An Automated Framework for Structural Test-Data Generation

Nigel Tracey John Clark

Keith Mander John McDermid

Department of Computer Science. University of York,
Heslington, York. YO1 5DD, England. Tel : +44 1904 432749
{njt, jac, mander, jam}@cs.york.ac.uk

Abstract

Structural testing criteria are mandated in many soft-
ware development standards and guidelines. The pro-
cess of generating test-data to achieve 100% cover-
age of a given structural coverage metric is labour
intensive and expensive. This paper presents an ap-
proach to automate the generation of such test-data.
The test-data generation is based on the application of
a dynamic optimisation-based search for the required
test-data. The same approach can be generalised to
solve other test-data generation problems. Three such
applications are discussed — boundary value analysis,
assertion/run-time exception testing and component
re-use testing. A prototype tool-set has been developed
to facilitate the automatic generation of test-data for
these structural testing problems. The results of pre-
liminary experiments using this technique and the pro-
totype tool-set are presented and show the efficiency
and effectiveness of this approach.

1 Introduction

Software testing is an expensive and time-consuming
process, especially in safety-critical applications, typi-
cally consuming at least 50% of the total costs involved
in developing software [2]. Automation of the testing
process would allow both reduced development costs
and an increase in the quality of (or at least confidence
in) the software. Ould suggested that automation of
test-data generation is vital to advance the state-of-
the-art is software testing [9]. The test-data genera-
tion problem is that of identifying program input data
which satisfy selected testing criteria. Test-data selec-
tion methods can be divided into two distinct classes
— functional and structural testing [2].

Automated test-data generators for structural test-
ing can be divided into three classes — random [2],

static [3, 4] and dynamic. This work is based on the
dynamic approach to test-data generation. This ap-
proach was first suggested in 1976 [8]. Korel’s work [7]
built on this, suggesting as a way forward the use of
global optimisation techniques. More recently, some
work has investigated the use of global-optimisation
[13, 5] to overcome the problem of locally optimal so-
lutions in the search space.

The research presented in this paper builds on these
approaches. An optimisation-based framework has
been developed and applied to a number of testing
problems, such as specification conformance testing
and worst-case execution time testing [10, 11]. This
paper focuses on the application of the framework to
a number of structural-testing problems.

2 Optimisation-Based Struc-
tural Test-Data Generation

In essence, the test-data generation problem for struc-
tural testing is finding a set of program inputs that
achieves the desired coverage. The dynamic approach
to this problem involves a search for program input
which forces execution of the desired part of the soft-
ware under test (SUT).

For the search to succeed, it needs to be given some
guidance. This guidance is given in the form of a cost-
function which relates a program input to a measure
of how good it is. The amount of guidance given by the
cost-function is one of the key elements in determin-
ing the effectiveness of the test-data generation. The
other key factor is, of course, the search technique it-
self.

The input domain of most programs is likely to be
very large. A cost-surface could be formed by applying
the cost-function to every possible program input. It
is this surface which is effectively being searched when

attempting to generate test-data. Given the complex-
ities of software systems it is extremely unlikely that
this cost surface would be linear or continuous. The
size and complexity of the search space therefore limits
the effectiveness of simple gradient-descent or neigh-
bourhood searches as they are likely to get stuck in
locally optimal solutions and hence fail to find the de-
sired test-data.

Heuristic-global optimisation techniques are de-
signed to find good approximations to the optimal
solution in large complex search spaces. Simulated
annealing is one such general purpose optimisation
technique [6]. Simulated annealing allows movements
which worsen the value of the cost-function based on
a control parameter known as the temperature. Early
in the search inferior solutions are accepted with rel-
ative freedom, but as the search progresses (or cools)
accepting inferior solutions becomes more and more
restricted. Accepting these inferior solutions is based
on the premise that it is better to accept a short term
penalty in the hope of longer term rewards.

It is necessary to define the cost-function which
will guide the simulated annealing search. The cost-
function needs to indicate whether the desired state-
ment (or branch, etc.) has been executed. The cost-
function needs to return good values for test-data that
nearly executes the desired statement and bad values
for test-data that is a long way from executing the de-
sired statement. The branch predicates determine the
path followed and are therefore vital in determining
an effective cost-function.

Branch predicates consist of relational expressions
connected with logical operators. The cost-function
has been designed such that it will evaluate to zero if
the branch predicate evaluates to the desired condition
and will be positive otherwise. This property gives an
efficient stopping criteria for the search process. The
cost-function is calculated as shown in table 1.

In order to evaluate the cost-function it is neces-
sary to execute an instrumented version of the SUT.
There are two types of procedure call added by the in-
strumenter — execution path monitor calls and branch
evaluation calls. The monitor calls work as follows:

e Record that node X has been executed.

e If X is current target node then move to next
target node on target path.

The branch evaluation calls replace the branch
predicates in the SUT. They are responsible for adding
to the overall cost the contribution made by each indi-
vidual branch predicate which is executed and return-

| Element | Value |

Boolean | if TRUE then 0 else K
a=0b | if abs(a—b) =0 then 0
else abs(a — b) + K
a#b | if abs(a —b) # 0 then 0
else K
a<b if a—b <0 then0
else (a—b)+ K
a<b ifa—b<0then0
else (a—b)+ K
a>b if b—a <0 then0
else (b—a)+ K
a>b ifb—a<0then0
else (b—a)+ K
aVb min (cost (a), cost (b))
alb cost (a) + cost (D)
—a Negation is moved inwards and
propagated over a

Table 1: Cost-Function Calculation

ing the boolean value of the predicate. They function
as follows:

o If the target node is only reachable if the branch
predicate is true then add cost of branch predicate
to the overall cost for the current test-data. If
branch predicate must be false then the cost of —
(branch predicate) is used.

e For loop predicates the desired number of iter-
ations determines whether the cost of the loop
predicate or = (loop predicate) is used.

e Within loops, adding the cost of branch predi-
cates is deferred until exit from the loop. At this
point the minimum cost evaluated for that branch
predicate is added to the overall cost. This pre-
vents punishment of taking an undesirable branch
until exit from a loop, as the desirable branch may
be taken on subsequent iterations.

The cost-function gives a quantitative measure of
the suitability of the generated test-data for the pur-
pose of executing the specified node in (or path
through) the SUT. The simulated annealing search
uses this to guide its generation of test-data until ei-
ther it has successfully found test-data with a zero
cost or until the search freezes and no further progress
can be made. At this point the system moves on to
attempt generation of test-data for the next desired
node or path.

3 Other Structural
Problems

Testing

While it is useful to generate automatically test-data
that meets structural objectives there are many other
testing problems. For an automatic test-data gener-
ator to be generally useful it must be flexible. This
section describes how the optimisation-based test-data
generation framework which has been developed can
be extended to address other structural testing prob-
lems. Previous work has illustrated how the frame-
work may be extended to address other non-structural
testing problems, [10, 11].

3.1 Boundary Value Analysis

Boundary value analysis considers test-data which lies
close the boundaries of a sub-domain to be of a higher
adequacy than test-data which is further away.

To address the problems of boundary value analy-
sis the cost-function needs to be biased towards lower
costs for test-data at or near a boundary. This can
be achieved with a simple extension to the previous
cost function. Consider the example of X < 42, if
the desired path requires this condition to be false,
the test-data generator needs to generate X > 42. To
bias this towards the boundary case of X = 42 the
previous cost-function is augmented with the cost of
X = 42. The value of this is reduced by a scaling
factor to allow the cost of X > 42 to dominate. This
removes the efficient stopping criterion defined earlier.
This simply means that the search will continue until
it freezes, at which point it will terminate.

For more complex branch predicates, the particu-
lar boundary may be more difficult to identify. The
current tool-set will automatically search for test-data
set which is on the boundary of each of the individual
relational expressions in the predicate. This can be
overridden by the user to allow combined boundaries
to be targeted.

3.2 Assertion/Run-Time
Testing

Exception

Assertions and run-time exceptions are a useful tool
for automatic detection of run-time errors. The goal
of the test-data generator for assertion and run-time
exception testing is to find test-data which breaks the
assertion or causes the run-time exception. To meet
this goal the cost-function must guide the search in
two ways. First, the search must be guided to test-
data that executes the statement associated with the

assertion or possible exception. Secondly the search
must be guided to test-data that causes the assertion
to be false, or the exception condition to be true.

To allow improved guidance the assertion or
exception-condition is converted to disjunctive normal
form (DNF). A solution to any one disjunct then rep-
resents a solution to the entire condition. Each dis-
junct is considered in turn. The search process aims
to find test-data which executes the desired statement
and satisfies the current disjunct. The cost-function
for the disjuncts is the same as that used for branch
predicates.

3.3 Component Re-use Testing

When re-using components it is vital that the envi-
ronment within which they are re-used meets the as-
sumptions that were made when the component was
developed, i.e. for all input-data in the component’s
domain the pre-condition holds true. The goal of re-
use testing can be stated as finding test-data which
causes the precondition of a re-usable component to
be broken. The component is instrumented such that
it evaluates the cost of meeting a given disjunct in the
negated pre-condition. This value is added to the over-
all cost. Thus the search is guided to test-data which
executes the call of the component and also breaks the
pre-condition of the component.

4 FEvaluation

A preliminary evaluation has used a collection of small
programs written in Ada 95 (20 to 200 lines of code).
In all but one case 100% branch coverage was achieved
with search times of 2 to 35 seconds. In the failing case
48 of the 50 attempts gave 100% coverage. Tuning the
search parameters to slow down the cooling overcame
this problem. A number of the programs contained
breakable assertions or could cause run-time excep-
tions. The simulated annealing search found test-data
in call cases which was able to highlight the error. The
test-data generation took between 0.5 and 17 seconds.
Component re-use testing has been evaluated using a
small number of programs with explicit pre-conditions
specified as Spark Ada proof-context annotations [1].
Harness software was produced which used these com-
ponents in an unsafe manner which for some inputs.
For each of these simple examples suitable test-data
was generated to highlight the unsafe reuse. As a com-
parison random test-data generaton has been used on
the same problems and was found to be up to 4 orders
of magnitude less efficient.

5 Conclusions

As with all testing approaches, we can only show the
presence of faults not their absence. Indeed, the fail-
ure of the search to find exception conditions or re-use
problems does not indicate that the software is correct,
only that the search failed. However, given an inten-
sive directed search for a specific problem, the failure
to find the problem does allow increased confidence
in the quality of the software which is after all the
aim of testing. We view the tools simply as generat-
ing test-data that can be checked by other means, i.e.
use of a test-harness to check that the generated test-
data does in fact cause the desired exception. This is
important as the algorithms are stochastic and it is
difficult to reason about their efficacy for application
to arbitrary code. More details and full results can
be found in the full version of this paper (located at
http://www.cs.york.ac.uk/testsig in the publications
section)

5.1 Further Work

The results presented above show that it is possible to
use optimisation techniques to develop a framework
to automate the generation of test-data for a number
of common software testing problems. This framework
can be used to generate test-data efficiently. The most
important area requiring further work is that of gath-
ering empirical evidence as to the effectiveness of the
technique.

There is a variety of other optimisation techniques
which could be examined. A detailed comparison of
the various optimisation techniques to discover their
relative strengths and weaknesses would be required.
Tabu-search and genetic algorithms are two such op-
timisation techniques which are suitable for investi-
gation. Some preliminary work on methods to apply
tabu-search and genetic-algorithms has already been
carried out [12].

6 Acknowledgements

This work was funded by grant GR/L42872 from the
Engineering and Physical Sciences Research Coun-
cil (EPSRC) in the UK as part of the CONVERSE
project.

References

[1] John Barnes. High Integrity Ada: The SPARK
Approach. Addison-Wesley, 1997.

[2] B. Beizer. Software System Testing and Quality
Assurance. Thomson Computer Press, 1996.

[3] L. Clarke. A system to generate test data and
symbolically execute programs. IEEFE Transac-
tions on Software Engineering, SE-2(3):215-222,
September 1976.

[4] R. Demillo and A. Offutt. Experimental re-
sults form an automatic test case generator.

ACM Transactions on Software Engineering and
Methodology, 2(2):109-127, April 1993.

[5] B. Jones, H. Sthamer, and D. Eyres. Automatic
structural testing using genetic algorithms. Soft-
ware Engineering Journal, 11(5):299-306, 1996.

[6] S.Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671-680, May 1983.

[7] B. Korel. Automated software test data genera-
tion. IEEE Transactions on Software Engineer-
ing, 16(8):870-879, 1990.

[8] W. Miller and D. Spooner. Automatic generation
of floating-point test data. IEEE Transactions on
Software Engineering, SE-2(3):223-226, Septem-
ber 1976.

[9] M. Ould. Testing - a challenge to method and
tool developers. Software Engineering Journal,
6(2):59-64, March 1991.

[10] Nigel Tracey, John Clark, and Keith Mander.
Automated program flaw finding using simu-
lated annealing. In International Symposium

on Software Testing and Analysis, pages 73-81.
ACM/SIGSOFT, 1998.

[11] Nigel Tracey, John Clark, and Keith Mander. The
way forward for unifying dynamic test case gen-
eration: The optimisation-based approach. In In-
ternational Workshop on Dependable Computing
and Its Applications, pages 169-180. IFIP, 1998.

[12] Nigel J. Tracey. Test-case data generation using
optimisation techniques — first year DPhil report.
Department of Computer Science, University of
York, 1997.

[13] Alison Lachut Watkins. The automatic genera-
tion of test data using genetic algorithms. Pro-
ceedings of the 4th Software Quality Conference,
2:300-309, 1995.

