
King, Andy (1995) Share x Free Revisited. University of Kent, School of
Computing, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21294/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21294/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Share � Free Revisited

Andy King

Computing Laboratory�

University of Kent at Canterbury�

Canterbury� CT� �NF� UK�
e�mail� amk�	ukc�ac�uk

Abstract

Analyses for possible variable sharing and de�nite freeness are important both in

the automatic parallelisation and in the optimisation of sequential logic programs� In this

paper� a new e�cient approach to analysis is described which can infer sharing and freeness

information to an unusually high degree of accuracy� The analysis exploits a con�uence

property of the uni�cation algorithm to split the analysis into two distinct phases� The two

phase analysis improves e�ciency by enabling each phase of the analysis to manipulate

relatively simple data�structures� The precision follows from the combination of domains�

The analysis propagates groundness with the accuracy of sharing groups and yet infers

sharing and freeness to a precision which exceeds that of a normal freeness analysis� High

precision compoundness information can be derived too� The usefulness of the analysis is

demonstrated with worked examples� Correctness is formally proven�

� Introduction

Abstract interpretation for sharing and freeness are important topics of logic programming�
Sharing �or aliasing� analysis conventionally infers which program variables are de�nitely
grounded and which variables can possibly be bound to terms containing a common variable�
Freeness analysis usually infers which program variables are free� that is� which variables
can never be bound to non�variable terms� Compoundness analysis �	
� �� is the dual of
freeness analysis in that it detects which variables are guaranteed to be bound to non�variable
�compound� terms� Compoundness analysis� as applied in ���� additionally traces the principal
functor of variable bindings� Compoundness information can aid indexing� Applications of
sharing and freeness information are numerous and include
 the sound removal of the occur�
check �	��� optimisation of backtracking ���� the specialisation of uni�cation �	��� and the
identi�cation �	��
�� and e�cient exploitation �	��
�� 	�� of independent and�parallelism�
Early proposals for sharing� freeness and compoundness analyses include �	��
	� 	��� �	�� and
�	
��

This paper is concerned with a semantic basis for sharing� freeness and compoundness
analysis� and in particular� the justi�cation of a high precision abstract uni�cation algorithm�
Following the approach of abstract interpretation �
��� an abstract uni�cation algorithm �the
abstract operation� is constructed by mimicking the substitutions �the concrete data� which
arise in a standard uni�cation algorithm �
�� �the concrete operation� with �nite sharing�
freeness and compoundness abstractions �the abstract data��

The accuracy of the analysis depends� in part� on the substitution properties that the
sharing abstractions capture� The popular sharing and freeness domain Share � Free �	���
for instance� captures possible sharing and de�nite groundness in its Share component� and
de�nite freeness in its Free component� The structure of Share is particularly rich� implicitly
encoding covering information ���� Covering� in short� permits groundness to interact nicely
with sharing to remove redundant aliasing� For �niteness� Share � Free is parametrised by
a �nite set of program variables� Pvar� which typically equate to the variables of a clause�
To be precise� SharePvar � ����Pvar�� and FreePvar � ��Pvar�� If Pvar � fx� y� zg� for
instance� the substitution � � fx �� f�a� y� b�� z �� g�y�g would be encoded by the pair
h�S � �Fi where �S � ffx� y� zg� �g and �F � fyg� The pair indicates that a variable occurs
through x� y and z� that is� they share� and that y is free�

Tracking freeness often brings a two�fold win
 �rst� it enlarges the class of ensuing optimi�
sations �	��
��� second� it improves the groundness and sharing �	��� Groundness and sharing
is re�ned since freeness relates to the structural or type properties of a substitution� Precision
is improved as a result of the synergy between sharing and type analysis� By keeping track
of type information� it is possible to infer more accurate sharing information� Conversely�
more accurate type information can be deduced if sharing is traced� Speci�cally� by tracking
freeness �	�� �� 	�� �or alternatively a type property called linearity �	�� ��
���� a sharing
analysis does not always have to assume that aliasing is transitive ���� If variables can be
inferred to be free� worst case aliasing need not be assumed in an analysis�

SharePvar � FreePvar � however� only captures shallow type information
 it traces the
freeness of terms to which a variable can be bound but not the freeness of sub�terms� The
usefulness of tracing sharing and freeness to the level of sub�terms has been reported before
�
�� but the analysis proposed in �
�� is di�cult to implement e�ciently� This paper remedies
this de�ciency by augmenting the domain SharePvar � FreePvar with a simple but powerful
type component SubCPvar� and by adopting a new� modular approach to analysis� The domain
SubCPvar consists of a set of canonical substitutions on Pvar which encode structure� The
composite domain is a subset of SubCPvar � SharePvar � FreePvar � denoted TypePvar � and
might typically represent � by

h�C � �S � �Fi where
�C � fx �� f�a� x�� b�� y �� y�� z �� g�z��g�
�S � ffx�� y�� z�g� �g�
�F � fx�� y�g

The triple indicates sharing between the second argument of term bound to x �x��� y �y���
and the �rst argument of the term bound to z �z��� The triple also records the freeness of
both x� and y�� It thus represents sharing and freeness to the precision of sub�terms� In
addition� it captures useful compoundness information too� for instance� that x is bound to a
term with a principal functor f and an arity of ��

In contrast to other approaches �
��� high precision does not come at the expense of gross
ine�ciency� The analysis exploits a con�uence property of the uni�cation algorithm �that all
uni�ers are equal up to renaming �
��� to split the analysis into two distinct phases� In the
�rst phase compoundness information is tracked� In the second phase sharing and freeness
is traced� The compoundness phase only operates on the compoundness component of the
domain� Similarly� the sharing and freeness phase only operates on the sharing and freeness
component of the domain� Since each phase of the analysis need only manipulate its own
�relatively simple� data�structure� e�ciency is maintained without sacri�cing precision� The
modularity also leads to a well�structured proof of correctness�

	

The exposition is structured as follows� Section 	 describes the notation and preliminary
de�nitions which will be used throughout� In section �� the focus is on abstracting data� An
abstraction for substitutions is constructed which expressively captures sharing� freeness and
compoundness properties of substitutions� In section �� the emphasis changes to abstract�
ing operations� Abstract analogs for renaming� uni�cation� composition and restriction are
de�ned in terms of an abstract unify operator �
��� An abstract uni�cation algorithm is
de�ned which� in turn� describes an abstract analog of unify� �Once an abstract unify op�
erator is speci�ed and proved safe� a complete and correct abstract interpreter is practically
de�ned by virtue of existing abstract interpretation frameworks �	�
�� 	���� Correctness is
also proved� For reasons of brevity and continuity� however� the proofs are relegated to an
appendix� section �� Finally� sections � and � present the related work and the concluding
discussion�

� Notation and preliminaries

To introduce the analysis some notation and preliminary de�nitions are required� The reader
is assumed to be familiar with the standard constructs used in logic programming �
�� such
as a universe of �possibly super� and sub�scripted� variables �u� v ��Uvar� the set of terms
�t ��Term formed from Uvar and the set of functors �f� g� h ��Func �of the �rst�order
language underlying the program�� and the set of program atoms Atom� Func is considered
to include the set of constants Const� It is sometimes convenient to abbreviate f�t�� � � � � tn�
to f�ti��

Let Pvar denote a �nite set of program variables � the variables that are in the text
of the program� and let var�o� denote the set of variables in a syntactic object o� Also
suppose that the set of �nite sequences of positive integers is denoted by S � f
� 	� � � �g�� S
is considered to include the empty sequence �� If � denotes concatenation of sequences� the
application of a term t to the sequence s� t�s�� can be de�ned by the partial mapping t��� � t

and f�t�� � � � � tn��i�s� � ti�s�� Hence� f�u� g�v���	�
��� � v� f�u� g�v���
��� � u� and f�u� g�v�����
� f�u� g�v���

��� Substitutions

A substitution � is a total mapping �
 Uvar � Term such that its domain dom��� �
fu � Uvar j��u� �� ug is �nite� The application of a substitution � to a variable u is denoted
by ��u�� Thus the codomain is give by cod��� � �u�dom���var���u��� A substitution � is
sometimes represented as a �nite set of variable and term pairs fu �� ��u� j u � dom���g� The
identity mapping on Uvar is called the empty substitution and is denoted by �� Substitutions�
sets of substitutions� and the set of substitutions on Uvar are denoted by lower�case Greek
letters� upper�case Greek letters� and Sub�

Substitutions are extended in the usual way from variables to functions� from functions
to terms� and from terms to atoms� The restriction of a substitution � to a set of variables
U 	 Uvar and the composition of two substitutions � and �� are denoted by � � U and �
�
respectively� and de�ned so that ��
���u� � ����u��� Restriction lifts to sets of substitutions
by
 � � U � f� � U j� � �g� The preorder Sub �v�� � is more general than �� is de�ned by

� v � if and only if there exists a substitution 	 � Sub such that � � 	
 �� The preorder
induces an equivalence relation � on Sub� that is
 � � � if and only if � v � and � v ��

�

A useful related preorder Sub �vPvar� is de�ned by
 � vPvar � if and only if there exists a
substitution 	 � Sub such that � � Pvar � �	
 �� � Pvar�

��� Equations and most general uni�ers

An equation is an equality constraint of the form a � b where a and b are terms or atoms�
Let �e ��Eqn denote the set of �nite sets of equations� The equation set feg � E� following
���� is abbreviated by e
E� There is a natural mapping from substitutions to equations� that
is� eqn��� � fu � tu j u �� tu � �g� Thus� when unambiguous� substitutions will be expressed
as equations� The set of most general uni�ers of E� mgu�E�� is de�ned operationally �
��
in terms of a predicate mgu� The predicate mgu�E� �� which is true if � is a most general
uni�er of E�

De�nition ��� �mgu� The set of most general uni�ers mgu�E� � ��Sub� is de�ned by�
mgu�E� � f� jmgu�E� ��g where

mgu��� ��
mgu�v�v
E�
� ifmgu�E�
�
mgu�t�v
E�
� ifmgu�v� t
E�
�

mgu�v� t
E�

 �� ifmgu���E��
��v ��var�t����fv �� tg
mgu�f�ti��f�t�i�
E�
� ifmgu�fti� t�ig

n
i���E�
�

By induction it follows that dom���
 cod��� � � if � � mgu�E�� or put another way� that
the most general uni�ers are idempotent �
���

Following �
��� the semantics of a logic program is formulated in terms of a single unify
operator� To construct unify� and speci�cally to rename apart program variables� an
invertible substitution �
��� �� is introduced� It is convenient to let Rvar denote a universe of
renaming variables distinct from Uvar� Uvar
Rvar � �� and suppose that �
 Uvar� Rvar�
� is assumed to consistently rename super�scripted variables� that is� ��us� � ��u�s�

De�nition ��� �unify� The partial mapping unify
 Atom� Sub �Atom� Sub � Sub is
de�ned by�

unify�a� �� b� 	� � ��
 �� � Pvar where � � mgu�f��a� � ��	�b��g�

To approximate the unify operation it is convenient to introduce a collecting seman�
tics� concerned with sets of substitutions� to record the substitutions that occur at various
program points� In the collecting semantics interpretation� unify is extended to unifyc�
which manipulates �possibly in�nite� sets of substitutions�

De�nition ��� �unifyc� The mapping unifyc
 Atom���Sub��Atom���Sub�� ��Sub�
is de�ned by�

unifyc�a��� b���� f� j� � � � 	 � � � � � unify�a� �� b� 	�g

�

��� Linearity

Linearity relates to the number of times a variable occurs in a term �	�� ��
��� A term is
linear if it de�nitely does not contain multiple occurrences of a variable� otherwise it is non�
linear� The signi�cance of linearity is that the uni�cation of linear terms only yields restricted
forms of aliasing� This is exploited �in proof ��
�� to simplify the proof of correctness� To be
more precise about linearity� it is necessary to introduce the variable multiplicity of a term t�
denoted
�t��

De�nition ��	 �variable multiplicity

 ��
� The variable multiplicity operator

 Term
� f��
� 	g is de�ned by�

�t� � max�f
u�t� j u � Uvarg� where
u�t� �

�����
� if u does not occur in t

 if u occurs only once in t

	 if u occurs many times in t

Lemma 	�
 states one restriction on a most general uni�er which follow from uni�cation
with a linear term�

Lemma ���
�b� �� 	 � var�a�
 var�b� � � � � � mgu�fa � bg� �

�� �u� u� � Uvar � u �� u� � var���u��
 var���u��� �� � � u �� var�a�� u� �� var�a��

Lemma 	�
 represents one case of a three part result which is formally established in �
��� The
lemma di�ers from the corresponding lemma in ��� �lemma 	�	� because lemma 	�
 requires
that a and b do not share variables� This is essentially a work�around for a subtle mistake in
lemma 	�	 �

��

� Abstracting substitutions

Abstract interpretation clari�es how data is represented in the abstract by requiring the
relationship between the data and the abstract data to be made explicit� Because of the
compositional nature of TypePvar this relationship is detailed in three steps� In the �rst step�
section ��
� the focus is on the SubCPvar component and its abstraction and concretisation
mappings� Section ��	� the second step� is concerned with the SharePvar � FreePvar compo�
nent� Finally the third step� section ���� explains how the SubCPvar� SharePvar and FreePvar
components �t together to produce TypePvar�

��� Abstracting substitutions with SubCPvar

The � example of section
 captures the compoundness of � in �C � fx �� f�a� x�� b�� y ��
y�� z �� g�z��g and the sharing and freeness of the variables cod��C� � fx�� y�� z�g by �S and
�F � The intuition behind the compoundness abstraction �C is that it represents substitutions
� for which
 �C is more general than any �� One advance of this approach is that it permits
compoundness to be expressed in simple terms� One disadvantage� however� is that since Sub
is a pre�order �rather than a poset�� the compoundness of � could equally be represented by
fx �� f�a� u� b�� y �� v� z �� g�w�g� Thus� in general� there is not a unique best substitution
for representing the compoundness of ��

�

����� On the domain SubCPvar

Representation problems can be straightforwardly avoided� however� by de�ning the com�
poundness domain to coincide with a poset of substitutions� One suitable and particularly
simple poset can be constructed from substitutions with codomain variables super�scripted
by integer sequences drawn from S�

To be more precise� if UvarS denotes the variables of Uvar which are super�scripted by
S� then the substitutions of the poset are de�ned to map variables of Uvar into a set of
terms with super�scripted variables dubbed TermS � TermS is formally de�ned by
 TermS

� ft � Term j var�t� 	 UvarSg� In fact� to conform to a poset� the variables must be
consistently super�scripted� The particular notion of consistency is formalised by the term
set Term�

u�

De�nition ��� �Terms
u� Terms

u is the least set de�ned by�

Terms
u � fusg �

�
f�t�� � � � � tn� � Terms

u

����� f � Func �
t� � Terms��

u � � � �� tn � Terms�n
u

�

In Terms
u variables are consistently super�scripted in the sense that the position p of a

variable in a term t is give by its super�script� that is� t�p� � us�p�

Example ��� Returning to the � example of section �� observe that the terms �C�x�� �C�y�
and �C�z� are consistently super�scripted in that

f�a� x�� b� � Term�
x� y� � Term�

y � g�z�� � Term�
z

To �ag the domain and codomain of a substitution� it is helpful to identify three classes of
substitution� Speci�cally� let �D � SubD denote substitutions for which �D
 UvarS � Term�
let �C � SubC denote substitutions such that �C
 Uvar� TermS � and �nally let �B � SubB

denote substitutions with �B
 UvarS � TermS � Informally� the D� C and B indicate whether
or not the domain� codomain or both annotated with sequence information�

The domain SubCPvar is �nally �eshed out by restricting the variable term bindings u �� tu
of SubC to a particular form where u � Pvar and tu � Term�

u�

De�nition ��� �SubCPvar� The domain SubCPvar is de�ned by�

SubCPvar �

�
�C � SubC

����� dom��C� � Pvar �
�u �� tu � �C � tu � Term�

u

�

The signi�cance of the construction is that SubCPvar �vPvar� is a poset rather than a
pre�order� Moreover� when equipped with a top element failC� a lub tC �corresponding to
uni�cation� and a glb uC �corresponding to anti�uni�cation �
���� SubCPvar � ffail

Cg �vPvar�
is a complete lattice�

����� On the mappings �CPvar and �CPvar

The mappings �CPvar and �CPvar are introduced to explain how compoundness abstractions
connect with substitutions�

�

De�nition ��� ��CPvar and �CPvar� The abstraction and concretisation mappings
�CPvar
 ��Sub�� SubCPvar and �CPvar
 Sub

C
Pvar � ��Sub� are de�ned by�

�CPvar��� � tCf�C � SubCPvar j�
C vPvar � � � � �g

�CPvar��
C� � f� � Sub j�C vPvar �g

Notice that �CPvar�f�g� � �C where �C � fu �� u� j u � Pvarg and more generally u �� tu �
�CPvar��� for all u � Pvar�

Example ��� If � � fx �� f�a� y� b�� z �� g�y�g and � � fx �� f�y� z� c�g with Pvar �
fx� y� zg then

�CPvar�f�g� � fx �� f�a� x�� b�� y �� y�� z �� g�z��g

�CPvar�f�g� � fx �� f�x�� x�� c�� y �� y�� z �� z�g

�CPvar�f�� �g� � fx �� f�x�� x�� x��� y �� y�� z �� z�g

����� On �niteness

For a given program Func is �nite and therefore termination can be enforced by represent�
ing compoundness information to a predetermined depth bound k� The notion of depth is
formalised by a mapping depth
 Term� f
� 	� � � �g de�ned by

depth�t� �

�

 if t � Uvar � t � Const

 �max�fdepth�ti�gni��� if t � Func� t � f�t�� � � � � tn�

A natural depth�k widening can be de�ned by extending the depth mapping to substitutions

depth�t� � max�fdepth�tu� j u �� tu � �g�

De�nition ��	 ��C
k� The widening �C

k
 SubCPvar � SubCPvar is de�ned by�

�C
k��

C� � tCf�C � SubCPvar j�
C vPvar �

C � depth��C� � kg

Observe that �CPvar��
C� 	 �CPvar��

C
k��

C�� as required for correctness�

Example ��� Adopting the � of example 	�

�C
���

C
Pvar�f�g�� � fx �� x�� y �� y�� z �� z�g

�C
���

C
Pvar�f�g�� � fx �� f�a� x�� b�� y �� y�� z �� g�z��g

��� Abstracting substitutions with SharePvar � FreePvar

To keep the paper self�contained the SharePvar �FreePvar domain and its mappings will be
brie�y reviewed�

�

����� On the domain SharePvar � FreePvar

SharePvar is formulated in terms of sharing groups �
�� 	�� which record which program
variables potentially share variables� A sharing group is a �possibly empty� set of program
variables� FreePvar � on the other hand� represents the free program variables as a set�

De�nition ��� �SharePvar and FreePvar� The domains SharePvar and FreePvar are
de�ned by�

SharePvar � ����Pvar��� FreePvar � ��Pvar�

The intuition is that a sharing group records which program variables are bound to terms
that share a variable� SharePvar � FreePvar is �nite since Pvar is �nite�

����� On the mappings �SFPvar and �SFPvar

In the spirit of �	��� the abstraction and concretisation mappings are constructed by lifting
two mappings� shPvar and frPvar� to sets of substitutions� The mappings shPvar and frPvar
detail how a single substitution is abstracted�

De�nition ��� �shPvar and frPvar� The abstraction mappings shPvar
 Sub � SharePvar
and frPvar
 Sub � FreePvar are de�ned by�

shPvar��� � foccPvar�u� �� j u � Uvarg� occPvar�u� �� � fv � Pvar j u � var���v��g

frPvar��� � fv � Pvar j var���v�� � Uvarg

Example ��	 Using the �� � and Pvar � fx� y� zg of example 	�

shPvar��� � foccPvar�y� ��� �g� ffx� y� zg� �g

shPvar��� � foccPvar�y� ��� occPvar�z� ��� �g � ffx� yg� fx� zg� �g

frPvar��� � fyg� frPvar��� � fy� zg

The abstraction shPvar is analogous to the abstraction A used in �	��� Observe that for
� � �� shPvar��� � shPvar��� and frPvar��� � frPvar���� The mapping �SFPvar and �SFPvar
follow directly from shPvar and frPvar�

De�nition ��� ��SFPvar and �SFPvar� The abstraction and concretisation mappings
�SFPvar
 ��Sub� � SharePvar � FreePvar and �SFPvar
 SharePvar � FreePvar � ��Sub�
are de�ned by�

�SFPvar��� � h�SPvar���� �
F
Pvar���i� �SFPvar��

SF � � �SPvar��
S�
 �FPvar��

F�

where
�SPvar��� � ����shPvar���� �SPvar��

S� � f� j shPvar��� 	 �Sg

�FPvar��� �
���frPvar���� �FPvar��
F� � f� j�F 	 frPvar���g

Note that �S ��� � � whereas �S��� � f�g if � is a set of substitutions which all ground
Pvar� This distinction is preserved in both SharePvar � FreePvar and TypePvar�

Example ��� Continuing with example 	��

�SFPvar�f�� �g� � hffx� y� zg� fx� yg� fx� zg� �g� fygi

�

��� Abstracting substitutions with TypePvar

The domain TypePvar is a strict subset of SubCPvar � SharePvar � FreePvar � crafted so that
TypePvar is a complete lattice� The construction proceeds by �rst specifying the structure
of TypePvar in section ����
� Second� in section ����	� the concretisation mapping �CSFPvar is
introduced to formalise the relationship between TypePvar and ��Sub�� Third� in section ������
the lattice ��Sub� �	� is used to induce a poset TypePvar �v

CSF � which� when equipped with
a lub tCSF and a glb uCSF � is elevated to a complete lattice� Fourth� in section ������ the glb
tCSF and the �CSFPvar are used to �nally formulate the abstraction mapping �CSFPvar � and thus
complete the construction of a Galois connection �
���

����� On the domain TypePvar

The domain TypePvar is formulated so that �CSFPvar is injective� An injective concretisation
mapping is useful since it can be used to straightforwardly induce a poset �rather an a pre�
order� on TypePvar from Sub �	�� In short� the domain is constructed so that di�erent
domain elements �in the abstract� represent di�erent sets of substitutions �in the concrete��

De�nition ��� �TypePvar� The abstract domain� TypePvar� is de�ned by�

TypePvar � fhfail� �� �ig�

�����h�C�U � Ui
�������

�C � SubCPvar�
U � Sharecod��C� � U �� � �

U � Freecod��C�

��	�

����� On the mapping �CSFPvar

The relationship between TypePvar and ��Sub� is made explicit by the mapping �CSFPvar�

De�nition ��� ��CSFPvar� The concretisation mapping �CSFPvar
 TypePvar � ��Sub� is de�ned
by�

�CSFPvar�h�
C� �S � �Fi� ��

�

����� � � Pvar � �D
 �C � Pvar�
shcod��C���

D� 	 �S � �F 	 frcod��C���
D�

�

It is assumed that �CSFPvar�hfail� �� �i� � �� Notice how the de�nitions of �CSFPvar requires the
shPvar and frPvar mappings to be parametrised by Pvar� The parameter is required because
the Share and Free components of TypePvar record the sharing and freeness of the variables
of cod��C� which is not �xed� Note also that for � � �� � � �CSFPvar��

CSF� if and only if
� � �CSFPvar��

CSF �� This follows because shPvar��� � shPvar��� and frPvar��� � frPvar��� if
� � ��

Example ��� To illustrate the expressiveness of TypePvar� consider the properties of an
arbitrary substitution � taken from �CSFPvar��

CSF � where

�CSF � hfx �� f�x�� x�� x��� y �� y�� z �� z�g�
ffx�� y�g� fx�� y�� z�g� fx�� z�g� �g� fx�� y�gi

�

sharing� The �rst argument of ��x� and ��z� do not share� This follows because x� and
z� do not occur in a sharing group of �S � Likewise� x never has any internal aliasing
under �� Put another way� x is linear �

� �� �
�� which in this case means that the
�rst� second and third argument of x are independent�

groundness� The third argument of ��x� is ground� This follows since the variables of
cod��C� which � ground� do not appear in �S �

freeness� The variable y is free under � and the second argument of ��x� is also free� This
follows immediately from �F �

compoundness� Compoundness is captured in that �C shows that ��x� is compound with a
principal functor of f and an arity of 	�

covering� Covering is also implicitly captured by virtue of �S � For instance� x covers both y�
or more exactly� the �rst and second arguments of x cover y� Thus grounding x grounds
y� or more precisely� grounding the �rst and second arguments of x grounds y�

����� On the domain TypePvar �continued�

A natural ordering TypePvar �vCSF � can be induced from Sub �	� by �CSFPvar�

De�nition ���� The preorder TypePvar �vCSF � is de�ned by� �CSF vCSF �CSF if and only
if �CSFPvar��

CSF� 	 �CSFPvar��
CSF ��

Note that �CSFPvar is monotonically increasing by de�nition� TypePvar is carefully engineered
so that the preorder TypePvar �vCSF � is also a poset� This is formally stated as lemma ��

and established by proof ��
�

Lemma ��� TypePvar �vCSF � is a poset�

The poset has a top element �CSF � h�C� ����cod��C���� �i and a bottom element �CSF

� hfail� �� �i since �CSFPvar��
CSF � � Sub and �CSFPvar��

CSF� � �� The bottom element is mean�
ingful and� in fact� represents goal failure� Speci�cally� in a top�down abstract interpretation
framework �	�
�� 	��� it is possible for a goal to fail if it is called with some abstract substitu�
tions� Returning �CSF for the success abstract substitution indicates that the goal can never
be satis�ed under any calling substitution which the calling abstract substitution abstracts�

For the purposes of abstract interpretation �
��� TypePvar �vCSF � is required to be a
complete lattice� preferably equipped with a lub tCSF which is straightforward to compute�
To succinctly de�ne tCSF �and later a widening �CSF

k � it is convenient to introduce an
auxiliary mapping� The mapping is formulated as a substitution� More exactly� if �B �

fx� �� a� x� �� b� z� �� g�z��g� it is helpful to de�ne c�B � fz� �� z�g� Informally� c�B
is constructed to map the codomain variables of �B to the domain variables of �B� More

formally� c	B � fut �� us j us �� tus � 	B � ut � var�tus�g� A su�cient condition for c	B

to be well�de�ned is that tus � Terms
u for all ut �� tus � 	B� This� in fact� will always be

guaranteed by the context�

�

De�nition ���� �tCSF� The mapping tCSF
 ��TypePvar�� TypePvar is de�ned by�

tCSF ��CSF � � h�C� �S � �Fi where

�C �uC�f �C j�CSF � �CSFg�

�S �� �f c�B��S� j�CSF � �CSF � �B
 �C � Pvar � �Cg�
�F �
 �f�F n cod��B� j�CSF � �CSF � �B
 �C � Pvar � �Cg�

It is assumed that uC��� � fail so that tCSF ��� � �CSF � Computationally� the lub tCSF

inherits much of its simplicity from the pair�wise union and intersection lub of SharePvar �
FreePvar � The main novelty is that anti�uni�cation �
�� is required to compute the glb for
the SubCPvar component�

Lemma ��� TypePvar �vCSF � has a lub tCSF �

Example ��� To illustrate the calculation of tCSF consider tCSF �f�CSF � �CSFg� where Pvar
� fx� y� zg and

�CSF � hfx �� f�a� x�� b�� y �� y�� z �� g�z��g� ffx�� y�� z�g� �g� fx�� y�� z�gi

�CSF � hfx �� f�x�� x�� c�� y �� y�� z �� z�g�
ffx�� y�g� fx�� z�g� �g� fx�� x�� y�� z�gi

For conciseness put �CSF � tCSF �f�CSF � �CSFg� and thus

�C � �C uC �C � fx �� f�x�� x�� x��� y �� y�� z �� z�g

�S � c�B��S� � c�B��S� � ffx�� y�g� fx�� y�� z�g� fx�� z�g� �g

�F � ��F n cod��B��
 ��F n cod��B�� � fx�� y�g

since
�B � fx� �� a� x� �� b� z� �� g�z��g� �B � fx� �� cgc�B � fz� �� z�g� c�B � �

with �B
 �C � Pvar � �C and �B
 �C � Pvar � �C�

The glb uCSF can be de�ned �in the standard way �
�� in terms of the lub tCSF � To be more
precise� uCSF ��CSF� � tCSF �f�CSF j ��CSF � �CSF � �CSF vCSF �CSFg�� Corollary ��
 and
proof ��� document that TypePvar �vCSF � is a complete lattice as a consequence�

Corollary ��� TypePvar �vCSF � is a complete lattice�

����	 On the mapping �CSFPvar

Once the glb uCSF is de�ned� the concretisation mapping �CSFPvar determines the abstraction
mapping �CSFPvar � This is spelt out in de�nition ��
	� The reason for explicitly introducing
�CSFPvar �rather than leaving its de�nition implicit� is to aid the synthesis of a constructive
version of �CSFPvar�

De�nition ���� ��CSFPvar� The abstraction mapping �CSFPvar
 ��Sub� � TypePvar is de�ned
by�

�CSFPvar��� � uCSF �f�CSF j� 	 �CSFPvar��
CSF�g�

Note that �CSFPvar is monotonically increasing since uCSF is monotonically decreasing� Further�
more � 	 �CSFPvar��

CSF
Pvar���� for all � � ��Sub� and �CSFPvar��

CSF
Pvar��

CSF �� vCSF �CSF for all
�CSF � TypePvar�

Following �
��� the relationship between TypePvar and ��Sub� can thus be stated as a
Galois connection� This gives lemma ���� The corresponding proof� numbered ���� is almost
immediate�

Lemma ��� �Galois connection� �CSFPvar and �CSFPvar form a Galois connection between
TypePvar �vCSF � and ��Sub� �	��

In fact� to be precise� �CSFPvar and �CSFPvar form a Galois insertion �		� since �CSFPvar is injective�
In more pragmatic terms� an insertion means that the abstract domain does not contain any
redundant elements�

Returning to the abstraction mapping� lemma ��� presents one constructive version of
�CSFPvar � Interestingly� the reformulation not only details how �CSFPvar can be computed� but it
also emphases the connection between �CSFPvar and �

SF
Pvar � Correctness is established in proof ���

and example ��� demonstrates one application of the new� constructive abstraction mapping�

Lemma ��	

�CSFPvar��� ��
�C �

�
�D��C�Pvar���Pvar

shcod��C���
D��

�D��C�Pvar���Pvar

frcod��C���
D�

�

where �C � �CPvar����

Example ��� Building on example 	�
� let �C � �CPvar�f�� �g� and consider the calculation
of �CSFPvar��� where � � f�� �g and Pvar � fx� y� zg� Thus

�CSFPvar��� �

h�C� shcod��C���
D�� shcod��C���

D�� frcod��C���
D�
 frcod��C���

D�i

where

�D �

�������������

x� �� a�

x� �� y�

x� �� b�

y� �� y�

z� �� g�y�

������	�����

� �D �

�������������

x� �� y�

x� �� z�

x� �� c�

y� �� y�

z� �� z

������	�����

Hence

�CSFPvar��� � hfx �� f�x�� x�� x��� y �� y�� z �� z�g�
ffx�� y�g� fx�� y�� z�g� fx�� z�g� �g� fx�� y�gi

Notice that �CSFPvar��� tallies with the �CSF of example 	��� A comparison of the � �of ex�
ample 	��� to the �CSFPvar��

CSF
Pvar���� �of example 	��� demonstrates the precision with which

TypePvar captures sharing� groundness� freeness� compoundness and covering information�

	

����� On �niteness

Since widening is required to induce termination on SubCPvar� widening is also necessary to
obtain �niteness on TypePvar� A suitable widening can be constructed from �C

k � however� by
borrowing some machinery from tCSF � Speci�cally� if �C

k details how the SubCPvar domain
can be widened� then tCSF explains how the Share and Free components can be amended
to �t with the widened SubCPvar component�

De�nition ���� ��CSF
k � The widening �CSF

k
 TypePvar � TypePvar is de�ned by�

�CSF
k ��CSF � � h�CSF

k ��C�� c�B��S�� �F n cod��B�i
where �B
 �CSF

k ��C� � Pvar � �C�

Note that the k does not necessarily need to be �xed but can be varied during analysis � just
so long as termination is achieved� The correctness of the widening is stated as lemma ���
and proven in proof ����

Lemma ��� �CSF vCSF �CSF
k ��CSF �

� Abstracting uni�cation

Abstract interpretation can help to focus the development of an analysis by illuminating the
connection between an operation �like uni�cation� and its abstract counterpart� In this case�
the abstract counterpart for uni�cation is divided into two distinct algorithmic phases� This
is a consequence of exploiting con�uence� The �rst phase� detailed in section ��	� traces com�
poundness information� whereas the second phase� documented in section ��
� infers sharing
and freeness information� The order of presentation re�ects the construction of the analy�
sis
 �rst� an e�cient sharing and freeness analysis is synthesised in section ��
� second� the
analysis is extended to trace compoundness to bounded depth in section ��	�

��� Abstracting uni�cation with SharePvar � FreePvar

The sharing and freeness component of the analysis is� in fact� interesting within its own right�
It is interesting for a number of reasons� First� the sharing and freeness analysis can used by
itself� stand�alone� Second� although the analysis applies many of the ideas of �	��� it is both
simple and e�cient� Third� the analysis has been proved correct� In short� the analysis can
be regarded as a systematic and e�cient reformulation of the abstract uni�cation algorithm
of �	���

Uni�cation is abstracted by tracing the steps of a standard uni�cation algorithm �
��� To
trace uni�cation� the abstract algorithm mimicks the recursive simpli�cation steps of mgu�
relegating the solution of simpli�ed equations of the form v � t to a mapping mguSF � Similar
simpli�cation steps� dubbed pre�uni�cation in ���� are applied in other abstract uni�cation
algorithms �	�� ��� The mapping mguSF is de�ned to abstract a slight variant of mgu�
Speci�cally� if � � mgu�f��v� � ��t�g� and � � �SFPvar��

SF � then mguSF�u� t� �SF� abstracts
the composition �
 � �rather than ��� that is� �
 � � �SFPvar�mguSF�u� t� �SF��� This spares
the need to de�ne an extra �composition� operator�

�

De�nition 	�� �mguSF� The relationmguSF
 Eqn��SharePvar�FreePvar���SharePvar�
FreePvar� is de�ned by�

mguSF��� �SF � �SF �
mguSF �u � u
 E� �SF � �SF� if mguSF�E� �SF � �SF�
mguSF �t � u
 E� �SF � �SF� if mguSF�u � t
 E� �SF � �SF�
mguSF �u � t
 E� �SF � �SF� if mguSF�E� �SF � �SF� � u �� var�t�

mguSF �f�ti� � f�t�i�
 E� �
SF � �SF� if mguSF�fti � t�ig

n
i�� � E� �SF � �SF�

where �S � mguS�u� t� �SF� and �F � mguF�u� t� �SF��

To de�ne the mappings mguS and mguF �and thus the relation mguSF� a number of
standard auxiliary operators are required �
�� 	��� First� rel�t� �S� represents the sharing
groups of �S which are relevant to the term t� that is� those sharing groups of �SF which
share variables with t� Second� in the absence of useful freeness information worst�case aliasing
is assumed� Thus� as in �
�� 	��� a closure under union operator� �� is employed to enumerate
all the possible sharing groups that can possibly arise in uni�cation� Third� to succinctly
de�ne mguSF � it is convenient to lift � to sets of sharing groups with a pair�wise union
operator� denoted ��

De�nition 	�� �rel
 � ��	
 �	
 and ��

rel�t� �S� � fU � �S jU
 var�t� �� �g

�S
�
� �S � fU � U � jU� U � � �S

�
g� �S ���S � fU � U � jU � �S � U � � ��Sg

The mappings mguS andmguF apply di�erent analysis strategies according to the freeness of
��v� and ��t� for � � �CSFPvar��

SF �� The default strategy of mguS corresponds to the standard
treatment in the abstract solver amgu of �
���

De�nition 	�� �mguS and mguF�

mguS�u� t� �SF� �

�
	S � �rel�u� �S� � rel�t� �S� � if u � �F � t � �F

	S � �rel�u� �S��� rel�t� �S��� otherwise

where 	S � �S n �rel�u� �S� � rel�t� �S���

mguF�u� t� �SF� �

���������
�F if u � �F � t � �F

�F n var�rel�u� �S�� else if u � �F

�F n var�rel�t� �S�� else if t � �F

�F n var�rel�u� �S� � rel�t� �S�� otherwise

Note that rel�u� �S�� rel�t� �S� � � and rel�u� �S��� rel�t� �S�� � � if rel�u� �S� � �� Thus�
in case one of mguS � rel�t� �S� need not be calculated if rel�u� �S� � � and similarly in case
two� rel�t� �S� need not be computed or closed under union if rel�u� �S� � �� Analogous
re�nements follow if rel�t� �S� � �� In addition� observe that mguS applies the re�nement
suggested in �	��� that is� if either u or t are free� then the calculation of a closure can
be avoided� This contrasts with other freeness algorithms� for example �	��� which always
calculate a closure unless both u and t are free� The correctness of the mappings mguS and
mguF is asserted in lemma ��
 and ��	� The corresponding proofs are numbered ��� and ����

�

Lemma 	��

� � �SPvar��
S� � � � mgu�f��u� � ��t�g� �

fug � var�t� 	 Pvar � u �� var�t�� �
 � � �SPvar�mguS�u� t� �SF�

Lemma 	��

� � �FPvar��
F� � � � mgu�f��u� � ��t�g� �

fug � var�t� 	 Pvar � u �� var�t�� �
 � � �FPvar�mguF�u� t� �SF�

The correctness of the relation mguSF follows from lemma ��
 and ��	 and is stated as
theorem ��
� The corresponding proof is numbered ����

Theorem 	��

� � �SFPvar��
SF � � � � mgu���E�� �

mguSF�E� �SF � �SF � � var�E� 	 Pvar � �
 � � �SFPvar��
SF �

It is convenient shorthand to regard mguSF as a mapping� that is� mguSF �E� �SF� �
	SF if mguSF �E� �SF � 	SF�� Strictly� it is necessary to show that mguSF�E� �SF � 	SF� is
deterministic formguSF�E� �SF� to be well�de�ned� Like in ���� the conjecture is thatmguSF

yields a unique abstract substitution 	SF for �SF regardless of the order in which E is solved
�though� in practice� any 	SF is safe��

Example ��
 illustrates that the simplicity of the analysis is not gained at the expense of
precision� Indeed the analysis seems to possess much of the power of the original sharing and
freeness analysis of �	���

Example 	�� Adapting an example from �
	�� consider the computation of mguSF �E� �SF�
where

E �

�����������������

x�� f�y�� y���
x�� f�y�� y���
y��a�

y	�x��

y
�x��

y
� f�x�� x��

��������	�������

�

�SF � hf�� fx�g� fx�g� fx�g�
fy�� y�g� fy�g� fy�g� fy	g� fy
gg�
fx�� x�� x�� y�� y�� y	� y
gi

Thus� putting �SF� � �SF � and considering each equation of E � fui � tig
i�� in turn� then
�SFi�� � hmguS�ui� ti� �SFi �� mguF�ui� ti� �SFi �i where

�SF� � hf�� fx�g� fx�g� fx�g� fy�� y�g� fy�g� fy�g� fy	g� fy
gg�
fx�� x�� x�� y�� y�� y	� y
gi

�SF� � hmguS�x�� f�y�� y��� �SF� �� mguF�x�� f�y�� y��� �SF� �i
� hf�� fx�� y�� y�g� fx�� y�g� fx�g� fx�g� fy�g� fy	g� fy
gg�

fx�� x�� y�� y�� y	� y
gi
�SF� � hf�� fx�� y�� y�� y�g� fx�� y�� y�g� fx�g� fx�g� fy	g� fy
gg�

fx�� x�� y	� y
gi
�SF� � hf�� fx�g� fx�g� fy	g� fy
gg� fx�� x�� y	� y
gi
�SF	 � hf�� fx�� y	g� fx�g� fy
gg� fx�� x�� y	� y
gi
�SF
 � hf�� fx�� y	� y
g� fx�gg� fx�� x�� y	� y
gi
�SF� � hf�� fx�� x�� y	� y
gg� fx�gi

�

Therefore mguSF�E� �SF� � hf�� fx�� x�� y	� y
gg� fx�gi� The freeness analysis of �
	� simi�
larly infers �modulo a projection operation �
	�� that only x�� x�� y	 and y
 are possibly aliased
and that x� is free�

��� Abstracting uni�cation with TypePvar

The task of extending abstract uni�cation from SharePvar�FreePvar to TypePvar boils down
to de�ning a mapping mguCSF � The speci�c requirement is for a mapping mguCSF such that
if � � mgu���E��� � � �CSFPvar��

CSF� and �CSF � mguCSF�E� �CSF� then �
� � �CSFPvar��
CSF ��

As with mguSF � the problem is cast in a way so as to avoid a composition operation�
The mappingmguCSF builds onmguSF by detailing how �C can be computed� In addition�

mguCSF explains how �SF can be calculated with mguSF from �C � �SF and E� Interestingly�
�C is calculated by applying �concrete� uni�cation to solve the equation set �C�E�� The
intuition is that if �B is a uni�er of mgu��C�E�� then �B
�C � Pvar is a likely to be a good
candidate for �C � One technical point� however� is that the substitution �B
 �C � Pvar is
not always an element of SubCPvar�

Example 	�� Consider� for example� the abstraction of mgu�E� �� where � is represented by
�CSF � E is de�ned in example ��� and �C � fx� �� x�� � x� �� x�� � x� �� x�� � y� �� y�� � � � � �
y
 �� y�
 g� Thus� calculating �

B � mgu��C�E�� and �B
 �C � Pvar yields

�B �

�����������������������

x�� �� f�a� y�� ��
x�� �� f�f�a� y���� x

�
���

y�� �� a�

y�� �� a�

y�� �� y�� �

y�	 �� f�f�a� y���� x
�
���

y�
 �� f�f�a� y���� x
�
��

�����������	����������

� �B
 �C � Pvar �

�����������������������

x� �� f�a� y�� ��
x� �� f�f�a� y���� x

�
���

y� �� a�

y� �� a�

y� �� y�� �

y	 �� f�f�a� y���� x
�
���

y
 �� f�f�a� y���� x
�
��

�����������	����������

Therefore� in general� 	
 �C � Pvar �� SubCPvar�

One way to capture the compoundness of �B
 �C � Pvar in terms of SubCPvar is to �nd
a substitution 	B such that 	B v �B with the required 	B
 �C � Pvar � SubCPvar� Safety
follows since 	B v �B� To maximise the precision� however� it is important to choose the
least general 	B with the 	B v �B property� This observation on precision and ordering leads
to the de�nition of the poset SubBPvar �vPvar��

De�nition 	�	 �SubBPvar� The poset SubBPvar �vPvar� is de�ned by�

SubBPvar �

�
�B � SubB

����� dom��B� 	 Pvar �
�us �� tu � �B� tu � Terms

u

�

SubBPvar �vPvar� is a poset �rather than a preorder� by virtue of its restricted variable term
bindings� Also� when equipped with a top element failB� a lub tB �corresponding to uni��
cation� and a glb uB �corresponding to anti�uni�cation �
���� SubBPvar � ffail

Bg �vPvar� is a
complete lattice�

With the aid of the lub� a mapping subPvar can be formulated which calculates the most
accurate� safe substitution �B such that 	B
 �C � Pvar � SubCPvar�

�

De�nition 	�� �subPvar� The mapping subPvar
 Sub
B
Pvar � SubBPvar is de�ned by�

subPvar��
B� � tBf�B � SubBPvar j�

B vPvar �
Bg

Although the mapping subPvar is de�ned in terms of the lub of a possibly large set� subPvar
can be implemented e�ciently�

Example 	�� Continuing with example ��
� put 	B � subPvar��
B� and thus

	B �

�����������������

x�� �� f�a� x����
x�� �� f�f�a� x���� �� x����
y�� �� a�

y�� �� a�

y�	 �� f�f�a� y���	 �� y�	��
y�
 �� f�f�a� y���
 �� y�
�

��������	�������

� 	B
 �C � Pvar �

�����������������

x� �� f�a� x����
x� �� f�f�a� x���� �� x����
y� �� a�

y� �� a�

y	 �� f�f�a� y���	 �� y�	��
y
 �� f�f�a� y���
 �� y�
�

��������	�������

Observe that 	B
 �C � Pvar � SubCPvar as required�

With the compoundness component �C � 	B
�C � Pvar computed� the problem reduces
to calculating the sharing and freeness component �SF � The sharing and freeness component
is computed by transforming the TypePvar problem into a SharePvar � FreePvar problem�
The idea is that if mguSF is e�cient and fast� then mguSF should be used wherever possible�
The transformation is under�pinned by lemma ��� and theorem ��	� In theorem ��	 con�uence
is used to show that �	D
�	B
�C � Pvar�� � Pvar � �
� where 	D �mgu��
	B
�C�E����
and � � mgu���	B�� This closes the gap between TypePvar and SharePvar�FreePvar since
if it is possible to �nd a �SF such that � � �SF

cod��B��C�Pvar�
��SF � then it is also possible to

compute �SF with mguSF � More exactly� mguSF �	B
 �C�E�� �SF� � �SF � This is the �rst
result� The second result� lemma ���� asserts that an auxiliary operation mguBSF can provide
the required �SF � To be precise� if mguBSF �	B� �SF � �SF � then � � �SF

cod��B��C�Pvar�
��SF ��

Thus both results� when applied together� de�ne a procedure for computing �SF � In short�
�SF � mguSF �	B
 �C�E�� �SF� where mguBSF �	B� �SF � �SF��

The operation mguBSF is designed to calculate an abstraction for � � mgu���	B�� This�
in fact� can be calculated relatively straightforwardly because of the simple structure of 	B�
First� the domain variables of 	B do not share in 	B
 var�	B�u��
 var�	B�v�� � � for any
pair of distinct variables u� v � dom�	B�� Second� the domain variables of 	B are guaranteed
to be linear

�	B�u�� �
 for all u � dom�	B�� This means that mguBSF can calculate an
accurate abstraction for ��

De�nition 	�� �mguBSF� The relation mguBSF
 SubBPvar � �SharePvar � FreePvar� �
�SharePvar � FreePvar� is de�ned by�

mguBSF ��� �SF � �SF �
mguBSF �u � t
 E� �SF � �SF � if mguBSF �E� �SF � �SF �

where �S � mguBS�u� t� �SF� and �F � mguBF�u� t� �SF��

De�nition 	�� �mguBS and mguBF�

mguBS�u� t� �SF� �

�
�S � �Uu�Ut� if u � �F

�S � �Uu�Ut� otherwise

�

where �S ��S n rel�u� �S�
Uu� fUu n fug jUu � rel�u� �S�g
Ut� ffutg j ut � var�t�g
Ut� fUt 	 var�t� jUt �� �g

mguBF�u� t� �SF� �

�
��F n var�rel�u� �S���� var�t� if u � �F

��F n var�rel�u� �S��� otherwise

The irregular structure of mguBS and mguBF stems from the requirement that � �
�SF
cod��B��C�Pvar���

SF � whereas �D � �SF
cod��C���

SF � �referring to the �D of lemma ����� Put

another way� the �SF is expressed in terms of the variables cod�	B
�C � Pvar� whereas �D is
represented in terms of the variables cod��C�� This means that mguBSF has to incrementally
extend from Sharecod��C� � Freecod��C� to Sharecod��B��C�Pvar� � Freecod��B��C�Pvar�� This
is the main technicality involved in establishing lemma ��� in proof ����

As withmguSF � it is a convenient shorthand to regardmguBSF as a mapping� Like before�
mguBSF �	B� �SF � �SF� yields a safe �SF regardless of the order in which 	B is solved�

Lemma 	��

� � Pvar � �D
 �C � Pvar�
�B � mgu��C�E�� �
	B � subPvar��

B� �
� � mgu�	B � �D� �
mguBSF�	B� �SF � �SF � �

� � �SFcod��B��C�Pvar���
SF �

De�nition ��� and theorem ��	 summarise how mguBSF and mguSF �t together to form
mguCSF � The corresponding proof is labelled ��

�

De�nition 	�� The mapping mguCSF
 Eqn� TypePvar � TypePvar is de�ned by�

mguCSF�E� �CSF� � h	B
 �C � Pvar� �S � �F i where

�B �mgu��C�E���
	B � subPvar��

B� �
�SF �mguSF�	B
 �C�E�� mguBSF�	B� �SF ��

Theorem 	��

� � �CSFPvar��
CSF � � � � mgu���E���

var�E� 	 Pvar � �
 � � �CSFPvar�mguCSF�E� �CSF��

Example 	�	 Consider the calculation of mguCSF�E� �CSF� � �CSF adopting the E of
example ��� and where

�C � fx� �� x�� � x� �� x�� � x� �� x�� � y� �� y�� � � � � � y
 �� y�
 g
�S � f�� fx��g� fx

�
�g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg

�F � fx�� � x
�
� � x

�
� � y

�
� � y

�
� � y

�
	 � y

�

g

�

Thus� using the �B � mgu��C�E�� and 	B � subPvar��
B� of example ��	� then if 	B
 �C�E�

is simpli�ed to E� through pre�uni�cation

	B
 �C�E� �

�����������������

f�a� x��� � f�a� y�� ��
f�a� x��� � f�a� y�� ��

a�a�

f�f�a� y���	 �� y�	� � f�f�a� x���� �� x����
f�f�a� y���
 �� y�
� � f�f�a� x���� �� x����
f�f�a� y���
 �� y�
� � f�f�a� x���� x

�
��

��������	�������

� E� �

���������������������������

x��� y�� �

x��� y�� �

y���	 � x���� �

y�	 � x���

y���
 � x���� �

y�
 � x���

y���
 � x���

y�
 � x��

�������������	������������

Moving onto the calculation of mguBSF�	B� �SF �� putting �CS� � �CSF � and considering each
equation of �B � fui � tig

i�� in turn

�CS� � hf�� fx��g� fx
�
�g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx�� � x
�
� � x

�
� � y

�
� � y

�
� � y

�
	 � y

�

gi

�CS� � hmguBS�x�� � f�a� x
�
��� �

CS
� �� mguBF�x�� � f�a� x

�
��� �

CS
� �i

� hf�� fx��g� fx
�
�g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
�
� � x

�
� � y

�
� � y

�
� � y

�
	 � y

�

gi

�CS� � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
� � y

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

�
� � y

�
� � y

�
	 � y

�

gi

�CS� � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

�
� � y

�
	 � y

�

gi

�CS	 � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

�
	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

�
	 � y

�

gi

�CS
 � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

���
	 g� fy�	g� fy

�

gg�

fx��� x
���
� � x��� x

�
� � y

���
	 � y�	� y

���

 � y�
gi

�CS� � hf�� fx��g� fx
���
� g� fx��g� fx

�
�g� fy

�
�g� fy

���
	 g� fy�	g� fy

���

 g� fy�
gg�

fx��� x
���
� � x��� x

�
� � y

���
	 � y�	� y

���

 � y�
gi

With �SF � �SF� � mguSF�E�� �SF� � �SF � hf�� fx��� x
�
� � y

�
	� y

�

gg� fx

�
�� x

�
� � y

�
	� y

�

gi� Thus

�CSF is given by

�C �

�������������������������������

x� �� f�a� x����
x� �� f�f�a� x���� �� x����
x� �� x�� �

y� �� a�

y� �� y�� �

y� �� a�

y� �� y�� �

y	 �� f�f�a� y���	 �� y�	��
y
 �� f�f�a� y���
 �� y�
�

���������������	��������������

�

�S� f�� fx��� x
�
�� y

�
	� y

�

gg�

�F� fx��� x
�
� � y

�
	� y

�

g

Clearly �CSF is a re�nement of the hf�� fx�� x�� y	� y
gg� fx�gi derived in example ���� In
addition to recording the sharing between x�� x�� y	 and y
 and freeness of x�� �CSF records
term structure in �C� details sharing to the precision of sub�terms in �S � and infers which
sub�terms are free in �F �

�

Example 	�� By widening 	B� �niteness can be enforced and the precision of the analysis
can be adjusted to suit the application� Thus� returning to the calculation of mguCSF �fa �
bg� �CSF� � �CSF in example ���� consider the e�ect of throttling 	B to depth�� and depth�

to obtain

	B

 �

�
y�� �� a�

y�� �� a

�
� 	B

� �

�����������������

x�� �� f�a� x����
x�� �� f�x��� x

�
���

y�� �� a�

y�� �� a�

y�	 �� f�y�	� y
�
	��

y�
 �� f�y�
� y
�

�

��������	�������

Like before� 	B

i
 �
C�E� can be simpli�ed via pre�uni�cation to obtain E�

i

E�

 �

�������������

x�� � f�a� y�� ��
x�� � f�a� y�� ��
y�	 �x�� �

y�
 �x�� �

y�
 � f�x�� � x
�
��

������	�����

� E�

� �

���������������������������

x��� y�� �

x��� y�� �

y�	 � x���

y�	 � x���

y�
 � x���

y�
 � x���

y�
 � f�a� x����
y�
 � x��

�������������	������������

Calculating mguBSF�	B

i � �
SF � � �SFi gives

�CS
 � hf�� fx��g� fx
�
�g� fx

�
�g� fy

�
�g� fy

�
	g� fy

�

gg� fx

�
�� x

�
� � x

�
� � y

�
	 � y

�

gi

�CS� � hf�� fx��g� fx
�
�g� fx

�
�g� fx

�
�g� fy

�
�g� fy

�
	g� fy

�
	g� fy

�

g� fy

�

gg�

fx��� x
�
�� x

�
�� x

�
� � y

�
	� y

�
	� y

�

� y

�

gi

Finally mguSF�E �
i� �

SF
i � de�nes �SFi and 	B

i
 �
C de�nes �Ci

�SF
 � hf�� fx��� x
�
� � y

�
	 � y

�

gg� fx

�
�gi

�SF� � hf�� fx��� x
�
�� y

�
	� y

�

gg� fx

�
�� x

�
� � y

�
	� y

�

gi

�C
 �

�������������������������������

x� �� x�� �

x� �� x�� �

x� �� x�� �

y� �� a�

y� �� y�� �

y� �� a�

y� �� y�� �

y	 �� y�	 �

y
 �� y�

���������������	��������������

� �C� �

�������������������������������

x� �� f�a� x����
x� �� f�x��� x

�
���

x� �� x�� �

y� �� a�

y� �� y�� �

y� �� a�

y� �� y�� �

y	 �� f�y�	 � y
�
	��

y
 �� f�y�
 � y
�

�

���������������	��������������

Note that even at depth��� the analysis captures compoundness information that cannot be
derived by a conventional Share � Free analysis� Note too that since variables only occur
in � at level �� then in terms of sharing and freeness� depth�
 analysis is just as accurate as
depth�	 analysis� Finally observe that depth�� analysis fails to infer the sharing and freeness
of sub�terms�

	�

Note thatmguCSF and each of its constituent parts are independent of k� ThusmguCSF is
an abstract equation solver for depth�k abstractions of arbitrary k� However� arbitrary k can
lead to non�terminating computations and therefore� in general� some method for enforcing
convergence and �niteness is required� One simple way of ensuring termination is to widening
at the level of mguCSF � This approach requires just one additional construction� mguCSFk �
which thresholds the abstract uni�er to depth�k� This approach compares very favourably
with the �niteness machinery which is detailed in �
���

De�nition 	�� �mguCSFk � The mapping mguCSFk
 Eqn� SubCSFPvar � SubCSFPvar is de�ned by�

mguCSFk �E� �CSF� � �CSF
k �mguCSF�E� �CSF��

Then� with the addition of some renaming machinery� mguCSFk de�nes a depth�k version
of unifyc� unifyCSFk � To de�ne unifyCSFk and prove safety it is necessary to introduce an
abstract restriction operator�

De�nition 	��� �abstract restriction� The abstract restriction operator� � �CSF �� is
de�ned by�

�CSF �CSF U � h�C �CU� �S �S U� �F �F Ui where
�C �C U ��C � U

�S �S U � fU
 U � jU � � �Sg
�F�F U �U
 �F

The de�nition of unifyCSFk is given below with its safety stated as theorem ���� Theo�
rem ��� assumes var�a�� var�b� 	 Pvar and is established by proof ��
	�

De�nition 	��� �unifyCSFk � The mapping unifyCSFk
 Atom�TypePvar�Atom�TypePvar
� TypePvar is de�ned by�

unifyCSFk �a� �CSF � b� 	CSF� � mguCSFk �fa � ��b�g� �CSF ���	CSF�� �CSF Pvar

Theorem 	�� �local safety of unifyCSFk �

� 	 �CSFPvar��
CSF � � � 	 �CSFPvar�	

CSF� �

unifyc�a��� b���	 �CSFPvar�unify
CSF
k �a� �CSF � b� 	CSF��

Example 	�� For the sake of comparison with the freeness analysis of �
	�� consider the
calculation of unifyCSFk �a� �CSFa � b� �CSFb � for k �
� 	 and � where a � p�x�� x�� a� x�� x��
f�x�� x���� b � p�f�x�� x��� f�x�� x��� x�� x	� x
� x
� and

�Ca � fx� �� x�� � x� �� x�� � x� �� x��g�
�Sa � f�� fx

�
�g� fx

�
�g� fx

�
�gg�

�Fa � fx�� � x
�
� � x

�
�g�

�Cb � fx� �� x�� � � � � � x
 �� x�
g�
�Sb � f�� fx

�
�� x

�
�g� fx

�
�g� fx

�
�g� fx

�
	g� fx

�

gg�

�Fb � fx�� � x
�
� � x

�
	� x

�

g

Thus� supposing ��xi� � yi where xi � Pvar and yi � Rvar� then the computation re�
duces to mguCSFk �fa � ��b�g� �CSFa � ���CSFb �� �CSF Pvar which� in turn� simpli�es to
�CSF

k �mguCSF�E� �CSF �� �CSF Pvar adopting the E and �CSF of example ���� Thus� by
example ���� it follows that unifyCSFk �a� �CSFa � b� �CSFb � � �CSFk where

�C� �

�����
x� �� x�� �

x� �� x�� �

x� �� x�� �

��	�
 � �S� � f�� fx��� x
�
�gg� �F� � fx�� � x

�
�� g

	

�C� �

�����
x� �� f�a� x����
x� �� f�x��� x

�
���

x� �� x�� �

��	�
 � �S� � f�� fx��� x
�
�gg� �F� � fx��� x

�
� � g

�C� �

�����
x� �� f�a� x����
x� �� f�f�a� x���� �� x����
x� �� x�� �

��	�
 � �S� � f�� fx��� x
�
�gg� �F� � fx��� x

�
� � g

By comparison� the freeness analysis of �
	� likewise infers that x� is free and that x� and x�
share� However� the analysis of �
	� cannot infer the compoundness of x� and x�� nor which
sub�terms of x� and x� share� nor which sub�terms of x� are free�

� Related and future work

Recently� four relevant proposals for computing freeness information have been put forward
in the literature� In the �rst proposal ���� multiple domains and analyses are run in lock step�
At each step� the abstract substitutions derived by the di�erent analyses are compared and
re�ned in order to improve the precision� This paper follows the trend for simultaneously
tracing di�erent properties �namely sharing� freeness and compoundness�� explaining how
accuracy and e�ciency can be further improved by exploiting con�uence� In particular the
paper reports a depth�k analysis which cannot be synthesised in terms of the combined domain
approach�

In the second proposal ���� the correctness of a sharing and freeness analysis is considered�
An abstract uni�cation algorithm is proposed as a basis for constructing accurate freeness
analyses with a domain formulated in terms of a system of abstract equations� Safety follows
because the abstract algorithm mimics the uni�cation algorithm in an intuitive way� Correct�
ness is established likewise here� One important distinction between the two works is that
this paper uses the domain SubCPvar to potentially encode more accurate sharing and freeness
information than the abstract equations of ���� Consequently� a depth�k analysis cannot be
derived from the abstract equations of ���� Also� as pointed out in ���� �it is doubtful whether
it �the abstract uni�cation algorithm of ���� can be the basis for a very e�cient analysis �

Third� in �
��� the format of sharing groups is revised to capture structural properties
of substitutions� An abstract substitution is represented as a set of sharing groups where a
sharing group is a �possibly empty� set of program variable and path pairs� The paths permit
sharing groups to record the positions of shared variables within a binding� that is� where the
shared variable occurs in the terms to which the program variables are bound� Correctness is
proved� The usefulness of the approach� however� is compromised by its potential ine�ciency�
The essential problem is that paths are required to be concatenated� compared and truncated
at almost every stage of abstract uni�cation algorithm� This can be expensive� Moreover�
because of the way paths are widened� much of the formal analysis machinery has to be
duplicated
 �rst� a depth�� analysis is formulated� second� a depth�k analysis is constructed�
In contrast� the SubCPvar domain of this paper was chosen carefully to simplify widening and
ease the construction and presentation of the analysis� Also� in terms of implementation and
practicality� the analysis presented in this paper applies con�uence in a novel way to split the
analysis into small� simple and e�cient units�

Very recently� in a fourth proposal ���� a sharing and freeness analysis is formulated in
terms of a transition system which reduces a set of abstract equations to an abstract solved

		

form� Sharing is represented in a sharing group fashion with variables enriched with linearity
and freeness information by an annotation mapping� Depth�k sharing� groundness� freeness
and compoundness information can be represented to a bounded depth by virtue of the
abstract equations� To be precise� the domain is formulated as a set of equivalence classes
of abstract equations� The domain is similar in spirit to TypePvar
 sharing groups and
freeness sets record the aliasing between variable place markers that are introduced in the
structural component of the domain� One distinction� however� is the SubCPvar domain is
engineered to be a poset whereas the abstract equations of ��� lead to a preorder which
makes termination more subtle� A second di�erence is that in this paper the frequently used
operations like projection �CSF � lub tCSF � and widening �CSF

k are designed to be e�cient�
In ���� however� these frequently used operators are not discussed� A third distinction� is the
emphasis this paper puts on modularity� Modularity follows by using con�uence to split an
analysis into its constituent parts� Modularity is advantageous since it simpli�es both the
presentation and the implementation� On a software engineering perspective it also permits
an existing SharePvar � FreePvar uni�cation code� for instance �	��� to be plugged into
the implementation to reuse valuable code� To be fair� however� the analysis of ��� does
trace linearity and capture compoundness and de�nite sharing between the variables of the
abstract equations� This might be useful� Of these three di�erences� linearity is probably the
most signi�cant� and the con�uence approach �and in particular lemma ���� can extended to
accommodate linearity� This is not di�cult� The principal reason why linearity has not been
directly addressed in this paper is that it is simply not �yet� clear that the extra complication is
worthwhile if structure can be traced to depth�k� Future work will focus on implementation
and benchmarking �will is a non�trivial study within itself� to suggest suitable k and to
determine whether or not complexity of tracing linearity is worthwhile�

� Conclusions

A powerful and formally justi�ed analysis has been presented for inferring de�nite ground�
ness� freeness and compoundness� and possible sharing to a bounded depth k� The analysis
exploits con�uence to split the analysis into its constituent components and introduce mod�
ularity� Modularity simpli�es the implementation� aids the presentation� and leads to a well�
structured proof of correctness� High precision follows from the combination of domains� The
analysis propagates groundness with the accuracy of sharing groups and yet infers sharing
and freeness to a precision which exceeds that of a normal freeness analysis� The analysis is
signi�cant because it can under�pin many optimisations in logic programming� It is likely to
be particularly useful in the detection of independent and�parallelism�

Acknowledgements

Thanks are due to Manuel Hermenegildo� Francisco Bueno and Bob Kemp for useful discus�
sions on sharing and freeness� This work was supported� in part� by ESPRIT project ������
�ParForce �

References

�
� G� Birkho�� Lattice theory� American Mathematical Society�
����

	�

�	� M� Bruynooghe� A practical framework for the abstract interpretation of logic programs�
J� Logic Programming�
�
�
�
	��
��
�

��� M� Bruynooghe and M� Codish� Freeness� sharing� linearity and correctness � all at once�
In WSA��	� pages
���
��� September
����

��� M� Bruynooghe� M� Codish� and A� Mulkers� Abstract uni�cation for a composite do�
main deriving sharing and freeness properties of program variables� In ICLP��� post�
conference workshop on the veri�cation and analysis of logic programs� pages 	
��	���
Santa Margherita Ligure� Italy�
���� June�

��� J��H� Chang and A� M� Despain� Semi�intelligent backtracking of prolog based static
data dependency analysis� In JICSLP��
� IEEE Computer Society�
����

��� M� Codish� D� Dams� G� Fil!e� and M� Bruynooghe� Freeness analysis for logic programs
� and correctness" In ICLP��	� pages

��
�
� MIT Press� June
����

��� M� Codish� D� Dams� and E� Yardeni� Derivation and safety of an abstract uni�cation
algorithm for groundness and aliasing analysis� In ICLP���� pages ������ Paris� France�

��
� MIT Press�

��� M� Codish� A� Mulkers� M� Bruynooghe� M� J� Garc!#a de la Banda� and M� Hermenegildo�
Improving abstract interpretation by combining domains� In PEPM��	� ACM Press�

����

��� A� Cortesi and G� Fil!e� Abstract interpretation of logic programs
 an abstract domain
for groundness� sharing� freeness and compoundness analysis� In PEPM���� pages �	��
�
ACM Press�
��
�

�
�� P� Cousot and R� Cousot� Abstract interpretation
 A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints� In POPL���� pages
	���	�	� ACM Press�
����

�

� D� Dams� Personal communication on linearity lemma 	�	� July�
����

�
	� S� K� Debray� Static inference of modes and data dependencies in logic programs� ACM
TOPLAS�

���
�
������ July
����

�
�� M� Hermenegildo and F� Rossi� Non�strict independent and�parallelism� In ICLP����
pages 	���	�	� Jerusalem�
���� MIT Press�

�
�� D� Jacobs and A� Langen� Static Analysis of Logic Programs� J� Logic Programming�
pages
����
��
��	�

�
�� A� King� A synergistic analysis for sharing and groundness which traces linearity� In
ESOP���� pages �������� Edinburgh� UK�
���� Springer�Verlag�

�
�� A� King and P� Soper� Depth�k sharing and freeness� In ICLP���� Santa Margherita
Ligure� Italy�
���� MIT Press�

�
�� J� Lassez� M� J� Maher� and K� Marriott� Foundations of Deductive Databases and Logic
Programming� chapter Uni�cation Revisited� Morgan Kaufmann�
����

	�

�
�� B� Le Charlier� K� Musumbu� and P� Van Hentenryck� A generic abstract interpretation
algorithm and its complexity� In ICLP���� pages ������ MIT Press�
��
�

�
�� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag�
����

�	�� K� Marriott and H� S$ndergaard� Analysis of constraint logic programs� In NACLP����
pages ��
����� MIT Press�
����

�	
� C� Mellish� The automatic generation of mode declarations for prolog programs� In
Workshop on Logic Programming for Intelligent Systems� Los Angeles� August
��
� Also
available as DAI Research Paper
��� Department of Arti�cial Intelligence� University of
Edinburgh�

�		� A� Melton� D� A� Schmidt� and D� E� Strecker� Category Theory and Computer Program�
ming� chapter Galois Connections and Computer Science Applications� pages 	����
	�
Springer�Verlag� Berlin�
����

�	�� K� Muthukumar and M� Hermenegildo� Combined determination of sharing and freeness
of program variables through abstract interpretation� In ICLP���� pages ������ Paris�
France�
��
� MIT Press�

�	�� K� Muthukumar and M� Hermenegildo� Compile�time derivation of variable dependency
through abstract interpretation� J� of Logic Programming� pages �
������
��	�

�	�� H� S$ndergaard� An application of the abstract interpretation of logic programs
 occur�
check reduction� In ESOP���� pages �	������ New York�
���� Springer�Verlag�

�	�� R� Sundararajan and J� Conery� An abstract interpretation scheme for groundness�
freeness� and sharing analysis of logic programs� In �
th FST and TCS Conference� New
Delhi� India� December
��	� Springer�Verlag�

�	�� A� Taylor� High Performance Prolog Implementation� PhD thesis� Basser Department of
Computer Science� NSW 	���� Australia� July
��
�

�	�� W� Winsborough and A� W%rn� Transparent and�parallelism in the presence of shared
free variables� In ICLP���� pages �������� MIT Press�
����

�	�� H� Xia� Analyzing Data Dependencies� Detecting And�Parallelism and Optimizing Back�
tracking in Prolog Programs� PhD thesis� University of Berlin� April
����

	�

� Appendix

Proof ��� �for lemma ���� Let �CSF � �CSF � TypePvar�

�� Suppose �S � � and �S � �� Thus �CSF � �CSF and �CSF��CSF� � �CSF��CSF ��

� Suppose �S � � and �S �� �� Thus �CSF��CSF� � � whereas ���CSF� �� ��

	� Suppose �S �� � and �S � �� Thus �CSF��CSF� �� � whereas ���CSF� � ��

�� Suppose �S �� � and �S �� ��

�a� Suppose �C �� �C�

i� Suppose U� � �S and U� �� �S � Thus � � �CSF��CSF � such that � ��
�CSF��CSF��

ii� Suppose U� � �S and U� �� �S � Thus � � �CSF��CSF� such that � ��
�CSF��CSF ��

iii� Suppose �S � �S�

A� Suppose us � �F and us �� �F � Thus � � �CSF��CSF� such that � ��
�CSF��CSF ��

B� Suppose us � �F and us �� �F � Thus � � �CSF��CSF � such that � ��
�CSF��CSF ��

C� Suppose �F � �F � Thus �CSF � �CSF and �CSF��CSF � � ���CSF��

�b� Suppose �C � �C�

i� Suppose �C�u��s� � f�t�� � � � � tn� and �C�u��s�� � f ��t��� � � � � t
�
n�� with f �� f � or

n �� n�� Thus �CSF��CSF�
 ���CSF� � ��

ii� Suppose �C�u��s� � Uvar and �C�u��s�� � f�t�� � � � � tn�� Thus � � �CSF��CSF�
such that � �� �CSF��CSF��

iii� Suppose �C�u��s� � f�t�� � � � � tn� and �C�u��s�� � Uvar� Thus � � �CSF��CSF�
such that � �� �CSF��CSF��

Proof ��� �for lemma ���� For brevity put �CSF � tCSF ��CSF��

�� Suppose �CSF � ��

�a� To show �CSF vCSF �CSF for all �CSF � �CSF � Immediate since �CSF � ��

�b� Suppose �CSF vCSF �CSF for all �CSF � �CSF � To show �CSF vCSF �CSF � Since
�CSF � �CSF � �CSFPvar��

CSF � � � and thus �CSF vCSF �CSF �

� Suppose �CSF �� ��

�a� To show �CSF vCSF �CSF for all �CSF � �CSF � Let � � �CSFPvar��
CSF� for �CSF �

�CSF so that � � Pvar � �D
 �C � Pvar� Note that �C v �C as required�

i� Since �C v �C there exists �D such that �D
�C � Pvar � � � Pvar� Let u �
Uvar� To show occcod��C��u� �

D� � �S � Now fvs � cod��C� j u � var���v��s��g

� occcod��C��u� �
D� � �S � Hence c�B�fvs � cod��C� j u � var���v��s��g� � �S

where �B
 �C � Pvar � �C� Therefore fvs � cod��C� j u � var���v��s��g �
occcod��C��u� �

D� � �S�

	�

ii� Suppose us � �F � But us � �F and thus ��u��s� � Uvar as required�

Hence � � �CSFPvar��
CSF��

�b� Suppose �CSF vCSF �CSF for all �CSF � �CSF and �CSF vCSF �CSF � To show
�CSF � �CSF � Let �CSF � �CSF � Since �CSFPvar��

CSF � 	 �CSFPvar��
CSF �� �C v �C�

Hence �C v �C� But since �CSFPvar��
CSF � 	 �CSFPvar��

CSF�� �C v �C� Therefore �C �
�C� Thus �S 	 �S and �F 	 �F since �CSFPvar��

CSF � 	 �CSFPvar��
CSF ��

i� To show �S 	 �S � Let occcod��C��u� �
D� � �S for some u � Uvar with �D
�C �

Pvar � �CSFPvar��
CSF�� Since �CSFPvar��

CSF � 	 �CSFPvar��
CSF � and �C � �C it follows

that occcod��C��u� �
D� � �S �

ii� To show �F 	 �F � Let us � �F � Thus �D
 �C�u��s� � Uvar for all � �
�CSFPvar��

CSF � with � � Pvar � �D
�C � Pvar� Since �CSFPvar��
CSF� 	 �CSFPvar��

CSF �
and �C � �C it follows that �D
�C�u��s� � Uvar for all � � �CSFPvar��

CSF� with
� � Pvar � �D
 �C � Pvar� Therefore us � �F �

Hence �CSF � �CSF �

Proof ��� �for corollary ���� Put uCSF ��� � �CSF � Since TypePvar �vCSF � is a poset
and tCSF is de�ned for every subset of TypePvar then� by theorem 	 of chapter
 of ���� it
follows that TypePvar �vCSF � is a complete lattice�

Proof ��	 �for lemma ��	� Suppose � 	 �CSFPvar��
CSF�� For conciseness let 	CSF and �CSF

respectively denote the right�hand�sides of de�nition 	��
 and lemma 	��� Observe that
	CSF vCSF �CSF � Note that �C v �C since �C � �CPvar���� Moreover if �C � �C then
�S 	 �S and �F 	 �F � Thus �CSF vCSF 	CSF �

Proof ��� �for lemma ���� Immediate since �CSFPvar is total and monotonically increasing
as is �CSFPvar� � 	 �CSFPvar��

CSF
Pvar���� for all � � ��Sub�� and �CSFPvar��

CSF
Pvar��

CSF�� vCSF �CSF

for all �CSF � TypePvar� The last point is evident because if � � �CSFPvar��
CSF� then �CSFPvar���

� uCSF �f�CSF j� 	 �CSFPvar��
CSF �g� and � 	 �CSFPvar��

CSF��

Proof ��� �for lemma ���� Put �CSF ��CSF
k ��CSF�� Note that �C v �C so that �CSF vCSF

�CSF follows like cases
�a�i and
�a�ii of proof ��
�

Proof ��� �for lemma 	��� Let � � �SPvar��
S�� � � mgu�f��u� � ��t�g�� fug � var�t� 	

Pvar and u �� var�t�� Let v � Uvar� To show occPvar�v� �
 �� � mguS�u� t� �SF��

�� Suppose v �� cod��
 ��� Thus v �� var��
 ��w�� for all w � dom��
 ���

�a� Suppose v �� dom��
 ��� that is� �
 ��v� � v� Thus ��v� � v� and ��v�� � v�
Suppose v �� v�� Hence v � var���u���var���t��� Thus there exists w � fug�var�t�
such that v � var���w��� But since ��v� � v�� v �� w and because dom���
 cod���
� �� ��v� � v and therefore v � var��
 ��w��� Hence v � cod��
 �� which is a
contradiction� Thus v � v��

i� Suppose v �� var���u�� and v �� var���t��� Hence v �� cod��� and therefore
occPvar�v� �
 �� � occPvar�v� ��� But u �� var�occPvar�v� ��� and var�t�

var�occPvar�v� ��� � � and therefore u �� var�occPvar�v� ��� and var�t�

var�occPvar�v� ��� � �� Hence occPvar�v� �
 �� � mguS�u� t� �SF��

	�

ii� Suppose v � var���u�� and v �� var���t��� Since � � mgv�f��u� � ��t�g��
v � dom��� or v � cod���� Since ��v� � v� v �� dom��� and thus v � cod����
Thus v � var��
 ��u�� and therefore v � var��
 ��t��� Since v �� var���t��
there exists w � var���t�� such that v � var���w��� Thus v � var��
 ��t��
and since v �� cod��
 ��� v � t so that ��t� � v which is a contradiction�

iii� Suppose v �� var���u�� and v � var���t��� Like case ��a�ii�

iv� Suppose v � var���u�� and v � var���t��� Since ��v� � v and v �� cod��
���
v �� cod���� Thus ��u� � v and therefore � � mgv�fv � ��t�g� with v �
var���t�� which is a contradiction�

�b� Suppose v � dom��
��� Since v �� cod��
��� occPvar�v� �
��� � � mguS�u� t� �SF��

� Suppose v � cod��
 �� n var��
 ��u��� Let w � Pvar� Suppose v � var��
 ��w�� but
v �� var���w��� Thus v � cod��� and hence v � var��
 ��u�� which is a contradiction�
Suppose v � var���w�� but v �� var��
��w��� Thus v � dom��� and v �� cod��� so that
v �� cod��
 �� which is a contradiction� Hence occPvar�v� �
 �� � occPvar�v� �� � �S �
Suppose v � var���u��� var���t��� Since v �� var��
 ��u��� v � dom��� and therefore
v �� cod���� Hence v �� cod��
�� which is a contradiction� Thus u �� var�occPvar�v� ���
and var�t�
 var�occPvar�v� ��� � � and therefore occPvar�v� �
�� � mguSF�u� t� �SF��

	� Suppose v � cod��
 ��
 var��
 ��u��� Note that occPvar�v� �
 �� � �v�var���w��
occPvar�w� ���

�a� Suppose u � �F with ��t� � vu�

i� Suppose � � fvu �� ��t�g� Since v � var��
 ��u��� v � var���t��� Thus
fw j v � var���w�g � fvu� vg� Hence occPvar�v� �
�� � rel�u� �S�� rel�t� �S�
	 mguS�u� t� �SF��

ii� Suppose � � fvt �� vug with ��t� � vt� Since v � var��
��u��� v � vu� Thus
fw j v � var���w�g� fvu� vtg� Hence occPvar�v� �
�� � rel�u� �S�� rel�t� �S�
	 mguS�u� t� �SF��

�b� Suppose t � �F � Like case 	a�

�c� Suppose u �� �F and t �� �F � There exists Wu 	 var���u�� and Wt 	 var���t��
such that occPvar�v� �
 �� � �w�Wu�Wt

occPvar�w� ��� Since v � var��
 ��u���
Wu �� � and thus Wt �� �� Thus occPvar�u� �
 �� � rel�u� �S�� � rel�t� �S�� 	
mguS�u� t� �SF��

Proof ��� �for lemma 	��� Let � � �FPvar��
F�� � � mgu�f��u� � ��t�g�� fug � var�t� 	

Pvar and u �� var�t�� To show frPvar��
 �� � mguF�u� t� �SF�� Let v �mguF�u� t� �SF��

�� Suppose u � �F and t � �F where ��u� � vu and ��t� � vt�

�a� If � � fvu �� vtg then v � frPvar��
 �� since v � frPvar����

�b� If � � fvt �� vug then v � frPvar��
 �� since v � frPvar����

� Suppose u � �F �

�a� Suppose � � fvu �� ��t�g where ��u� � vu� Since v �� var�rel�u� �S��� vu ��
var���v��� Hence �
 ��v� � ��v�� Thus� since v � frPvar���� v � frPvar��
 ���

	�

�b� Suppose � � fvt �� vug where ��u� � vu and ��t� � vt� Thus v � frPvar��
 ��
since v � frPvar����

	� Suppose t � �F � Like case
�

�� Suppose u �� �F and t �� �F � Since v �� var�rel�u� �S�� and v �� var�rel�t� �S���
var���v��
 var���u�� � � and var���v��
 var���t�� � � and hence �
 ��v� � ��v� �
frPvar����

Proof ��� �for theorem 	��� Let � � �SFPvar��
SF �� � � mgu���E�� and

mguSF �E� �SF � �SF � with var�E� 	 Pvar� By induction on the steps of mguSF and by
lemmas ��� and ��
� there exists � � mgu���E�� such that �
 � � �SFPvar�	

SF�� But � � �

���� and thus �
 � � �
 �� Hence �
 � � �SFPvar�	
SF��

Proof ���� �for lemma 	��� Proof by induction� Suppose � � Pvar � �D
 �C � Pvar�
�B � mgu��C�E��� 	B � subPvar��

B�� 	B
n � fusi �� tig

n
i�� so that 	B

N � 	B� �n � mgu�	B
n �

�D� so that �N � �� and that by the inductive hypothesis �n � �SF
cod��B

n
��C�Pvar���

SF
n �� Put

�Sn�� � mguBS�usn��� tn��� �
SF
n � and �Fn�� � mguBF�usn��� tn��� �

SF
n �� To show

shcod��B
n��

��C�Pvar���� 	 �Sn�� and frcod��B
n��

��C�Pvar���� � �Fn���

Note that cod�	B
n
�

C � Pvar� n cod�	Bn��
�
C � Pvar� � fusn��g and that cod�	B

n��
�
C �

Pvar� n cod�	B
n
 �

C � Pvar� � var�tn���� Let w � Uvar�

�� Suppose w � usn��� Now �n�� � mgu�fusn�� �� tn��g��n��
 fusn�� �� tn��g and thus
w � dom��n��� so that occcod��B

n��
��C�Pvar��w� �n��� � � � �Sn��� If w � �Fn then

w � var�rel�usn��� �
S
n�� and thus w �� �Fn���

� Suppose w � var�tn����

�a� Suppose usn�� � �Fn � Thus �n�u
s
n��� � v � Uvar� Hence �n�� � mgu�fusn�� ��

tn��g ��n� �

�n where
 � fv �� tn��g� Now occcod��B
n��

��C�Uvar��w�

�n� �

fx � cod�	B
n��
 �C � Uvar� jw � var�
�y�� � y � var��n�x��g �

�w�var���y��occ�B
n��

��C�Uvar�y� �n�� Because
 � fv �� tn��g and w � var�tn����

fy jw � var�
�y��g � fv� wg� Hence occcod��B
n��

��C�Uvar��w�

 �n� �

occcod��B
n��

��C�Uvar��v� �n� � occcod��B
n��

��C�Uvar��w� �n�� Now w �� cod��n� and

thus occcod��B
n��

��C�Uvar��w� �n� � fwg since w � cod�	B
n��
�

C � Uvar�� Also v �

var��n�tn���� � var�tn��� and therefore occcod��B
n��

��C�Uvar��w� �n� �

occcod��C��w� �n� n fu
s
n��g� Hence occcod��B

n��
��C�Uvar��w� �n��� 	 Uu�Ut 	 �Sn���

Since w � �Fn�� to show w � frcod��B
n��

��C�Uvar���n���� First� note that w �

var��Bn��
 �
C � Uvar�� Second� observe that w � cod�

 �n� and thus w �

frcod��B
n��

��C�Uvar���n����

�b� Suppose usn�� �� �Fn � Note that �n�� � mgu�f�n�usn��� � tn��g�
 �n since
dom��n�
 tn�� � �� Let
 � mgu�f�n�u

s
n��� � tn��g�� Now

occcod��B
n��

��C�Pvar��w�

 �n� � �w�var���y�� occcod��B
n��

��C�Pvar��y� �n�� Since

fy jw � var�
�y��g 	 var��n�usn���� � var�tn��� there exists Yu 	 var��n�usn����
and Yt 	 var�tn��� such that fy jw � var�
�y��g � Yu�Yt� But because
�tn��� �

� by lemma
��� Yu 	 fyug�

	�

i� If Yu � � then w �� var�
��n�u
s
n����� and thus w �� var�
�tn���� so that Yt � ��

Thus occcod��B
n��

��C�Pvar��w� �n��� � � � �S �

ii� If Yu � fyug then Yt �� �� Because usn�� � dom�	B�� usn�� � cod�	B
n

�C � Pvar� and thus occcod��B
n
��C�Pvar��yu� �n� � rel�usn��� �

S
n�� Now yu �

var��n�u
s
n���� 	 fusn��g � cod��n�� But �fusn��g � cod��n��
 var�tn��� �

� and thus var�tn��� � var��n�tn����� Thus yu �� var��n�tn����� Hence
occcod��B

n��
��C�Pvar��yu� �n� � Uu� If yt � Yt� yt �� cod��n� and thus

occcod��B
n��

��C�Pvar��yt� �n� � fytg� Hence �w�var���y�� occcod��B
n��

��C�Pvar��y� �n�

� Yt � Ut since Yt �� �� Thus occcod��B
n��

��C�Pvar��w� �n��� � Uu�Ut�

Note that w �� �Fn �

	� Suppose w �� fusn��g � var�tn���� Let
 � mgu�f�n�usn��� � �n�tn���g� so that �n�� �

 �n� Hence occcod��B

n��
��C�Pvar��w�

 �n� � �w�var���y�� occcod��B

n��
��C�Pvar��y� �n��

Since w �� fusn��g � var�tn��� and w �� cod��n��
�w� � w and hence
occcod��B

n��
��C�Pvar��w�

�n� � occcod��B

n��
��C�Pvar��w� �n�� But since w �� var��n�u

s
n����

and w �� var��n�tn����� occcod��B
n��

��C�Pvar��w� �n� � occcod��B
n
��C�Pvar��w� �n��

Because occcod��B
n
��C�Pvar��w� �n� ��

rel�usn��� �
S
n� and occcod��B

n
��C�Pvar��w� �n� �� rel�tn��� �

S
n�� occcod��B

n��
��C�Pvar��w� �n��� �

�Sn��� If w � �Fn then w � cod�	B
n
�

C � Pvar� and �n�w� � v � Uvar� Since w �� usn���
w � cod�	B

n��
�
C � Pvar�� Also� because
�w� � w�

�n�w� � v and hence w � �Fn��

only if w � cod��Bn��
 �
C � Pvar� and �n���w� � Uvar�

Thus shcod��B
n��

��C�Pvar���n��� 	 �Sn�� and frcod��B
n��

��C�Pvar���n��� � �Fn���

Proof ���� �for theorem 	��� Let � � �CSFPvar��
CSF �� � � mgu���E�� and

mguCSF �E� �CSF � �CSF� with var�E� 	 Pvar� Thus �CSF � h	B
 �C � Pvar� �S � �F i
where �B � mgu��C�E�� and 	B � subPvar��B�� To show that there exists 	D such that
�	D
 �	B
 �C � Pvar�� � Pvar � �
 � with 	D � �SF

cod��B��C�Pvar���
SF ��

Since � � �CSFPvar��
CSF � there exists �D such that � � �D
 �C � Pvar� Now �
 � �

mgu�E � �� � mgu�E � ��D
 �C � Pvar�� � mgu�E �mgu��D � �C� � Pvar� � mgu�E �
�D��C� � Pvar � mgu��C�E���C��D���C� � Pvar � mgu��C�E���D��C� � Pvar because
dom��C�
 dom��D� � � and dom��C�
 cod��D� � �� But mgu��C�E�� �D � �C� � Pvar �
mgu��C�E�� �C�E�� �D � �C� � Pvar � mgu��C�E�� 	B � �D � �C� � Pvar since 	B v

for all
 � mgu��C�E��� But mgu��C�E�� 	B � �D � �C� � Pvar � mgu�	B
 �C�E�� 	B �
	B��D�� �	B
�C� � Pvar� � Pvar because dom�	B�
 dom��C� � �� But mgu�	B
�C�E��
	B � 	B��D� � �	B
 �C� � Pvar� � Pvar � mgu�	B
 �C�E�� �� �	B
 �C� � Pvar� � Pvar
since � � mgu��D�	B�� But mgu�	B
�C�E�����	B
�C� � Pvar� � Pvar � mgu��
	B

�C�E�������	B
�C� � Pvar�� � Pvar � mgu��
	B
�C�E�����	B
�C� � Pvar� � Pvar �
mgu�mgu��
	B
�C�E������	B
�C� � Pvar� � Pvar � �mgu��
	B
�C�E����
�	B
�C� �
Pvar� � Pvar because dom�	B
 �C � Pvar�
 var�mgu��
 	B
 �C�E�� ��� � ��

Thus put 	D � mgu��
	B
�C�E����� Hence �
� � �	D
�	B
�C� � Pvar� � Pvar� But
by lemma ��	� � � �SF

cod��B��C�Pvar���
SF � for �SF �mguSF�	B� �SF � and thus by theorem ����

	D � �SF
cod��B��C�Pvar���

SF � where mguSF�	B
 �C�E�� �SF � �SF ��

��

Proof ���� �for theorem 	��� Let � 	 �CSF��CSF�� � 	 �CSF�	CSF� and
� � unifyc�a��� b���� Thus � � ��
 �� � Pvar where � � mgu�f��a� � ��	�b��g��
� � � and 	 � �� Observe that � � mgu�f��a� � ��	�������b����g� and thus putting
� � � � ��
 	
 ����� � � mgu���fa � ��b�g��� Note that � � �CSFPvar��

CSF� and
	
 ��� � �CSF��Pvar����	CSF�� and hence �
 	
 ��� � �CSF��Pvar����	CSF��� Since var���

var��
 	
 ���� � �� � � �Pvar���Pvar���
CSF � ��	CSF�� Thus� by theorem ��
� since

var�a��var���b�� 	 Pvar���Pvar�� �
 � � �CSF�mguCSF�fa � ��b�g� �CSF���	CSF ����
But ��
 �� � Pvar � ��
 �� � Pvar�� � Pvar � ��
 �� � Pvar and ��
 �� �

Pvar � �CSF
Pvar���Pvar��mguCSF�fa � ��b�g� �CSF � ��	CSF �� �CSF Pvar and therefore

� � �CSFPvar�unify
CSF�a� �CSF � b� 	CSF���

�

