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Abstract  22 

 23 

The nature and extent of immune cell infiltration into solid tumours are key determinants of 24 

therapeutic response. Here, using a DNA methylation-based approach to tumour cell fraction 25 

deconvolution, we report the integrated analysis of tumour composition and genomics across a wide 26 

spectrum of solid cancers. Initially studying head and neck squamous cell carcinoma, we identify two 27 

distinct tumour subgroups: ‘immune hot’ and ‘immune cold’, which display differing prognosis, 28 

mutation burden, cytokine signalling, cytolytic activity, and oncogenic driver events. We demonstrate 29 

the existence of such tumour subgroups pan-cancer, link clonal-neoantigen burden to cytotoxic T-30 

lymphocyte infiltration, and show that transcriptional signatures of hot tumours are selectively 31 

engaged in immunotherapy responders. We also find that treatment-naive hot tumours are markedly 32 

enriched for known immune-resistance genomic alterations, potentially explaining the heterogeneity 33 

of immunotherapy response and prognosis seen within this group. Finally, we define a catalogue of 34 

mediators of active antitumour immunity, deriving candidate biomarkers and potential targets for 35 

precision immunotherapy.  36 

 37 

Introduction 38 

 39 

The tumour microenvironment plays key roles in shaping tumour evolution and in determining 40 

treatment responses; prominent intratumoural lymphocyte infiltration is a favourable prognostic 41 

marker in multiple tumour types, while a high stromal content of extracellular matrix-producing 42 

cancer-associated fibroblasts (CAF), is associated with poor outcomes1. The recent clinical success of 43 

immunotherapy in subpopulations of patients with previously intractable malignancies has also 44 

highlighted the importance of understanding the tumour microenvironment in order to identify those 45 
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patients who will derive most benefit from targeted therapies1,2. Although responses to immune 46 

checkpoint blockade (ICB), e.g. antibodies against PD-1 (programmed cell death protein 1), PD-L1 47 

(programmed death-ligand 1) and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), are seen 48 

across many  solid tumours, the proportion of patients that benefit varies widely by cancer type and 49 

we currently lack biomarkers with which to reliably predict immunotherapy response3. Emerging 50 

evidence from clinical trials indicates higher response rates in those cancer types that typically display 51 

greater lymphocyte infiltration (e.g. melanoma, lung cancer, head and neck cancer) and that the 52 

tumour neoantigen repertoire (a function of somatic mutation load) is a key determinant4-7. These 53 

observations point to a model in which, within any given cancer type, there are immune hot and 54 

immune cold tumours. Immune hot tumours display greater cytotoxic T-lymphocyte (CTL) infiltration, 55 

and reactivation of these tumour-resident CTLs by checkpoint inhibition can result in dramatic tumour 56 

regression. Conversely, immune cold tumours display minimal CTL infiltrates and typically fail to 57 

respond to checkpoint modulation. If one could accurately identify likely responders for patient 58 

stratification and devise strategies by which to convert cold tumours to hot tumours, these would be 59 

major steps forward in realising the full clinical potential of cancer immunotherapy.   60 

 61 

Although flow cytometry of disaggregated tumour biopsies is commonly used for investigating cellular 62 

composition, this is often unfeasible for several reasons; difficulty in obtaining fresh tumour tissue; 63 

lack of defined markers for poorly characterised cell types (e.g. CAFs); and high cost of labour, reagents 64 

and equipment required for such analyses. Cellular disaggregation of collagen-rich tumours is also 65 

problematic, where cells are embedded in a dense extracellular matrix.  To overcome these difficulties, 66 

multiple reference-free or reference-based methods have recently been developed to permit the in-67 

silico deconvolution of complex cellular mixtures or to estimate tumour purity8-15. For example, 68 

accurate deconvolution of complex cellular mixtures, including tumours, has recently been achieved 69 

by application of support vector regression modelling (CIBERSORT) to gene expression microarray 70 
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data14,16. Notably, DNA methylation data are also suitable for deconvolution of tissue mixtures, 71 

although studies so far have focussed primarily on simple tissues such as blood, where cell type 72 

differences are a major confounder in Epigenome Wide Association Studies10.  73 

 74 

Here we present CIBERSORT-based deconvolution to genome-wide DNA methylation data from whole 75 

tumour tissue (hereafter referred to as ‘MethylCIBERSORT’). We provide accurate estimates of tumour 76 

purity and cellular composition, and identify immune hot and cold tumours across a broad spectrum 77 

of cancer types profiled by The Cancer Genome Atlas Project (TCGA). Using matched genomic and 78 

transcriptomic data, we identify multiple copy number alterations enriched in cold tumours, including 79 

deletions in PTEN and amplifications in MYC and EGFR. We show that responses to PD1-blockade are 80 

associated with a transcriptional signature for hot tumours post-treatment, while the cold signature, 81 

and specifically a gene expression module we previously linked to increased aerobic glycolysis 82 

downstream of EGFR in HNSCC17, is enriched in non-responders. Importantly however, defining 83 

whether a tumour is hot or cold is not sufficient to accurately predict response to immune checkpoint 84 

blockade (ICB), and by interrogating matched genomic data, we show that treatment-naive hot 85 

tumours frequently display genomic alterations known to confer immunotherapy resistance.  86 

 87 

Results 88 

DNA methylation-based tumour deconvolution using CIBERSORT  89 

To develop a DNA methylation based deconvolution pipeline for application in tumours, we created a 90 

custom R interface to produce basis matrices for use with CIBERSORT and generated a reference using 91 

fibroblasts and seven different immune cell types (see methods for details). We then evaluated the 92 

ability of our feature selection heuristic to accurately deconvolute mixtures of leukocytes using 93 

publicly available methylation data from mixtures of peripheral blood mononuclear cells (PBMCs) with 94 
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composition verified by flow-cytometry (gold standard). This showed extremely high correlation 95 

between the estimated and gold-standard fractions (Pearson’s R = 0.986, p < 2.2e-16, Figure 1a). We 96 

also carried out benchmarking against the performance of RNA-based CIBERSORT using the LM22 97 

basis matrix against leukocyte mixtures of similar resolution originally profiled in Newman et al14. This 98 

revealed that MethylCIBERSORT estimates demonstrate higher correlations, both at the cell-type and 99 

the sample level (Figure 1b, c) and significantly lower absolute error (Figure 1d). Thus, methylation 100 

data coupled to CIBERSORT is highly accurate and may offer distinct advantages relative to expression-101 

based CIBERSORT.  102 

 103 

To validate the method on real tumour samples, especially the tumour content in order to permit 104 

absolute quantification of tumour composition,  we focused initially on head and neck squamous cell 105 

carcinoma (HNSCC), a tumour type in which we’ve previously demonstrated the prognostic 106 

significance of tumour-infiltrating lymphocytes (TILs), particularly in those cancers driven by human 107 

papillomavirus (HPV)18,19. We applied our pipeline to generate an HNSCC specific basis matrix and 108 

applied it to the set of 464 HNSCCs that have both RNA-sequencing and DNA methylation profiles 109 

available from TCGA20. Upon comparing cancer cell proportion (purity) estimates derived using 110 

MethylCIBERSORT with estimates derived from ABSOLUTE21 (which jointly estimates purity and ploidy 111 

using mutation and copy number data) relative to other previously published methods of estimating 112 

purity (LUMP22 and ESTIMATE23) with data aggregated in22, MethylCIBERSORT displayed the highest 113 

correlation (R=0.82) and better concordance with ABSOLUTE than other methods (Figure 1e). Analysis 114 

of residuals (method estimate – ABSOLUTE estimate) suggested close concordance with ABSOLUTE 115 

estimates for MethylCIBERSORT, with larger deviations only seen when samples were of very high 116 

purity (>80%), while other methods tended to overestimate tumour cell content in samples of low 117 

purity (Supplementary Figure 1a), resulting in statistically significant differences in distributions (FDR 118 

< 2.2e-16). 119 
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 120 

We also compared the mRNA expression of a panel of cellular lineage markers with MethylCIBERSORT 121 

estimates and found significant associations for multiple cell types (Supplementary Figure 1b) even 122 

though they are derived from different samplings of the same tumour. Many of these marker genes 123 

demonstrated more variable expression in tumours with lower estimates of infiltrating cell fraction, 124 

suggesting that low coverage on either or both platforms (RNA-seq and methylation array) at the 125 

lower end of cellular abundance may result in poorer concordance. Taken together, these 126 

observations confirm that MethylCIBERSORT can accurately deconvolute the mixed cell populations 127 

in tumour samples using DNA methylation data. 128 

 129 

Having established the potential of MethylCIBERSORT to identify patterns of cellular infiltration in 130 

solid tumours, we tested ts ability to detect the elevated TIL levels previously documented in HPV-131 

driven (HPV+) HNSCC19. MethylCIBERSORT detected not only the increased TIL levels in HPV+ HNSCC 132 

compared with HPV- HNSCC (p= 2.167e-05 , Wilcoxon’s Rank Sum Test) but more specifically 133 

attributed this to increased numbers of B (CD19+) and cytotoxic T (CD8+) lymphocytes (CTLs, Figure 134 

1f), in agreement with observations made using other methods, including immunohistochemistry and 135 

gene expression analysis24, potentially also helping to explain favourable prognosis displayed by this 136 

subgroup, independent of treatment modality25-27.  137 

 138 

Cellular infiltration patterns in HPV-negative HNSCC  139 

Next, we extended our analysis to HPV-negative (HPV-) HNSCC, a heterogeneous, anatomically-diverse 140 

group of tumours in which prognosis is typically much poorer than in HPV+ disease. Again, using TCGA 141 

data (available for 398 HPV- HNSCCs) we observed interesting relationships between multiple cell 142 

types, with 24/36 pairs of cell types showing significant correlations (Spearman’s rank correlations, 143 
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FDR<0.1; Figure 1g). CTLs are associated with both CD14+ (monocytes / macrophages / myeloid-144 

derived suppressor cells) and B-lymphocytes (Rho =0.2 and 0.51). CD4+/FoxP3- T-lymphocytes (CD4 + 145 

effector T-lymphocytes), meanwhile display inverse correlations with CTLs (R= -0.41) and Tregs (R=-146 

0.38). CD56+ Natural Killer (NK) cell abundance is also inversely correlated with CTLs (R=-0.45).  Of 147 

note, CTLs are inversely correlated with fibroblast abundance (R=-0.12) and to validate this latter 148 

finding, we analysed data from two large studies in which these parameters had been quantified in 149 

HNSCC19,28. In a pooled analysis of these data, TIL content and SMA expression (a CAF marker) are 150 

inversely correlated (r=-0.322 and -0.344 for CD8 and CD3 IHC in the Ward (oropharyngeal SCC) cohort 151 

(Figure 1h, top panels); -0.4 and -0.424 for TIL scoring of H&E sections in the Ward (oropharyngeal 152 

SCC) and Marsh (oral SCC) cohorts respectively). They are also strongly prognostic (Figure 1h, lower 153 

panels; p<0.001, Log Rank Test).  154 

Given the complex nature of associations between different cell types, we performed consensus PAM 155 

clustering on the estimated cellular fractions to define subgroups by infiltration patterns.  We derived 156 

two clusters (immune cold and immune hot, hereafter referred to as cold and hot respectively) that 157 

show markedly different distributions of multiple cell types, most notably CTLs, Tregs, CD4+ effector 158 

T-lymphocytes, CD19+ B-lymphocytes and NK cells, all of which are implicated in antitumour immunity 159 

(Figure 2a). Consistent with our previous observations, estimates of fibroblast content are higher in 160 

the cold group (mean fold change 1.35, FDR < 5e-7, Wilcoxon’s Rank Sum Test). To explore the 161 

functional significance of our observations, we tested for associations between individual cellular 162 

fractions or immune cluster and a recently defined measure of local cytolytic activity based on the 163 

expression of Granzyme A and Perforin 1 (GZMA and PRF1; markers of activated T-cells)29. Most 164 

infiltrating cell fractions display significant correlations with cytolytic activity, with CD8+ cells showing 165 

the maximum positive correlation (Figure 2b, FDR < 0.05, Spearman’s Rank Correlation). Accordingly, 166 

the hot cluster displays significantly higher cytolytic activity (Figure 2c, p = 2e-16, Wilcoxon's Rank Sum 167 

test), and increased ratios of CTLs to Tregs (Figure 2d, p < 2e-16, Wilcoxon’s Rank Sum test); a metric 168 

that is prognostic in multiple settings30-32.  169 
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 170 

Together, our analyses suggest a tilting of the balance towards CTL activity in the microenvironment 171 

of tumours from the hot cluster. Integrated analysis of the impact of different cell populations on 172 

cytolytic activity using linear modelling identified CD8+ (coef = 0.13, p < 2e-16), CD14+ (coef = 0.10, p 173 

<7e-7), and CD56+ (coef = 0.26, p < 5e-15) cell abundance as positive predictors and fibroblast 174 

abundance as a negative predictor (coef = -0.08, p <1e-10).   175 

 176 

Transcriptional and proteomic differences between hot and cold HNSCCs  177 

Having observed differential abundance of various leukocytes in hot versus cold HNSCC using 178 

MethylCIBERSORT, we used gene expression data to further validate these estimates. Using limma-179 

trend analysis, we identified 458 genes differentially expressed (DEGs) between the hot and cold 180 

clusters at a fold-change of greater than 2 (FDR<0.01, Supplementary Data 1, genes highlighted in 181 

bold). Multiple DEGs are consistent with the MethylCIBERSORT-derived estimates of lymphocyte 182 

infiltration; CD8A, ZAP70 and CD3D (CD8 lymphocyte markers), CD79A and CD19 (B-lymphocyte 183 

markers), are all upregulated in the hot tumours, as are multiple chemokines and their receptors 184 

(CCL5, CCR5, CXCR5, CXCR6, CCL19, CXCL11)), immune checkpoint gene transcripts (LAG3, PD1, IDO1), 185 

and as expected, the cytolytic markers PRF1 and GZMA. In extended analyses of all genes at FDR < 186 

0.01 (Supplementary Data 1), multiple other genes, including the Class 1 MHC gene B2M (FC = 1.39), 187 

PD-1 ligand CD274 (FC = 1.62) and ACTA2, which encodes SMA (FC = 0.68), are also differentially 188 

expressed between the two clusters, the latter validating fibroblast estimates from MethylCIBERSORT 189 

(Figure 2a).  190 

 191 

Ingenuity Pathway Analysis further confirmed observations made using MethylCIBERSORT estimates, 192 

identifying differential regulation of multiple canonical pathways associated with immune function 193 
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and inflammatory conditions (Supplementary Data 2), consistent with differential lymphocyte 194 

infiltration and activity. Diseases and functions ontology (Supplementary Data 3) indicated that the 195 

top few pathways activated in hot tumours were associated with leukocyte and lymphocyte migration. 196 

Upstream regulatory analysis implicated increased activation of STAT1 and IRF1, and inhibition of 197 

Interferon-stimulated transcription mediated by IRF4, in hot tumours (Supplementary Data 4). Finally, 198 

analysis of RPPA data identified 10 differentially abundant (FDR<0.1) proteins or phospho-proteins 199 

(Supplementary Data 5). Higher levels of cleaved Caspase 7 (FC=1.52) in the hot subgroup indicates 200 

increased apoptosis, whereas Fibronectin and PAI1 upregulation in immune cold tumours suggest a 201 

distinct pattern of  TGFb-driven extracellular matrix remodelling in what may be a CAF-linked 202 

phenomenon. 203 

 204 

Distinct mutations are associated with HNSCC immune cluster 205 

  206 

Having established that the two immune clusters display distinct transcriptional patterns, we then 207 

sought to identify individual mutations in driver genes (MutSig CV33 q.value < 0.01) associated with 208 

immune cluster using Negative Binomial regression. This identified enrichment of CASP8, PIK3CA, 209 

CREBBP, EP300 and HLA-A mutations in hot HNSCCs, while TP53 and KDM6A mutations are enriched 210 

in cold HNSCCs (Figure 2e).  CASP8 mutations are implicated in subverting apoptosis induced by 211 

lymphocytes; they are enriched in tumours with high immune cytolytic activity and likely reflect an 212 

increased selective pressure exerted by the presence of adaptive immune cells29,34. Fas-ligand (FASLG), 213 

an upstream activator of pro-apoptotic signalling through Caspase 8 is also upregulated in the immune 214 

hot tumours, further highlighting the importance of this pathway (Supplementary Data 1).  215 

Identification of this lymphocyte-rich, good p group displaying CASP8 mutations and a relative lack of 216 

TP53 mutations is striking, since TCGA previously identified a subset of good-prognosis oral cavity 217 

tumours bearing the same genomic hallmarks, which  were reported to co-occur with HRAS 218 

mutations20. 219 

  220 
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Neoantigen burden has previously been identified as a predictor of anti-tumour immune 221 

responses29,35,36 and consistent with this, we identified significantly higher predicted MHC class I 222 

neoantigen burdens in the hot tumours (OR = 1.56, p < 5.5e-8, Negative Binomial GLM) and a smaller 223 

increase in overall mutational burden (OR = 1.46, p = 6e-7). Moreover, in 15 tumours from the hot 224 

cluster versus 5 in the cold cluster, CASP8 mutations themselves encoded at least one neoantigenic 225 

peptide (Figure 2e), demonstrating the existence of mutations that could both contribute to the 226 

development of a potential selective constraint, and serve as an adaptive mechanism to evade it.  227 

 228 

Deconvolution and immune clustering across tumour types 229 

To examine whether the relationships between tumour composition, genomic alterations and clinical 230 

behaviour we observed in HNSCC are generally applicable, we derived cancer-type specific basis 231 

matrices and conducted deconvolution on 18 further tumour types for which cancer cell line 232 

methylation data have recently been published37. For 9 of these we were able to compare our 233 

predictions of tumour purity with ABSOLUTE estimates and observed strong correlations and 234 

significantly lower error margins compared to LUMP and ESTIMATE (Supplementary Figure 2a, b). 235 

Further, we observed a robust preservation of positive correlations between MethylCIBERSORT and 236 

marker expression pan-cancer (Supplementary Figure 2c), again with the caveat that the samples 237 

were taken from different aliquots of the tumour. Taken together, these findings attest to the general 238 

pan-cancer applicability of MethylCIBERSORT.  An important potential advantage of DNA-methylation 239 

over gene expression-based deconvolution methods is the ease with which accurate DNA methylation 240 

profiles can be obtained from formalin-fixed, paraffin-embedded (FFPE) samples38. We therefore 241 

compared estimates pertaining to fresh frozen and matched FFPE samples (n = 21 from 3 tumours)39 242 

and recorded very high correlations, indicating our method is applicable also to archival material 243 

(Supplementary Figure 2d). 244 

 245 
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We then trained an elastic-net classifier using 5-fold cross-validation for tuning on the HNSCC cellular 246 

abundance data, returning highly accurate recapitulation of clustering (Kappa = 0.9), and predicted 247 

immune cluster membership for the validation set of 7596 samples representing 21 further tumour 248 

types from TCGA (Figure 3a).  As expected, we observed strong enrichment for CTLs, Tregs, and B-249 

lymphocytes in hot tumours pan-cancer, while CD4-effectors, NK cells, eosinophils and CAFs were 250 

enriched in immune cold tumours (Figure 3b). Different tumour types also display markedly varying 251 

degrees of lymphocyte infiltration, with the majority of pancreatic ductal adenocarcinomas, 252 

colorectal, thyroid, uterine corpus endometrial, kidney, prostate, hepatocellular cancers and 253 

sarcomas belonging to the cold cluster (Figure 3a). We again observed increased CTL:Treg ratios in hot 254 

tumours (Figure 3c) and similar relationships between tumour composition and CYT to those seen in 255 

HNSCC.   256 

 257 

Increased immunoediting and Th1/M1 responses in hot tumours 258 

To further determine if the immune infiltrate was active in these tumours, we assayed immunoediting 259 

by testing for reductions from the expected ratio (as previously defined by Rooney et al29) of observed 260 

neoantigens to total nonsilent mutations per tumour and adapted this approach to derive the 261 

estimated number of neoepitopes lost through immune editing while controlling for tumour type. 262 

Accordingly, we found significant enrichment for editing in hot tumours compared to cold tumours 263 

(OR = 1.28, p = 0.001, Negative Binomial GLM). Additionally, upon integration with T-cell receptor 264 

(TCR) repertoire data from Li et al40, we found more diversity (Number of TCR clones / Total number 265 

of TCR reads) in the immune hot tumours (Figure 3d, p < 2.2e-16, Wilcoxon’s Rank Sum Test), 266 

suggesting that broader immune responses may underlie the greater depletion of neoantigens in this 267 

group.  268 

 269 
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Given the evidence for divergent infiltration patterns and activity between the immune clusters across 270 

cancer types, we then investigated the determinants of this response by identifying differentially 271 

expressed genes after adjusting for tumour type. We identified 365 genes at FDR < 0.01, FC>2 and in 272 

pathway analysis, the top pathways were significantly associated with T-helper 1 (Th1) vs T-helper 2 273 

Th2) lymphocyte responses (Figure 3e, Supplementary Data 6). Multiple Th1 cytokines and 274 

downstream targets were overexpressed in hot tumours (IFNG, CCL4, CCL5, CXCL9, CXCL10), along 275 

with costimulatory and coinhibitory receptors, suggesting these tumours were marked by a state of 276 

lymphocyte activation and counter-responses thereto. We next scored proinflammatory (Th1, Th17) 277 

and suppressive (Th2)) CD4+ cell populations using RNA-seq reference profiles from purified cells to 278 

derive relative estimates using CIBERSORT14. Consistent with our inferences from pathway analysis, 279 

we found enrichment for Th1 cells in hot, and Th2 and Th17 cells in cold tumours (Figure 3f). Th2 cells 280 

have been linked to poor prognosis in multiple studies, while Th1 cells are associated with good 281 

prognosis and aiding CTL responses1. 282 

 283 

We also used expression-based CIBERSORT to derive estimates for different myeloid cell populations 284 

(n = 2346 tumours at deconvolution p < 0.05, Permutation Test, 1000 replicates), and identified 285 

substantially higher fractions of M1 relative to M2 macrophages in hot tumours (p = 2.2e-16, 286 

Wilcoxon’s Rank Sum Test, Figure 3g). Notably, M2-like polarisation is associated not only with Th2 287 

immune responses but also with immune-suppressive myeloid derived suppressor cells (MDSCs)41. 288 

Taken together, our analyses implicate Th1 cytokine signalling programmes as responsible for 289 

establishing an immune-hot state and suggest MDSC and Th2/Th17 programmes as targets for efforts 290 

to switch cold tumours to an immune hot state.  291 

 292 

Relation of immune cluster to ICB response 293 
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We reasoned that if the signature for immune hot tumours represented active immunity, it could be 294 

applicable to the prediction of immunotherapy responses and evaluated this hypothesis using tumour 295 

gene expression data from three melanoma cohorts: post-sequential aCTLA4 and aPD1 treatment42,43; 296 

pre-aCTLA4 treatment7 and post-aPD1 (Nivolumab) treatment44. Analysis of these transcriptional 297 

patterns indicated differential expression between responders and non-responders (Figure 4a), and 298 

accordingly, ssGSEA scores for the hot transcriptional signature showed significant enrichment in 299 

responders for the latter two datasets (Figure 4b, c). Moreover, a similar association emerged from 300 

comparing the probability of response to hot/cold class prediction, inferred using a logistic regression 301 

fit on TCGA hot/cold transcriptional signature ssGSEA scores (Figure 4d). Finally, we evaluated the 302 

ability of the hot-signature to stratify patients by response relative to mutational load and Class I 303 

neoepitope burden using elastic nets coupled to cross-validation for each dataset (Figure 4e). While 304 

larger patient cohorts will be required to search for and validate predictive ICB biomarkers, from this 305 

limited analysis it is clear that neither cellular composition as described by hot/cold classification, nor 306 

total mutation or predicted class 1 neoantigen loads (which are also associated with response and 307 

have been proposed as ICB response biomarkers) are reliable predictors.  308 

 309 

Our analysis clearly indicates there is a heterogeneity of ICB response within both hot and cold 310 

tumours similar to that described for tumours with high or low mutational loads, underlining the 311 

importance of additional factors not captured by these metrics, such as immune cell phenotype and 312 

the spatial distribution of immune cells within the tumours1. We reasoned that in addition to these 313 

factors, the heterogeneity in responses to ICB among hot tumours might be driven by intrinsic 314 

resistance to T-cell mediated destruction due to pre-existing genomic alterations within the tumour 315 

cells. We set out to test this hypothesis by constructing a pan-cancer catalogue of genomic alterations 316 

enriched in hot tumours, with the additional aim of finding those alterations enriched in cold tumours 317 

which might drive lymphocyte exclusion or reduce tumour immunogenicity. 318 
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 319 

Genomic features of hot and cold tumours 320 

Consistent with our observations in HNSCC, and with estimates from gene expression-based 321 

deconvolution13, immune hot tumours harboured higher overall mutation loads (OR = 1.33, p = 3e-25, 322 

negative binomial GLM controlling for cancer type) and more predicted neoantigens than immune 323 

cold tumours (Figure 5a). Given the recent finding that in addition to the presence of neoantigens, 324 

their clonality (i.e. presence in all tumour cells as opposed to minor subclones) is associated with 325 

prognosis and response to Pembrolizumab in lung adenocarcinoma5, we analysed immune 326 

microenvironment composition as a function of neoantigen clonality (as denoted by The Cancer 327 

Immunome Atlas45). We found that the abundance of both CTLs and Tregs is correlated with clonal 328 

neoantigen load pan-cancer (Figure 5b), while the relationship is much weaker when subclonal 329 

neoantigens are considered. CD4+/FOXP3- effector lymphocytes display a striking inverse correlation 330 

with clonal neoantigens (Figure 5b). Consistent with our earlier observation that they are enriched in 331 

CTL / Treg low cold tumours, CAFs are inversely correlated with both clonal and subclonal neoantigen 332 

loads. Hot tumours display a significantly higher clonal neoantigen burden (OR = 1.28, p < 4e-7, 333 

Negative Binomial GLM) as well as a skew in the neoantigen burden towards clonal neoantigens after 334 

adjusting for tumour type (OR = 1.01, p = 0.006 Negative Binomial GLM). These findings provide 335 

evidence for a direct link between Class I MHC clonal neoantigen burden and patterns of TIL 336 

abundance and may help to explain the observations of McGranahan and colleagues, that high clonal 337 

neoantigen burden predicts favourable response to immune checkpoint modulation using 338 

Pembrolizumab5.  339 

 340 

Next, we examined if the genomic features associated with immune cluster were also reproducible 341 

across cancer types, performing adjusted binomial regressions to estimate cluster association after 342 

controlling for tumour type for genes previously implicated as pan-cancer drivers based on signatures 343 
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of positive selection46 and recorded 56 hits at FDR < 0.05 (Supplementary Data 7, Figure 5c). 344 

Interestingly, these putative drivers of hot tumours were significantly enriched (OR = 11.75, p < 0.0004, 345 

Fisher’s Exact Test) in a list of genes demonstrated to confer resistance to CD8 T-cell mediated killing 346 

in a recent CRISPR-Cas9 screen47. The functionally-verified immune-resistance genes that were 347 

disproportionally mutated in hot tumours  included those involved in antigen presentation (B2M and 348 

HLA-A), apoptosis (CASP8) and interferon signalling (JAK1). ARID2, which encodes a component of the 349 

SWI/SNF chromatin remodelling complex also implicated in modulating sensitivity to T-cell mediated 350 

killing downstream of JAK-STAT signalling, was also disproportionately mutated in hot tumours48,49. 351 

Mutant KRAS, recently implicated in generating a fibrotic tumour microenvironment by activating 352 

paracrine signalling with CAFs in pancreatic cancer50, is enriched in cold tumours. Taken together, 353 

these findings support a model wherein mutations in certain genes render tumours hot as a 354 

consequence (and therefore susceptible to checkpoint blockade), or may enable tumours to survive 355 

in a hot tumour microenvironment, potentially also bestowing resistance to checkpoint blockade. We 356 

sought to test this model by linking our candidate immune-resistance mutations to lack of ICB 357 

response in pre-treatment hot tumours and although we observed a trend, (OR = 0.13, logistic 358 

regression, p = 0.09 ), the number of treated tumours with sequence data available is currently too 359 

low (54 hot tumours across four studies) to gain a definitive answer. 360 

 361 

To complement these analyses, we called copy number alterations across 11,000 tumours and tested 362 

for differential association of peaks with immune cluster after adjusting for tumour type for the subset 363 

with immune cluster assignment available. This led to the identification of multiple events that 364 

occurred at different frequencies between cold and hot tumours (FDR < 0.1, Figure 5d). Of these, 365 

prominent examples included amplifications targeting the epidermal growth factor receptor (EGFR) 366 

(7p11.2) and MYC (8q24.3) and deletions at 10q23.31, encompassing the PTEN tumour suppressor 367 

gene in cold tumours and JAK2 (9p24.1) amplifications in hot tumours. Some of these candidates 368 
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already have known associations with immune evasion; MYC has been linked to an immune evasion 369 

phenotype that is amenable to targeting through gene-body demethylation51  and PTEN deletion has 370 

recently been linked to failure of immunotherapy and decreased cytotoxic T-lymphocyte infiltration 371 

in patients and in a mouse model of melanoma43,52,53. Among the genomic alterations we identify (for 372 

full list of predicted driver events see Supplementary Data 8), it is likely that some establish, while 373 

others are selected for, in different immune microenvironments. In either case, alongside PTEN 374 

deletion, these alterations warrant further investigation as candidate genomic markers for response 375 

to ICB. The enrichment of EGFR and MYC amplification, together with PTEN deletion in cold tumours 376 

pan-cancer was striking given the co-expression module linked to increased tumour cell glycolysis and 377 

immune evasion in HNSCC, which includes EGFR and in which pathway analysis also predicts increased 378 

c-MYC and mTORC1 activity17. A similar relationship has been observed in triple negative breast 379 

cancer54  and we therefore investigated this relationship further, initially interrogating the link 380 

between EGFR protein levels and TILs in two HNSCC cohorts (n=518)19,28 we found that samples 381 

classified as EGFR high and moderate were significantly more likely to be TIL low than EGFR low 382 

cancers after accounting for anatomic site and HPV status (Figure 5e, p < 0.05 and 0.01 for EGFR 383 

moderate and high cancers, logistic regression).  The positive correlation between EGFR levels (which 384 

are themselves correlated with EGFR phosphorylation (activation), Supplementary Figure 3) and the 385 

glycolytic signature is maintained across TCGA when matched RPPA profiles and RNA-seq data are 386 

compared (Figure 5f). Notably, the glycolytic signature is enriched in progressing melanomas after PD-387 

1 blockade (Figure 5g, p = 0.06, t-test, p = 0.02 when excluding stable disease) and is inversely 388 

associated with expression of the hot transcriptional signature (Rho = -0.44) that is associated with 389 

ICB response (Figure 4, Figure 5h). 390 

 391 
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Discussion  392 

Of the methods developed to deconvolve cell mixtures into multiple cell types from methylation data, 393 

there have not been, to the best of our knowledge, exhaustive studies employed across cancer types. 394 

Methods such as LUMP and the Leukocyte Methylation Score estimate only the overall leukocyte 395 

fraction, while methods based on expression data either produce relative estimates of abundance 396 

within the immune fraction or enrichment scores (CIBERSORT, TIMER) or perform low resolution 397 

deconvolution (ESTIMATE)13,14,22,55,56. Combining methylation-based feature selection from both 398 

stromal and cancer cells with the robust performance of CIBERSORT previously displayed on gene 399 

expression microarray data14 allowed us to derive estimates for different infiltrating cell populations 400 

as a fraction of the overall sample. We see MethylCIBERSORT and CIBERSORT as complementary tools 401 

for studying the tumour microenvironment in cases where both DNA methylation and gene expression 402 

data can be obtained, in addition to serving as alternatives in cases where only one data type is 403 

available. 404 

 405 

While approaches using RNA-sequencing or other transcriptional profiling, such as the construction of 406 

an index of cytolytic activity, have been useful in predicting immunotherapy response7 and in 407 

identifying the role of mutations in genes like CASP8 in immune evasion29, the deeper level of 408 

deconvolution made feasible using DNA methylation data allows the roles of distinct cellular subsets 409 

and their interdependencies to be dissected. Here, by applying the method to HNSCC, which is marked 410 

by a great degree of clinical heterogeneity, we identified lymphocyte-rich and stromal-rich prognostic 411 

subgroups consistent with those discovered previously using a variety of independent methods 412 

19,20,24,28,57-59 and derived insights into the microenvironmental alterations that might be relevant for 413 

prognosis. In the process, we showed that our scheme for classifying cancers correlates with well-414 

established immune metrics such as cytolytic activity, neoantigen/mutational load and CTL:Treg 415 

ratios. We demonstrated that tumours similar to the HNSCC immune-hot subgroup exist in varying 416 
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fractions across the vast majority of cancer types. The congruence of our classification with the 417 

aforementioned metrics is maintained throughout and translates to broader TCR responses which 418 

presumably drive the greater depletion of neoantigens seen in the hot tumours.  Combining the 419 

accuracy and ability to determine absolute cell fractions of MethylCIBERSORT with the high resolution 420 

afforded by CIBERSORT enabled detection of a skew towards antitumour T-helper and macrophage 421 

phenotypes in hot tumours, reinforcing our hypothesis that this cluster is enriched for active 422 

antitumour immune responses. Consistent with this, we also showed in the limited post-treatment 423 

cohorts with gene expression data, that melanomas responding to ICB (particularly anti-CTLA4) display 424 

a gene expression signature derived from our hot cluster.  Our ICB response analysis also indicates 425 

that hot/cold classification based on cellular composition is a superior predictor of response than total 426 

mutation or predicted class I neoantigen loads (both previously proposed ICB response biomarkers), 427 

however none of these metrics displayed sufficient accuracy to be of clinical use. Given the complex 428 

interplay between tumour genomics, epigenomics and anti-tumour immune responses, it is likely that 429 

prediction algorithms incorporating multiple biomarkers such as these, in addition to checkpoint 430 

protein expression and spatial information on immune infiltrates (e.g. Immunoscore60) will be required 431 

for patient stratification.  432 

 433 

Genomic analysis identified significant enrichment for events that confer resistance to T-cell mediated 434 

destruction in hot tumours as well as potential sensitisers. Our copy number analysis revealed that 435 

PTEN deletion, MYC amplification and EGFR amplification are associated with immune depletion. All 436 

three events have been associated with increased glycolysis, which we have previously linked to 437 

immune evasion17. Our finding that PTEN deletion is associated with poor CTL infiltration in this pan-438 

cancer cohort adds substantial support and mechanistic rationale for its proposed role as a 439 

determinant of response to ICB. Taken together with the identification of EGFR and MYC amplification 440 

in cold tumours, our analysis suggests that pharmacological inhibition of EGFR/mTORC1/MYC-driven 441 



Chakravarthy et al  

 19 

glycolysis could be an effective means by which to ‘warm-up’ these tumours and potentially enhance 442 

responses to ICB. The finding that hot tumours frequently harbour functionally-validated immune 443 

resistance mutations offers a potential explanation for the heterogeneity in ICB response even 444 

amongst hot tumours (or equally, those with high mutation loads or high cytolytic activity7). Secondly, 445 

the relative paucity of these mutations in cold tumours (presumably due to the absence of a selection 446 

pressure for them) suggests that if we could induce lymphocyte infiltration (e.g. by targeting glycolysis 447 

or CAFs61), we may improve the effectiveness of checkpoint blockade across a broader range of 448 

patients. 449 

 450 

Finally, our analysis of neoantigen clonality and immune infiltration patterns adds mechanistic insight 451 

to the value of clonal neoantigen burden in predicting response to ICB5.  In particular, we show that 452 

clonal neoantigens are associated with infiltration of CTLs and Tregs, while Th2 cells and CAFs are 453 

enriched in tumours with lower clonal neoantigen loads. Why these relationships between neoantigen 454 

loads and T-lymphocytes are apparent only when one considers clonal neoantigens is an intriguing 455 

question. It could be that since many subclonal neoantigens are expressed by a small minority of cells 456 

within the tumour, these evade effective presentation to the immune system. Indeed, in a previous 457 

study by several of the authors, it was possible to isolate T-lymphocytes reactive against clonal but 458 

not subclonal neoantigens from lung cancer patients5.  Our data suggest that this is due to a relative 459 

paucity of CTLs in tumours with low clonal neoantigen loads and that this is true across a wide range 460 

of cancer types.  461 

 462 

In summary, the development of a stand-alone method to estimate both tumour purity and stromal 463 

composition from DNA methylation data  has provided a number of insights that shed light on 464 

potential biomarkers for immunotherapy response and the way in which tumour genomes influence, 465 

and are shaped by, the immune microenvironment. Beyond analyses of publicly available data such as 466 
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those we present here, the applicability of the method to both fresh and archival samples should 467 

readily allow researchers to explore questions related to the tumour microenvironment and potential 468 

therapeutic response across a diverse range of experimental settings. 469 

 470 

Methods 471 

 472 

Development of methylation signatures for deconvolution  473 

Raw data were obtained in the form of IDAT files from the following sources (the number of samples 474 

from which each profile was derived is shown in parentheses): Granulocytes (12), CD8+ (cytotoxic T-475 

lymphocytes) (6), CD19+ (B-lymphocytes) (6), CD56+ (Natural Killer cells) (6), CD14+ (monocyte 476 

lineage) (6), Eosinophils (6) were from the FlowSorted.Blood.450k Bioconductor package62. CD4+ cells 477 

were removed from the Blood.450k dataset and CD4+ T-cells from the Zhang dataset63 (data kindly 478 

provided by Dr Alicia Oshlack) were further divided into FOXP3+ (Tregs) (4) or FOXP3- (6) groups. 479 

Fibroblast profiles (4) were from the Gene Expression Omnibus (GSE74877 480 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74877]).  Neutrophils are the most 481 

abundant subset of granulocytes and these samples were therefore aggregated into a single category 482 

for further analysis. To generate a DNA methylation signature for cancer cells, we used 450k 483 

methylation profiles we previously obtained from a series of 6 HNSCC cell lines: UM-SCC47; 93VU147T; 484 

UPCI:SCC090; PCI-30; UPCI:SCC036 and UPCI:SCC003 (GSE38270 485 

[[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38270], described in64) and additionally 486 

those from Iorio et al (GSE68379 487 

[[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68379])65. The files were parsed into R 488 

using the minfi66 Bioconductor package and were normalised using single sample Noob as 489 

implemented in minfi. To derive signature features, a custom limma based wrapper function was used 490 
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to fit a series of linear models for all pairwise comparisons between candidate cell types. Features 491 

from this set of analyses were then restricted to MVPs that showed a median beta-value difference of 492 

0.25 at an FDR of 0.01 for that fit or less, with a maximum of 100 MVPs per pairwise comparison. 493 

Finally, for use with CIBERSORT, data were transformed from beta values (bound between 0 and 1) to 494 

percentages (0 – 100). Type-wise means were estimated for each probe and cell type and the matrix 495 

exported for upload to CIBERSORT. 496 

 497 

Benchmarking using PBMC mixtures 498 

We applied the feature selection pipeline to the matrix of stromal cells that we assembled and then 499 

tested performance against 450k profiles of PBMC mixtures with flow-cytometry gold standards. We 500 

also applied LM22 (Expression-based CIBERSORT) to datasets consisting of PBMC samples and 501 

Follicular Lymphoma biopsies originally evaluated in CIBERSORT14. Wilcoxon’s rank sum tests were 502 

used to test for differences in correlations with flow-cytometry for cell types and samples, and 503 

absolute errors between flow-cytometry and deconvolution estimate. For the expression-based 504 

CIBERSORT estimates, we performed comparisons against both calibrated (i.e, enforcing a sum-to-one 505 

constraint as reflected in the flow cytometry) and uncalibrated (straight estimates of cell fractions 506 

from CIBERSORT) estimates.  507 

 508 

Running deconvolution experiments on HNSCC using CIBERSORT 509 

Data for 464 methylation profiled TCGA HNSCC samples were downloaded in the form of raw IDAT 510 

files for the 450k array from the TCGA data. Data were normalised using functional normalisation67 in 511 

the minfi66 package and BMIQ68, with 10,000 reference probes for Expectation Maximisation fitting. 512 

HPV status was determined using VirusSeq69 based on detection of viral gene transcripts.  513 

 514 
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Beta values for deconvolution associated features, and the signature matrix derived in the previous 515 

step, were uploaded to CIBERSORT at https://cibersort.stanford.edu. The data were not quantile 516 

normalised due to the potential for global methylation shifts in cancers, and CIBERSORT was run using 517 

1000 permutations. Output files were downloaded as tab-delimited text files and custom parsers were 518 

used to import results into R for downstream analysis. FFPE methylation profiles for 42 HNSCC were 519 

obtained from Gene Expression Omnibus (Accession GSE38266 520 

[[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38266]) using the GEOquery R package, 521 

and beta values were BMIQ normalised and analysed using CIBERSORT as described for the TCGA 522 

cohort. Wilcoxon’s Rank Sum Tests were used to test for differences in total TIL abundance and TIL 523 

subsets. 524 

 525 

Estimating accuracy in tumour deconvolution  526 

In the absence of flow-cytometry based estimates for the different cell types in the analyzed tumours, 527 

the estimated fraction of cancer cells from MethylCIBERSORT was compared to sequencing-data 528 

based estimates from ABSOLUTE available for 466 HNSCCs from previously published work22 using 529 

Spearman’s Rank Correlation. Correlations were between ABSOLUTE and other methods of estimating 530 

purity/immune cell fraction in this subset of tumours; (LUMP, ESTIMATE56 and H&E staining 531 

assessment of tumour purity (data available in22). Residuals were computed by subtracting the 532 

method estimate from the ABSOLUTE value. Distributions were compared using Wilcoxon’s Rank Sum 533 

Test. Spearman’s Rank Correlation was used to estimate correlations between expression of marker 534 

transcripts and MethylCIBERSORT estimates for multiple cellular populations. Where applicable, 535 

multiple testing correction was performed using the Benjamini Hochberg approach.  536 

 537 

Clustering and correlation analyses 538 
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Estimates of immune cell fractions in HPV- HNSCC (HPV-transcript negative) were examined for 539 

correlations with other infiltrating cell types using Spearman’s Rank Correlation with BH correction for 540 

multiple testing. Clustering was carried out using the clusterCons package with 100 iterations using a 541 

manhattan distance metric. The most robust number of clusters was then selected.  542 

Differences in the distribution of infiltrating cell types by immune cluster were summarised using 543 

mean fold changes and tested using Wilcoxon’s Rank Sum Test with BH-correction for multiple testing. 544 

Differentially expressed genes were identified using Limma-trend and were defined at a threshold of 545 

a 2-fold change and BHFDR < 0.01. Pathway analysis was carried out using Ingenuity Pathway Analysis, 546 

with findings restricted to experimentally confirmed direct interactions in human cells/tissues. 547 

Cytolytic activity (CYT) was calculated as the geometric mean of GZMA and PRF1 expression as defined 548 

previously29. To estimate the contributions of cell population abundances to this, a linear model was 549 

fit against log2(CYT) with the different populations as predictors. Wilcoxon’s Rank Sum tests were used 550 

to test differences in CYT and CD8:Treg ratios between the immune clusters.  551 

  552 

Survival Analyses 553 

Multivariate Cox Regression was used to estimate the prognostic utility of clusters derived using 554 

infiltration patterns with age and stage as covariates. The survival effect of estimated purity was 555 

regressed with the same covariates using a Cox regression with coefficients defined per percent 556 

increase in purity. 557 

 558 

Genomic Correlates 559 

We obtained a list of driver genes inferred by MutSigCV33 in TCGA HNSCC cohort from the Broad 560 

Institute’s GDAC. GISTIC Copy number estimates thresholded by genes were also obtained from this 561 

source. MAF files were obtained from the TCGA data portal. MutSigCV drivers were filtered at a 562 
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q.value threshold of 0.01 and mutations in this set were tested for differences in frequencies of 563 

occurrence using a chi-squared test for differences in proportion. Multiple testing correction was 564 

carried out using the Benjamini-Hochberg method. Tables of predicted neoantigens were downloaded 565 

from The Cancer Immunome Atlas (http://tcia.at).  566 

 567 

Benchmarking performance across other tumour types 568 

Signature features were derived from 450k profiles using the aforementioned heuristic (delta-Beta 569 

and FDR cutoffs) with a maximum of 100 features per cell type for a wide range of tumour types, using 570 

cell lines allocated to the corresponding tissue in GSE68379 571 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68379]37 (Table S10) and the 572 

aforementioned infiltrating cell types. These signatures were applied to deconvolve methylation 573 

profiles and estimates of purity were derived using TCGA samples for which ABSOLUTE, ESTIMATE and 574 

LUMP purity estimates were available22. 575 

The cell line data were functionally normalized with the infiltrating cell types described earlier before 576 

signature extraction was carried out. 450k data for the aforementioned tumour types were loaded 577 

from a pan-cancer freeze derived from SAGE synapse for TCGA pan-cancer (syn2812961 578 

[https://www.synapse.org/#!Synapse:syn2812961]) and a custom function was used to extract 579 

signature probes and generate methylation percentage matrices for deconvolution with CIBERSORT 580 

CIBERSORT was run using the graphical user interface [https://cibersort.stanford.edu]. Correlation 581 

and residuals analysis were carried out as described above with MethylCIBERSORT purity estimates vs 582 

ABSOLUTE, and between previously published methods and ABSOLUTE. Wilcoxon’s Rank Sum Test 583 

with Benjamini-Hochberg correction for multiple testing were used to compare distributions, with 584 

these estimates sourced from22.  585 

 586 
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Pan-cancer analyses of immune cluster assignment 587 

An elastic net model was fit using cellular abundance estimates for HPV- HNSCC using 3 iterations of 588 

5-fold cross-validation to identify the optimal values of lambda and alpha with Kappa values being the 589 

selection criterion. The classifier was then applied to MethylCIBERSORT estimates from 18 further 590 

tumour types for which corresponding cancer cell line methylation profiles were available37 to allocate 591 

immune cluster. Deconvolution was performed as described above and class allocations were made 592 

using the elastic net classifier derived from HNSCC.  593 

For immunoediting analyses, we estimated the number of nonsynonymous mutations encoding at 594 

least one immunogenic peptide empirically by summing coefficients across each of six base change 595 

contexts as well as the number of non-neoepitope nonsynonymous mutations. Together , these were 596 

applied to silent mutation counts in each cancer to derive an expected fraction of neoantigens to 597 

nonneoantigens. Comparing the observed fraction to the expected fraction yielded the percentage of 598 

neoantigens depleted, and using this in combination with the number of observed neoantigens 599 

yielded the count of neoantigen-encoding mutations lost specifically to immunoediting. This was then 600 

modelled using a negative binomial framework to estimate the influence of immune cluster on 601 

immunoediting.  602 

MAF files for mutations were again downloaded from SAGE synapse for all tumours from the MC3 603 

calling effort (syn7214402 [https://www.synapse.org/#!Synapse:syn7214402]). Driver mutations 604 

were defined based on pan-cancer MutSig analyses previously published33 and logistic regression 605 

GLMs were used to estimate coefficients for mutation frequencies for immune cluster with tumour 606 

type as a covariate. Significant genes were defined at BHFDR < 0.05.  Survival analyses were performed 607 

using data downloaded from Synapse (syn7343873 608 

[https://www.synapse.org/#!Synapse:syn7343873]) using Cox proportional hazards regression with 609 

stage and cancer type as covariates. Substages were aggregated into stages and only Stages I-IV were 610 
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considered. Neoantigen abundance and clonality data were downloaded from The Cancer Immunome 611 

Atlas45.  612 

Negative binomial modelling was used to model all count data, cytolytic activity was modelled using 613 

linear models, and binomial GLMs were used to model proportions. Details of covariates, hypotheses 614 

and response variables are presented inline. For copy number analyses, SNP6 data were downloaded 615 

from the GDC data portal and processed using GISTIC 2.070 on the GenePattern Public Server (arm-616 

level peel off, noise threshold 0.3, FDR < 0.01, driver-gene confidence > 95%) and modelled similarly 617 

to mutation data.  618 

 619 

Further resolution of cell types using expression-based CIBERSORT 620 

RNA-seq data were downloaded from the European Nucleotide Archive for the following datasets: 621 

PRJEB11844 [https://www.ebi.ac.uk/ena/data/view/PRJEB11844]71; PRJNA258216 622 

[https://www.ebi.ac.uk/ena/data/view/PRJNA258216]72, and PRJEB5468 623 

[https://www.ebi.ac.uk/ena/data/view/PRJEB5468]73. Kallisto74 was used to quantify gene expression 624 

with a reference transcriptome consisting of Gencode Grch37 assembly of protein coding and lincRNA 625 

transcripts. Data were then modelled using limma trend and the top 50 markers by t-statistics were 626 

selected for each cell subset from one versus all comparisons after thresholding with a 2-fold change 627 

and FDR < 0.05.  These cell types were used to generate a reference profile and CIBERSORT was run 628 

to deconvolute samples. For M1/M2 macrophage analyses we used LM22 from the CIBERSORT server 629 

as the reference. In both cases, Wilcoxon’s Rank Sum Test was used to estimate differences in 630 

distributions.  631 

 632 

Analysis of immunotherapy response 633 
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Nanostring data for a panel of immune genes and and exome sequencing data were obtained from 634 

Chen et al42 and Roh et al43 respectively for patients treated using sequential anti-CTLA4 and anti-PD1 635 

checkpoint blockade.  636 

Clustering and machine learning were carried out using the subset of genes intersecting with the Hot-637 

vs-Cold pancancer signature. .632 bootstrapping was used for hyperparameter tuning and ROC 638 

estimation. Negative binomial regression was used to model neoantigen, mutation and subclone 639 

numbers, and logistic regression to estimate predictive performance of count data on response.  640 

The number of subclones present in each tumour from the Roh cohort, derived from the EXPANDS 641 

algorithm, were obtained from the associated publication75. RNAseq data for aCTLA4 pretreatment 642 

biopsies were kindly provided by Eliezer Van Allen and genomic data were from the associated 643 

publication7. Data for post-treatment Nivolumab treated melanomas were obtained from44. 644 

 645 

Valiation of EGFR association with cold tumours 646 

RPPA data were downloaded for TCGA cancers from the TCGA portal. IHC data were derived from1,7 647 

for comparison of EGFR protein levels vs TIL levels, previously defined in1,7. ssGSEA scores were used 648 

to summarise the activity of the glycolytic gene signature (described in17) and standard statistical 649 

procedures were used to assess interrelationships.  650 

 651 

Data Availability 652 

The data analysed in this study are available either from the Gene Expression Omnibus (accession 653 

numbers: GSE35069 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35069]; GSE74877 654 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74877]; GSE38270 655 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38270]; GSE68379 656 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68379]), the European Nucleotide Archive 657 
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(accession numbers: PRJEB11844 [https://www.ebi.ac.uk/ena/data/view/PRJEB11844]; 658 

PRJNA258216 [https://www.ebi.ac.uk/ena/data/view/PRJNA258216]; PRJEB5468 659 

[https://www.ebi.ac.uk/ena/data/view/PRJEB5468]), SAGE Synapse (accession numbers: syn7214402 660 

[https://www.synapse.org/#!Synapse:syn7214402]; syn7343873 661 

[https://www.synapse.org/#!Synapse:syn7343873]; syn2812961 662 

[https://www.synapse.org/#!Synapse:syn2812961]), The Cancer Genome Atlas Project or from the 663 

authors upon reasonable request. 664 

 665 

Code Availability. 666 

Knit R-markdowns of the code used for analysis have been deposited on Zenodo at 667 

https://doi.org/10.5281/zenodo.1304766. The MethylCIBERSORT R-package and the signatures we 668 

generated are on Zenodo at  669 

https://doi.org/10.5281/zenodo.1298968. A Google Group for users of the package can be found 670 

here: https://groups.google.com/d/forum/methyldeconvolution. 671 
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Figure Legends 867 

 868 

Figure 1. Validation of DNA methylation-based deconvolution for the analysis of tumour 869 

composition (a) Correlation between MethylCIBERSORT fractions and flow cytometry for PBMC 870 

mixtures in independent data. (b-d) Boxplots showing comparisons between MethylCIBERSORT and 871 

flow cytometry versus Expression-CIBERSORT and flow cytometry in mixtures of similar complexity for 872 

correlations by cell type, correlations within samples, and finally absolute error. (e) Spearman’s 873 

Correlations between ABSOLUTE and MethylCIBERSORT versus other previously published purity 874 

estimation methods. (f) Validation of previously reported associations between CD8 T-cells and B-cells 875 

and HPV status by HPV status. (g) Correlation plot showing Spearman's Rho between cell-types in HPV- 876 

HNSCC, red boxes indicate nonsignificance at q < 0.1. (h) IHC showing representative image of CD8 877 

and SMA and Kaplan-Meier curves confirming the prognostic impact of TILs and fibroblasts in HPV-878 

negative HNSCC.  879 

 880 

Figure 2: Classification of HNSCC into hot and cold subgroups on the basis of immune cell infiltration 881 

patterns (a) Boxplot of cell-types based on clustering HNSCC. (b) Bar-graph showing associations 882 

between cytolytic activity and cell types. (c) Cytolytic activity is elevated in immune-hot HNSCC. (d) 883 

CD8/Treg ratios by HNSCC Immune Cluster. (e) Mutations significantly associated with HNSCC immune 884 

cluster. In boxplots, the ends of the boxes and the middle line represent the lower and upper quartiles, 885 

and medians, respectively. Whiskers represent 1.5 times the interquartile range (IQR).   886 

 887 

 888 

Figure 3. Identification and characterization of hot and cold tumours pan-cancer (a) Barplot of 889 

distribution of Immune-hot and cold tumours across TCGA. Cancers known to respond favourably to 890 
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checkpoint blockade, such as lung cancer and melanomas, show high fractions of hot tumours. (b) 891 

Boxplot of cell-type estimates by immune cluster. All at q < 0.05. Numbers  represent mean fold 892 

changes. (c) CD8:Treg ratio is elevated in hot tumours pan-cancer. (d) Increased breadth of TCR 893 

sequences in Immune Hot tumours (Wilcoxon’s Rank Sum Tests). (e) Results of IPA canonical pathway 894 

analysis comparing hot and cold tumours pan-cancer after adjusting for tumour type. (f) 895 

Transcriptional deconvolution by Expression-based CIBERSORT shows immune cluster (x-axis) is 896 

associated with distinct CD4 polarisation and (g) macrophage polarisation (CIBERSORT fractions on y-897 

axis). P.values are from Wilcoxon’s Rank Sum Tests.  In boxplots, the ends of the boxes and the middle 898 

line represent the lower and upper quartiles, and medians, respectively. Whiskers represent 1.5 times 899 

the interquartile range (IQR).   900 

 901 

Figure 4. The immune-hot signature is associated with but not predictive of response to ICB in 902 

melanoma (a) heatmap showing expression of the hot-tumour transcriptional signature in Nanostring 903 

data from posttreatment biopsies of immunotherapy patients. (b) heatmaps showing the same 904 

signature in RNAseq data of aCTLA4 (pre-treatment) and aPD1 (post-treatment) respectively. (c) 905 

boxplots highlighting significant differences in ssGSEA scores for the hot-tumour transcriptional 906 

signature in the datasets featured in (b) (p.values from logistic regression). (d) barplots display 907 

similarity to TCGA hot and cold tumours based on logistic regression class probabilities from a model 908 

fit to TCGA data, which are associated with response. (e) boxplots showing Kappa values from cross-909 

validation for models examining the performance of the Immune-hot signature, Class I neoepitope 910 

burden, and finally mutational load on immunotherapy response classification (p.values from 911 

Wilcoxon’s Rank Sum Test).  In boxplots, the ends of the boxes and the middle line represent the lower 912 

and upper quartiles, and medians, respectively. Whiskers represent 1.5 times the interquartile range 913 

(IQR).   914 
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 915 

Figure 5. Genomic features of hot and cold tumours (a) Density plots showing differences in 916 

neoantigen burden by immune cluster pan-cancer. P.value from negative binomial regression that 917 

accounts for tumour type. (b) Clonal neoantigens and subclonal neoantigens are correlated with 918 

different infiltration profiles. Volcanoplot shows Spearman's Rho on the X-axis and –log10(FDR) on the 919 

y-axis. (c) Volcanoplot showing results of binomial regression testing for associations between 920 

Immune-hot cancers and mutation frequencies in candidate cancer driver genes. Those genes 921 

implicated in resistance to T-cell mediated destruction are highlighted in orange. (d) Volcanoplot 922 

showing associations between GISTIC candidate driver copy number peaks and immune cluster. (e) 923 

Plot showing results of logistic regression in a cohort of HNSCCs where the probability of being 924 

classified TIL-high was regressed against anatomic subsite, EGFR IHC (low/moderate/high) and HPV 925 

status. (f) Correlation between glycolytic coexpression signature ssGSEA scores and EGFR levels by 926 

RPPA. (g) Association of glycolytic signature post-Nivolumab with response and (h) Inverse correlation 927 

between the glycolytic signature and the immune-hot expression signature, Spearman’s correlation 928 

has been plotted.  929 
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Supplementary Figure 1: (a) Analysis of ABSOLUTE estimate (x-axis) and error from MethylCIBERSORT, 

ESTIMATE and LUMP in estimating purity in relation (y-axis). (b) Correlations (Spearman’s Rho) 

between MethylCIBERSORT estimates and marker gene expression in TCGA HNSCC. Grey areas either 

side of fitted lines represent 95% confidence intervals. 



 

 

Supplementary Figure 2: (a) Correlation densities for associations with ABSOLUTE purity for 

MethylCIBERSORT, ESTIMATE and LUMP across tumour types. (b) Density plots showing error relative 

to ABSOLUTE in individual tumour types for MethylCIBERSORT, ESTIMATE and LUMP. (c) Marker 

correlation plots between MethylCIBERSORT estimates and expression of marker genes. (d) 

Correlation plots for 21 450k methylomes relative from FFPE samples relative to their fresh frozen 

counterparts. Grey areas either side of fitted lines represent 95% confidence intervals. 

 



 

 

 

 

 

Supplementary Figure 3: Scatterplots showing association between EGFR levels by RPPA and 

phosphorylation at key activating residues; tyrosine 1173 (a) and tyrosine 1068 (b). Grey areas either 

side of fitted lines represent 95% confidence intervals. Pearson’s correlation coefficients (r) are stated 

in the panels. 
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