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Abstract

Analyses for possible variable sharing and de�nite freeness are important both in

the automatic parallelisation and in the optimisation of sequential logic programs� In this

paper� a new e�cient approach to analysis is described which can infer sharing and freeness

information to an unusually high degree of accuracy� The analysis exploits a con�uence

property of the uni�cation algorithm to split the analysis into two distinct phases� The two

phase analysis improves e�ciency by enabling each phase of the analysis to manipulate

relatively simple data�structures� The precision follows from the combination of domains�

The analysis propagates groundness with the accuracy of sharing groups and yet infers

sharing and freeness to a precision which exceeds that of a normal freeness analysis� High

precision compoundness information can be derived too� The usefulness of the analysis is

demonstrated with worked examples� Correctness is formally proven�

� Introduction

Abstract interpretation for sharing and freeness are important topics of logic programming�
Sharing �or aliasing� analysis conventionally infers which program variables are de�nitely
grounded and which variables can possibly be bound to terms containing a common variable�
Freeness analysis usually infers which program variables are free� that is� which variables
can never be bound to non�variable terms� Compoundness analysis �	
� �� is the dual of
freeness analysis in that it detects which variables are guaranteed to be bound to non�variable
�compound� terms� Compoundness analysis� as applied in ���� additionally traces the principal
functor of variable bindings� Compoundness information can aid indexing� Applications of
sharing and freeness information are numerous and include
 the sound removal of the occur�
check �	��� optimisation of backtracking ���� the specialisation of uni�cation �	��� and the
identi�cation �	�� 
�� and e�cient exploitation �	�� 
�� 	�� of independent and�parallelism�
Early proposals for sharing� freeness and compoundness analyses include �	�� 
	� 	��� �	�� and
�	
��

This paper is concerned with a semantic basis for sharing� freeness and compoundness
analysis� and in particular� the justi�cation of a high precision abstract uni�cation algorithm�
Following the approach of abstract interpretation �
��� an abstract uni�cation algorithm �the
abstract operation� is constructed by mimicking the substitutions �the concrete data� which
arise in a standard uni�cation algorithm �
�� �the concrete operation� with �nite sharing�
freeness and compoundness abstractions �the abstract data��






The accuracy of the analysis depends� in part� on the substitution properties that the
sharing abstractions capture� The popular sharing and freeness domain Share � Free �	���
for instance� captures possible sharing and de�nite groundness in its Share component� and
de�nite freeness in its Free component� The structure of Share is particularly rich� implicitly
encoding covering information ���� Covering� in short� permits groundness to interact nicely
with sharing to remove redundant aliasing� For �niteness� Share � Free is parametrised by
a �nite set of program variables� Pvar� which typically equate to the variables of a clause�
To be precise� SharePvar � ����Pvar�� and FreePvar � ��Pvar�� If Pvar � fx� y� zg� for
instance� the substitution � � fx �� f�a� y� b�� z �� g�y�g would be encoded by the pair
h�S � �Fi where �S � ffx� y� zg� �g and �F � fyg� The pair indicates that a variable occurs
through x� y and z� that is� they share� and that y is free�

Tracking freeness often brings a two�fold win
 �rst� it enlarges the class of ensuing optimi�
sations �	�� 
��� second� it improves the groundness and sharing �	��� Groundness and sharing
is re�ned since freeness relates to the structural or type properties of a substitution� Precision
is improved as a result of the synergy between sharing and type analysis� By keeping track
of type information� it is possible to infer more accurate sharing information� Conversely�
more accurate type information can be deduced if sharing is traced� Speci�cally� by tracking
freeness �	�� �� 	�� �or alternatively a type property called linearity �	�� �� 
���� a sharing
analysis does not always have to assume that aliasing is transitive ���� If variables can be
inferred to be free� worst case aliasing need not be assumed in an analysis�

SharePvar � FreePvar � however� only captures shallow type information
 it traces the
freeness of terms to which a variable can be bound but not the freeness of sub�terms� The
usefulness of tracing sharing and freeness to the level of sub�terms has been reported before
�
�� but the analysis proposed in �
�� is di�cult to implement e�ciently� This paper remedies
this de�ciency by augmenting the domain SharePvar � FreePvar with a simple but powerful
type component SubCPvar� and by adopting a new� modular approach to analysis� The domain
SubCPvar consists of a set of canonical substitutions on Pvar which encode structure� The
composite domain is a subset of SubCPvar � SharePvar � FreePvar � denoted TypePvar � and
might typically represent � by

h�C � �S � �Fi where
�C � fx �� f�a� x�� b�� y �� y�� z �� g�z��g�
�S � ffx�� y�� z�g� �g�
�F � fx�� y�g

The triple indicates sharing between the second argument of term bound to x �x��� y �y���
and the �rst argument of the term bound to z �z��� The triple also records the freeness of
both x� and y�� It thus represents sharing and freeness to the precision of sub�terms� In
addition� it captures useful compoundness information too� for instance� that x is bound to a
term with a principal functor f and an arity of ��

In contrast to other approaches �
��� high precision does not come at the expense of gross
ine�ciency� The analysis exploits a con�uence property of the uni�cation algorithm �that all
uni�ers are equal up to renaming �
��� to split the analysis into two distinct phases� In the
�rst phase compoundness information is tracked� In the second phase sharing and freeness
is traced� The compoundness phase only operates on the compoundness component of the
domain� Similarly� the sharing and freeness phase only operates on the sharing and freeness
component of the domain� Since each phase of the analysis need only manipulate its own
�relatively simple� data�structure� e�ciency is maintained without sacri�cing precision� The
modularity also leads to a well�structured proof of correctness�

	



The exposition is structured as follows� Section 	 describes the notation and preliminary
de�nitions which will be used throughout� In section �� the focus is on abstracting data� An
abstraction for substitutions is constructed which expressively captures sharing� freeness and
compoundness properties of substitutions� In section �� the emphasis changes to abstract�
ing operations� Abstract analogs for renaming� uni�cation� composition and restriction are
de�ned in terms of an abstract unify operator �
��� An abstract uni�cation algorithm is
de�ned which� in turn� describes an abstract analog of unify� �Once an abstract unify op�
erator is speci�ed and proved safe� a complete and correct abstract interpreter is practically
de�ned by virtue of existing abstract interpretation frameworks �	� 
�� 	���� Correctness is
also proved� For reasons of brevity and continuity� however� the proofs are relegated to an
appendix� section �� Finally� sections � and � present the related work and the concluding
discussion�

� Notation and preliminaries

To introduce the analysis some notation and preliminary de�nitions are required� The reader
is assumed to be familiar with the standard constructs used in logic programming �
�� such
as a universe of �possibly super� and sub�scripted� variables �u� v ��Uvar� the set of terms
�t ��Term formed from Uvar and the set of functors �f� g� h ��Func �of the �rst�order
language underlying the program�� and the set of program atoms Atom� Func is considered
to include the set of constants Const� It is sometimes convenient to abbreviate f�t�� � � � � tn�
to f�ti��

Let Pvar denote a �nite set of program variables � the variables that are in the text
of the program� and let var�o� denote the set of variables in a syntactic object o� Also
suppose that the set of �nite sequences of positive integers is denoted by S � f
� 	� � � �g�� S
is considered to include the empty sequence �� If � denotes concatenation of sequences� the
application of a term t to the sequence s� t�s�� can be de�ned by the partial mapping t��� � t

and f�t�� � � � � tn��i�s� � ti�s�� Hence� f�u� g�v���	�
��� � v� f�u� g�v���
��� � u� and f�u� g�v�����
� f�u� g�v���

��� Substitutions

A substitution � is a total mapping � 
 Uvar � Term such that its domain dom��� �
fu � Uvar j��u� �� ug is �nite� The application of a substitution � to a variable u is denoted
by ��u�� Thus the codomain is give by cod��� � �u�dom���var���u��� A substitution � is
sometimes represented as a �nite set of variable and term pairs fu �� ��u� j u � dom���g� The
identity mapping on Uvar is called the empty substitution and is denoted by �� Substitutions�
sets of substitutions� and the set of substitutions on Uvar are denoted by lower�case Greek
letters� upper�case Greek letters� and Sub�

Substitutions are extended in the usual way from variables to functions� from functions
to terms� and from terms to atoms� The restriction of a substitution � to a set of variables
U 	 Uvar and the composition of two substitutions � and �� are denoted by � � U and � 
�
respectively� and de�ned so that ��
���u� � ����u��� Restriction lifts to sets of substitutions
by
 � � U � f� � U j� � �g� The preorder Sub �v�� � is more general than �� is de�ned by

� v � if and only if there exists a substitution 	 � Sub such that � � 	 
 �� The preorder
induces an equivalence relation � on Sub� that is
 � � � if and only if � v � and � v ��

�



A useful related preorder Sub �vPvar� is de�ned by
 � vPvar � if and only if there exists a
substitution 	 � Sub such that � � Pvar � �	 
 �� � Pvar�

��� Equations and most general uni�ers

An equation is an equality constraint of the form a � b where a and b are terms or atoms�
Let �e ��Eqn denote the set of �nite sets of equations� The equation set feg � E� following
���� is abbreviated by e 
E� There is a natural mapping from substitutions to equations� that
is� eqn��� � fu � tu j u �� tu � �g� Thus� when unambiguous� substitutions will be expressed
as equations� The set of most general uni�ers of E� mgu�E�� is de�ned operationally �
��
in terms of a predicate mgu� The predicate mgu�E� �� which is true if � is a most general
uni�er of E�

De�nition ��� �mgu� The set of most general uni�ers mgu�E� � ��Sub� is de�ned by�
mgu�E� � f� jmgu�E� ��g where

mgu��� ��
mgu�v�v 
E� 
� ifmgu�E� 
�
mgu�t�v 
E� 
� ifmgu�v� t 
E� 
�

mgu�v� t 
E� 
 
 �� ifmgu���E�� 
��v ��var�t����fv �� tg
mgu�f�ti��f�t�i� 
E� 
� ifmgu�fti� t�ig

n
i���E� 
�

By induction it follows that dom��� 
 cod��� � � if � � mgu�E�� or put another way� that
the most general uni�ers are idempotent �
���

Following �
��� the semantics of a logic program is formulated in terms of a single unify
operator� To construct unify� and speci�cally to rename apart program variables� an
invertible substitution �
��� �� is introduced� It is convenient to let Rvar denote a universe of
renaming variables distinct from Uvar� Uvar
Rvar � �� and suppose that � 
 Uvar� Rvar�
� is assumed to consistently rename super�scripted variables� that is� ��us� � ��u�s�

De�nition ��� �unify� The partial mapping unify 
 Atom� Sub �Atom� Sub � Sub is
de�ned by�

unify�a� �� b� 	� � �� 
 �� � Pvar where � � mgu�f��a� � ��	�b��g�

To approximate the unify operation it is convenient to introduce a collecting seman�
tics� concerned with sets of substitutions� to record the substitutions that occur at various
program points� In the collecting semantics interpretation� unify is extended to unifyc�
which manipulates �possibly in�nite� sets of substitutions�

De�nition ��� �unifyc� The mapping unifyc 
 Atom���Sub��Atom���Sub�� ��Sub�
is de�ned by�

unifyc�a��� b���� f� j� � � � 	 � � � � � unify�a� �� b� 	�g

�



��� Linearity

Linearity relates to the number of times a variable occurs in a term �	�� �� 
��� A term is
linear if it de�nitely does not contain multiple occurrences of a variable� otherwise it is non�
linear� The signi�cance of linearity is that the uni�cation of linear terms only yields restricted
forms of aliasing� This is exploited �in proof ��
�� to simplify the proof of correctness� To be
more precise about linearity� it is necessary to introduce the variable multiplicity of a term t�
denoted 
�t��

De�nition ��	 �variable multiplicity
 
 ��
� The variable multiplicity operator 
 
 Term
� f�� 
� 	g is de�ned by�


�t� � max�f
u�t� j u � Uvarg� where 
u�t� �

�����
� if u does not occur in t


 if u occurs only once in t

	 if u occurs many times in t

Lemma 	�
 states one restriction on a most general uni�er which follow from uni�cation
with a linear term�

Lemma ��� 
�b� �� 	 � var�a� 
 var�b� � � � � � mgu�fa � bg� �

�� �u� u� � Uvar � u �� u� � var���u��
 var���u��� �� � � u �� var�a�� u� �� var�a��

Lemma 	�
 represents one case of a three part result which is formally established in �
��� The
lemma di�ers from the corresponding lemma in ��� �lemma 	�	� because lemma 	�
 requires
that a and b do not share variables� This is essentially a work�around for a subtle mistake in
lemma 	�	 �

��

� Abstracting substitutions

Abstract interpretation clari�es how data is represented in the abstract by requiring the
relationship between the data and the abstract data to be made explicit� Because of the
compositional nature of TypePvar this relationship is detailed in three steps� In the �rst step�
section ��
� the focus is on the SubCPvar component and its abstraction and concretisation
mappings� Section ��	� the second step� is concerned with the SharePvar � FreePvar compo�
nent� Finally the third step� section ���� explains how the SubCPvar� SharePvar and FreePvar
components �t together to produce TypePvar�

��� Abstracting substitutions with SubCPvar

The � example of section 
 captures the compoundness of � in �C � fx �� f�a� x�� b�� y ��
y�� z �� g�z��g and the sharing and freeness of the variables cod��C� � fx�� y�� z�g by �S and
�F � The intuition behind the compoundness abstraction �C is that it represents substitutions
� for which
 �C is more general than any �� One advance of this approach is that it permits
compoundness to be expressed in simple terms� One disadvantage� however� is that since Sub
is a pre�order �rather than a poset�� the compoundness of � could equally be represented by
fx �� f�a� u� b�� y �� v� z �� g�w�g� Thus� in general� there is not a unique best substitution
for representing the compoundness of ��

�



����� On the domain SubCPvar

Representation problems can be straightforwardly avoided� however� by de�ning the com�
poundness domain to coincide with a poset of substitutions� One suitable and particularly
simple poset can be constructed from substitutions with codomain variables super�scripted
by integer sequences drawn from S�

To be more precise� if UvarS denotes the variables of Uvar which are super�scripted by
S� then the substitutions of the poset are de�ned to map variables of Uvar into a set of
terms with super�scripted variables dubbed TermS � TermS is formally de�ned by
 TermS

� ft � Term j var�t� 	 UvarSg� In fact� to conform to a poset� the variables must be
consistently super�scripted� The particular notion of consistency is formalised by the term
set Term�

u�

De�nition ��� �Terms
u� Terms

u is the least set de�ned by�

Terms
u � fusg �

�
f�t�� � � � � tn� � Terms

u

����� f � Func �
t� � Terms��

u � � � �� tn � Terms�n
u

�

In Terms
u variables are consistently super�scripted in the sense that the position p of a

variable in a term t is give by its super�script� that is� t�p� � us�p�

Example ��� Returning to the � example of section �� observe that the terms �C�x�� �C�y�
and �C�z� are consistently super�scripted in that

f�a� x�� b� � Term�
x� y� � Term�

y � g�z�� � Term�
z

To �ag the domain and codomain of a substitution� it is helpful to identify three classes of
substitution� Speci�cally� let �D � SubD denote substitutions for which �D 
 UvarS � Term�
let �C � SubC denote substitutions such that �C 
 Uvar� TermS � and �nally let �B � SubB

denote substitutions with �B 
 UvarS � TermS � Informally� the D� C and B indicate whether
or not the domain� codomain or both annotated with sequence information�

The domain SubCPvar is �nally �eshed out by restricting the variable term bindings u �� tu
of SubC to a particular form where u � Pvar and tu � Term�

u�

De�nition ��� �SubCPvar� The domain SubCPvar is de�ned by�

SubCPvar �

�
�C � SubC

����� dom��C� � Pvar �
�u �� tu � �C � tu � Term�

u

�

The signi�cance of the construction is that SubCPvar �vPvar� is a poset rather than a
pre�order� Moreover� when equipped with a top element failC� a lub tC �corresponding to
uni�cation� and a glb uC �corresponding to anti�uni�cation �
���� SubCPvar � ffail

Cg �vPvar�
is a complete lattice�

����� On the mappings �CPvar and �CPvar

The mappings �CPvar and �CPvar are introduced to explain how compoundness abstractions
connect with substitutions�

�



De�nition ��� ��CPvar and �CPvar� The abstraction and concretisation mappings
�CPvar 
 ��Sub�� SubCPvar and �CPvar 
 Sub

C
Pvar � ��Sub� are de�ned by�

�CPvar��� � tCf�C � SubCPvar j�
C vPvar � � � � �g

�CPvar��
C� � f� � Sub j�C vPvar �g

Notice that �CPvar�f�g� � �C where �C � fu �� u� j u � Pvarg and more generally u �� tu �
�CPvar��� for all u � Pvar�

Example ��� If � � fx �� f�a� y� b�� z �� g�y�g and � � fx �� f�y� z� c�g with Pvar �
fx� y� zg then

�CPvar�f�g� � fx �� f�a� x�� b�� y �� y�� z �� g�z��g

�CPvar�f�g� � fx �� f�x�� x�� c�� y �� y�� z �� z�g

�CPvar�f�� �g� � fx �� f�x�� x�� x��� y �� y�� z �� z�g

����� On �niteness

For a given program Func is �nite and therefore termination can be enforced by represent�
ing compoundness information to a predetermined depth bound k� The notion of depth is
formalised by a mapping depth 
 Term� f
� 	� � � �g de�ned by


depth�t� �

�

 if t � Uvar � t � Const


 �max�fdepth�ti�gni��� if t � Func� t � f�t�� � � � � tn�

A natural depth�k widening can be de�ned by extending the depth mapping to substitutions


depth�t� � max�fdepth�tu� j u �� tu � �g�

De�nition ��	 ��C
k� The widening �C

k 
 SubCPvar � SubCPvar is de�ned by�

�C
k��

C� � tCf�C � SubCPvar j�
C vPvar �

C � depth��C� � kg

Observe that �CPvar��
C� 	 �CPvar��

C
k��

C�� as required for correctness�

Example ��� Adopting the � of example 	�


�C
���

C
Pvar�f�g�� � fx �� x�� y �� y�� z �� z�g

�C
���

C
Pvar�f�g�� � fx �� f�a� x�� b�� y �� y�� z �� g�z��g

��� Abstracting substitutions with SharePvar � FreePvar

To keep the paper self�contained the SharePvar �FreePvar domain and its mappings will be
brie�y reviewed�

�



����� On the domain SharePvar � FreePvar

SharePvar is formulated in terms of sharing groups �
�� 	�� which record which program
variables potentially share variables� A sharing group is a �possibly empty� set of program
variables� FreePvar � on the other hand� represents the free program variables as a set�

De�nition ��� �SharePvar and FreePvar� The domains SharePvar and FreePvar are
de�ned by�

SharePvar � ����Pvar��� FreePvar � ��Pvar�

The intuition is that a sharing group records which program variables are bound to terms
that share a variable� SharePvar � FreePvar is �nite since Pvar is �nite�

����� On the mappings �SFPvar and �SFPvar

In the spirit of �	��� the abstraction and concretisation mappings are constructed by lifting
two mappings� shPvar and frPvar� to sets of substitutions� The mappings shPvar and frPvar
detail how a single substitution is abstracted�

De�nition ��� �shPvar and frPvar� The abstraction mappings shPvar 
 Sub � SharePvar
and frPvar 
 Sub � FreePvar are de�ned by�

shPvar��� � foccPvar�u� �� j u � Uvarg� occPvar�u� �� � fv � Pvar j u � var���v��g

frPvar��� � fv � Pvar j var���v�� � Uvarg

Example ��	 Using the �� � and Pvar � fx� y� zg of example 	�


shPvar��� � foccPvar�y� ��� �g� ffx� y� zg� �g

shPvar��� � foccPvar�y� ��� occPvar�z� ��� �g � ffx� yg� fx� zg� �g

frPvar��� � fyg� frPvar��� � fy� zg

The abstraction shPvar is analogous to the abstraction A used in �	��� Observe that for
� � �� shPvar��� � shPvar��� and frPvar��� � frPvar���� The mapping �SFPvar and �SFPvar
follow directly from shPvar and frPvar�

De�nition ��� ��SFPvar and �SFPvar� The abstraction and concretisation mappings
�SFPvar 
 ��Sub� � SharePvar � FreePvar and �SFPvar 
 SharePvar � FreePvar � ��Sub�
are de�ned by�

�SFPvar��� � h�SPvar���� �
F
Pvar���i� �SFPvar��

SF � � �SPvar��
S�
 �FPvar��

F�

where
�SPvar��� � ����shPvar���� �SPvar��

S� � f� j shPvar��� 	 �Sg

�FPvar��� � 
���frPvar���� �FPvar��
F� � f� j�F 	 frPvar���g

Note that �S ��� � � whereas �S��� � f�g if � is a set of substitutions which all ground
Pvar� This distinction is preserved in both SharePvar � FreePvar and TypePvar�

Example ��� Continuing with example 	��

�SFPvar�f�� �g� � hffx� y� zg� fx� yg� fx� zg� �g� fygi

�



��� Abstracting substitutions with TypePvar

The domain TypePvar is a strict subset of SubCPvar � SharePvar � FreePvar � crafted so that
TypePvar is a complete lattice� The construction proceeds by �rst specifying the structure
of TypePvar in section ����
� Second� in section ����	� the concretisation mapping �CSFPvar is
introduced to formalise the relationship between TypePvar and ��Sub�� Third� in section ������
the lattice ��Sub� �	� is used to induce a poset TypePvar �v

CSF � which� when equipped with
a lub tCSF and a glb uCSF � is elevated to a complete lattice� Fourth� in section ������ the glb
tCSF and the �CSFPvar are used to �nally formulate the abstraction mapping �CSFPvar � and thus
complete the construction of a Galois connection �
���

����� On the domain TypePvar

The domain TypePvar is formulated so that �CSFPvar is injective� An injective concretisation
mapping is useful since it can be used to straightforwardly induce a poset �rather an a pre�
order� on TypePvar from Sub �	�� In short� the domain is constructed so that di�erent
domain elements �in the abstract� represent di�erent sets of substitutions �in the concrete��

De�nition ��� �TypePvar� The abstract domain� TypePvar� is de�ned by�

TypePvar � fhfail� �� �ig�

�����h�C�U � Ui
�������

�C � SubCPvar�
U � Sharecod��C� � U �� � �

U � Freecod��C�

��	�

����� On the mapping �CSFPvar

The relationship between TypePvar and ��Sub� is made explicit by the mapping �CSFPvar�

De�nition ��� ��CSFPvar� The concretisation mapping �CSFPvar 
 TypePvar � ��Sub� is de�ned
by�

�CSFPvar�h�
C� �S � �Fi� ��

�

����� � � Pvar � �D 
 �C � Pvar�
shcod��C���

D� 	 �S � �F 	 frcod��C���
D�

�

It is assumed that �CSFPvar�hfail� �� �i� � �� Notice how the de�nitions of �CSFPvar requires the
shPvar and frPvar mappings to be parametrised by Pvar� The parameter is required because
the Share and Free components of TypePvar record the sharing and freeness of the variables
of cod��C� which is not �xed� Note also that for � � �� � � �CSFPvar��

CSF� if and only if
� � �CSFPvar��

CSF �� This follows because shPvar��� � shPvar��� and frPvar��� � frPvar��� if
� � ��

Example ��� To illustrate the expressiveness of TypePvar� consider the properties of an
arbitrary substitution � taken from �CSFPvar��

CSF � where

�CSF � hfx �� f�x�� x�� x��� y �� y�� z �� z�g�
ffx�� y�g� fx�� y�� z�g� fx�� z�g� �g� fx�� y�gi

�



sharing� The �rst argument of ��x� and ��z� do not share� This follows because x� and
z� do not occur in a sharing group of �S � Likewise� x never has any internal aliasing
under �� Put another way� x is linear �

� �� �
�� which in this case means that the
�rst� second and third argument of x are independent�

groundness� The third argument of ��x� is ground� This follows since the variables of
cod��C� which � ground� do not appear in �S �

freeness� The variable y is free under � and the second argument of ��x� is also free� This
follows immediately from �F �

compoundness� Compoundness is captured in that �C shows that ��x� is compound with a
principal functor of f and an arity of 	�

covering� Covering is also implicitly captured by virtue of �S � For instance� x covers both y�
or more exactly� the �rst and second arguments of x cover y� Thus grounding x grounds
y� or more precisely� grounding the �rst and second arguments of x grounds y�

����� On the domain TypePvar �continued�

A natural ordering TypePvar �vCSF � can be induced from Sub �	� by �CSFPvar�

De�nition ���� The preorder TypePvar �vCSF � is de�ned by� �CSF vCSF �CSF if and only
if �CSFPvar��

CSF� 	 �CSFPvar��
CSF ��

Note that �CSFPvar is monotonically increasing by de�nition� TypePvar is carefully engineered
so that the preorder TypePvar �vCSF � is also a poset� This is formally stated as lemma ��

and established by proof ��
�

Lemma ��� TypePvar �vCSF � is a poset�

The poset has a top element �CSF � h�C� ����cod��C���� �i and a bottom element �CSF

� hfail� �� �i since �CSFPvar��
CSF � � Sub and �CSFPvar��

CSF� � �� The bottom element is mean�
ingful and� in fact� represents goal failure� Speci�cally� in a top�down abstract interpretation
framework �	� 
�� 	��� it is possible for a goal to fail if it is called with some abstract substitu�
tions� Returning �CSF for the success abstract substitution indicates that the goal can never
be satis�ed under any calling substitution which the calling abstract substitution abstracts�

For the purposes of abstract interpretation �
��� TypePvar �vCSF � is required to be a
complete lattice� preferably equipped with a lub tCSF which is straightforward to compute�
To succinctly de�ne tCSF �and later a widening �CSF

k � it is convenient to introduce an
auxiliary mapping� The mapping is formulated as a substitution� More exactly� if �B �

fx� �� a� x� �� b� z� �� g�z��g� it is helpful to de�ne c�B � fz� �� z�g� Informally� c�B
is constructed to map the codomain variables of �B to the domain variables of �B� More

formally� c	B � fut �� us j us �� tus � 	B � ut � var�tus�g� A su�cient condition for c	B

to be well�de�ned is that tus � Terms
u for all ut �� tus � 	B� This� in fact� will always be

guaranteed by the context�


�



De�nition ���� �tCSF� The mapping tCSF 
 ��TypePvar�� TypePvar is de�ned by�

tCSF ��CSF � � h�C� �S � �Fi where

�C �uC�f �C j�CSF � �CSFg�

�S �� �f c�B��S� j�CSF � �CSF � �B 
 �C � Pvar � �Cg�
�F �
 �f�F n cod��B� j�CSF � �CSF � �B 
 �C � Pvar � �Cg�

It is assumed that uC��� � fail so that tCSF ��� � �CSF � Computationally� the lub tCSF

inherits much of its simplicity from the pair�wise union and intersection lub of SharePvar �
FreePvar � The main novelty is that anti�uni�cation �
�� is required to compute the glb for
the SubCPvar component�

Lemma ��� TypePvar �vCSF � has a lub tCSF �

Example ��� To illustrate the calculation of tCSF consider tCSF �f�CSF � �CSFg� where Pvar
� fx� y� zg and

�CSF � hfx �� f�a� x�� b�� y �� y�� z �� g�z��g� ffx�� y�� z�g� �g� fx�� y�� z�gi

�CSF � hfx �� f�x�� x�� c�� y �� y�� z �� z�g�
ffx�� y�g� fx�� z�g� �g� fx�� x�� y�� z�gi

For conciseness put �CSF � tCSF �f�CSF � �CSFg� and thus

�C � �C uC �C � fx �� f�x�� x�� x��� y �� y�� z �� z�g

�S � c�B��S� � c�B��S� � ffx�� y�g� fx�� y�� z�g� fx�� z�g� �g

�F � ��F n cod��B��
 ��F n cod��B�� � fx�� y�g

since
�B � fx� �� a� x� �� b� z� �� g�z��g� �B � fx� �� cgc�B � fz� �� z�g� c�B � �

with �B 
 �C � Pvar � �C and �B 
 �C � Pvar � �C�

The glb uCSF can be de�ned �in the standard way �
�� in terms of the lub tCSF � To be more
precise� uCSF ��CSF� � tCSF �f�CSF j ��CSF � �CSF � �CSF vCSF �CSFg�� Corollary ��
 and
proof ��� document that TypePvar �vCSF � is a complete lattice as a consequence�

Corollary ��� TypePvar �vCSF � is a complete lattice�

����	 On the mapping �CSFPvar

Once the glb uCSF is de�ned� the concretisation mapping �CSFPvar determines the abstraction
mapping �CSFPvar � This is spelt out in de�nition ��
	� The reason for explicitly introducing
�CSFPvar �rather than leaving its de�nition implicit� is to aid the synthesis of a constructive
version of �CSFPvar�







De�nition ���� ��CSFPvar� The abstraction mapping �CSFPvar 
 ��Sub� � TypePvar is de�ned
by�

�CSFPvar��� � uCSF �f�CSF j� 	 �CSFPvar��
CSF�g�

Note that �CSFPvar is monotonically increasing since uCSF is monotonically decreasing� Further�
more � 	 �CSFPvar��

CSF
Pvar���� for all � � ��Sub� and �CSFPvar��

CSF
Pvar��

CSF �� vCSF �CSF for all
�CSF � TypePvar�

Following �
��� the relationship between TypePvar and ��Sub� can thus be stated as a
Galois connection� This gives lemma ���� The corresponding proof� numbered ���� is almost
immediate�

Lemma ��� �Galois connection� �CSFPvar and �CSFPvar form a Galois connection between
TypePvar �vCSF � and ��Sub� �	��

In fact� to be precise� �CSFPvar and �CSFPvar form a Galois insertion �		� since �CSFPvar is injective�
In more pragmatic terms� an insertion means that the abstract domain does not contain any
redundant elements�

Returning to the abstraction mapping� lemma ��� presents one constructive version of
�CSFPvar � Interestingly� the reformulation not only details how �CSFPvar can be computed� but it
also emphases the connection between �CSFPvar and �

SF
Pvar � Correctness is established in proof ���

and example ��� demonstrates one application of the new� constructive abstraction mapping�

Lemma ��	

�CSFPvar��� ��
�C �

�
�D��C�Pvar���Pvar

shcod��C���
D��



�D��C�Pvar���Pvar

frcod��C���
D�

�

where �C � �CPvar����

Example ��� Building on example 	�
� let �C � �CPvar�f�� �g� and consider the calculation
of �CSFPvar��� where � � f�� �g and Pvar � fx� y� zg� Thus

�CSFPvar��� �

h�C� shcod��C���
D�� shcod��C���

D�� frcod��C���
D� 
 frcod��C���

D�i

where

�D �

�������������

x� �� a�

x� �� y�

x� �� b�

y� �� y�

z� �� g�y�

������	�����

� �D �

�������������

x� �� y�

x� �� z�

x� �� c�

y� �� y�

z� �� z

������	�����

Hence

�CSFPvar��� � hfx �� f�x�� x�� x��� y �� y�� z �� z�g�
ffx�� y�g� fx�� y�� z�g� fx�� z�g� �g� fx�� y�gi

Notice that �CSFPvar��� tallies with the �CSF of example 	��� A comparison of the � �of ex�
ample 	��� to the �CSFPvar��

CSF
Pvar���� �of example 	��� demonstrates the precision with which

TypePvar captures sharing� groundness� freeness� compoundness and covering information�


	



����� On �niteness

Since widening is required to induce termination on SubCPvar� widening is also necessary to
obtain �niteness on TypePvar� A suitable widening can be constructed from �C

k � however� by
borrowing some machinery from tCSF � Speci�cally� if �C

k details how the SubCPvar domain
can be widened� then tCSF explains how the Share and Free components can be amended
to �t with the widened SubCPvar component�

De�nition ���� ��CSF
k � The widening �CSF

k 
 TypePvar � TypePvar is de�ned by�

�CSF
k ��CSF � � h�CSF

k ��C�� c�B��S�� �F n cod��B�i
where �B 
 �CSF

k ��C� � Pvar � �C�

Note that the k does not necessarily need to be �xed but can be varied during analysis � just
so long as termination is achieved� The correctness of the widening is stated as lemma ���
and proven in proof ����

Lemma ��� �CSF vCSF �CSF
k ��CSF �

� Abstracting uni�cation

Abstract interpretation can help to focus the development of an analysis by illuminating the
connection between an operation �like uni�cation� and its abstract counterpart� In this case�
the abstract counterpart for uni�cation is divided into two distinct algorithmic phases� This
is a consequence of exploiting con�uence� The �rst phase� detailed in section ��	� traces com�
poundness information� whereas the second phase� documented in section ��
� infers sharing
and freeness information� The order of presentation re�ects the construction of the analy�
sis
 �rst� an e�cient sharing and freeness analysis is synthesised in section ��
� second� the
analysis is extended to trace compoundness to bounded depth in section ��	�

��� Abstracting uni�cation with SharePvar � FreePvar

The sharing and freeness component of the analysis is� in fact� interesting within its own right�
It is interesting for a number of reasons� First� the sharing and freeness analysis can used by
itself� stand�alone� Second� although the analysis applies many of the ideas of �	��� it is both
simple and e�cient� Third� the analysis has been proved correct� In short� the analysis can
be regarded as a systematic and e�cient reformulation of the abstract uni�cation algorithm
of �	���

Uni�cation is abstracted by tracing the steps of a standard uni�cation algorithm �
��� To
trace uni�cation� the abstract algorithm mimicks the recursive simpli�cation steps of mgu�
relegating the solution of simpli�ed equations of the form v � t to a mapping mguSF � Similar
simpli�cation steps� dubbed pre�uni�cation in ���� are applied in other abstract uni�cation
algorithms �	�� ��� The mapping mguSF is de�ned to abstract a slight variant of mgu�
Speci�cally� if � � mgu�f��v� � ��t�g� and � � �SFPvar��

SF � then mguSF�u� t� �SF� abstracts
the composition � 
 � �rather than ��� that is� � 
 � � �SFPvar�mguSF�u� t� �SF��� This spares
the need to de�ne an extra �composition� operator�


�



De�nition 	�� �mguSF� The relationmguSF 
 Eqn��SharePvar�FreePvar���SharePvar�
FreePvar� is de�ned by�

mguSF��� �SF � �SF �
mguSF �u � u 
 E� �SF � �SF� if mguSF�E� �SF � �SF�
mguSF �t � u 
 E� �SF � �SF� if mguSF�u � t 
 E� �SF � �SF�
mguSF �u � t 
 E� �SF � �SF� if mguSF�E� �SF � �SF� � u �� var�t�

mguSF �f�ti� � f�t�i� 
 E� �
SF � �SF� if mguSF�fti � t�ig

n
i�� � E� �SF � �SF�

where �S � mguS�u� t� �SF� and �F � mguF�u� t� �SF��

To de�ne the mappings mguS and mguF �and thus the relation mguSF� a number of
standard auxiliary operators are required �
�� 	��� First� rel�t� �S� represents the sharing
groups of �S which are relevant to the term t� that is� those sharing groups of �SF which
share variables with t� Second� in the absence of useful freeness information worst�case aliasing
is assumed� Thus� as in �
�� 	��� a closure under union operator� �� is employed to enumerate
all the possible sharing groups that can possibly arise in uni�cation� Third� to succinctly
de�ne mguSF � it is convenient to lift � to sets of sharing groups with a pair�wise union
operator� denoted ��

De�nition 	�� �rel
 � ��	
 �	
 and ��

rel�t� �S� � fU � �S jU 
 var�t� �� �g

�S
�
� �S � fU � U � jU� U � � �S

�
g� �S ���S � fU � U � jU � �S � U � � ��Sg

The mappings mguS andmguF apply di�erent analysis strategies according to the freeness of
��v� and ��t� for � � �CSFPvar��

SF �� The default strategy of mguS corresponds to the standard
treatment in the abstract solver amgu of �
���

De�nition 	�� �mguS and mguF�

mguS�u� t� �SF� �

�
	S � �rel�u� �S� � rel�t� �S� � if u � �F � t � �F

	S � �rel�u� �S��� rel�t� �S��� otherwise

where 	S � �S n �rel�u� �S� � rel�t� �S���

mguF�u� t� �SF� �

���������
�F if u � �F � t � �F

�F n var�rel�u� �S�� else if u � �F

�F n var�rel�t� �S�� else if t � �F

�F n var�rel�u� �S� � rel�t� �S�� otherwise

Note that rel�u� �S�� rel�t� �S� � � and rel�u� �S��� rel�t� �S�� � � if rel�u� �S� � �� Thus�
in case one of mguS � rel�t� �S� need not be calculated if rel�u� �S� � � and similarly in case
two� rel�t� �S� need not be computed or closed under union if rel�u� �S� � �� Analogous
re�nements follow if rel�t� �S� � �� In addition� observe that mguS applies the re�nement
suggested in �	��� that is� if either u or t are free� then the calculation of a closure can
be avoided� This contrasts with other freeness algorithms� for example �	��� which always
calculate a closure unless both u and t are free� The correctness of the mappings mguS and
mguF is asserted in lemma ��
 and ��	� The corresponding proofs are numbered ��� and ����


�



Lemma 	��

� � �SPvar��
S� � � � mgu�f��u� � ��t�g� �

fug � var�t� 	 Pvar � u �� var�t�� � 
 � � �SPvar�mguS�u� t� �SF�

Lemma 	��

� � �FPvar��
F� � � � mgu�f��u� � ��t�g� �

fug � var�t� 	 Pvar � u �� var�t�� � 
 � � �FPvar�mguF�u� t� �SF�

The correctness of the relation mguSF follows from lemma ��
 and ��	 and is stated as
theorem ��
� The corresponding proof is numbered ����

Theorem 	��

� � �SFPvar��
SF � � � � mgu���E�� �

mguSF�E� �SF � �SF � � var�E� 	 Pvar � � 
 � � �SFPvar��
SF �

It is convenient shorthand to regard mguSF as a mapping� that is� mguSF �E� �SF� �
	SF if mguSF �E� �SF � 	SF�� Strictly� it is necessary to show that mguSF�E� �SF � 	SF� is
deterministic formguSF�E� �SF� to be well�de�ned� Like in ���� the conjecture is thatmguSF

yields a unique abstract substitution 	SF for �SF regardless of the order in which E is solved
�though� in practice� any 	SF is safe��

Example ��
 illustrates that the simplicity of the analysis is not gained at the expense of
precision� Indeed the analysis seems to possess much of the power of the original sharing and
freeness analysis of �	���

Example 	�� Adapting an example from �
	�� consider the computation of mguSF �E� �SF�
where

E �

�����������������

x�� f�y�� y���
x�� f�y�� y���
y��a�

y	�x��

y
�x��

y
� f�x�� x��

��������	�������

�

�SF � hf�� fx�g� fx�g� fx�g�
fy�� y�g� fy�g� fy�g� fy	g� fy
gg�
fx�� x�� x�� y�� y�� y	� y
gi

Thus� putting �SF� � �SF � and considering each equation of E � fui � tig
i�� in turn� then
�SFi�� � hmguS�ui� ti� �SFi �� mguF�ui� ti� �SFi �i where

�SF� � hf�� fx�g� fx�g� fx�g� fy�� y�g� fy�g� fy�g� fy	g� fy
gg�
fx�� x�� x�� y�� y�� y	� y
gi

�SF� � hmguS�x�� f�y�� y��� �SF� �� mguF�x�� f�y�� y��� �SF� �i
� hf�� fx�� y�� y�g� fx�� y�g� fx�g� fx�g� fy�g� fy	g� fy
gg�

fx�� x�� y�� y�� y	� y
gi
�SF� � hf�� fx�� y�� y�� y�g� fx�� y�� y�g� fx�g� fx�g� fy	g� fy
gg�

fx�� x�� y	� y
gi
�SF� � hf�� fx�g� fx�g� fy	g� fy
gg� fx�� x�� y	� y
gi
�SF	 � hf�� fx�� y	g� fx�g� fy
gg� fx�� x�� y	� y
gi
�SF
 � hf�� fx�� y	� y
g� fx�gg� fx�� x�� y	� y
gi
�SF� � hf�� fx�� x�� y	� y
gg� fx�gi


�



Therefore mguSF�E� �SF� � hf�� fx�� x�� y	� y
gg� fx�gi� The freeness analysis of �
	� simi�
larly infers �modulo a projection operation �
	�� that only x�� x�� y	 and y
 are possibly aliased
and that x� is free�

��� Abstracting uni�cation with TypePvar

The task of extending abstract uni�cation from SharePvar�FreePvar to TypePvar boils down
to de�ning a mapping mguCSF � The speci�c requirement is for a mapping mguCSF such that
if � � mgu���E��� � � �CSFPvar��

CSF� and �CSF � mguCSF�E� �CSF� then �
� � �CSFPvar��
CSF ��

As with mguSF � the problem is cast in a way so as to avoid a composition operation�
The mappingmguCSF builds onmguSF by detailing how �C can be computed� In addition�

mguCSF explains how �SF can be calculated with mguSF from �C � �SF and E� Interestingly�
�C is calculated by applying �concrete� uni�cation to solve the equation set �C�E�� The
intuition is that if �B is a uni�er of mgu��C�E�� then �B 
�C � Pvar is a likely to be a good
candidate for �C � One technical point� however� is that the substitution �B 
 �C � Pvar is
not always an element of SubCPvar�

Example 	�� Consider� for example� the abstraction of mgu�E� �� where � is represented by
�CSF � E is de�ned in example ��� and �C � fx� �� x�� � x� �� x�� � x� �� x�� � y� �� y�� � � � � �
y
 �� y�
 g� Thus� calculating �

B � mgu��C�E�� and �B 
 �C � Pvar yields

�B �

�����������������������

x�� �� f�a� y�� ��
x�� �� f�f�a� y���� x

�
���

y�� �� a�

y�� �� a�

y�� �� y�� �

y�	 �� f�f�a� y���� x
�
���

y�
 �� f�f�a� y���� x
�
��

�����������	����������

� �B 
 �C � Pvar �

�����������������������

x� �� f�a� y�� ��
x� �� f�f�a� y���� x

�
���

y� �� a�

y� �� a�

y� �� y�� �

y	 �� f�f�a� y���� x
�
���

y
 �� f�f�a� y���� x
�
��

�����������	����������

Therefore� in general� 	 
 �C � Pvar �� SubCPvar�

One way to capture the compoundness of �B 
 �C � Pvar in terms of SubCPvar is to �nd
a substitution 	B such that 	B v �B with the required 	B 
 �C � Pvar � SubCPvar� Safety
follows since 	B v �B� To maximise the precision� however� it is important to choose the
least general 	B with the 	B v �B property� This observation on precision and ordering leads
to the de�nition of the poset SubBPvar �vPvar��

De�nition 	�	 �SubBPvar� The poset SubBPvar �vPvar� is de�ned by�

SubBPvar �

�
�B � SubB

����� dom��B� 	 Pvar �
�us �� tu � �B� tu � Terms

u

�

SubBPvar �vPvar� is a poset �rather than a preorder� by virtue of its restricted variable term
bindings� Also� when equipped with a top element failB� a lub tB �corresponding to uni��
cation� and a glb uB �corresponding to anti�uni�cation �
���� SubBPvar � ffail

Bg �vPvar� is a
complete lattice�

With the aid of the lub� a mapping subPvar can be formulated which calculates the most
accurate� safe substitution �B such that 	B 
 �C � Pvar � SubCPvar�


�



De�nition 	�� �subPvar� The mapping subPvar 
 Sub
B
Pvar � SubBPvar is de�ned by�

subPvar��
B� � tBf�B � SubBPvar j�

B vPvar �
Bg

Although the mapping subPvar is de�ned in terms of the lub of a possibly large set� subPvar
can be implemented e�ciently�

Example 	�� Continuing with example ��
� put 	B � subPvar��
B� and thus

	B �

�����������������

x�� �� f�a� x����
x�� �� f�f�a� x���� �� x����
y�� �� a�

y�� �� a�

y�	 �� f�f�a� y���	 �� y�	��
y�
 �� f�f�a� y���
 �� y�
�

��������	�������

� 	B 
 �C � Pvar �

�����������������

x� �� f�a� x����
x� �� f�f�a� x���� �� x����
y� �� a�

y� �� a�

y	 �� f�f�a� y���	 �� y�	��
y
 �� f�f�a� y���
 �� y�
�

��������	�������

Observe that 	B 
 �C � Pvar � SubCPvar as required�

With the compoundness component �C � 	B 
�C � Pvar computed� the problem reduces
to calculating the sharing and freeness component �SF � The sharing and freeness component
is computed by transforming the TypePvar problem into a SharePvar � FreePvar problem�
The idea is that if mguSF is e�cient and fast� then mguSF should be used wherever possible�
The transformation is under�pinned by lemma ��� and theorem ��	� In theorem ��	 con�uence
is used to show that �	D
�	B
�C � Pvar�� � Pvar � �
� where 	D �mgu��
	B
�C�E����
and � � mgu���	B�� This closes the gap between TypePvar and SharePvar�FreePvar since
if it is possible to �nd a �SF such that � � �SF

cod��B��C�Pvar�
��SF � then it is also possible to

compute �SF with mguSF � More exactly� mguSF �	B 
 �C�E�� �SF� � �SF � This is the �rst
result� The second result� lemma ���� asserts that an auxiliary operation mguBSF can provide
the required �SF � To be precise� if mguBSF �	B� �SF � �SF � then � � �SF

cod��B��C�Pvar�
��SF ��

Thus both results� when applied together� de�ne a procedure for computing �SF � In short�
�SF � mguSF �	B 
 �C�E�� �SF� where mguBSF �	B� �SF � �SF��

The operation mguBSF is designed to calculate an abstraction for � � mgu���	B�� This�
in fact� can be calculated relatively straightforwardly because of the simple structure of 	B�
First� the domain variables of 	B do not share in 	B
 var�	B�u��
 var�	B�v�� � � for any
pair of distinct variables u� v � dom�	B�� Second� the domain variables of 	B are guaranteed
to be linear
 
�	B�u�� � 
 for all u � dom�	B�� This means that mguBSF can calculate an
accurate abstraction for ��

De�nition 	�� �mguBSF� The relation mguBSF 
 SubBPvar � �SharePvar � FreePvar� �
�SharePvar � FreePvar� is de�ned by�

mguBSF ��� �SF � �SF �
mguBSF �u � t 
 E� �SF � �SF � if mguBSF �E� �SF � �SF �

where �S � mguBS�u� t� �SF� and �F � mguBF�u� t� �SF��

De�nition 	�� �mguBS and mguBF�

mguBS�u� t� �SF� �

�
�S � �Uu�Ut� if u � �F

�S � �Uu�Ut� otherwise


�



where �S ��S n rel�u� �S�
Uu� fUu n fug jUu � rel�u� �S�g
Ut� ffutg j ut � var�t�g
Ut� fUt 	 var�t� jUt �� �g

mguBF�u� t� �SF� �

�
��F n var�rel�u� �S���� var�t� if u � �F

��F n var�rel�u� �S��� otherwise

The irregular structure of mguBS and mguBF stems from the requirement that � �
�SF
cod��B��C�Pvar���

SF � whereas �D � �SF
cod��C���

SF � �referring to the �D of lemma ����� Put

another way� the �SF is expressed in terms of the variables cod�	B
�C � Pvar� whereas �D is
represented in terms of the variables cod��C�� This means that mguBSF has to incrementally
extend from Sharecod��C� � Freecod��C� to Sharecod��B��C�Pvar� � Freecod��B��C�Pvar�� This
is the main technicality involved in establishing lemma ��� in proof ����

As withmguSF � it is a convenient shorthand to regardmguBSF as a mapping� Like before�
mguBSF �	B� �SF � �SF� yields a safe �SF regardless of the order in which 	B is solved�

Lemma 	��

� � Pvar � �D 
 �C � Pvar�
�B � mgu��C�E�� �
	B � subPvar��

B� �
� � mgu�	B � �D� �
mguBSF�	B� �SF � �SF � �

� � �SFcod��B��C�Pvar���
SF �

De�nition ��� and theorem ��	 summarise how mguBSF and mguSF �t together to form
mguCSF � The corresponding proof is labelled ��

�

De�nition 	�� The mapping mguCSF 
 Eqn� TypePvar � TypePvar is de�ned by�

mguCSF�E� �CSF� � h	B 
 �C � Pvar� �S � �F i where

�B �mgu��C�E���
	B � subPvar��

B� �
�SF �mguSF�	B 
 �C�E�� mguBSF�	B� �SF ��

Theorem 	��

� � �CSFPvar��
CSF � � � � mgu���E���

var�E� 	 Pvar � � 
 � � �CSFPvar�mguCSF�E� �CSF��

Example 	�	 Consider the calculation of mguCSF�E� �CSF� � �CSF adopting the E of
example ��� and where

�C � fx� �� x�� � x� �� x�� � x� �� x�� � y� �� y�� � � � � � y
 �� y�
 g
�S � f�� fx��g� fx

�
�g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg

�F � fx�� � x
�
� � x

�
� � y

�
� � y

�
� � y

�
	 � y

�

g


�



Thus� using the �B � mgu��C�E�� and 	B � subPvar��
B� of example ��	� then if 	B 
 �C�E�

is simpli�ed to E� through pre�uni�cation

	B 
 �C�E� �

�����������������

f�a� x��� � f�a� y�� ��
f�a� x��� � f�a� y�� ��

a�a�

f�f�a� y���	 �� y�	� � f�f�a� x���� �� x����
f�f�a� y���
 �� y�
� � f�f�a� x���� �� x����
f�f�a� y���
 �� y�
� � f�f�a� x���� x

�
��

��������	�������

� E� �

���������������������������

x��� y�� �

x��� y�� �

y���	 � x���� �

y�	 � x���

y���
 � x���� �

y�
 � x���

y���
 � x���

y�
 � x��

�������������	������������

Moving onto the calculation of mguBSF�	B� �SF �� putting �CS� � �CSF � and considering each
equation of �B � fui � tig



i�� in turn

�CS� � hf�� fx��g� fx
�
�g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx�� � x
�
� � x

�
� � y

�
� � y

�
� � y

�
	 � y

�

gi

�CS� � hmguBS�x�� � f�a� x
�
��� �

CS
� �� mguBF�x�� � f�a� x

�
��� �

CS
� �i

� hf�� fx��g� fx
�
�g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
�
� � x

�
� � y

�
� � y

�
� � y

�
	 � y

�

gi

�CS� � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

�
� � y

�
� � y

�
	 � y

�

gi

�CS� � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

�
� � y

�
	 � y

�

gi

�CS	 � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

�
	 � y

�

gi

�CS
 � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

���
	 g� fy�	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

���
	 � y�	� y

���

 � y�
gi

�CS� � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

���
	 g� fy�	g� fy

���

 g� fy�
gg�

fx��� x
���
� � x��� x

�
� � y

���
	 � y�	� y

���

 � y�
gi

With �SF � �SF� � mguSF�E�� �SF� � �SF � hf�� fx��� x
�
� � y

�
	� y

�

gg� fx

�
�� x

�
� � y

�
	� y

�

gi� Thus

�CSF is given by

�C �

�������������������������������

x� �� f�a� x����
x� �� f�f�a� x���� �� x����
x� �� x�� �

y� �� a�

y� �� y�� �

y� �� a�

y� �� y�� �

y	 �� f�f�a� y���	 �� y�	��
y
 �� f�f�a� y���
 �� y�
�

���������������	��������������


�

�S� f�� fx��� x
�
�� y

�
	� y

�

gg�

�F� fx��� x
�
� � y

�
	� y

�

g

Clearly �CSF is a re�nement of the hf�� fx�� x�� y	� y
gg� fx�gi derived in example ���� In
addition to recording the sharing between x�� x�� y	 and y
 and freeness of x�� �CSF records
term structure in �C� details sharing to the precision of sub�terms in �S � and infers which
sub�terms are free in �F �


�



Example 	�� By widening 	B� �niteness can be enforced and the precision of the analysis
can be adjusted to suit the application� Thus� returning to the calculation of mguCSF �fa �
bg� �CSF� � �CSF in example ���� consider the e�ect of throttling 	B to depth�� and depth�

to obtain

	B

 �

�
y�� �� a�

y�� �� a

�
� 	B

� �

�����������������

x�� �� f�a� x����
x�� �� f�x��� x

�
���

y�� �� a�

y�� �� a�

y�	 �� f�y�	� y
�
	��

y�
 �� f�y�
� y
�

�

��������	�������

Like before� 	B

i 
 �
C�E� can be simpli�ed via pre�uni�cation to obtain E�

i

E�

 �

�������������

x�� � f�a� y�� ��
x�� � f�a� y�� ��
y�	 �x�� �

y�
 �x�� �

y�
 � f�x�� � x
�
��

������	�����

� E�

� �

���������������������������

x��� y�� �

x��� y�� �

y�	 � x���

y�	 � x���

y�
 � x���

y�
 � x���

y�
 � f�a� x����
y�
 � x��

�������������	������������

Calculating mguBSF�	B

i � �
SF � � �SFi gives

�CS
 � hf�� fx��g� fx
�
�g� fx

�
�g� fy

�
�g� fy

�
	g� fy

�

gg� fx

�
�� x

�
� � x

�
� � y

�
	 � y

�

gi

�CS� � hf�� fx��g� fx
�
�g� fx

�
�g� fx

�
�g� fy

�
�g� fy

�
	g� fy

�
	g� fy

�

g� fy

�

gg�

fx��� x
�
�� x

�
�� x

�
� � y

�
	� y

�
	� y

�

� y

�

gi

Finally mguSF�E �
i� �

SF
i � de�nes �SFi and 	B

i 
 �
C de�nes �Ci

�SF
 � hf�� fx��� x
�
� � y

�
	 � y

�

gg� fx

�
�gi

�SF� � hf�� fx��� x
�
�� y

�
	� y

�

gg� fx

�
�� x

�
� � y

�
	� y

�

gi

�C
 �

�������������������������������

x� �� x�� �

x� �� x�� �

x� �� x�� �

y� �� a�

y� �� y�� �

y� �� a�

y� �� y�� �

y	 �� y�	 �

y
 �� y�


���������������	��������������


� �C� �

�������������������������������

x� �� f�a� x����
x� �� f�x��� x

�
���

x� �� x�� �

y� �� a�

y� �� y�� �

y� �� a�

y� �� y�� �

y	 �� f�y�	 � y
�
	��

y
 �� f�y�
 � y
�

�

���������������	��������������

Note that even at depth��� the analysis captures compoundness information that cannot be
derived by a conventional Share � Free analysis� Note too that since variables only occur
in � at level �� then in terms of sharing and freeness� depth�
 analysis is just as accurate as
depth�	 analysis� Finally observe that depth�� analysis fails to infer the sharing and freeness
of sub�terms�

	�



Note thatmguCSF and each of its constituent parts are independent of k� ThusmguCSF is
an abstract equation solver for depth�k abstractions of arbitrary k� However� arbitrary k can
lead to non�terminating computations and therefore� in general� some method for enforcing
convergence and �niteness is required� One simple way of ensuring termination is to widening
at the level of mguCSF � This approach requires just one additional construction� mguCSFk �
which thresholds the abstract uni�er to depth�k� This approach compares very favourably
with the �niteness machinery which is detailed in �
���

De�nition 	�� �mguCSFk � The mapping mguCSFk 
 Eqn� SubCSFPvar � SubCSFPvar is de�ned by�

mguCSFk �E� �CSF� � �CSF
k �mguCSF�E� �CSF��

Then� with the addition of some renaming machinery� mguCSFk de�nes a depth�k version
of unifyc� unifyCSFk � To de�ne unifyCSFk and prove safety it is necessary to introduce an
abstract restriction operator�

De�nition 	��� �abstract restriction� The abstract restriction operator� � �CSF �� is
de�ned by�

�CSF �CSF U � h�C �CU� �S �S U� �F �F Ui where
�C �C U ��C � U

�S �S U � fU 
 U � jU � � �Sg
�F�F U �U 
 �F

The de�nition of unifyCSFk is given below with its safety stated as theorem ���� Theo�
rem ��� assumes var�a�� var�b� 	 Pvar and is established by proof ��
	�

De�nition 	��� �unifyCSFk � The mapping unifyCSFk 
 Atom�TypePvar�Atom�TypePvar
� TypePvar is de�ned by�

unifyCSFk �a� �CSF � b� 	CSF� � mguCSFk �fa � ��b�g� �CSF ���	CSF�� �CSF Pvar

Theorem 	�� �local safety of unifyCSFk �

� 	 �CSFPvar��
CSF � � � 	 �CSFPvar�	

CSF� �

unifyc�a��� b���	 �CSFPvar�unify
CSF
k �a� �CSF � b� 	CSF��

Example 	�� For the sake of comparison with the freeness analysis of �
	�� consider the
calculation of unifyCSFk �a� �CSFa � b� �CSFb � for k � 
� 	 and � where a � p�x�� x�� a� x�� x��
f�x�� x���� b � p�f�x�� x��� f�x�� x��� x�� x	� x
� x
� and

�Ca � fx� �� x�� � x� �� x�� � x� �� x��g�
�Sa � f�� fx

�
�g� fx

�
�g� fx

�
�gg�

�Fa � fx�� � x
�
� � x

�
�g�

�Cb � fx� �� x�� � � � � � x
 �� x�
g�
�Sb � f�� fx

�
�� x

�
�g� fx

�
�g� fx

�
�g� fx

�
	g� fx

�

gg�

�Fb � fx�� � x
�
� � x

�
	� x

�

g

Thus� supposing ��xi� � yi where xi � Pvar and yi � Rvar� then the computation re�
duces to mguCSFk �fa � ��b�g� �CSFa � ���CSFb �� �CSF Pvar which� in turn� simpli�es to
�CSF

k �mguCSF�E� �CSF �� �CSF Pvar adopting the E and �CSF of example ���� Thus� by
example ���� it follows that unifyCSFk �a� �CSFa � b� �CSFb � � �CSFk where

�C� �

�����
x� �� x�� �

x� �� x�� �

x� �� x�� �

��	�
 � �S� � f�� fx��� x
�
�gg� �F� � fx�� � x

�
�� g

	




�C� �

�����
x� �� f�a� x����
x� �� f�x��� x

�
���

x� �� x�� �

��	�
 � �S� � f�� fx��� x
�
�gg� �F� � fx��� x

�
� � g

�C� �

�����
x� �� f�a� x����
x� �� f�f�a� x���� �� x����
x� �� x�� �

��	�
 � �S� � f�� fx��� x
�
�gg� �F� � fx��� x

�
� � g

By comparison� the freeness analysis of �
	� likewise infers that x� is free and that x� and x�
share� However� the analysis of �
	� cannot infer the compoundness of x� and x�� nor which
sub�terms of x� and x� share� nor which sub�terms of x� are free�

� Related and future work

Recently� four relevant proposals for computing freeness information have been put forward
in the literature� In the �rst proposal ���� multiple domains and analyses are run in lock step�
At each step� the abstract substitutions derived by the di�erent analyses are compared and
re�ned in order to improve the precision� This paper follows the trend for simultaneously
tracing di�erent properties �namely sharing� freeness and compoundness�� explaining how
accuracy and e�ciency can be further improved by exploiting con�uence� In particular the
paper reports a depth�k analysis which cannot be synthesised in terms of the combined domain
approach�

In the second proposal ���� the correctness of a sharing and freeness analysis is considered�
An abstract uni�cation algorithm is proposed as a basis for constructing accurate freeness
analyses with a domain formulated in terms of a system of abstract equations� Safety follows
because the abstract algorithm mimics the uni�cation algorithm in an intuitive way� Correct�
ness is established likewise here� One important distinction between the two works is that
this paper uses the domain SubCPvar to potentially encode more accurate sharing and freeness
information than the abstract equations of ���� Consequently� a depth�k analysis cannot be
derived from the abstract equations of ���� Also� as pointed out in ���� �it is doubtful whether
it �the abstract uni�cation algorithm of ���� can be the basis for a very e�cient analysis �

Third� in �
��� the format of sharing groups is revised to capture structural properties
of substitutions� An abstract substitution is represented as a set of sharing groups where a
sharing group is a �possibly empty� set of program variable and path pairs� The paths permit
sharing groups to record the positions of shared variables within a binding� that is� where the
shared variable occurs in the terms to which the program variables are bound� Correctness is
proved� The usefulness of the approach� however� is compromised by its potential ine�ciency�
The essential problem is that paths are required to be concatenated� compared and truncated
at almost every stage of abstract uni�cation algorithm� This can be expensive� Moreover�
because of the way paths are widened� much of the formal analysis machinery has to be
duplicated
 �rst� a depth�� analysis is formulated� second� a depth�k analysis is constructed�
In contrast� the SubCPvar domain of this paper was chosen carefully to simplify widening and
ease the construction and presentation of the analysis� Also� in terms of implementation and
practicality� the analysis presented in this paper applies con�uence in a novel way to split the
analysis into small� simple and e�cient units�

Very recently� in a fourth proposal ���� a sharing and freeness analysis is formulated in
terms of a transition system which reduces a set of abstract equations to an abstract solved

		



form� Sharing is represented in a sharing group fashion with variables enriched with linearity
and freeness information by an annotation mapping� Depth�k sharing� groundness� freeness
and compoundness information can be represented to a bounded depth by virtue of the
abstract equations� To be precise� the domain is formulated as a set of equivalence classes
of abstract equations� The domain is similar in spirit to TypePvar
 sharing groups and
freeness sets record the aliasing between variable place markers that are introduced in the
structural component of the domain� One distinction� however� is the SubCPvar domain is
engineered to be a poset whereas the abstract equations of ��� lead to a preorder which
makes termination more subtle� A second di�erence is that in this paper the frequently used
operations like projection �CSF � lub tCSF � and widening �CSF

k are designed to be e�cient�
In ���� however� these frequently used operators are not discussed� A third distinction� is the
emphasis this paper puts on modularity� Modularity follows by using con�uence to split an
analysis into its constituent parts� Modularity is advantageous since it simpli�es both the
presentation and the implementation� On a software engineering perspective it also permits
an existing SharePvar � FreePvar uni�cation code� for instance �	��� to be plugged into
the implementation to reuse valuable code� To be fair� however� the analysis of ��� does
trace linearity and capture compoundness and de�nite sharing between the variables of the
abstract equations� This might be useful� Of these three di�erences� linearity is probably the
most signi�cant� and the con�uence approach �and in particular lemma ���� can extended to
accommodate linearity� This is not di�cult� The principal reason why linearity has not been
directly addressed in this paper is that it is simply not �yet� clear that the extra complication is
worthwhile if structure can be traced to depth�k� Future work will focus on implementation
and benchmarking �will is a non�trivial study within itself� to suggest suitable k and to
determine whether or not complexity of tracing linearity is worthwhile�

� Conclusions

A powerful and formally justi�ed analysis has been presented for inferring de�nite ground�
ness� freeness and compoundness� and possible sharing to a bounded depth k� The analysis
exploits con�uence to split the analysis into its constituent components and introduce mod�
ularity� Modularity simpli�es the implementation� aids the presentation� and leads to a well�
structured proof of correctness� High precision follows from the combination of domains� The
analysis propagates groundness with the accuracy of sharing groups and yet infers sharing
and freeness to a precision which exceeds that of a normal freeness analysis� The analysis is
signi�cant because it can under�pin many optimisations in logic programming� It is likely to
be particularly useful in the detection of independent and�parallelism�
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� Appendix

Proof ��� �for lemma ���� Let �CSF � �CSF � TypePvar�

�� Suppose �S � � and �S � �� Thus �CSF � �CSF and �CSF��CSF� � �CSF��CSF ��


� Suppose �S � � and �S �� �� Thus �CSF��CSF� � � whereas ���CSF� �� ��

	� Suppose �S �� � and �S � �� Thus �CSF��CSF� �� � whereas ���CSF� � ��

�� Suppose �S �� � and �S �� ��

�a� Suppose �C �� �C�

i� Suppose U� � �S and U� �� �S � Thus � � �CSF��CSF � such that � ��
�CSF��CSF��

ii� Suppose U� � �S and U� �� �S � Thus � � �CSF��CSF� such that � ��
�CSF��CSF ��

iii� Suppose �S � �S�

A� Suppose us � �F and us �� �F � Thus � � �CSF��CSF� such that � ��
�CSF��CSF ��

B� Suppose us � �F and us �� �F � Thus � � �CSF��CSF � such that � ��
�CSF��CSF ��

C� Suppose �F � �F � Thus �CSF � �CSF and �CSF��CSF � � ���CSF��

�b� Suppose �C � �C�

i� Suppose �C�u��s� � f�t�� � � � � tn� and �C�u��s�� � f ��t��� � � � � t
�
n�� with f �� f � or

n �� n�� Thus �CSF��CSF� 
 ���CSF� � ��

ii� Suppose �C�u��s� � Uvar and �C�u��s�� � f�t�� � � � � tn�� Thus � � �CSF��CSF�
such that � �� �CSF��CSF��

iii� Suppose �C�u��s� � f�t�� � � � � tn� and �C�u��s�� � Uvar� Thus � � �CSF��CSF�
such that � �� �CSF��CSF��

Proof ��� �for lemma ���� For brevity put �CSF � tCSF ��CSF��

�� Suppose �CSF � ��

�a� To show �CSF vCSF �CSF for all �CSF � �CSF � Immediate since �CSF � ��

�b� Suppose �CSF vCSF �CSF for all �CSF � �CSF � To show �CSF vCSF �CSF � Since
�CSF � �CSF � �CSFPvar��

CSF � � � and thus �CSF vCSF �CSF �


� Suppose �CSF �� ��

�a� To show �CSF vCSF �CSF for all �CSF � �CSF � Let � � �CSFPvar��
CSF� for �CSF �

�CSF so that � � Pvar � �D 
 �C � Pvar� Note that �C v �C as required�

i� Since �C v �C there exists �D such that �D 
�C � Pvar � � � Pvar� Let u �
Uvar� To show occcod��C��u� �

D� � �S � Now fvs � cod��C� j u � var���v��s��g

� occcod��C��u� �
D� � �S � Hence c�B�fvs � cod��C� j u � var���v��s��g� � �S

where �B 
 �C � Pvar � �C� Therefore fvs � cod��C� j u � var���v��s��g �
occcod��C��u� �

D� � �S�

	�



ii� Suppose us � �F � But us � �F and thus ��u��s� � Uvar as required�

Hence � � �CSFPvar��
CSF��

�b� Suppose �CSF vCSF �CSF for all �CSF � �CSF and �CSF vCSF �CSF � To show
�CSF � �CSF � Let �CSF � �CSF � Since �CSFPvar��

CSF � 	 �CSFPvar��
CSF �� �C v �C�

Hence �C v �C� But since �CSFPvar��
CSF � 	 �CSFPvar��

CSF�� �C v �C� Therefore �C �
�C� Thus �S 	 �S and �F 	 �F since �CSFPvar��

CSF � 	 �CSFPvar��
CSF ��

i� To show �S 	 �S � Let occcod��C��u� �
D� � �S for some u � Uvar with �D
�C �

Pvar � �CSFPvar��
CSF�� Since �CSFPvar��

CSF � 	 �CSFPvar��
CSF � and �C � �C it follows

that occcod��C��u� �
D� � �S �

ii� To show �F 	 �F � Let us � �F � Thus �D 
 �C�u��s� � Uvar for all � �
�CSFPvar��

CSF � with � � Pvar � �D
�C � Pvar� Since �CSFPvar��
CSF� 	 �CSFPvar��

CSF �
and �C � �C it follows that �D 
�C�u��s� � Uvar for all � � �CSFPvar��

CSF� with
� � Pvar � �D 
 �C � Pvar� Therefore us � �F �

Hence �CSF � �CSF �

Proof ��� �for corollary ���� Put uCSF ��� � �CSF � Since TypePvar �vCSF � is a poset
and tCSF is de�ned for every subset of TypePvar then� by theorem 	 of chapter 
 of ���� it
follows that TypePvar �vCSF � is a complete lattice�

Proof ��	 �for lemma ��	� Suppose � 	 �CSFPvar��
CSF�� For conciseness let 	CSF and �CSF

respectively denote the right�hand�sides of de�nition 	��
 and lemma 	��� Observe that
	CSF vCSF �CSF � Note that �C v �C since �C � �CPvar���� Moreover if �C � �C then
�S 	 �S and �F 	 �F � Thus �CSF vCSF 	CSF �

Proof ��� �for lemma ���� Immediate since �CSFPvar is total and monotonically increasing
as is �CSFPvar� � 	 �CSFPvar��

CSF
Pvar���� for all � � ��Sub�� and �CSFPvar��

CSF
Pvar��

CSF�� vCSF �CSF

for all �CSF � TypePvar� The last point is evident because if � � �CSFPvar��
CSF� then �CSFPvar���

� uCSF �f�CSF j� 	 �CSFPvar��
CSF �g� and � 	 �CSFPvar��

CSF��

Proof ��� �for lemma ���� Put �CSF ��CSF
k ��CSF�� Note that �C v �C so that �CSF vCSF

�CSF follows like cases 
�a�i and 
�a�ii of proof ��
�

Proof ��� �for lemma 	��� Let � � �SPvar��
S�� � � mgu�f��u� � ��t�g�� fug � var�t� 	

Pvar and u �� var�t�� Let v � Uvar� To show occPvar�v� � 
 �� � mguS�u� t� �SF��

�� Suppose v �� cod�� 
 ��� Thus v �� var�� 
 ��w�� for all w � dom�� 
 ���

�a� Suppose v �� dom�� 
 ��� that is� � 
 ��v� � v� Thus ��v� � v� and ��v�� � v�
Suppose v �� v�� Hence v � var���u���var���t��� Thus there exists w � fug�var�t�
such that v � var���w��� But since ��v� � v�� v �� w and because dom���
 cod���
� �� ��v� � v and therefore v � var�� 
 ��w��� Hence v � cod�� 
 �� which is a
contradiction� Thus v � v��

i� Suppose v �� var���u�� and v �� var���t��� Hence v �� cod��� and therefore
occPvar�v� � 
 �� � occPvar�v� ��� But u �� var�occPvar�v� ��� and var�t� 

var�occPvar�v� ��� � � and therefore u �� var�occPvar�v� ��� and var�t� 

var�occPvar�v� ��� � �� Hence occPvar�v� � 
 �� � mguS�u� t� �SF��

	�



ii� Suppose v � var���u�� and v �� var���t��� Since � � mgv�f��u� � ��t�g��
v � dom��� or v � cod���� Since ��v� � v� v �� dom��� and thus v � cod����
Thus v � var�� 
 ��u�� and therefore v � var�� 
 ��t��� Since v �� var���t��
there exists w � var���t�� such that v � var���w��� Thus v � var�� 
 ��t��
and since v �� cod�� 
 ��� v � t so that ��t� � v which is a contradiction�

iii� Suppose v �� var���u�� and v � var���t��� Like case ��a�ii�

iv� Suppose v � var���u�� and v � var���t��� Since ��v� � v and v �� cod�� 
���
v �� cod���� Thus ��u� � v and therefore � � mgv�fv � ��t�g� with v �
var���t�� which is a contradiction�

�b� Suppose v � dom��
��� Since v �� cod��
��� occPvar�v� �
��� � � mguS�u� t� �SF��


� Suppose v � cod�� 
 �� n var�� 
 ��u��� Let w � Pvar� Suppose v � var�� 
 ��w�� but
v �� var���w��� Thus v � cod��� and hence v � var�� 
 ��u�� which is a contradiction�
Suppose v � var���w�� but v �� var�� 
��w��� Thus v � dom��� and v �� cod��� so that
v �� cod�� 
 �� which is a contradiction� Hence occPvar�v� � 
 �� � occPvar�v� �� � �S �
Suppose v � var���u��� var���t��� Since v �� var�� 
 ��u��� v � dom��� and therefore
v �� cod���� Hence v �� cod�� 
�� which is a contradiction� Thus u �� var�occPvar�v� ���
and var�t�
 var�occPvar�v� ��� � � and therefore occPvar�v� �
�� � mguSF�u� t� �SF��

	� Suppose v � cod�� 
 �� 
 var�� 
 ��u��� Note that occPvar�v� � 
 �� � �v�var���w��
occPvar�w� ���

�a� Suppose u � �F with ��t� � vu�

i� Suppose � � fvu �� ��t�g� Since v � var�� 
 ��u��� v � var���t��� Thus
fw j v � var���w�g � fvu� vg� Hence occPvar�v� � 
�� � rel�u� �S�� rel�t� �S�
	 mguS�u� t� �SF��

ii� Suppose � � fvt �� vug with ��t� � vt� Since v � var��
��u��� v � vu� Thus
fw j v � var���w�g� fvu� vtg� Hence occPvar�v� �
�� � rel�u� �S�� rel�t� �S�
	 mguS�u� t� �SF��

�b� Suppose t � �F � Like case 	a�

�c� Suppose u �� �F and t �� �F � There exists Wu 	 var���u�� and Wt 	 var���t��
such that occPvar�v� � 
 �� � �w�Wu�Wt

occPvar�w� ��� Since v � var�� 
 ��u���
Wu �� � and thus Wt �� �� Thus occPvar�u� � 
 �� � rel�u� �S�� � rel�t� �S�� 	
mguS�u� t� �SF��

Proof ��� �for lemma 	��� Let � � �FPvar��
F�� � � mgu�f��u� � ��t�g�� fug � var�t� 	

Pvar and u �� var�t�� To show frPvar�� 
 �� � mguF�u� t� �SF�� Let v �mguF�u� t� �SF��

�� Suppose u � �F and t � �F where ��u� � vu and ��t� � vt�

�a� If � � fvu �� vtg then v � frPvar�� 
 �� since v � frPvar����

�b� If � � fvt �� vug then v � frPvar�� 
 �� since v � frPvar����


� Suppose u � �F �

�a� Suppose � � fvu �� ��t�g where ��u� � vu� Since v �� var�rel�u� �S��� vu ��
var���v��� Hence � 
 ��v� � ��v�� Thus� since v � frPvar���� v � frPvar�� 
 ���

	�



�b� Suppose � � fvt �� vug where ��u� � vu and ��t� � vt� Thus v � frPvar�� 
 ��
since v � frPvar����

	� Suppose t � �F � Like case 
�

�� Suppose u �� �F and t �� �F � Since v �� var�rel�u� �S�� and v �� var�rel�t� �S���
var���v��
 var���u�� � � and var���v��
 var���t�� � � and hence � 
 ��v� � ��v� �
frPvar����

Proof ��� �for theorem 	��� Let � � �SFPvar��
SF �� � � mgu���E�� and

mguSF �E� �SF � �SF � with var�E� 	 Pvar� By induction on the steps of mguSF and by
lemmas ��� and ��
� there exists � � mgu���E�� such that � 
 � � �SFPvar�	

SF�� But � � �

���� and thus � 
 � � � 
 �� Hence � 
 � � �SFPvar�	
SF��

Proof ���� �for lemma 	��� Proof by induction� Suppose � � Pvar � �D 
 �C � Pvar�
�B � mgu��C�E��� 	B � subPvar��

B�� 	B
n � fusi �� tig

n
i�� so that 	B

N � 	B� �n � mgu�	B
n �

�D� so that �N � �� and that by the inductive hypothesis �n � �SF
cod��B

n
��C�Pvar���

SF
n �� Put

�Sn�� � mguBS�usn��� tn��� �
SF
n � and �Fn�� � mguBF�usn��� tn��� �

SF
n �� To show

shcod��B
n��

��C�Pvar���� 	 �Sn�� and frcod��B
n��

��C�Pvar���� � �Fn���

Note that cod�	B
n 
�

C � Pvar� n cod�	Bn��
�
C � Pvar� � fusn��g and that cod�	B

n�� 
�
C �

Pvar� n cod�	B
n 
 �

C � Pvar� � var�tn���� Let w � Uvar�

�� Suppose w � usn��� Now �n�� � mgu�fusn�� �� tn��g��n�� 
 fusn�� �� tn��g and thus
w � dom��n��� so that occcod��B

n��
��C�Pvar��w� �n��� � � � �Sn��� If w � �Fn then

w � var�rel�usn��� �
S
n�� and thus w �� �Fn���


� Suppose w � var�tn����

�a� Suppose usn�� � �Fn � Thus �n�u
s
n��� � v � Uvar� Hence �n�� � mgu�fusn�� ��

tn��g ��n� � 
 
�n where 
 � fv �� tn��g� Now occcod��B
n��

��C�Uvar��w� 
 
�n� �

fx � cod�	B
n�� 
 �C � Uvar� jw � var�
�y�� � y � var��n�x��g �

�w�var���y��occ�B
n��

��C�Uvar�y� �n�� Because 
 � fv �� tn��g and w � var�tn����

fy jw � var�
�y��g � fv� wg� Hence occcod��B
n��

��C�Uvar��w� 
 
 �n� �

occcod��B
n��

��C�Uvar��v� �n� � occcod��B
n��

��C�Uvar��w� �n�� Now w �� cod��n� and

thus occcod��B
n��

��C�Uvar��w� �n� � fwg since w � cod�	B
n�� 
�

C � Uvar�� Also v �

var��n�tn���� � var�tn��� and therefore occcod��B
n��

��C�Uvar��w� �n� �

occcod��C��w� �n� n fu
s
n��g� Hence occcod��B

n��
��C�Uvar��w� �n��� 	 Uu�Ut 	 �Sn���

Since w � �Fn�� to show w � frcod��B
n��

��C�Uvar���n���� First� note that w �

var��Bn�� 
 �
C � Uvar�� Second� observe that w � cod�
 
 �n� and thus w �

frcod��B
n��

��C�Uvar���n����

�b� Suppose usn�� �� �Fn � Note that �n�� � mgu�f�n�usn��� � tn��g� 
 �n since
dom��n� 
 tn�� � �� Let 
 � mgu�f�n�u

s
n��� � tn��g�� Now

occcod��B
n��

��C�Pvar��w� 
 
 �n� � �w�var���y�� occcod��B
n��

��C�Pvar��y� �n�� Since

fy jw � var�
�y��g 	 var��n�usn���� � var�tn��� there exists Yu 	 var��n�usn����
and Yt 	 var�tn��� such that fy jw � var�
�y��g � Yu�Yt� But because 
�tn��� �

� by lemma 
��� Yu 	 fyug�

	�



i� If Yu � � then w �� var�
��n�u
s
n����� and thus w �� var�
�tn���� so that Yt � ��

Thus occcod��B
n��

��C�Pvar��w� �n��� � � � �S �

ii� If Yu � fyug then Yt �� �� Because usn�� � dom�	B�� usn�� � cod�	B
n 


�C � Pvar� and thus occcod��B
n
��C�Pvar��yu� �n� � rel�usn��� �

S
n�� Now yu �

var��n�u
s
n���� 	 fusn��g � cod��n�� But �fusn��g � cod��n�� 
 var�tn��� �

� and thus var�tn��� � var��n�tn����� Thus yu �� var��n�tn����� Hence
occcod��B

n��
��C�Pvar��yu� �n� � Uu� If yt � Yt� yt �� cod��n� and thus

occcod��B
n��

��C�Pvar��yt� �n� � fytg� Hence �w�var���y�� occcod��B
n��

��C�Pvar��y� �n�

� Yt � Ut since Yt �� �� Thus occcod��B
n��

��C�Pvar��w� �n��� � Uu�Ut�

Note that w �� �Fn �

	� Suppose w �� fusn��g � var�tn���� Let 
 � mgu�f�n�usn��� � �n�tn���g� so that �n�� �

 
 �n� Hence occcod��B

n��
��C�Pvar��w� 
 
 �n� � �w�var���y�� occcod��B

n��
��C�Pvar��y� �n��

Since w �� fusn��g � var�tn��� and w �� cod��n�� 
�w� � w and hence
occcod��B

n��
��C�Pvar��w� 

�n� � occcod��B

n��
��C�Pvar��w� �n�� But since w �� var��n�u

s
n����

and w �� var��n�tn����� occcod��B
n��

��C�Pvar��w� �n� � occcod��B
n
��C�Pvar��w� �n��

Because occcod��B
n
��C�Pvar��w� �n� ��

rel�usn��� �
S
n� and occcod��B

n
��C�Pvar��w� �n� �� rel�tn��� �

S
n�� occcod��B

n��
��C�Pvar��w� �n��� �

�Sn��� If w � �Fn then w � cod�	B
n 
�

C � Pvar� and �n�w� � v � Uvar� Since w �� usn���
w � cod�	B

n�� 
�
C � Pvar�� Also� because 
�w� � w� 
 
�n�w� � v and hence w � �Fn��

only if w � cod��Bn�� 
 �
C � Pvar� and �n���w� � Uvar�

Thus shcod��B
n��

��C�Pvar���n��� 	 �Sn�� and frcod��B
n��

��C�Pvar���n��� � �Fn���

Proof ���� �for theorem 	��� Let � � �CSFPvar��
CSF �� � � mgu���E�� and

mguCSF �E� �CSF � �CSF� with var�E� 	 Pvar� Thus �CSF � h	B 
 �C � Pvar� �S � �F i
where �B � mgu��C�E�� and 	B � subPvar��B�� To show that there exists 	D such that
�	D 
 �	B 
 �C � Pvar�� � Pvar � � 
 � with 	D � �SF

cod��B��C�Pvar���
SF ��

Since � � �CSFPvar��
CSF � there exists �D such that � � �D 
 �C � Pvar� Now � 
 � �

mgu�E � �� � mgu�E � ��D 
 �C � Pvar�� � mgu�E �mgu��D � �C� � Pvar� � mgu�E �
�D��C� � Pvar � mgu��C�E���C��D���C� � Pvar � mgu��C�E���D��C� � Pvar because
dom��C� 
 dom��D� � � and dom��C� 
 cod��D� � �� But mgu��C�E�� �D � �C� � Pvar �
mgu��C�E�� �C�E�� �D � �C� � Pvar � mgu��C�E�� 	B � �D � �C� � Pvar since 	B v 


for all 
 � mgu��C�E��� But mgu��C�E�� 	B � �D � �C� � Pvar � mgu�	B 
 �C�E�� 	B �
	B��D�� �	B 
�C� � Pvar� � Pvar because dom�	B�
 dom��C� � �� But mgu�	B 
�C�E��
	B � 	B��D� � �	B 
 �C� � Pvar� � Pvar � mgu�	B 
 �C�E�� �� �	B 
 �C� � Pvar� � Pvar
since � � mgu��D�	B�� But mgu�	B 
�C�E�����	B
�C� � Pvar� � Pvar � mgu��
	B

�C�E�������	B
�C� � Pvar�� � Pvar � mgu��
	B
�C�E�����	B
�C� � Pvar� � Pvar �
mgu�mgu��
	B
�C�E������	B
�C� � Pvar� � Pvar � �mgu��
	B
�C�E����
�	B
�C� �
Pvar� � Pvar because dom�	B 
 �C � Pvar�
 var�mgu�� 
 	B 
 �C�E�� ��� � ��

Thus put 	D � mgu��
	B
�C�E����� Hence �
� � �	D
�	B
�C� � Pvar� � Pvar� But
by lemma ��	� � � �SF

cod��B��C�Pvar���
SF � for �SF �mguSF�	B� �SF � and thus by theorem ����

	D � �SF
cod��B��C�Pvar���

SF � where mguSF�	B 
 �C�E�� �SF � �SF ��

��



Proof ���� �for theorem 	��� Let � 	 �CSF��CSF�� � 	 �CSF�	CSF� and
� � unifyc�a��� b���� Thus � � �� 
 �� � Pvar where � � mgu�f��a� � ��	�b��g��
� � � and 	 � �� Observe that � � mgu�f��a� � ��	�������b����g� and thus putting
� � � � �� 
 	 
 ����� � � mgu���fa � ��b�g��� Note that � � �CSFPvar��

CSF� and
	 
 ��� � �CSF��Pvar����	CSF�� and hence � 
 	 
 ��� � �CSF��Pvar����	CSF��� Since var���


var�� 
 	 
 ���� � �� � � �Pvar���Pvar���
CSF � ��	CSF�� Thus� by theorem ��
� since

var�a��var���b�� 	 Pvar���Pvar�� � 
 � � �CSF�mguCSF�fa � ��b�g� �CSF���	CSF ����
But �� 
 �� � Pvar � �� 
 �� � Pvar�� � Pvar � �� 
 �� � Pvar and �� 
 �� �

Pvar � �CSF
Pvar���Pvar��mguCSF�fa � ��b�g� �CSF � ��	CSF �� �CSF Pvar and therefore

� � �CSFPvar�unify
CSF�a� �CSF � b� 	CSF���

�



