulated; second, a depth-k analysis is constructed.
In contrast, the Sub%vm, domain of this paper was chosen carefully to simplify widening and
ease the construction and presentation of the analysis. Also, in terms of implementation and
practicality, the analysis presented in this paper applies confluence in a novel way to split the
analysis into small, simple and efficient units.

Very recently, in a fourth proposal [4], a sharing and freeness analysis is formulated in
terms of a transition system which reduces a set of abstract equations to an abstract solved

22

form. Sharing is represented in a sharing group fashion with variables enriched with linearity
and freeness information by an annotation mapping. Depth-k sharing, groundness, freeness
and compoundness information can be represented to a bounded depth by virtue of the
abstract equations. To be precise, the domain is formulated as a set of equivalence classes
of abstract equations. The domain is similar in spirit to Typepyer: sharing groups and

freeness sets record the aliasing between variable place markers that are introduced in the
C

Puvar
engineered to be a poset whereas the abstract equations of [4] lead to a preorder which

structural component of the domain. One distinction, however, is the Sub domain is
makes termination more subtle. A second difference is that in this paper the frequently used
operations like projection [¢57, lub U7 and widening V%S}— are designed to be efficient.
In [4], however, these frequently used operators are not discussed. A third distinction, is the
emphasis this paper puts on modularity. Modularity follows by using confluence to split an
analysis into its constituent parts. Modularity is advantageous since it simplifies both the
presentation and the implementation. On a software engineering perspective it also permits
an existing Sharep,q, X Freep,q, unification code, for instance [23], to be plugged into
the implementation to reuse valuable code. To be fair, however, the analysis of [4] does
trace linearity and capture compoundness and definite sharing between the variables of the
abstract equations. This might be useful. Of these three differences, linearity is probably the
most significant, and the confluence approach (and in particular lemma 4.3) can extended to
accommodate linearity. This is not difficult. The principal reason why linearity has not been
directly addressed in this paper is that it is simply not (yet) clear that the extra complication is
worthwhile if structure can be traced to depth-k. Future work will focus on implementation
and benchmarking (will is a non-trivial study within itself) to suggest suitable k& and to
determine whether or not complexity of tracing linearity is worthwhile.

6 Conclusions

A powerful and formally justified analysis has been presented for inferring definite ground-
ness, freeness and compoundness, and possible sharing to a bounded depth k. The analysis
exploits confluence to split the analysis into its constituent components and introduce mod-
ularity. Modularity simplifies the implementation, aids the presentation, and leads to a well-
structured proof of correctness. High precision follows from the combination of domains. The
analysis propagates groundness with the accuracy of sharing groups and yet infers sharing
and freeness to a precision which exceeds that of a normal freeness analysis. The analysis is
significant because it can under-pin many optimisations in logic programming. It is likely to
be particularly useful in the detection of independent and-parallelism.

Acknowledgements

Thanks are due to Manuel Hermenegildo, Francisco Bueno and Bob Kemp for useful discus-
sions on sharing and freeness. This work was supported, in part, by ESPRIT project (6707)
“ParForce”.

References

[1] G. Birkhoff. Lattice theory. American Mathematical Society, 1948.

23

[2]

[3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Bruynooghe. A practical framework for the abstract interpretation of logic programs.
J. Logic Programming, 10:91-124, 1991.

M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness — all at once.
In WSA’93, pages 153-164, September 1993.

M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a composite do-
main deriving sharing and freeness properties of program variables. In ICLP’9) post-
conference workshop on the verification and analysis of logic programs, pages 213-230,
Santa Margherita Ligure, Italy, 1994. June.

J.-H. Chang and A. M. Despain. Semi-intelligent backtracking of prolog based static
data dependency analysis. In JICSLP’85. IEEE Computer Society, 1985.

M. Codish, D. Dams, G. Filé, and M. Bruynooghe. Freeness analysis for logic programs
- and correctness? In ICLP’93, pages 116-131. MIT Press, June 1993.

M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract unification
algorithm for groundness and aliasing analysis. In ICLP’91, pages 79-93, Paris, France,
1991. MIT Press.

M. Codish, A. Mulkers, M. Bruynooghe, M. J. Garcia de la Banda, and M. Hermenegildo.
Improving abstract interpretation by combining domains. In PEPM’93. ACM Press,
1993.

A. Cortesi and G. Filé. Abstract interpretation of logic programs: an abstract domain
for groundness, sharing, freeness and compoundness analysis. In PEPM’91, pages 52—61.
ACM Press, 1991.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’77, pages
238-252. ACM Press, 1977.

D. Dams. Personal communication on linearity lemma 2.2. July, 1993.

S. K. Debray. Static inference of modes and data dependencies in logic programs. ACM
TOPLAS, 11(3):418-450, July 1989.

M. Hermenegildo and F. Rossi. Non-strict independent and-parallelism. In ICLP’90,
pages 237-252, Jerusalem, 1990. MIT Press.

D. Jacobs and A. Langen. Static Analysis of Logic Programs. J. Logic Programming,
pages 154-314, 1992.

A. King. A synergistic analysis for sharing and groundness which traces linearity. In
ESOP’9, pages 363-378, Edinburgh, UK, 1994. Springer- Verlag.

A. King and P. Soper. Depth-k sharing and freeness. In ICLP’94, Santa Margherita
Ligure, Italy, 1994. MIT Press.

J. Lassez, M. J. Maher, and K. Marriott. Foundations of Deductive Databases and Logic
Programming, chapter Unification Revisited. Morgan Kaufmann, 1987.

24

[18]

[19]
[20]

[21]

[27]

[28]

[29]

B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract interpretation
algorithm and its complexity. In ICLP’91, pages 64-78. MIT Press, 1991.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

K. Marriott and H. Sgndergaard. Analysis of constraint logic programs. In NACLP’90,
pages 531-547. MIT Press, 1990.

C. Mellish. The automatic generation of mode declarations for prolog programs. In
Workshop on Logic Programming for Intelligent Systems, Los Angeles, August 1981. Also
available as DATI Research Paper 163, Department of Artificial Intelligence, University of
Edinburgh.

A. Melton, D. A. Schmidt, and D. E. Strecker. Category Theory and Computer Program-
ming, chapter Galois Connections and Computer Science Applications, pages 299-312.
Springer-Verlag, Berlin, 1986.

K. Muthukumar and M. Hermenegildo. Combined determination of sharing and freeness
of program variables through abstract interpretation. In ICLP’91, pages 49-63, Paris,
France, 1991. MIT Press.

K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable dependency
through abstract interpretation. J. of Logic Programming, pages 315-437, 1992.

H. Sgndergaard. An application of the abstract interpretation of logic programs: occur-
check reduction. In ESOP’86, pages 327-338, New York, 1986. Springer- Verlag.

R. Sundararajan and J. Conery. An abstract interpretation scheme for groundness,
freeness, and sharing analysis of logic programs. In 12" FST and TCS Conference, New
Delhi, India, December 1992. Springer- Verlag.

A. Taylor. High Performance Prolog Implementation. PhD thesis, Basser Department of
Computer Science, NSW 2006, Australia, July 1991.

W. Winsborough and A. Wern. Transparent and-parallelism in the presence of shared
free variables. In ICLP’88, pages 749-764. MIT Press, 1988.

H. Xia. Analyzing Data Dependencies, Detecting And-Parallelism and Optimizing Back-
tracking in Prolog Programs. PhD thesis, University of Berlin, April 1989.

25

7 Appendix

Proof 7.1 (for lemma 3.1) Let ¢°57, o“S7 € Typepyar.
1. Suppose 65 = 0 and o = . Thus ¢°F = (O and yCSF($OSF) = (OSF(LSF),
2. Suppose ¢° = 0 and ¢ £ 0. Thus v*5F(¢°S7) = () whereas y(“S7) # 0.
3. Suppose ¢° £ 0 and ¢° = 0. Thus v (¢57) £ 0 whereas y(¢°57) = 0.
4. Suppose ¢° # O and ¢ # 0.

() Suppose ¢ # .
i. Suppose Ug € ¢° and Uy & ¢%. Thus ¢ € y57(¢S7) such that ¢ ¢
CSF(CSF
YT ().
ii. Suppose U, € ¢° and U, & ¢%. Thus ¢ € 57 (57 such that ¢ ¢
CSF(CSF
YT (BT,
iii. Suppose ¢° = .
A. Suppose u® € qﬁf and u® ¢ c,of. Thus ¢ € ’yCSF(LpCSF) such that ¢ ¢
HCSF (gCSF),

B. Suppose u* € ¢ and u® ¢ ¢F. Thus ¢ € Y57 (¢°S7) such that ¢ ¢
’}/CS}—(QOCS]:).

C. Suppose 6T = oF. Thus ¢°5F = (CSF and 4CSF($CSF) = »(05F),
(b) Suppose € = €.
i Suppose #C(u)[s] = f(t1,...,tn) and ¢ (u)[N=fy,....t,) with f# " or
n#n'. Thus Y57 (6°57) N~y (7)) =
ii. Suppose ¢ (u)[s] € Uvar and ¢ (u)[s'] = f(t1, ., tn). Thus ¢ € ¥ (°57)
such that ¢ ¢ 57 (57,
iii. Suppose ¢ (u)[s] = f(t1,. .., tn) and ¢ (u)[s'] € Uvar. Thus ¢ € y°57 (57
such that ¢ & v°57 (¢°57).

Proof 7.2 (for lemma 3.2) For brevity put ¢*57 = LCS7 (@57,

1. Suppose &S =).

(a) To show ¢¢SF CCSF o7 for all 9“7 € OS5 Immediate since @57 = ().

(b) Suppose ¢*5F CCS7 95T for all ¢°S7 € ST, To show 7 CCS7 9657 Since
QOCS]: J_CS]: CS]:(J_CS]:) _ @ and thus QOCS]: ECS]: OCS}—.

» VPvar
2. Suppose ®°SF £ (),

(a) To show ¢°ST COSF CSF for all ¢°SF € ®CST . Let ¢ € 65T (665 for ¢¢S7 ¢

Puar

BCSF 50 that ¢ | Pvar = ¢P o ¢€ | Pvar. Note that ¢© T ¢© as required.

i. Since ¢ T ¢C there exists @P such that ¢ o ¢ | Pvar = ¢ | Pvar. Let u €
Uvar. To show occcod(w)(u,c,op) € ¢°. Now {v* € cod(¢°) | u € var(¢(v)[s])}

= occcod(¢C)(u,¢D) € ¢5. Hence %E({vs € cod(¢°) | u € var(p(v)[s])}) € ¢°
where ¢F o ¢© | Pvar = ¢¢. Therefore {v® € cod(¢°) | u € var(p(v)[s])} =
OCccod(goc)(uv S‘QD) € S‘QS'

26

ii. Suppose u® € ¢’ . But u® € ¢ and thus ¢(u)[s] € Uvar as required.

Hence ¢ € v557 (o957,

(b) Suppose ¢CSF TS GCST for all ¢°S7 € ®CST and 9°57 CCST ST To show
QOCS]: OCS}—. Let ¢C$f c q)CS}—. Since 7Cf£(¢CSF) C ,}/C‘g(ﬁ(ecs}—) 0C E ch.

Hence 0 C ¢¢. But sznce VEST (6CST) C vSST (€97, F T 6°. Therefore 6 =

Pvar
¢°. Thus 8° C % and ¢ C 67 since 157 (8957 C ’ylcj‘gg';(cpcsj:).

i. Toshow ¢® C 6°. Let occcod(wg(u,ap) € ¢° for some u € Uvar with P o¢C |
Poar € 557 (6°57). Since v657 (¢°57) C 4657 (6957) and € = 6° it follows
that occ oq(ocy(u, oP) e 6.

ii. To show 67 C 7. Let u® € 7. Thus 0P o 6°(u)[s] € Uvar for all ¢ €
YESF (0957) with ¢ | Pvar = 0P of° | Pvar. Since 7557 (6957) C 4857 (9957
and ¢¢ = 6° it follows that 67 o ¢¢(u)[s] € Uvar for all ¢ € v$57 (¢°57) with
& | Pvar = 6P o ¢¢ | Pvar. Therefore u® € ¢ .

Hence 57 = 457,
Proof 7.3 (for corollary 3.1) Put N7 () = TS7. Since Typeppar (E¥°7) is a poset
and USST is defined for every subset of Typepyar then, by theorem 3 of chapter 5 of [1], it

follows that Typepyar (E¥°7) is a complete lattice.

Proof 7.4 (for lemma 3.4) Suppose ® C 78537 (¢€57). For conciseness let 57 and ¢“57
respectively denote the right-hand-sides of definition 3.12 and lemma 3.4. Observe that
POST COST OS5 Note that ¢¢ T ¢ since ¢ = a5, (®). Moreover if ¢¢ = ¢ then
S05 C ¢$ and ¢f C S0]: Thus QOCS]: ECS]: ¢C$f'

Proof 7.5 (for lemma 3.3) Immediate since a%s> is total and monotonically increasing

as is Y557 0 & C 857 (aGS7 (@) for all @ € p(Sub); and a7 (7657 (¢°57)) COST ¢¢5F

Puvar Puvar
for all ¢°S7 € Typepyar. The last point is evident because if ® = 7557 (657) then o557 ()

— |—|C$}‘({¢C$}' |) C ,VCS}'((bCS}')}) and ® C ,VCS}‘((bCS}')

Puoar Puoar

Proof 7.6 (for lemma 3.5) Put ¢“57 =¢57 (4°S%). Note that ¢ C ¢° so that 3“7 CC57
oS follows like cases 2(a)i and 2(a)ii of proof 7.2.

Proof 7.7 (for lemma 4.1) Let ¢ € v8,,.(¢°), ¢ € mgu({¢(u) = ¢(1)}), {u} U var(t) C
Pvar and u ¢ var(t). Let v € Uvar. To show occpyar(v, ¢ 0) € mgu®(u,t, ¢57).

1. Suppose v & cod(p o ¢). Thus v & var(e o ¢(w)) for all w € dom(p o ¢).

(a) Suppose v & dom(p o @), that is, ¢ o ¢(v) = v. Thus d(v) = v' and p(v') = v.
Suppose v # v'. Hencev € var(o(u))Uvar(qb()). Thus there exists w € {u}Uvar(t)
such that v € var(p(w)). But since p(v) =v', v # w and because dom(¢) N cod(p)
=0, ¢(v) =v and therefore v € var(y o ¢p(w)) Hence v € cod(p o ¢) which is a
contradiction. Thus v = v'.

i. Suppose v & var(¢p(u)) and v € var(P(t)). Hence v ¢ cod(y) and therefore
0CCPyar(V, 0 0 @) = 0cCpyar(v,¢). But u € var(occpyar(v,¢)) and var(t) N
var(occpyar(v,¢)) = 0 and therefore u € var(occpya,(v,$)) and var(t) N
var(occpyar(v,3)) = 0. Hence occpyar(v, 00 @) € mgu®(u,t, ¢°%).

27

ii. Suppose v € var(¢p(u)) and v € var(P(t)). Since ¢ € mgv({p(u) = o(1)}),
v € dom(p) or v € cod(p). Since p(v) = v, v & dom(y) and thus v € cod(¢p).
Thus v € var(p o ¢(u)) and therefore v € var(p o ¢(t)). Since v & var(p(t),
there exists w € var(¢(t)) such that v € var(p(w)). Thus v € var(yp o ¢(1))
and since v € cod(p o @), v =t so that $(t) = v which is a contradiction.

iii. Suppose v & var(p(u)) and v € var(¢(t)). Like case 1(a)ii.

iv. Suppose v € var(¢(u)) and v € var(¢(t)). Since (v) =v and v € cod(p o @),
v & cod(¢p). Thus ¢(u) = v and therefore ¢ € mgv({v = ¢(t)}) with v €

var(p(t)) which is a contradiction.

(b) Suppose v € dom(pod). Since v ¢ cod(pod), 0ccpyar(v, pod) =0 € mgu®(u,t, ¢57).

2. Suppose v € cod(po @)\ var(po (u)). Let w € Pvar. Suppose v € var(yp o ¢(w)) but
v &€ var(p(w)). Thus v € cod(p) and hence v € var(p o ¢(u)) which is a contradiction.
Suppose v € var(p(w)) but v & var(po@(w)). Thus v € dom(p) and v ¢ cod(p) so that
v & cod(yp o) which is a contradiction. Hence 0ccpyar(v, ¢ 0 ¢) = 0ccpyar(v,d) € ¢°.
Suppose v € var(d(u)) U var(¢p(t)). Since v & var(po ¢(u)), v € dom(p) and therefore
v & cod(p). Hence v € cod(po ¢) which is a contradiction. Thus v ¢ var(occpyar(v, ¢))
and var(t) N var(occppar(v,¢)) = O and therefore occpyar(v, 9o ¢) € mgus” (u,t, ¢57).

3. Suppose v € cod(p o ¢) Nwar(p o ¢p(u)). Note that occpyar(v,¢ 0 @) = Uyepar(p(w))
OCCPvar(w7 ¢)

(a) Suppose u € ¢7 with ¢(t) = v,.
i. Suppose o = {v, — &(t)}. Since v € var(go ¢(u)), v € var(P(t)). Thus
{w|v € var(e(w)} = {vy,v}. Hence occpyar(v, 9o @) € rel(u, ¢°)Orel(t, ¢°)
C mgu®(u,1,¢°7).
ii. Suppose ¢ = {vy — v, } with $(t) = vy, Since v € var(po(u)), v = vy,. Thus
{w]v € var(e(w)} = {vy,v}. Hence occpyar (v, 000) € rel(u, ¢S)Orel(t, ¢°)
C mgu®(u,t, 7).
(b) Suppose t € &7 . Like case 3a.

(c) Suppose uw ¢ &7 and t ¢ ¢7. There exists W, C var(¢(u)) and W, C var(¢(
such that occpyar(v, ¢ 0 @) = Uwew,uw,0CCPyar(W, @). Since v € var(y o (u
Wy # 0 and thus Wy £ 0. Thus occpyar(u, 0 ¢) € rel(u, ¢V O rel(t,¢>)*
mgu®(u,t, 7).

)
)}

<

t
)

Proof 7.8 (for lemma 4.2) Let ¢ € 7v7,,.(¢7), ¢ € mgu({p(u) = ¢(t)}), {u} Uvar(t) C
Pvar and u ¢ var(t). To show frpya(wo @)D mgu” (u,t,657). Let v € mgu” (u,t, ¢57).
1. Suppose u € ¢ and t € 7 where ¢(u) = v, and ¢(t) = v;.

(a) If o ={vy — v} then v € frpya(p o @) since v € frppar(P).
(b) If@o = {vt = vu} then v € fTPvar(QO o ¢) since v € fTPvar(¢)'

2. Suppose u € ¢7.

(a) Suppose ¢ = {v, — (1)} where ¢(u) = v,. Since v ¢ var(rel(u,¢®)), v, &
var(¢(v)). Hence ¢ o ¢(v) = ¢(v). Thus, since v € frpuar(@), v € frpvar(@o).

28

(b) Suppose ¢ = {v; — v,} where ¢p(u) = v, and ¢(t) = vy. Thus v € frppa(po @)
since v € frpyar(P).

3. Suppose t € ¢” . Like case 2.

4. Suppose u & ¢F and t ¢ ¢7. Since v ¢ var(rel(u,4)) and v € var(rel(t,¢%)),
0

var(¢p(v)) Nvar(d(u)) = 0 and var(d(v)) Nvar(Pp(t)) =0 and hence g o p(v) = H(v) €
fTPvar(¢)'

Proof 7.9 (for theorem 4.1) Let ¢ € 87 (57), ¢ € mgu(d(E)) and
mguST (E, 57, %) with var(E) C Pvar. By induction on the steps of mgu®” and by
lemmas 4.1 and 4.2, there exists 6 € mgu(p(E)) such that § o ¢ € v37 (vS7). But § ~ ¢

[17] and thus 6 0 ¢ ~ p o ¢. Hence ¢ o ¢ € v5. (¥57).

Proof 7.10 (for lemma 4.3) Pmof by induction. Suppose ¢ | Pvar = ¢P o ¢ | Pvar;

©F € mgu(¢°(E)); P = subppar(¢°); V8 = {uf — ;37 so that QbN =¢P; 9, € mgu(vE U
#P) so that 19N ¥; and that by the inductive hypotheszs Wy, € 7cod(¢50¢c erar)wS]:)' Put

ﬂfz-l-l = mgu®S(u n+17tn;-17 057) and 19n—|—1 = mgu® (}_n+17 nt1 057). To show
Shcod(d)f_l_loéc [Pvar)(ﬂ) c 19n-|—1 and fTCOd(¢§+1°¢C fPUar)(ﬂ) D) 19n-|—1

Note that cod(5 o ¢° | Pvar)\ cod(¢E, 0¢° | Pvar) = {us 4} and that cod(15 ;0 ¢° |
Poar)\ cod(zbff o ¢C | Pvar) = var(tyy1). Let w € Uvar.

1. Suppose w = uy, . Now V1 = mgu({u)q — tag1}(Vn)) 0 {un—l—l — tpt1) and thus
w € dom(¥,41) so that OCCeod(y?, 04C tPoar)(Ws Vng1) = 0 € 9.1 Ifw € ¢ then

w € var(rel(ud,,93)) and thus w ¢ V7 ;.
2. Suppose w € var(tpq1).

(a) Suppose uf ., € V. Thus 9,(u%,) = v € Uvar. Hence Uny1 = mgu({ui , —
tht1fUD,) = oy, where (= {v — tq11}. Now occcod(¢§+1o¢crUva7,)(w,Co Ip) =
fo € codwByy o & | Uvar)lw € varC(y) Ay € var(da(e))}
Uwevar(c(y))occ¢§+lo¢crUUm,(y,19n). Because (= {v — tp41} and w € var(t,41),
{ylw € wvar(¢(y))} = {v,w}. Hence OCCcod(¢§+1o¢CrUvar)(waC o Un)
occcod(¢§+1o¢crUvar)(v,19n) U OCCeoq(ys, 0¢C[Uvar)(w)) Now w ¢ cod(¥,) and

yw,¥y) ={w} since w € cod(PE 1 09 | Uvar). Alsov €

var(Vp(tnyr)) = var(tpg1) and therefore occcod(¢§+1o¢crUvar)(w,19n) =

l \'/II

thus Occcod(d)f_l_loq&c tUvar
occcod(¢C)(w, V) \ {upyq}. Hence occcod((bg“wcwwr)(w, Vpt1) CU, U, C 19‘2“
Since w € V5., to show w € frcod(¢§+1o¢crUUm,)(ﬂnH). First, note that w €
var(¢h,y o ¢¢ | Uvar). Second, observe that w € cod((o ¥,) and thus w €
chod(¢§+1o¢C [Uvar)(ﬂn‘l'l)'

(b) Suppose ui,, & V. Note that Vi1 = mgu({9a(ud,,) = tnp1}) o U, since
dom(d,) N tpyr = 0. Let ¢ = mgu({Vn(ujyy) = tug1}).]Yow
OCCCOd(d)S’_l-lo(bCrpvar)(va 0 ¥n) = Unevar(¢(y)) occcod(¢§+1o¢crpva,,)(y,19n). Since

{ylw € var(¢(y))} € var(In(up, i) Uvar(ty) there exists Y, C var(Vnu(ug)

(y

and Yy C var(ty41) such that {y|w € var({(y))} = Y, UY:. But because x(tp41) =
1, by lemma 2.1, Y, C {y.}.

29

i. If Yy = 0 then w & var({(9,(uj 1)) and thus w ¢ var(((tns1)) so that Yy = .
ThUS OCCCOd(¢§+1°¢C [Pvar)(w719n+1) = @ € 195.

ii. If Yo = {yu} then Yy # 0. Because u,, € dom(¢P), ui , € cod(¢f o
¢° 1 Pvar) and thus OCC oo (ypBogC | Puar)(Yus Un) € rel(u s+1:0%). Now y, €
var(Vn(up 1)) € {ujq} U cod(dy,). But ({upyq} U cod(dy,)) Nvar(tyyr) =
0 and thus var(tysr) = var(9,(tper)). Thus yu & var(9n(tns1)). Hence
OCCeod(y5, , 0dC ‘Poary(Yus V) € U If yo € Yo, g & cod(Vn) and thus
Occcod(d)f_l_loq&c [Pvar)(yt?) {yt} Hence UwEvar(C(y)) Occcod(d)f_l_loq&c [Pvar)(y7 19”)
=Y, € U; since Yy £ 0. Thus OCCood(y5, ;06 rpvar)(w,0n+1) c U, OU;.

Note that w & 97 .

3. Suppose w & {u; }Uvar(tygr). Let ¢ = mgu({0n(uy 1) = In(tny1)}) so that Vpyq =
(ot Hence oce, d(d)f_l_loq&c I Pvar) (wv (o) - Uvaar(C(y)) Occcod(d)f_l_loq&c [Pva,«)(yv ﬂn)

Since w ¢ {uj) U var(tpy) and w g cod(Vy), ((w) = w and hence
OCCeod(yB, | 0gC tPoar) (W5 C0Vn) = OCCeod(yE, 0g® tPoar)(Ws Un). But sincew & var(dn(uy,,))
and w € var(ﬂn(tn+1))’ Occcod(¢f+1o¢C[Pvar)(w719”) = OCCCOd(d)EO(bCrPUaT)(w’19”)'
Because OCC oo (1pBogC | Prar) (W5 Un) ¢

rel(_|_1,19‘2) and OCCeod(BogC rpvar)(w Un) & rel(tn+1,19fl), OCCood(¢B, 06" rpvar)(w,0n+1) €
95, Ifw € W) thenw € cod(150¢® | Pvar) and ¥,(w) = v € Uvar. Since w # ul,,

w € cod(PF oqbc I Pvar). Also, because ((w) = w, (od,(w) = v and hence w € ¥,

only if w € cod(B 10" | Pvar) and Vny1(w) € Uvar.

Thus Shcod(109¢ [Pvar)(ﬂn-l-l) C ﬂn-l—l and frcod oq5c [Pvar)(ﬂn+1) 2 195{—1

Proof 7.11 (for theorem 4.2) Let ¢ € 857 (¢°%7), » € mgu(¢(E)) and
mguCST (B, ¢°S7 uC%) with var(E) C Pvar. Thus u¢% = (¥ o ¢¢ | Pvar, us, u”)
where B € mgu(¢S(E)) and Y5 = subpya, (7). To show that there exists P such that
[P o (¢B o ¢t Pvar)] | Pvar = ¢ o ¢ with PP € 7cod(¢Bo¢C erar)(:“S]:)'

Since ¢ € ’ylcj‘gg';(qbcsj:) there exists ¢¥ such that ¢ = ¢P o ¢° | Pvar. Now @ o ¢ =
mgu(E U ¢) = mgu(E U (¢P 0 ¢¢ | Pvar)) = mgu(E U mgu(¢P U ¢S) | Pvar) = mgu(E U
dP UG I Pvar = mgu(¢©(E)UgC (P)UeC) | Pvar = mgu(¢°(E)UpP UGC) | Pvar because
dom(¢%) N dom(¢P) = 0 and dom(¢°) N cod($P) = 0. But mgu(¢°(E)U ¢P U ¢C) | Pvar =
mgu(¢C(E)U ¢ (E)U P U ¢°) | Poar = mgu(¢C(E) U P U P U ¢Y) I Pvar since ¥° C
for all { € mgu(¢°(E)). But mgu(¢(E)U B U P U¢Y) | Prar = mgu(¢® o ¢ (E)u B U
VE(OPYU (WP 0 ¢%) | Poar) | Pvar because dom(¥P) N dom(4°) = 0. But mgu(®o ¢ (E)U
VB UPB(APYU (P50 ¢C) | Pvar) | Pvar = mgu(® o ¢“(EYU DU (P 0 ¢°) | Pvar) | Pvar
since ¥ = mgu(¢pP UP). But mgu(pBo s (E)UIU (P o) | Pvar) | Pvar = mgu(dopBo
o (EYUIUI[(¥B0¢®) | Pvar]) | Pvar = mgu(9orpPodC(EYUIU(YpBoe®) | Pvar) | Pvar =
mgu(mgu(dopPod®(EYUD)U(pPodC) | Pvar) | Pvar = [mgu(dopBod®(E)Ud)o(pPog’) |
Pvar] | Pvar because dom(¢5 o ¢¢ | Pvar) N var(mgu(do ¢v% o ¢“(E)U) = 0.

Thus put P = mgu(ﬂOQbBoqu(E)Uﬂ). Hence po¢ =[P o(¥Po¢) | Pvar] | Pvar. But
by lemma 4.3, U € 7cod(¢Bo¢C erar)wS]:) for 957 = mgusT (5, ¢57) and thus by theorem 4.1,

PP € 7cod(¢Bo¢C erar)(r“S]:) where mgu®” (¥F o ¢ (E), 957, 7).

30

Proof 7.12 (for theorem 4.3) Let ® C A7 (¢57), ¥ C ST (9SF) and
6 € unify(a,®,b,¥). Thus 8 = (¢ o ¢) | Pvar where ¢ € mgu({p(a) = Y((b))}),
¢ € ® and ¢ € V. Observe that ¢ € mgu({p(a) = Y(H(THY ())))}) and thus putting
o =29 U (T oo T, ¢ € mgu(a({a = T(b)})) Note that ¢ € %57 (¢°57) and
0 T € 35 () and hence o 0 T & 5657, (T(457). S a0}
var(T o p o Y1) =0, 0 € ’ypvaruy(pvar)(¢csj: U T(szS}—)) Thus, by theorem 4.2, since
var(a)Uvar(Y (b)) C PvarUY(Pvar), ¢ o a € v (mgutS7 ({a = Y (b)}, o7 UT(¥S7))).
But (¢ o o) [Pvar = (¢ o [c | Puvar]) | Pvar = (¢ o ¢) | Pvar and (¢ o o) |
Pvar € ’ylc;gjiuﬂpwr)(mgucs}—({a = Y(b)}, ¢ U T (7)) 1997 Pvar and therefore

0 € VST (i [y (0, O b, wCST)),

Puoar

31

