1

Concurrency Theory. In a very broad sense, the history of computer science
can be characterised by two, often competing, views of how to build and un-
derstand computer systems: the engineering view and the mathematical view.
According to the former, computer systems should be viewed as engineering
artefacts which can be constructed using an “informal” process of design, im-
plementation and testing. In contrast, the latter view advocates that formal,
mathematically based, theories of computing should be developed. This brings

An Interpretation of Cognitive Theory in
Concurrency Theory (Long Version)*

Howard Bowman'

Computing Laboratory, University of Kent at Canterbury,
Canterbury, Kent, CT2 7TNF, United Kingdom

Email: H.BowmanQuke.ac.uk

WWW: http://www.cs.ukc.ac.uk/people/staff/hb5/

Abstract

Theories of concurrent systems have been extensively investigated in
the computer science domain. However, these theories are very general
in nature and hence, we would argue, are applicable to many disciplines
in which concurrency arises. Furthermore, a number of existing theo-
ries of cognitive science are formulated in terms of concurrent subsystems
interacting in solving cognitive tasks. In this paper we investigate the
application of a (process calculi based) concurrency theory to modelling
such a (concurrent) cognitive theory. The cognitive theory chosen is ICS
(Interacting Cognitive Subsystems), which we interpret using our process
calculus and then we verify some simple behavioural properties of the
resulting interpretation. These properties concern the capabilities of the
cognitive system to realise deictic reference.

Introduction

*Reference - Technical Report University of Kent at Canterbury, Number 8-98, July 1998.
THoward Bowman is currently on leave at VERIMAG, Centre Equation, 2 rue Vignate,
38610 GIERES, France and CNR-Istituto CNUCE, Via S. Maria 36, 56126 - Pisa - Italy with

the support of the European Commission’s TMR programme.

a number of potential benefits, not least of which is that computer systems
can be constructed in a more rigorous fashion leading to higher quality finished
systems containing fewer errors.

In this paper we will be interested in this second view. In particular, we will
consider techniques which can broadly be categorised as formal methods [26].
These provide notations for describing systems - formal specification languages
and analysing these specifications - formal verification techniques. From within
formal methods we will particularly focus on a set of techniques that have been
developed as mathematical models of concurrent systems.

The majority of work on mathematical theories of computing has focused on
systems, which can be categorised as sequential i.e. systems containing a single
component which evolves by performing a sequence of operations one after the
other. Such systems can typically be viewed as input to output transformers, i.e.
given a set of input values the system generates a set of output values and im-
portantly, such transformers can be mathematically viewed as functions (from
inputs to outputs). In line with [34], we call such systems ¢ransformational
systems. Although perfectly adequate in the sequential setting, such trans-
formational interpretations have proved insufficient in the concurrent setting.
Concurrency theory has sought to respond to this problem.

Concurrency theory studies systems containing a number of components that
are evolving simultaneously. Such systems arise throughout computer science.
To take a familiar example, the Internet is a concurrent system containing many
thousands or even millions of components. In concurrent systems, the default
behaviour of each component is to evolve completely independently of all other
components!. However, components also interact with one another in perform-
ing certain tasks.

As suggested earlier, with transformational systems the key issue is what
results the computation terminates with. With concurrent systems this is no
longer the case. Think again of our example of the Internet, firstly, it is not
clear whether the system will ever terminate and secondly, the outputs produced
when it terminates (perhaps in the year 2000) are likely to be degenerate rather
than useful. The interesting aspect of concurrent systems is rather their ongo-
ing behaviour and how components respond to external stimuli throughout the
system’s life-time2. Thus, we will typically model concurrent systems in terms
of the order in which they can perform external interactions.

Perhaps the earliest work in concurrency theory was that in the 1960’s by
Carl Petri, which yielded Petri Nets [45]. However, it was in the 1980’s that
the field reached maturity. This was inspired by Tony Hoare’s development of
Communicating Sequential Processes (CSP) [28, 27] and Robin Milner’s devel-
opment of the Calculus of Communicating Systems (CCS) [36, 37, 38]. A wealth
of techniques resulted from this 80’s renaissance, e.g. communicating automata
[23], further Petri Nets research [45], Temporal Logics [34], however, here we

3

n fact, there is a distinction between, so called synchronous and asynchronous concurrent
systems and what we discuss here is most relevant to asynchronous systems.
2This interpretation has prompted the so called reactive [34] view of computing.

will focus on the approach most closely inspired by Hoare and Milner - Process
Calculi®. We will describe this approach in section 3.

Although concurrency theory was developed with computer applications in
mind the core concepts of concurrency theory are completely general and are
thus applicable to modelling any variety of concurrent system. Although rare,
some applications outside mainstream computer science have been made, e.g. to
biological systems [51] and in Physics [22]. Thus, one objective of this paper is to
publicise the concurrency theory techniques to a wider audience. In doing this
we will focus on applying concurrency theory in the area of cognitive modelling.

Cognitive Theory. From very early in the history of computer science analo-
gies between the mind and the digital computer were used in explaining human
cognition, e.g. [12]. The resulting information processing paradigm [31] has
come to dominate cognitive psychology, with many diverse computational expla-
nations of cognitive behaviour, e.g. semantic networks [14], production systems
[42] and connectionist models [48, 49]. Furthermore, some of these approaches
are argued to be “Unified Theories” in the sense that they propose a “single
system of mechanisms that operate together to produce the full range of human
cognition” [41], e.g. the Soar Architecture [41]. However importantly, many of
these cognitive theories are concurrent in nature, for example, Soar contains
elements of concurrent behaviour [41].

In this paper we will focus on a particular “general purpose” cognitive theory
called Interacting Cognitive Subsystems (ICS) [1, 3, 2]. This is a theory of
working memory developed at the (UK) Medical Research Councils Applied
Psychology Unit. The reasons for choosing this theory are two fold. Firstly,
the model is highly concurrent in nature and is thus particularly amenable to
the concurrency theory techniques we have in mind. Secondly, there has been
previous work [18, 17, 19, 21] (in the domain of Human Computer Interaction)
on modelling ICS with formal methods. This previous work has been called
syndetic modelling; in it, both cognitive behaviour and the computer interface
are modelled using the same formal method. Then properties of the composed
system are determined.

ICS adopts a “top down” approach to the design of a cognitive theory by
providing a framework containing a set of core components and mechanisms
that it is argued give a “potential design of a complete mental mechanism” [2].
It describes cognitive tasks in terms of multiple flows of representations, which
compete for cognitive resources. We introduce ICS in section 2.

Interpreting Cognitive Theory in Concurrency Theory. In illustrating
the central tenet of this paper - that concurrency theory can be used to model
and analyse cognitive theories - we will interpret ICS using a simple process
calculus. Then we will analyse our specification of ICS to identify a number
of simple behavioural properties. These properties focus on the capabilities of
the system to realise certain forms of deictic reference. Typical forms of deictic
reference that we consider are the capability of a computer system user to select

3The term Process Algebra is also often used.

from a list of items in a computer display while performing some other task,
e.g. speaking.

An obvious question that arises is: why apply a (concurrent) formal method
to cognitive modelling? We would argue that the formal approach brings two
main benefits:

e Rigorous Analysis. Perhaps the most powerful argument for adopting for-
mal methods in computing is that they yield a description of the system
which is amenable to rigorous analysis, e.g. demonstrating that your sys-
tem does not enter certain degenerate states, such as deadlock states. This
analysis can take one of two general forms - wverification through proof or
automated state space analysis. Under the former an, often hand crafted,
series of formal steps are exhibited which show that a particular property
can be derived from the formal specification of the system. In contrast,
in the latter case a tool is used which automatically analyses the state
space of a specification to determine whether a certain property holds.
The analysis we perform in section 3 will contain elements of both these
approaches.

Now how does the potential for rigorous analysis fit with cognitive science.
Well, the standard cognitive science approach is to attempt to mimic cog-
nitive behaviour by writing a computer program which when run simulates
the particular cognitive task being considered. A rather obvious observa-
tion about such simulation is that it can never be exhaustive. In fact, in
practice, such techniques will only be able to explore a small subset of
the complete system behaviour?. One reason for the inexhaustiveness of
simulation is that the behaviour of any non-trivial system will be infinite
in some respect, e.g. through using infinite data sets or exhibiting infinite
concurrent behaviour. Although, it would be wrong to over emphasize the
power of formal methods in resolving this problem, in particular formal
methods have their own constraining boundaries (e.g. the state explosion
problem), they do at least offer the potential of a more exhaustive in-
vestigation of the behaviour of cognitive theories. In particular, infinite
behaviour can be handled using inductive and co-inductive techniques [53].

It is also important to note that formal methods do not preclude simula-
tion, since tool suites for such methods typically allow specifications to be
run using simulation and animation packages. These runs can either be
step by step explorations of the state space or automatic generations of a
single path. Such a tool will be used in section 7 where we will in fact use
a mixture of formal reasoning and simulation techniques.

Finally, it is also worth pointing out that tools are now available which
enable programs which are executable in a traditional sense to be gener-
ated from formal specifications. For example, the TOPO tool generates C
code from process calculi specifications [33].

4Tn this respect simulation is like testing, which as Djkstra so pertinently pointed out, can
only demonstrate the presence of errors, but can never demonstrate the absence of errors.

The Specification
s Pl ane

/ &at isfaction

The | npl enentation
Pl ane

set of inplenentations
satisfying S

Figure 1: The Nature of Formal Specification

e Awoiding Owerspecification. It is important to realise that formal speci-
fications are in nature very different to computer programs or what we
will more broadly call implementations. A formal specification is abstract
in the sense that it characterises a set of possible implementations, while
a program characterises a single implementation - itself. A satisfaction
relation is typically used to associate sets of implementations with speci-
fications, i.e. a specification characterises the set of implementations that
satisfy it. This situation is shown in figure 1.

Associated with this aspect is the desire not to overspecify (or in other
terms to provide loose specification), i.e. that the nature of the specifica-
tion language should not force the specifier to rule out acceptable imple-
mentations. Formal methods typically use the notion of non-determinism

in order to realise such loose specification. We will introduce non-determinism
in section 3.

We believe this feature of formal methods is potentially very useful in
the cognitive setting. In particular, many of the more general theories
(as indeed ICS is) leave much unexplained since a complete mechanistic
interpretation of cognitive behaviour is often not available. A difficult
problem this raises is how to provide “executable” realizations of cognitive
theories such as ICS which do not overprescribe what is known. We believe
this avoidance of overprescription has much in common with avoidance of
overspecification.

Thus, in the sequel we will attempt to define the “strongest known” con-
straint about ICS. This will characterise many possible actual cognitive
behaviours. Then we will see what properties we can determine of such a
loosely specified cognitive theory.

An associated point is the so called irrelevant specification problem [46,
41]. In order to construct a working simulation program a large number
of assumptions have to be made, leaving it unclear what aspect of the
behaviour of the program corresponds to known cognitive behaviour and
what arises from expediency. We would argue that the abstract nature
of formal methods enable cognitive systems to be described in a manner
that is more likely to avoid the irrelevant specification problem.

The Paper. We have attempted to make this article as stand-alone as possi-
ble. In particular, one of our goals has been to make it accessible to the wider
cognitive psychology field. The prerequisites that we assume are a basic knowl-
edge of discrete mathematics, in particular, set theory and logic and some broad
knowledge of computer science. The theory that is not generally accessible we
have placed in the appendix.

The paper is structured as follows. Section 2 describes the basic ICS model.
Section 3 introduces the LOTOS specification notation that we use to describe
ICS. Section 4 presents a complete LOTOS specification of ICS. Section 5 for-
mulates a number of behaviour goals over ICS. These concern its capability to
perform certain variaties of deictic reference. The goals are formulated in an
interval temporal logic called Mexitl which we also introduce. Section 6 ver-
ifies the main negative goals that we consider. Section 7 presents simulation
based validation of our positive goals. Then section 8 presents some concluding
remarks and discusses further work. Section 9 is the appendix.

2 Interacting Cognitive Subsystems

As pointed out previously, ICS is a “general purpose” cognitive theory, which
exhibits highly concurrent behaviour. It has been applied in a number of areas,
e.g. performance of short term memory tasks [1], HCI [18, 19, 21], experimen-
tation with theories of depression [4, 50].

It is beyond the scope of this paper to give a complete introduction to the
ICS model, the interested reader is refered to [2]. What we present here follows
in many places the exposition in [2], but in a summarised form. In particular,
our presentation will largely concentrate on the control/behavioural aspects of
ICS, while we will only give a cursory exposition of the data aspects of the
model.

Subsection 2.1 works through the basic elements of the model, while sub-
section 2.2 presents some sample scenarios of how particular cognitive tasks
can be performed in ICS. We finish the section with a summary and discussion
subsection 2.3.

2.1 The Model

Information Flows and Representations. The basic “data” items found
in ICS are representations. This term embraces all forms of mental codes,

from store to store

image record f
g 1

-

input of transform C to X
code C *

transform C to Y

©000000000000000

transform C to Z

A

input array

Figure 2: General Subsystem Format

from “patterns of shapes and colour” as found in visual sensory systems; to
encodings of “force, target positions and of articulatory musculatures” as found
in articulatory effectors; to “descriptions of entities and relationships in semantic
space” as found in a semantic subsystem [2].

These representations are past amongst the components of the architecture,
being transformed from one code to another in each component. Thus, the
architecture can be seen as an information flow model, where multiple flows
of representations (e.g. one from the acoustic sensory system and one from the
visual sensory system) are relayed through the architecture and compete for
resources. Thus, we have a model containing data - representations and control
- paths by which representations can flow around the architecture.

Subsystems. The components of the architecture are called subsystems and all
subsystems have the same general format, which is shown in figure 2. Subsys-
tems are representation transformers - they input representations in a particular
code, apply transformations to them and output them in a different code. In ad-
dition to this transformation function, they copy the representations that they
input into a local record. This record can be accessed when applying future
transformations.
Each component (subsystem) itself contains components:-

e Input Array. Representations received by a subsystem are placed into an
input array. The input array must be able to handle multiple representa-
tions, since a subsystem can accept representations from multiple sources
at any one time. We will return to this issue shortly.

e Image Record. The image record preserves the history of a subsystem. In
order to do this, whenever the input array has new contents the subsystem
copies them to the image record.

e Transformations. Fach subsystem contains a set of independently evolving

transformations®. Transformations take representations from the input

5In some formulations of the ICS model these transformations are refered to as processes.
However, we will avoid this term, since it has a very specific meaning in process calculi.

array, apply some transformational operations to them and then relay a
new (transformed) representation to a target subsystem. Transformations
will typically change the code of the representation from the code of the
current subsystem to the code of the target subsystem, i.e. from C to X,
Y or Z in figure 2.

The Overall Architecture. The complete ICS architecture, which is shown
in figure 3, is composed of nine subsystems, each of which is a specialization
of the general subsystem format just highlighted. These subsystems evolve
independently and concurrently to one another, subject to communication of
representations when firing transformations. This communication takes place
over a conceptual data network.

Subsystems fall into one of three categories: sensory subsystems: acoustic,
visual and body state; effector subsystems: articulatory and limb; and central
subsystems: morphonolexical, propositional, implicational and object. Sensory
subsystems receive input from sensory systems, such as the auditory system,;
effector subsystems transmit outputs that control effector systems such as the
limbs; while central subsystems perform internal cognitive processing. We con-
sider each subsystem in turn (our presentation here is particularly closely derived
from that to be found in [2]°.

e Sensory

— Acoustic (AC) - receives representations from the auditory system
encoding sound frequency (pitch), rhythm, intensity, etc;

— Visual (VIS) - receives representations from the eyes encoding “pat-
terns of shapes and colour”, i.e. light wavelength (hue) and bright-
ness;

— Body State (BS) - receives representations encoding body sensations
of pressure, pain, positions of parts of the body etc.

e Effector

— Articulatory (ART) - outputs representations that control the force,
target positions and timing of articulatory muscalatures, i.e. performs
subvocal speech rehearsal;

— Limb (LIM) - outputs representations that control the force, target
positions and timing of skeletal muscalatures, i.e. initiates physical
movement;

e Central

— Morphonolexical (MPL) - works with an abstract structural description
of entities and relationships in sound space, i.e. lexical identities of
words, their status and order;

5Two additional subsystems: SOM and VISC are also considered in [2], but these will play
no role in our analysis, so we will not consider them here.

ACUSTIC

1=

RPHONOLEXI ARTICULATORY

=
> [= L [B>l [speeen |
P [imoic Pl = ope |

ROPOSITIONA

Figure 3: The ICS Architecture

— Object (0BJ) - works with an abstract structural description of entities
and relationships in visual space, e.g. attributes of objects: shape and
relative position;

— Propositional (PROP) - works with descriptions of entities and rela-
tionships in semantic space, i.e. gives semantic meaning to entities
and highlights the semantic relationships between entities;

— Implicational (IMPLIC) - works with abstract descriptions of human
existential space and holistic meaning;

The possible transformations between subsystems are shown in figure 3.

Configurations. Not all transformations will be involved in every cognitive
task. For example, language understanding and production requires a different
set of transformations to be active than say a perceptual-motor tracking task [2].
Thus, the concept of a (mental) configuration is introduced. Each configuration
is associated with a particular cognitive task and is defined to be the set of sub-
systems and transformations involved in that task. Although, transformations
that are not included in the configuration may still be passing representations,
what they transmit is not relevant to the cognitive task at hand.

Multiple Flows and Blending. The “information flow” nature of the model
should be becoming clear. Sources of flows are typically sensory subsystems,
which receive sequences of representations from the external environment. Each
representation is then relayed within the architecture by the firing of transforma-
tions. Thus, each sequence of representations received at each sensory subsystem
generates a flow of representations around the architecture. Clearly, multiple
flows can exist in the architecture at the same time. Thus, competition between
flows for resources becomes a major element of the functioning of the system.
This is one reason why the architecture has been viewed as so useful in the HCI
setting where multi-modal human computer interfaces, which naturally gener-
ate multiple flows of input at multiple sensory subsystems, are being considered
[44].

The existence of multiple flows also prompts the question of what happens
if a subsystem is taking input from two different flows at the same time. This
possibility arises in a number of subsystems, e.g. the implicational subsystem
can receive from all the effector subsystems - acoustic, visual and body state.
In fact, the architecture accommodates a number of different outcomes when
multiple flows are received. In some configurations different flows may be kept
quite separate, being placed into the same input array, but then being relayed
via separate transformations.

However, the more interesting outcome is if a configuration requires an out-
put transformation to use a representation which is a combination of two (or
more) “competing” input representations. This possibility leads to the concept
of blending.

Representations from different flows can be blended to create a composite
representation. However, this can only happen if the two representations are

10

consistent. Consistency between representations is not a precisely defined con-
cept, although an indepth discussion of it is given in [2]. We can illustrate the
concept with a simple example. Representations of a scene from visual subsys-
tem (or in fact from any subsystem) can be thought of as having a psychological
subject, informally, the object we are looking at in the scene, and a psychological
predicate. Informally, the relationship between other basic units in the scene.
Now if two representations are received from different flows and they reference
different, psychological subjects then they might be viewed as inconsistent and
hence, would not be blendable [2].

Much of the richness of the architecture arises through this possibility to
blend competing flows. In particular, constraints on allowed cognitive process-
ing can be formulated in terms of blending, e.g. that representations are only
blendable if they all exhibit the same psychological subject. We will see an
example of such a constraint in section 4.

Stability. A further important concept in the architecture is that of stability.
This is a property of information flows which gives one characterisation of the
“quality” of the flow. It characterises the level of variability over time of repre-
sentations in the flow. For example, in a constant visual environment it is likely
that the flow of representations through the visual subsystem is very constant
and thus, stable, i.e. there is little variability betwen adjacent and closely prox-
imate representations. In contrast, in a rapidly changing visual environment
there may be extreme variability between closely proximate representations and
thus, the resulting flow is likely to be unstable. We treate stability as a derived
concept which can be applied to any subsystem in a configuration. It is deter-
mined by observing the variability of data representations entering or leaving
that subsystem over a period of time.

Buffering. Another aspect of the architecture is that in certain circumstances
a subsystem can enter, so called buffered mode. In this mode a transformation
in the subsystem switches from working directly on representations in the input
array, to taking representations from the image record. This corresponds to
“focal awareness” of an information flow [35]. The transformation to code X in
figure 2 is in buffered mode.

In buffered mode copying from the image record and applying the buffered
transformation become serial activities (in normal mode they are concurrent
activities), allowing the transformation to access a representation that is “ex-
tended” in time [35]. This, in particular, enables the processing of representa-
tions from past experience.

When a transformation is buffered it selects representations from the image
record. This mechanism of selection can take a number of forms, for example,
it may make a comparison between what is in the input array and items in
the image record using some aspect of the input array as a “key”, e.g. the
psychological subject of a representation.

The architecture imposes an important constraint on the process of buffering:
only one transformation in a subsystem is allowed to be buffered at any given
time. Furthermore, only one subsystem is allowed to be buffered.

11

Synchronous Evolution. In this paper we take a particular view of the con-
current behaviour of ICS. There are really two assumptions, the first of which
is a necessary prerequisite for the second:

1. Discreteness. We assume the system takes discrete steps. This follows
from the view that an information flow is a sequence of (discrete) repre-
sentations.

2. Synchrony. We assume that subsystems takes steps together synchronously.
Consequently, we can distinguish between two kinds of steps:

e Primitive Steps. These are steps by ICS subsystems.

e Global Steps. These are steps by the entire (or global) system. Such
global steps comprise a set of primitive steps, typically, one (or more)
for each subsystem and the overall system behaviour is a sequence of
global steps.

For ICS, the firing of a transformation represents a primitive step and a
global step collects together the firings of all transformations in the current
configuration. Thus, all possible firings must complete before a new global step
is started.

Although, such a synchrony assumption is not discussed in the standard
introductions to ICS, e.g. [2], we believe that the resulting external behaviour
of ICS faithfully reflects the spirit of the model.

2.2 ICS Scenarios

We consider how three cognitive tasks would be performed in ICS:-

e reading;
¢ speaking/pronounciation; and
e pointing.

each of which yields a particular configuration of the ICS system. Then we
build a configuration which combines all these subconfigurations. This is the
ICS configuration for deictic reference which will be used in section 6 and 7.
Our discussion in this section mirrors that given in [21].

2.2.1 The Reading Configuration

The reading configuration is called conf..,q and is shown in figure 4. It inputs
a flow of sensory information (which is assumed to be amenable to a reading
interpretation, i.e. it can be decoded in to lexical items) at the VIS subsystem
and then interprets it. The goal of this interpretation process is to associate
semantic meaning to the lexical items contained in the representations received
at VIS. In order to do this a number of subsystems have be be used:

12

MPL
— l<—
mpl_prop prop_mpl
1 PROP — obj_mpl
— <
prop_obj obj_prop
eye vis L] -
—_— VIS OBJ
vis_obj

Figure 4: The Reading Configuration

e VIS is obviously used, it acts on representations received from the eyes,
and generates object representations on vis_obj. These structure the
sensory representations into a collection of visual objects and their rela-
tionships.

e OBJ interprets representations in object code using two output transfor-
mations: obj_prop and objmpl. The first of which associates semantic
meaning to objects and relationships in the object representation. The
second transforms the object code into a “structured representation of
sound” which is input by the morphonolexical subsystem. This transfor-
mation is required in order that the items being viewed can be given a
lexical interpretation.

e PROP receives representations in propositional code which express the
semantic meaning of objects and relationships between objects. It trans-
forms these representations using two output transformations: prop_obj
and propmpl which feed semantic information back to the object and
morphonolexical subsystems respectively. These feedback transformations
enable the flows passing through 0BJ (respectively MPL) to be interpreted
in a more refined way using the semantic information determined at PROP.

Three of the subsystems in confrcqging input from multiple sources: 0BJ,
PROP and MPL, each of which blends the two input flows it receives. The blendings
at MPL and at 0BJ are conceptually similar: they both blend the representations
received from PROP in order to enrich the other flow received with extra semantic
information, e.g. prop_obj enriches the flow from vis_obj.

13

mpl_art

art h
MPL ART __speec»
— <
mpl_prop prop_mpl
— PROP I obj_mpl
— <
prop_obj obj_prop
eye vis L] -
E— VIS OBJ
vis_obj

Figure 5: The Pronounciation Configuration

2.2.2 The Pronounciation Configuration

The speech/pronounciation configuration, see figure 5, called confyron, is ob-
tained from conf.cqq by adding the transformations mpl_art and art_speech.
This enhancement enables the morphonolexical code received in the reading
configuration by MPL to be interpreted as articulatory codes and output at
art_speech.

2.2.3 The Pointing Configuration
The activity of pointing requires the involvement of a number of subsystems:
e VIS to observe the object to be pointed at;
¢ OBJ and PROP to interpret the representation received at VIS;
e BS to give information about the position of (for example) the hand;
e LIM to generate code for moving the hand in the required direction.

The configuration that results is shown in figure 6.

2.2.4 The Deixis Configuration

The configuration for deictic reference combines the configurations just pre-
sented. It is called conf;,;..c and is shown in figure 7. We incorporate body
state feedback into the configuration. This will play an important role in the
goals that we formulate in section 5. Intuitively, the bs_1im transformation
provides feedback on the current position of the limbs, which enables future

14

body _bs
PROP BS e—————
prop_obj obj_prop bs lim
eye vis lim_hand
E— VIS OBJ LIM —
vis 0bj obj_lim

Figure 6: The Pointing Configuration

lim hand transformations to be formulated correctly relative to the current
hand position. The bs_art transformation behaves similarly, enabling speech
to be formulated according to the current state of the mouth and vocal chords.

2.3 Discussion

This completes our exposition of ICS. Tt will be clear to the reader that the model
is both extensive and general. Consequently, when “realizing” the architecture,
as we will do in the next sections, we will not be able to capture its full generality.
A good example of this is in the modelling of representations which we will
do in a rather primitive manner. This is partially because formalizing such
representations is a data modelling problem and here we wish to concentrate on
issues of concurrent behaviour. However, although we do make simplifications,
we believe that the realization we present faithfully captures the spirit and
essential elements of ICS. We document simplifications whenever they arise.

3 Concurrency Theory

A complete theory of concurrency is quite complex with a number of compo-
nents, e.g.,

e A Specification Language - or perhaps we should, more broadly, say a
specification notation since graphical (non-language notations) can also
be found, e.g. StateCharts [23]. However, what we will discuss here is
a language in the classical sense, i.e. a syntax for writing descriptions of
systems.

e A Semantics - Specification languages are at the user level: users describe
their systems with them. However, it is typically more straightforward to
formulate the mathematical properties of specifications at a lower level,
e.g. in terms of the execution traces of a specification. Such lower level

15

mpl_art

MPL art_speech
| = | ART f— >
mpl_prop prop_mpl bs art
|] body_bs
=1 PROP obj_mpl BS <dy__
—] <= —
prop_obj obj_prop bs lim
eye Vvis L] — L~ lim_hand
—_— VIS OBJ LIM ——
vis_obj obj_lim

Figure 7: The Deixis Configuration

mathematical models are called semantic models and a mapping, called a
semantic map defines the semantic model that corresponds to a particular
specification [53].

e Relations - Specifications can be related by comparing their semantic inter-
pretations; many such relations exist. In particular, equivalence relations
can be identified [38, 52], which play the role of identity in formal theories,

in the same way that = does in the theory of numbers.

Since we will not be using any heavy weight theory, we will not generally
be concerned with the last two of these, rather almost all of what we present
will be at the specification language level; the interested reader is refered to
[6, 38, 47, 52] for further information on the other levels.

We will use a process calculus specification language, called LOTOS: Lan-
guage of Temporal Ordering Specification [5] (we will also consider a specifica-
tion logic in section 5). The choice of this method over, say, CSP [27] or CCS
[38] is largely pragmatic: we have more experience with LOTOS and there are a
number of tools available which are well suited to the analysis we will perform.

LOTOS is really two languages - a language for describing concurrent be-
haviour and a data language. The former is used to specify the order in which
steps are made and the latter is used to describe data types associated with
these steps.

16

The data language is an algebraic specificaton language; ACT-ONE [15]7,
which allows data types, such as natural numbers, booleans, queues, tuples, etc
to be defined. In the body of the paper we will restrict ourselves to informal
descriptions of these data types; the appendix contains full definitions.

We will not use all the LOTOS language and thus we will only introduce
the parts we need. In addition, we simplify some of the LOTOS syntax. The
sublanguage that we use is formally presented in the appendix (section 9.1).
For a full introduction the interested reader is refered to [5, 6]. In the follow-

ing subsections, we slowly build up the language using fragments of our ICS
specification for illustration.

3.1 The Nature of LOTOS Specification

Avoidance of overspecification, as discussed in section 1, is at the heart of process
calculi. In particular, it is important that the correct interpretation is imposed
on LOTOS descriptions: they express the “possible external behaviour” of a
system. Specifications should be viewed as black bozes; they describe the order
of possible external interaction, but do not prescribe how that interaction order
is internally realised. Any physical system that realises the external behaviour
is a satisfactory implementation.

The concept of the environment that a specification evolves in is crucial
in obtaining this interpretation. The term environment refers to the behaviour
that the external observer of a system wishes to perform. Note that this external
observer could be either human or mechanical. Conceptually, a LOTOS speci-
fication only defines “possibilities” for evolution of a system and it is through
interaction with a particular environment that these possibilities are resolved
and realised. For example, if an environment cannot offer an action that a spec-
ification must perform deadlock will ensue. A deadlock is a state from which
the system is unable to evolve.

As an illustration, we might view a LOTOS specification of ICS in the form
depicted in figure 8, i.e. as a black box with interaction points, eye vis, 1im_leg,
lim_hand, body_bs, art_speech, art_hand and ear_ac. Such interaction points
are called gates (the term port is also sometimes used). It is only through these
gates that an external observer can interact with the system.

Gates reference locations at which interactions can take place. At such gates
actions are performed. These can be thought of as interaction activities, e.g.
passing a value, sending a message or pressing a button®. In fact, the latter of

"In fact, the choice of ACT-ONFE as the LOTOS data language has not proved completely
successful [13] and in the current revision of the language [30] an alternative data language is
being proposed.

8 An important theoretical aspect of actions is that they are atomic, i.e. they cannot be
divided in time. Consequently no two actions can occur at the same time and, thus, the
occurrence of actions cannot overlap. For example, performing an action at vis_obj and at
eye_vis cannot happen at the same time. The atomicity of actions has important consequences
for the modelling of concurrency, see for example [38, 6]. However, the restriction to atomic
actions does not limit expressiveness, since non-atomic activities can be specified in terms of
the actions that delimit the activity, i.e. rather than defining an action which has duration we

17

art_speech art_hand

ear_ac |

ICS body bs
eye_vis |

im_leg lim_hand

Figure 8: Black Box Interpretation of a LOTOS Specification

art_speech
,_| art_hand
ear_ac |
ICS body bs
eye_vis |
lim_leg fim_hand

Figure 9: Action Offering as Buttons Popping Up

these yields a nice pictorial representation of interaction between environment
and specification. LOTOS descriptions define the order in which actions can be
offered at gates. Thus typically, actions are only offered intermitently at gates.
We can view the offering of an action to the environment as the popping up
of a button. For example, figure 9 depicts the situation in which an action is
offered at art_speech, but not at any other gate. The environment can decide
to push art_speech or to leave it unpushed. We could also have situations such
as that depicted in figure 10 where both art_speech and art_hand are up and
the external observer has a choice of actions to perform.

Actions come in two forms: basic actions and data passing actions. The
former are unadorned gates. In ICS two such actions will be:

tick and vis_buffered

The first is used to denote a clock tick and the latter is offered to the en-
vironment when deciding whether a subsystem, here VIS, should enter buffered

can specify the atomic instant at which the activity starts and the atomic instant at which it
stops.

18

art_speech art_hand

[1 []

ear_ac |

ICS | body_bs
eye_vis |

lim_leg Jim_hand

Figure 10: Choice of Action Offers

mode.

In contrast, data passing actions comprise a location for that interaction - a
gate and a data passing attribute that is associated with performing the action.
This attribute can either correspond to outputting or inputting a value. For
example, we could have outputting actions:

vis_obj!1l and obj_mpl!2

where vis_obj and obj mpl are gates and 1 and 2 are representations (we
will model representations as natural numbers, since a richer model, such as the
super/subordinate mechanism described in [2] is not required for our purposes
in this paper). Thus, an action of the general form:

g'E

denotes an output of the value of the (data) expression E on the gate g.
Input actions can also be found in ICS, e.g.

eye_vis?rl:Rep and vis_obj?r2:Rep

where eye_vis and vis_obj are gates and r1 and r2 are variables of type
Rep, i.e. representations. The effect of an input action is to receive a value on
a gate and associate that value (more precisely bind it) to a variable, here r1
(and r2). Thus, an action of the general form:

g?v:T

denotes an input of a value on gate g, which is bound to a variable v of type T.
Now importantly, two complementary actions can co-operate in performing
an action (in precise terms they synchronise). For example, if,

vis_obj!'l

19

is offered by one subsystem and,
vis_obj?r2:Rep

is offered by another subsystem, the two actions could be performed together.
This is because they are complementary in the sense that they both take place
at the same gate, vis_obj, and the first outputs a value, while the second inputs
a value of the same type.

A special distinguished action, i, is also used; it denotes an internal action,
i.e. an action that is hidden from the external observer. The occurrence of an
internal action is not externally visible, thus, conceptually, no button is raised
when it is offered or pushed when it is performed. It is important to note
though that while an i action is not externally visible it may “indirectly” affect
behaviour that is externally visible. Typically an i action will represent an
internal decision, resolution of which, prescribes a particular visible behaviour.
Internal actions play a central role in creating non-determinism, see section 3.6.

3.2 Behaviour Expressions

The basic syntactic units of LOTOS specification are behaviours. The operators
that we introduce will characterise the possible behaviours that can be written
in LOTOS.

There is one behaviour that we can highlight immediately, it is the null
behaviour,

stop

which performs no actions and is synonymous with deadlock. stop is typi-
cally used to terminate a non-null behaviour, i.e. it indicates that a point has
been reached at which no more behaviour can be performed.

3.3 Process Definition

As suggested a number of times before, concurrent systems contain components
which evolve concurrently. Thus, in order to model such systems we clearly
need a syntactic entity which corresponds to a component. In process calculi
(hence their name) this syntactic entity is called a process.

We define processes using the syntax:

P :=B

where P is a process variable (i.e. a name for a process) and B is an arbitrary
behaviour. The effect of the definition is to associate (bind) the process variable
P to the behaviour B. Thus, whenever we refer to P, B is executed.

In our ICS specification we will have processes for all the subsystems. These
will have the obvious names:

VIS, OBJ, LIM, PROP, BS, IMPLIC, MPL, AC and ART

20

We will also have a clock process called:
CLOCK

To take a rather fatuous illustration, we could define the process VIS as:
VIS := stop

which states that VIS cannot do anything, it just behaves as a stopped
system. In future sections we will give VIS a more interesting behaviour than
this, you will be glad to know.

We use the convention that all process variables will be written in capitals.

3.4 Sequence

Basic sequencing of actions is defined in LOTOS using action prefiz which has
the general form,

a;B

where a is an action and B is a behaviour. a;B is a behaviour that will offer
action a to the environment and if it is taken will behave as B.

We can also view a;B in terms of pushing buttons as a black box with a gate
corresponding to a (and gates for all the external actions in B). The button a is
initially the only button raised, if the environment pushes a then the black box
behaves as B (e.g. new buttons will be raised).

As an illustration of action prefix,

eye_vis?rl:Rep ; stop

will offer an action at gate eye_vis (which binds a value to r1) and if it is
performed, will deadlock. In addition, the behaviour,

vis_normal ; VIS_NORMAL

offers an action vis_normal and if it is taken will invoke the process VIS_NORMAL.
This fragment of specification models the VIS subsystem offering the environ-
ment the chance to go into normal mode.

3.5 Choice
Choice is denoted,
By [1 B,

and states that either behaviour B; or behaviour B, will be performed. The
choice of which is determined by the first action of the two behaviours. Both
actions will be offered to the environment which will choose which of the two
to perform; this decision will resolve the choice.

21

The necessity to offer such choices largely arises because of the move to
systems which contain concurrency. A behaviour offering a choice of a number
of actions to perform is really offering a menu of possible interactions that
concurrently executing components can select from. The behaviour is defining
the set of actions it is willing to react to.

We can illustrate choice using the sequencing fragment highlighted at the
end of the last subsection.

vis_normal; VIS_.NORMAL [] vis_buffered; VIS_BUFFMD

which will offer the environment the choice of performing vis_ normal (and
instantiating the process VIS_NORMAL) or performing vis_buffered (and instan-
tiating the process VIS_BUFFMD). The broad structure of our subsystems will be:

VIS := vis_normal;VIS_NORMAL [] vis_buffered;VIS_BUFFMD

where VIS_NORMAL and VIS_BUFFMD are subprocesses of VIS which respec-
tively implement normal behaviour and buffered behaviour.
We will also use a generalised choice operator, denoted,

choice x:T [] B(x)

where x is a variable, T is a type and B is a behaviour expression that
is parameterised on the variable x. The operator allows choice over a set of
parameterised behaviours. We will give an ICS illustration of its use in the next
subsection.

3.6 Non-determinism

Non-determinism is defined in LOTOS as a special case of choice. Specific
forms of choice yield a non-deterministic resolution of the alternatives [6]. We
will consider just one such form:-

i; By [1 i; By

The non-determinism arises because selection between the two initial actions
of the choice is beyond the control of the environment, since the initial evolution
of the behaviour is completely hidden from the external observer; in terms of
button pushing, no buttons are raised. Thus, a wholely internal choice will be
made to either evolve to behaviour B; or to evolve to behaviour Bs.

Non-determinism plays a number of roles in process calculi. In general it
acts as an abstraction device. For example, non-determinism is often introduced
when at a certain level of system development, we wish to abstract away from
a particularly complex mechanism.

As an example from ICS, consider a transformation acting in buffered mode,
say vis_implic, which rather than selecting from the VIS input array selects
from VIS’s image record. The question this raises is which element of the image
record does vis_implic select. Well there are many possible mechanisms and

22

rather than delving into the intricacies of them, we simply abstract away from
the issue and view selection from the image record as non-deterministic. We
could describe the selection in the following way:

i; SELECT(0) [] i; SELECT(1) [] i; SELECT(2)

where SELECT (j) indicates selection of the jth entry in the image record.
Due to the infinite number of options here we would actually write this using
generalised choice as:

choice x:Nat [] i; SELECT(x)

where Nat is the type of natural numbers.

What we are really doing here is abstracting away from the specific mecha-
nism by which selection occurs. We are stating that some internal mechanism
could occur and result in a selection being made, but at the particular level of
abstraction we are considering, we are not interested in how this happens.

Non-determinism is also used in specification to allow implementation free-
dom. A non-deterministic choice between evolving to By or to By can be viewed
as stating that implementations that behave in either way are satisfactory. In
other terms, the specifier does not mind whether the system behaves as By or
as By. Such non-determinism may then be refined out during development.

3.7 Concurrency

3.7.1 Independent Parallelism

We begin with a special case of concurrency; this has the form,
By Il By

which states that the two behaviours B; and By evolve independently in
parallel (we will refer to By and By as parallel threads). Independent in this
context means that there is no shared behaviour, which would arise if B; and
B, performed actions together.

We will use this construct in order to describe the behaviour of subsystems
when they are working in normal or buffered mode. For example, we can state,
as follows,

vis_obj!l; stop ||| vis_implic!l; stop

that the output transformations of VIS are independent of one another.
Furthermore, input and output activity will be independent of each other.
Thus, a basic structure for VIS_NORMAL could be:

VIS_NORMAL :=
(eye_vis?rl:Rep; stop)
(* Input Ports x)
[11
(vis_obj!1l; stop ||| vis_implic!1l; stop)
(* Output Ports *)

23

stating that VIS_NORMAL’s three transformations are performed indepen-
dently in parallel of one another. Text within (* and *) are comments.

This process structure is general to all ICS subsystems, e.g. a description of
0BJ_NORMAL would have the form:-

OBJ_NORMAL :=
(vis_obj?rl:Rep; stop ||| prop_obj?r2:Rep; stop)
(* Input Ports *)
11
(obj_mpl!l; stop ||| obj_prop!l; stop
[1] obj_lim!1l; stop)
(* Output Ports *)

which has the same form as VIS_NORMAL only we have different kinds and
numbers of transformations.

As it stands, these descriptions of VIS_NORMAL and 0BJ_NORMAL are very
limited: they just perform a set of transformations and then deadlock. However,
subsystems should clearly be able to perform their transformations repeatedly.
This is something we will consider shortly.

3.7.2 General Form

As already stated, independent parallelism is a specific class of concurrent be-
haviour. Concurrency, in its most general form, is denoted,

B1 |[X1,...,Xn]| B2

which states that B; and By evolve independently in parallel subject to the
synchronisation of actions x1, . . . ,x,, i.e. an action x; (1 < i < n) appearing in
either B; or By can only be executed if it synchronises with an x; in the other
behaviour.

As an example, we can compose the two processes, VIS_NORMAL and 0BJ_NORMAL
together in parallel, subject to synchronisation on the common action, vis_obj:

VIS_NORMAL | [vis_obj]| OBJ_NORMAL

which expresses that the processes VIS_NORMAL and 0BJ_NORMAL will perform
all actions separately, apart from vis_obj, which they will perfom together.
Such synchronisation has two implications:-

1. Synchronising processes wait for one another. For example, if VIS_NORMAL
reaches a point where it wishes to perform vis_obj, it must wait for
OBJ_NORMAL to be ready before it can do it. Thus, when attempting to
perform synchronised actions processes become blocked waiting for partner
processes.

2. Data attributes must match. With VIS_NORMAL and 0BJ_NORMAL this con-
straint is met since VIS_NORMAL outputs a representation on vis_obj, i.e.
it performs,

24

vis_obj!1l
while, 0BJ_NORMAL inputs a representation on vis_obj, i.e. it performs,
vis_obj?rl:Rep

When synchronisation occurs, the value 1 is bound to the variable r1.
The rules for matching of data attributes are a little subtle and we will
not delve into their intricacies, see [5] for an explanation.

We call |[...]| generalised parallelism since independent parallelism can be
derived from it, By ||| By =B; |[1] By, i.e. general parallel composition with
an empty synchronisation set (a further operator By || By, fully synchronised
parallelism can also be derived, but we will not need it here).

3.8 Recursion

As just discussed, specifications are not particularly interesting unless they con-
tain repetitive behaviour. Process calculi use recursion in order to do this. As a
very simple illustration we will use a clock process, which is defined as follows:-

CLOCK := tick; CLOCK

which will offer a tick action and then recur (by instantiating itself again).
It will perform an infinite number of finite traces of the form?:

tick
tick tick
tick tick tick

3.9 Enabling

Action prefix defines sequencing for actions, however, we would also like to
define sequencing of complete behaviours. This is supported by enabling,

B1 >> B

which will evolve as By, then if B; terminates successfully, it will behave as
By. The concept of successful termination is pivotal here. We do not wish By
>> B, to evolve to By unless B; completes its evolution. In particular, if By is in
a deadlock state we would wish By >> By to also deadlock. Thus, we introduce
a distinguished behaviour,

9n fact, we can give a number of different interpretations to such recursive behaviour,
including infinite trace semantics [47]. However, the standard approach is to use finite traces
since these reflect the role of the environment and the reactive nature of the model - we are
interested in what can happen over time rather than the terminal behaviour. At a particular
time the system will have performed some finite trace of the recursive behaviour.

25

exit

to denote successful termination.

Returning to our specification of VIS_NORMAL, we will replace the stop states
with successful terminations in order that we can evolve through enabling to
VIS_NORMAL again. The desired behaviour is:

VIS_NORMAL :=
(eye_vis?rl:Rep; exit)
(* Input Ports *)
11
(vis_obj!1l; exit ||| vis_implic!1l; exit)
(* Qutput Ports *)
>> tick; VIS_NORMAL

This process will perform some interleaving of the actions: eye_vis, vis_obj
and vis_implic; then a successful termination will take place, from which a
tick is performed (this is used to control synchronous behaviour, see discussion
in section 4.2.2) then VIS _NORMAL is called recursively. An important aspect of
successful termination is that if a number of parallel threads exist, they must
all terminate before the whole behaviour can terminate. Thus, all the three
threads:

eye_vis?rl:Rep;exit , vis_obj!l;exit and vis_implic!1;exit
must terminate before the enabling operator >> can fire.

3.10 Hiding and Relabelling

These are the final operators of this section. The first, hiding, has the form,

hide x7,....,%x, in B
where x1,....,X, are observable actions and B is an arbitrary behaviour.
The operator behaves as B except that all actions in xq,....,x, are turned into

internal actions.

Hiding enables information hiding: actions which are observable at one level
of specification can be transformed into hidden actions at another level. Thus,
behaviour that should not be visible, can be hidden. In effect, such hiding
supports a form of abstraction, since the complexity of a part of the system is
abstracted away from, by hiding it, when specifying another part.

As an illustraction, ICS contains a number of transformations which can
be viewed as internal to the full system. Thus, we will naturally hide these
transformations when we build the top level system. As an illustrative fragment,
we might hide vis_obj, vis_implic, prop-obj, obj_mpl, obj_prop and obj_lim
in our composition of VIS_NORMAL and 0BJ_NORMAL,

26

hide vis_obj, vis_implic, prop_obj,
obj_mpl, obj_prop, obj_lim in
VIS_NORMAL | [vis_obj]l| OBJ_NORMAL

leaving only the sensory subsystem action eye_vis observable.
A relabelling operator is also provided. It has the form:

B\ [xi/y15.-s%Xn/yn]

where x1,...,%Xn, ¥1,---.,¥n are actions. It behaves as B apart from the
fact that the occurrence of any action y; is replaced by the action x;.

As an ICS illustration, we will define processes to perform blending. These
define blending mechanisms that are general, in the sense that they are defined
over an arbitrary gate, g say. Then we specialise these general mechanisms using
relabelling, e.g. if|

BLEND

is such a process, we might specialize it to act on the transformation obj_prop
by invoking;:

BLEND \ [obj_prop/g]

4 Specification of ICS

In this section we use the operators introduced in the last section to build a
specification of ICS. The extra specification features we will need concern data
types; these will be introduced in the next subsection (subsection 4.1). Then in
subsection 4.2, we present the full ICS description.

4.1 Data Types in ICS

Although we will treate representations in a very simple way, we will use a
number of other data structures in our specification. We introduce each of the
main data types in turn:

Representations. We assume a type!°.
Rep

of representations, which we define as a type synonym for Nat (i.e. Rep is
just a different name for Nat), the natural numbers. Thus, the elements of Rep
will be:

0,1,2,3, ...

10Note what we refer to as types are called sorts in ACT-ONE.

27

and we can use the natural number operations, e.g. +, =, %, with represen-
tations. By convention, 0 denotes a “null” representation, i.e. one that does
not contain any information. We give a more indepth justification for using the
natural numbers as representations at the start of subsection 5.4.

Input Array. We model the input array using a 4-tuple. This use of a static
type, i.e. one with a fixed size, is only sufficient because no subsystem has
more than 4 source subsystems The use of static types pervades all our data
types. This is not an optimal or particularly elegant solution, in particular,
the resulting data types are not easily extended, however, we have adopted it
because it enables us to restrict ourselves to simple data types. Thus, we assume

a type,
inArr

of 4-tuples of representations. In the sequel we will refer to elements of tuples
as slots. Typical elements are:

#(2,3,0,4) , #(0,0,0,0) , #(1,2,1,3)

where the four elements of the tuple are indeed representations. Notice the
second of these denotes a null input array.
The only operation defined over inArr is accessing elements of the array,

iaget : indices, inArr -> Rep

which when given an index (we have four indice jO, j1, j2 and j3, which
index corresponding entries in an input array) and an input array, returns the
representation that is located at that slot, e.g.

iaget(jO , #(2,3,

0,4)) =2 and
iaget(j1 , #(2,3,0,4))

,4 3

Each subsystem will have an input array, of type inArr, and each slot in the
input array will receive input from a particular source subsystem. For example,
prop has three input transformations:

obj_prop, implic_prop, mpl_prop

such that obj_prop maps into slot 0, implic_prop maps into slot 1 and
mpl_prop maps into slot 2. Clearly, since PROP only has three input transforma-
tions, there will be an empty slot - the 4th slot. We adopt the convention that
null representations are placed in empty slots.

This use of a static type, i.e. one with a fixed size, is only sufficient because no
subsystem has more than 4 source subsystems The use of static types pervades
all our data types. This is not an optimal or particularly elegant solution, in
particular, the resulting data types are not easily extended, however, we have
adopted it because it enables us to restrict ourselves to simple data types.

28

Image Record. We model image records as queues, where the elements of
the queues are input arrays (in fact, many different varieties of dynamic data
structure could be used here. We use queues because they are very easy to work
with in ACT-ONE.). The type of image records is denoted

imRc

The full definition of the imRc type can be found in the appendix. Here we
save the reader the details, but simply introduce the main operations, that we
will need. Firstly, we assume a constant,

nil
which denotes an empty image record. Secondly, the operator,
add : inArr, imRc -> imRc

adds an element, i.e. an input array, to an image record, returning a new
image record. Thirdly, the operation,

select : Nat, inArr, imRc -> inArr

gets an element from the image record. It takes a number (indicating which
element in the image record is sought), an input array (which is not actually
used in our current implementation!!) and an image record and returns the item
sought.

As an illustration, let ir denote the two element image record constructed
as follows:

ir = add(#(1,2,1,3), add(#(2,3,0,4),nil))
Then,

select(0 , iA , ir)
select(1 , iA , ir)

#(2,3,0,4),
#(1,2,1,3)

for any input array iA and by default,
select(x,iA,ir) = #(0,0,0,0)
for all x> 1, i.e. selecting beyond the maximum element gives a null response.

Transformation Maps. This is an important data structure that we have
not considered before. In fact, it does not appear in the basic formulation
of ICS. We use it in order to record the slots in the input array from which
a particular output transformation takes representations. Remember, that an
output transformation can be a blend of a set of representations (where each
representation is taken from a particular slot in the input array).

The transformation map is defined using two (4-tuple) types. Firstly, we
assume a type:

The input array is included in the selection processes as a place holder for a more sophis-
ticated select operation which choses elements from the image record according to what is
currently in the input array. However, this extra sophistication is not yet implemented.

29

slotmap
of 4-tuples of booleans, a typical element might be:
#(true,false,true,false)

which indicates the slots in the input array that are relevant for (i.e. need
to be blended by) a particular output transformation. In the sequel we will use
the term alive to describe the slots that are prescribed by a slot map.

As an illustration, if this slot map was associated with the IMPLIC output
transformation:

implic_prop

it would indicate that the representation to be transmitted over implic_prop
must be a blend of the 0th and the 2nd slots of IMPLICs input array.
We assume an accessing function smget, e.g.

smget (jO,#(true,false,true,false) = true and
smget (j3,#(true,false,true,false) = false

Then we build a data type of transformation maps, denoted,
Map

which is a 4-tuple of slotmaps. For example, if associated with IMPLIC, the
transformation map:

#(#(true, false, true, false),
#(false, true, false, false),
#(false, false, true, false),
#(false, false, false, false))

would indicate that output transformation,

0 (i.e. implic_prop) uses the Oth and 2nd slots
1 (i.e. implic_visc) uses the 1st slot
etc,

We also have an accessing operator over maps, mpget, which, for example,
if we let m denote the transformation map just shown, will behave as follows:

mpget (jO,m) #(true, false, true, false)
mpget (j2,m) = #(false, false, true, false)
smget (j1,mpget(j2,m)) = false

Transformations. We assume a type, Subsyst, of constants:

VISS, 0BJJ, LIMM, IMPLICC, BSS, MPLL, ACC, ARTT

30

one for each subsystem. Then we define an operation:
tran : Subsyst, Subsyst, Rep -> Rep

which when given a source and a target subsystem implements a particular
transformation. For example,

tran(IMPLICC,PROPP,T)

applys the implic to prop transformation to a representation r.

Ultimately tran will perform transformations on representations, e.g. in the
super/subordinate style outlined in [2]. However, for the moment we simply
include a place holder for such mappings and view all transformation operations
as the identity, i.e.

tran(s,t,r) = r
for all subsystems s and t and representations r

4.2 Complete Specification
4.2.1 General Subsystem Format

As a typical subsystem we build up the full 0BJ specification.

Top Level Behaviour of Subsystems. Firstly, the 0BJ process has the top-
level behaviour:-

OBJ(iR:imRc,iA:inArr,m:Map) :=
obj_normal; OBJ_NORMAL(iR,iA,m)
(]
obj_buffered?b:indice; OBJ_BUFFMD(iR,iA,m,b)

which is in the same form as that presented in the previous subsection apart
from some data aspects. 0BJ is now a process with data parameters:

iR of type imRc , iA of type inArr and m of type Map

corresponding to the image record, input array and transformation map for 0BJ.

The process offers the environment the choice of entering normal mode or
buffered mode. The variable b is used to indicate which transformation will
become buffered.

Blending. As suggested earlier, we use non-determinism to abstract away from
particular mechanistic interpretations of blending. We can illustrate the general
issue of blending as follows:-

Consider the output transformation, obj_mpl; if this transformation
uses representations from more than one slot in 0BJs input array
(the transformation map will prescribe this), i.e. slots 0 and 1, then
blending determines which representation obj_mpl will act upon'2.

12We say “act upon” rather than “transmit” because if we consider the full ICS functionality,
objmpl can apply an information transforming mapping to the representation it acts upon.

31

As discussed earlier, a central concept in blending is consistency of repre-
sentations. Since we are using natural numbers to denote representations, an
obvious way to model consistency is as (natural number) equality. This leads
to an admittedly very coarse interpretation of consistency, but it will suffice for
the analysis we have in mind.

We can consider a number of different possible forms of blending, which
vary in their level of non-determinism. In our presentation we continue to use
objmpl in OBJ as our example transformation. We assume that representation
ro is in slot 0 and r; is in slot 1.

1. Fully Non-deterministic. Under this approach one value from the set of
all possible representations is non-deterministically selected for obj mpl
to act upon. Importantly, no attention is paid to the items in the input
array. Selection is made completely non-deterministically over the set of
all representations.

This behaviour can be realised with the following LOTOS process:-

BLEND1(X,Y:Subsyst) :=
choice r:Rep [] i; g'tran(X,Y,r); exit

which inputs two subsystem constants indicating the source and desti-
nation of the transformation to be performed and then offers a non-
deterministic choice of the transformation acting on any possible repre-
sentation.

A particular instantiation of this process might be:
BLEND1 (0BJJ,PROPP)\ [obj_prop/g]

which, on invocation, will bind 0BJJ to X as the source of the transfor-
mation, PROPP to Y as the destination of the transformation and will also
relabel the gate g to obj_prop.

Due to the looseness of specification involved, this approach yields some
odd behaviour. For example, although 0BJ might receive stable and con-
sistent inputs in slots 0 and 1 if BLEND1 is applied, objmpl might act
upon an unstable flow which has no relation to the representations input.

The reason for considering such a non-deterministic approach is that it
provides an upper bound (in terms of loose specification) on blending.
Importantly, all other solutions will, in computer science terms, be re-
finements of such a fully non-deterministic blending. The useful property
that this yields is that anything we can prove about ICS with fully non-
deterministic behaviour will also hold of any refinement. It might be that
we cannot prove much about such an abstract specification, however, we
know that what we can prove will hold of all ICS implementations. The
subsection 9.6 in the appendix contains a formal justification of this state-
ment.

32

2. Non-deterministic Information Preservation. According to this approach,
we do consider the relevant slots in the input array. However, our strat-
egy is very simple: we just make a non-deterministic choice between acting
upon rg and acting upon r;. This approach has some interesting charac-
teristics:

e If rg = r; (i.e. they are consistent) then the (common) consistent
representation is automatically acted upon. Furthermore, if inputs
to slots 0 and 1 are stable then the blended flow acted upon by
obj_mpl will also be stable.

e If ry # ry (i.e. they are inconsistent) then obj mpl will act upon a flow
that is made up of a mixture of ros and r;s (the mixture arising from
the non-determinstic choice). Consequently, inconsistency over time
between rg and ry will yield a “randomly varying” flow at obj mp1'3.

Although still non-deterministic this approach is clearly more determinis-
tic than approach 1. We can implement it as follows in LOTOS:

BLEND2(X,Y:Subsyst,id:indice,iA:inArr,m:Map) :=
choice j:indice [] [smget(j,mpget(id,m))] ->
i; g'tran(X,Y,iaget(j,iA)); exit

which has a similar structure to BLEND1 except:

e It has extra parameters, id, iA, m, which respectively reference the
index of the transformation being applied; the input array and the
transformation map currently being used.

e The non-deterministic choice here is more restricted than that in
BLEND1. The choice is parameterised on the four possible indice.
Then the guard!®.

[smget (j,mpget(id,m))] ->

determines which index is “alive”. It does this by accessing the rel-
evant slot map (i.e. the idth) in the transformation map m and then
seeing if the jth element in this slot map is prescribed.

e If j is alive iaget accesses the entry it prescribes in the input array
iA.

3. Deterministic Information Preservation. If rq # ry (i.e. they are incon-
sistent) then obj_mpl might act upon the null representation, 0. The

13The term randomly varying here is somewhat loaded, by its nature non-deterministic
selection will also allow an implementation in which just one of the two slots is always sampled
from and thus, stability could be regenerated from inconsistent inputs.

14With bec a boolean condition, the syntax for a guard, [bc]->B will evolve to behaviour B
if be holds, otherwise it will deadlock.

33

intuition being that since rq and r; are not blendable this should be re-
flected in the representation acted upon. Alternatively, if rg = r; (i.e.
they are consistent) this approach preserves the consistent representation
and objmpl acts upon it.

The following process implements this behaviour:

BLEND3(X,Y:Subsyst,id:indice,iA:inArr,m:Map):=
g!tran(X,Y,compare(mpget (id,m) ,iA)); exit

where,
compare : slotmap, inArr -> Rep

takes a slotmap and an input array and relates the representations in all
alive slots (as determined by the slotmap). It behaves as follows:

If all alive slots are equal it returns that representation otherwise
it returns 0.

The definition of compare can be found in the appendix.

Consistent Information Generation (or Consistent Multiplicative Blend-
ing). By this approach, when ry = r1 we blend ry and r; and generate a
new representation, which is conceptually a composite of ry and r;. With
natural numbers modelling representations we choose to multiply ro and
r; together'®. In addition, if rq #r; we return 0.

We can implement consistent multiplicative blending as'®:

BLEND4 (X,Y:Subsyst,id:indice,iA:inArr ,m:Map) :=
let sm:slotmap=mpget(id,m) in
([equal(sm,iA)] -> g!tran(X,Y,mult(sm,id)); exit
(]
[not(equal(sm,iA))] -> g!0; exit)

which with its first guard multiples representations in slots that are “alive”.
It uses mpget to access the relevant slot map in m and then it applies an
operation,

mult : slotmap, inArr -> Rep

15Tn general, such an approach ensures that any representation blended with the null rep-
resentation inherits its instability, i.e. Vz . x 0 = 0. In addition, it implies a special class of
blending if one of the representations is 1, i.e. V& . x * 1 = 2. Thus, we do not yield a new
representation in this case. In general, we assume all non-null representations are bigger than
1, in order to avoid this situation.

16The let construct enables local definitions to be made, e.g. here we define a variable sm
which is used in the body of the let construct.

34

which multiplies together representations in alive slots. The definition of
mult can be found in the appendix.

In addition,
equal : slotmap, inArr -> Bool

takes a slotmap and an input array and relates the representations in all
alive slots (as determined by the slotmap) for equality. This definition is
also in the appendix.

5. Crude Information Generation (or Crude Multiplicative Blending). In
this approach multiplicative blending is crudely applied, whether or not
the representations to be blended are consistent. It can be implemented
as,

BLEND5(X,Y:Subsyst,id:indice,iA:inArr ,m:Map) :=
g!tran(X,Y,mult(mpget (id,m),iA)); exit

Normal Mode. We can now present the full behaviour of 0BJ_NORMAL, it is,

OBJ_NORMAL (iR:imRc,iA:inArr,m:Map) :=
((vis_obj?rl:Rep; exit(rl,any Rep) |||
prop_obj?r2:Rep; exit(any Rep,r2))
(* Input Ports *)
11
(BLENDk (0BJJ ,MPLL,jO,iA,m)\[obj_mpl/g] >> exit(any Rep,any Rep)
| || BLENDk(OBJJ,PROPP,j1,iA,m)\[obj_prop/g]l >> exit(any Rep,any Rep)
||| BLENDk(OBJJ,LIMM,j2,iA,m)\[obj_lim/g] >> exit(any Rep,any Rep))
(* Output Ports *))
>> accept rl,r2:rep in
tick; 0BJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)

The new aspects are:-

e In a similar way to 0BJ, 0BJ_NORMAL is now parameterised on the image
record, input array and transformation map.

e We use parameterised successful termination. For example,
exit(rl,any Rep)

denotes a successful termination where two values are past through the
termination. The first is the value of the variable r1 and the second
is unprescribed, i.e. it could be any representation; it is typically pre-
scribed by the exit processes that terminate alternative parallel threads,
e.g. exit(any Rep,r2) above.

35

e As suggested by our blending discussion, each output transformation is
now applied through a process invocation, here BLENDk (the k determining
which blending strategy to use).

e Companion to the parameterised termination is parameterised enabling.
Thus, the enabling, >>, is followed by the behaviour:

accept rl,r2:rep in
tick; 0BJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)

which will accept two values through the enabling (which are exactly those
yielded by the parameterised termination), bind them to the variables r1
and r2 and then evolve to:

tick; 0BJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)
e Finally, we reinstantiate 0BJ with a new input array:
#(r1,r2,0,0)
which is also added to the front of the image record. The transformation

map is returned unchanged.

Buffered Mode. We can also show how buffered mode behaviour is realised.
The key change here is to select from the image record when blending rather
than from the input array. The following process gives a generic implementation
of such a mechanism. The process is called OUTPUTk, where the k determines the
blending strategy used. It encapsulates the behaviour of an arbitrary output
transformation.

OUTPUTk (X,Y:Subsyst,b, j:indice,iR:imRc,iA:inArr,m:Map) :=

([b eqq jl -> choice n:Nat [] BLENDk(X,Y,j,select(n,iA,iR),m)
(]
[b neq j1 -> BLENDk(X,Y,j,iA,m))

The process has the following parameters:

e X, Y determine the transformations being realised;

e b is a variable that states the indice that corresponds to the currently
buffered transformation;

e j is the index of the current transformation.

e iR, iA and m are respectively the relevant image record, input array and
transformation map.

As an illustration, we could instantiate the process as follows:-

36

OUTPUTk (OBJJ,PROPP,j1,j1,iR,iA,m)\ [obj_prop/g]

which implements the output transformation obj_prop and specifies that it
is in buffered mode.

The behaviour of 0UTPUTk defines the necessary buffered behaviour. In par-
ticular, if the transformation being considered is buffered (as determined by the
comparison between b and j) then the input array on which blending will be
applied is non-deterministically selected from the image record using the opera-
tion select, which was described earlier. Thus, selection from the image record
is completely non-deterministic. Other implementations could be considered
but this simple implementation is satisfactory for this paper. Alternatively, if
the current transformation is not buffered then blending is applied on the input
array.

The overall behaviour of 0BJ_BUFFMD is:

OBJ_BUFFMD(iR:imRc,iA:inArr,m:Map,b:indice) :=
((vis_obj?rl:Rep; exit(rl,any Rep)
[l prop_obj?r2:Rep; exit(any Rep,r2))
(* Input Ports x)
[1]
(OUTPUTk(OBJJ,MPLL,b,jO,iR,iA,m)\[obj_mpl/g] >> exit(any Rep,any Rep)
[1]
OUTPUTk (0OBJJ,PROPP,b,j1,iR,iA,m)\[obj_prop/gl >> exit(any Rep,any Rep)
[1]
OUTPUTk (OBJJ,LIMM,b,j2,iR,iA,m)\[obj_1lim] >> exit(any Rep,any Rep))
(* Qutput Ports *))
>> accept rl,r2:rep in
tick; 0BJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)

Notice that the behaviour of 0BJ_BUFFMD is determined by the value of b past
to it - if b equals jO then, obj_mpl goes into buffered mode, while if b equals j1,
then, obj_prop goes into buffered mode and if b equals j2, then obj_1im goes
into buffered mode.

4.2.2 Top Level behaviour

All subsystems have the same basic format as that just shown for 0BJ. The only
differences are that different transformations are fired in different subsystems
and the number of transformations may be different. However, using the gen-
eral format just outlined, the reader can determine the make-up of particular
subsystems, by considering figure 3.

Using these subsystems we can define the top level behaviour of ICS as
follows:

hide vis_implic, vis_obj, obj_mpl, obj_prop,

obj_1lim, implic_prop, implic_som, implic_visc,
prop_mpl, prop_implic, prop_obj, bs_art, bs_lim,

37

bs_implic, ac_mpl, ac_implic, mpl_art, mpl_prop
in
(clock
[[tick] |
(tick;
CCeeeecc
VIS(nil,#(0,0,0,0),VISmap)
| [vis_obj,tick] |
0BJ(nil,#(0,0,0,0),0BJmap))
| [obj_lim,tick] |
LIM(nil,#(0,0,0,0),LIMmap))
| [vis_implic,tick] |
IMPLIC(nil,#(0,0,0,0), IMPLICmap))
| [obj_prop,implic_prop,prop_obj,prop_implic,tick] |
PROP(nil,#(0,0,0,0) ,PROPmap))
| [bs_implic,bs_lim,tick] |
BS(nil,#(0,0,0,0),BSmap))
| [obj_mpl,prop_mpl,mpl_prop,tick] |
MPL(nil,#(0,0,0,0) ,MPLmap))
| [ac_mpl,ac_implic,tick] |
AC(nil,#(0,0,0,0),ACmap))
| [mpl_art,bs_art,tick] |
ART (nil,#(0,0,0,0),ARTmap))
| [obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]|
tick; buffConstraint))

This construction follows the format of ICS given in figure 3. However, in
addition we compose in parallel a clock process which forces the synchronous
behaviour we discussed in section 2 and a buffer constraint which enforces the
constraint that only one transformation can be buffered at any one time. In
addition, we hide all transformation that are neither effector or sensor actions.

Subsystems are invoked with null image records and input arrays and with
a particular transformation map. The make-up of each transformation map is
defined before the particular subsystem is invoked, see the complete specificaton
of ICS to be found in the appendix.

Buffer Constraint. The buffer constraint is defined as follows:

buffConstraint :=
obj_buffered?b:indice; tick; buffConstraint
[]

vis_buffered?b:indice; tick; buffConstraint

1

lim_buffered?b:indice; tick; buffConstraint

(1

implic_buffered?b:indice; tick; buffConstraint

38

Figure 11: Synchronous Behaviour

[]

prop_buffered?b:indice; tick; buffConstraint
(]

mpl_buffered?b:indice; tick; buffConstraint
(]

ac_buffered?b:indice; tick; buffConstraint
[]

art_buffered?b:indice; tick; buffConstraint
[]

bs_buffered?b:indice; tick; buffConstraint
[]

tick; buffConstraint

which ensures that the environment cannot select more than one action of
the form Y_buffered on each iteration of the system. This prevents more than
one subsystem entering buffered mode. The possibility that no subsystem is
buffered is accommodated by the behaviour,

tick; buffConstraint

Synchronous Behaviour. It is also worth recapping on the issue of the overall
format of ICS behaviour. As discussed earlier, we interpret the behaviour of ICS
in a synchronous manner. Evolution of our specification has the general format
shown in figure 11 where each synchronous step appears as a fan out of actions.
This fan out contains an arbitrary interleaving of all ICS transformations. Thus,
all transformations must complete before the next tick takes place.

39

5 Goal Formulation in Interval Temporal Logic

5.1 Background

We now begin to consider what properties our ICS specification exhibits. We
call these properties goals. They express possible global behaviours of ICS and
we would like to verify whether our LOTOS specification of ICS can indeed
exhibit these behaviours.

It is important to understand the nature of these goals. Specifically, we will
be interested in showing,

what behaviours ICS can and what behaviours it cannot exhibit.

however, we will at no stage verify that it must perform a particular task!”.

The goals we analyse are taken from previous syndetic modelling work. In
particular, we consider two goals discussed in the work of Duke et al [18] and
four goals discussed in the work of Faconti et al [21]. These goals concern the
capability of ICS to perform particular forms of diectic reference and they are
all formulated over the same ICS configuration - conf ;.. which we introduced
in subsection 2.2.4.

The next subsection 5.2 introduces the goal formulation notation that we will
use, this is called interval temporal logic. Then subsection 5.3 introduces some
useful operators that can be derived from the basic logic. Finally, subsection
5.4 formulates the ICS goals that we are interested in in the interval temporal
logic. We also give a number of axioms for the logic in the appendix which are
used in our proofs.

5.2 Interval Temporal Logic

We formulate our goals in a form of temporal logic called Interval Temporal
Logic (ITL) [40]. The choice of temporal logic as a notation for formulating
global properties/requirements of parallel systems, which is what our goals can
broadly be interpreted as, is well accepted in concurrency theory [34]. The
choice of ITL from the canon of temporal logics is perhaps less obvious. The
main reason for this choice is that the type of goals we formulate seem to be
elegantly expressed in ITL. This is mainly because stability can very naturally
be expressed in such a logic.

The ITL we use is called Mexitl; it was developed with application in the
multimedia field in mind [8, 9, 11], however, it seems to also be well suited to
our goal formulation. Indepth introductions to the logic can be found elsewhere
[8], here we restrict ourselves to a brief introduction.

Intervals. ITL’s are defined over finite traces, called intervals, which represent
runs/executions of a system (here ICS). Such intervals provide a semantic link
between our LOTOS description of ICS and the goals that we formulate in

17This distinction is related to the distinction between may and must testing [24].

40

Mexitl. In particular, intervals can be derived from LOTOS specifications; we
give such a semantic map in the appendix of this paper.

As an illustration of intervals consider the intervals generated from the exe-
cution of a single process, e.g. 0BJ. A typical such interval would be:

obj_normal prop_obj_4 obj_mpl_2 vis_obj_0 obj_prop_2 obj_lim_0O
i tick obj_normal obj_mpl_4 obj_lim_4 prop_obj_4 vis_obj_0 obj_prop_4
i tick

which represents the sequence of actions performed in a particular run of
0BJ. The run contains two iterations of the process, i.e. the complete set of
actions of the process are executed twice and these executions are divided by a
tick action. Observe the following points:

e The 0BJ transformations are arbitrarily interleaved!'® and thus occur in
different orders in the two iterations.

e The data element of actions is flattened out. For example, we denote a
particular instance of the action vis_obj?r1:Rep happening as vis_obj_0
which indicates that the variable r1 is instantiated by the null represen-
tation.

e The internal actions appearing in this interval arise from the firing of the
enabling operator; see [5] for a discussion of the semantics of enabling.

It is also worth pointing out that in interval temporal logic terms, these are
very simple interval models. In particular, the items in the traces are simply
actions. More sophisticated intervals also include data state valuations in such
items, but this sophistication will not be required here.

Mexitl Operators. We only consider a subset of the full Mexitl notation. It
contains the following propositions, where P is an arbitrary proposition.

P := al|p(E,.,E,) | E=E|False| P= P |
len(n) | P; P | P proj P|(3zeT)P

where a € Act; p is in a set of given predicates and E is an expression. We
have the following operators:

e Firstly we assume a simple expression language, which enables us to write
expressions such as a + 5.

18The most standard approach for modelling concurrent behaviour in process algebra is to
use interleaving. Thus, the actions of two (independently) concurrent behaviours are arbitrar-
ily interleaved. For example, a b ¢, a ¢ b and ¢ a b are all traces of the behaviour, a; b;
stop |I| c¢; stop. The use of interleaving to model concurrency is justified by the assump-
tion that all actions are atomic. Thus, no two actions can occur at overlapping instances -
one must always get in before any of the others.

41

5.3

P;Q

Figure 12: The Chop Operator

p(E1, ..., E,) denotes evaluation of a predicate according to n expressions.
In standard fashion, we will often write binary predicates infix, e.g. z < 10.

E = FE gives equality of expressions, e.g. a +5 = b.

False and P = P are the familiar connectives of classical propositional
logic.

len is the length operator which measures the length of an interval. By
convention the one item interval has length 0 and accordingly the n item
interval has length n-1; i.e. len measures the number of transitions be-
tween items rather than the number of items themselves. len(15) holds
over the 0BJ interval that we highlighted above.

; is the sequencing operator, chop, familiar from [40]. An interval satisfies
P ; @ if the interval can be divided into two contiguous sub-intervals (with
the end-point of the first and the first-point of the second interval shared),
such that P holds over the first sub-interval and @ holds over the second,
see figure 12. In this depiction intervals are represented as line segments.

proj is the projection operator, also described in [40]. An interval satis-

fies P proj () if it can be sub-divided into a series of sub-intervals each
of which satisfies P - we call P the projection formula - and a new interval
formed from the end points of the sub-intervals satisfies (), which we call
the projected formula, see figure 13. In this depiction,) holds over the
interval formed by concatenating together the points shown.

(3z € T')P gives existential quantification in the usual way.

Derived Operators

The primitive operators of Mexitl can be used to derive a large spectrum of
further operators. In many circumstances these extra operators prove to be
more usable than those of the core language. We derive the other connectives of
classical propositional logic in the next subsection. Then we consider a number
of different classes of derived temporal operator.

42

Figure 13: The Projection Operator

5.3.1 Logical Connectives

The remaining propositional logic connectives are derived in a standard fashion.

-P = P = False
PV Q = (—IP):>Q
P A Q = —|(P:>—'Q)
True = —False
P s @Q=(P=Q N Q=P

P(x) = Pyr1) A ... A P(yn)

z € {y1, - yn}

5.3.2 Basic Derived Temporal Operators

We present a small set of derived temporal operators which will all be used
in our goal formulations and verifications. Additionally, we present a more
comprehensive list of derived temporal operators in the appendix.

An interval is called empty if it contains one item:

empty = len(0)

OP is the next operator, which is related to Oin linear time temporal logic [34]:
OP = len(l); P

Eventually, © P, holds if there exists a terminal interval on which P holds:
OP = True; P

Henceforth, OP, is the dual of eventually; it holds if P holds over all terminal

intervals:
OP = =0-P

43

fin P requires that P holds at the last point in the interval:
fin P = O(empty = P)
beg P requires that P holds at the first point in an interval:
beg P = (empty A P) ; True

keep P ensures that P holds throughout an interval (apart from at the last
point):
keep P = O(—empty = P)

In addition, © P states that there exists an arbitrary interval on which P holds:

® P = True ; P ; True

5.3.3 ICS Derived Operators

We need some more derived operators - these are ICS specific. Firstly, we need
a way of expressing stability. We do it as follows:

stable(S,T) = ((begtick A O keep —tick A fin tick)
A <O a)
a€g S
proj len(T)

where S C Act and T' € Nat. Also, we will write stable({a},T) as
stable(a, T).
As an illustration,

stable({obj_prop.I, implic_prop.1},5)
states that to view obj_prop_I'? and implic_prop.I as simultaneously sta-
ble we must observe the two transformations repeating for five time units. In
terms of our definition this means that we divide the interval over which the
proposition holds into 5 contiguous subintervals in which both obj_prop_I and
implic_prop_I occur. Each of these subintervals is bounded by tick actions,
which ensure that the subinterval encodes the passage of one time unit. We
measure the five time units by applying len(5) as the projected formula.

The following lemma encapsulates a very simple property of stability (it is
a time continuity property).

Lemma 1
Vi, t' € Nat . stable(S,t +t') < stable(S,t) ; stable(S,t')

19This is a LOTOS action with data flattened out. By way of illustration, the synchronisa-
tion of the two actions g!2 and g?n:Nat would yield a flattened action g-2.

44

Proof
Assume t,t' € Nat and let,

® = ((beg tick A O keep —tick A fintick) A /E\ O a)

a S

We can argue as follows (where we refer to specific laws of ITL, e.g. [DistProj]
which are listed in the appendix):

stable(S,t +t')
= { definition of stability }
® proj len(t+1t')
= { [AddLen] }
® proj len(t) ; len(t)
= { [DistProj] }
(® proj len(t)) ; (? proj len(t'))
= { definition of stability }
stable(S,t) ; stable(S,t)

O

Using stable we can define an operator that determines the number of time
units that will elapse in an interval:

elapsed(0) = empty A tick
stable(f,n) where n #0

elapsed(n)

Notice we count intervals between ticks rather than ticks themselves. This is
in accordance with how intervals are treated in ITL, e.g. compare this with the
interpretation of len. The following is a simple property which relates stable
and elapsed.

Lemma 2
VS € Act, t € Nat (t # 0) . stable(S,t) = elapsed().

Proof
Assume t # 0,

stable(S, t)
= { definition of stability }

((beg tick A O keep —tick A fin tick) A
= { PANQ = P;[MonoProjl] }

(beg tick A O keep —tick A fin tick) proj len(t)

/e\s O a) proj len(t)

a

45

= { definition of elapsed }
elapsed(t)

O

In addition, we can define a number of operators that we will use later.
These characterise stable output at particular subsystems. Let r be an arbitrary
representation. Then,

lookat(r
(
(
(

assoclate(r

stable(eye_vis_r, T},)

(
speak(r stable(art_speech.r,Ty,)
stable(lim hand r, T},)
(

stable(lim hand r, T,5)

located

)
)
r)
)

Notice that for each of these stability operators we assume a natural number
constant (T}, Tj,, ..) which defines the length of time the particular action has
to repeat for stability to have occured. For example, art_speech_r has to repeat
for T, time units (actually Ty, + 1 ticks, because of the way len is defined) for
stable speech (of representation r) to have occurred. As will be evident, located

and associate are very similar properties, however, we distinguish them since
they will arise at different places in our reasoning.

5.4 ICS Goals

As highlighted earlier, we are building upon two previous pieces of work on deixis
in ICS: Faconti et al [21] and Duke et al [18]. The kind of deixis scenario they
consider would be the capability of a system user to select from a list of items
in a computer display while performing some other task, e.g. speaking. Central
to both the Faconti et al and the Duke et al work is inconsistency arising due
to attempted blending with representations denoting conflicting psychological
subjects. So, the first issue to consider is, how will we model the notion of
psychological subject.

Since it is the only aspect of representations that is relevant to our analysis
we will view different natural number denotations as representing different psy-
chological subjects. This means that comparing representations using natural
number equality exactly corresponds to comparing whether the two representa-
tions have compatible psychological subject.

We must now consider the type of blending used at different subsystems. In
particular, for the analysis that follows certain assumptions about blending and
buffering will be needed in order that our analysis goes through. We consider
these now:-

1. 1im hand acts upon a crude multiplicative blend of bs_1im and obj_lim.
This blending is particularly important when we consider a mouse based
interface. In this situation, the blend reflects that an association needs to

46

be set-up between the cursor in the visual world (which will arrive at LIM
via obj_lim) and the current hand state which identifies the “zero” cursor
position (which will arrive at LIM via bs_1im). Informally, the association
states that “with my hand in the current position the cursor is located
here”.

2. art_speech acts on a crude multiplicative blend of mpl_art and bs_art
for a similar reason to the previous point.

3. mpl_art acts on a deterministic information preserving blend of obj_mpl
and prop_mpl. This ensures that these two input flows must be consistent
for mpl_art to act on a non-null flow.

4. objmpl and obj_lim act on the same blend from 0BJ’s input array.

5. We do not consider any buffering. However, the arguments would still be
valid even in the presence of buffering, unless it was performed at either
the LIM or the ART subsystems. Buffering at either of these subsystems
would invalidate the reasoning we give in section 6.

Now let us highlight the goals that these previous workers have considered.

e Duke et al [18] consider the property:

[Duke et al 1] (VI # J)- ©(speak(I) A @®located(J))

where I and J are representations. The property assumes that locating
an item on the screen (i.e. pointing at it) does not take more time to
stabilise than speech. In other words, 1j, < T§,, which seems a reasonable
assumption.

In informal terms the property states that it is not possible to speak and
point at “different” items on the screen at the same time, where different
means, having different psychological subjects. Notice that no particular
form of user interface, e.g. mouse or touch screen, is assumed.

In addition, Duke et al consider the obvious related positive property:

[Duke et al 2] (VI) ©(speak(I) A © located(I))

i.e. it is possible to speak and point simultaneously as long as it is the
same item being considered in both cases.

e Faconti et al [21] relate the use of mouse based and touch screen interfaces.
A number of properties come out of this work. First we consider the central
negative property that they consider. It expresses that having read an item
from the screen it is not possible to simultaneously pronounce/speak that
item and point at it with a mouse based interface.

47

Assuming Ty, + T,s < Ty, we formalise the property using Mexitl as:

[Faconti et al 1]

(VI,B,C)— ®(lookat(I) ; (speak(B x I) A ®(associate(B % C) ; lookat(I))))

It has the following constituents:-

— I is a representation with psychological subject the desired item on
the screen.

— C is a representation with psychological subject the cursor on the
screen.

— B is an arbitrary representation (which will actually originate from
the body state). It is used to indicate body feedback on the current
state of the vocal chords and the hand.

The behaviour,

associate(B % C) ; lookat(I)

is the most interesting part of the goal. It models that first body state
feedback (position of hand) and the cursor are associated together. Then
it denotes that the item is “seen”. There is an assumption here that with
an experienced user once he/she has the correct association between hand
state and cursor and he/she finds the item he/she can move the cursor
and select the item “automatically”. In cognitive terms, the experienced
user has a proceduralisedised understanding of the relationship between the
distance and direction of movement of the mouse and the corresponding
distance and direction of movement of the cursor.

Continuing with the mouse interface, [21] also consider two positive prop-

erties. These arise from sequentializing the actions involved in the deictic

reference. We consider two such sequentializations°:

[Faconti et al 2]

(VI,B,C) ®(lookat(I) ; speak(B * I) ; associate(B x C) ; lookat(I))

and,

20A third goal, in which the two cursor behaviours associate(B * C) and lookat(I) are not
viewed as atomic could also be considered. This goal would be:

(V1,B,I) ®(lookat(I) ; associate(B x C) ; speak(B x I) ; lookat(I))

However, this goal is more difficult to analyse since it requires the item I to be retrieved
from an image record when it is spoken. Consideration of this goal is left for further work.

48

[Faconti et al 3]

(VI,B,C) ®(lookat(I) ; ©(associate(B = C) ; lookat(I)) ; speak(B x I))

The second @ is needed here since we must allow some time to look at
the cursor between the first lookat and the associate. This point will be
clarified in section 7.

In addition, [21] consider deictic reference with a touchscreen interface.
They argue that the simultaneous selection and speaking that ([Faconti
et al 1] suggests) is not possible with a Mouse based interface, is possible
with a touch screen interface. Due to the change of device, a different set
of tasks is involved. The goal they consider is:

[Faconti et al 4]

(VI,B) ©(lookat(I) ; (speak(B*I) A ©located(Bx1I)))

Importantly, in this goal it is not necessary to locate the cursor, thus, no
change of psychological subject is required.

6 Verification

This section verifies that the two negative properties that we introduced in the
last section are indeed satisfied by our ICS specification. They are [Duke et al
1]:

(VI # J)— o (speak(I) A @©located(J))
and [Faconti et al 1]:

- ®(lookat(I) ; (speak(B*I) A ®(associate(B *C) ; lookat(I))))

Our strategy for verifying these properties is to show that they are both
implied by a significantly simpler property and then show that this simpler
property holds over ICS. We consider the simplification step in subsection 6.1
and the verification of the simpler property in subsection 6.2.

6.1 Simplification of Goals

Let us begin by considering [Faconti et al 1]. We work with the negation of
[Faconti et al 1] (our final step will be to take the contrapositive of our argument
to regain [Faconti et al 1]). Firstly,

—[Faconti et al 1]

= { De Morgan’s laws }

49

(31,B,C) ©(lookat(I) ; (speak(B* I) A ®(associate(B *C) ; lookat(I))))
and we can further reason that,

®(lookat(I) ; (speak(B*I) A ©(associate(BxC) ; lookat(I))))
= { definition of ® }
True ; lookat(I) ; (speak(B x I) A
True ; associate(B % C) ; lookat(I) ; True) ; True
= { AssChop ; MonoChop2 ; IdempChop ; P = True }
True ; (speak(B x I) A
True ; associate(B % C) ; lookat(I) ; True) ; True
= { AssChop ; MonoChopl ; IdempChop ; monotonicity of A }
True ; (speak(B xI) A True ; associate(B x C) ; True) ; True
= { definition of associate and speak [STEP *] }
True ; (stable(art_speech B x I, Ts,) A
True ; stable(lim hand B % C, Ty;) ; True) ; True
= { Can replace True by (3z)elapsed(z) since at least one tick
must occur ; by comparing interval lengths }
(321, 22)True ; (stable(art_speech B x I,T,) A
elapsed(z;) ; stable(lim hand B x C,T,5) ; elapsed(z3)) ;
True A 21+ T+ 22 =T,
= { lemmal; AssChop }
(3z1,22) True ; (
(stable(art_speech B I, 1) ;
stable(art_speech B I,T,;) ;
stable(art_speech B* I, 15)) A
(elapsed(z;) ; stable(lim_hand B % C,T},) ; elapsed(z2))) ;
True A z1 +Tys + 22 =Ty
= { lemma 2 ; MonoChopl ; AssChop ; monotonicity of A }
(J21,22) True ; (
(elapsed(z;) ; stable(art_speech B % I,T,;) ; elapsed(z2)) A
(elapsed(z;) ; stable(lim_hand B = C, T}) ; elapsed(z2)))
sTrue A oy + T+ 22 =T,
= { elapsed(#) is rigid and DistChop }
(3z1,z2) True ; (elapsed(z1) ;
(stable(art_speech B I,T,,) A stable(lim hand B« C,T,y)) ;
elapsed(z,)) ; True A z1 + Tys + 22 =Ty
= { definition of stable }
(3z1,z2) True ; (elapsed(z1) ;

50

stable({art_speech B % I, 1lim hand B * C},Tys) ;
elapsed(z2)) ; True A x1 4+ Tys + 22 =Ty
= { P = True; IdempChop ; AssChop }
True ; stable({art_speech B * I,1im hand B %« C},T,,) ; True
= { definition of ® }
& stable({art_speech B * I,1im hand B % C},T,)

Finally, putting together this argument and our first argument we can reason
that:

—[Faconti et al 1]
= { Monotonicity of 3 }

(31,B,C) @ stable({art_speech B« I,1im hand B % C}, Ty)
O

So, this line of argument gives us that:
Property [a]
—[Faconti et al 1]
= { Above argument }
(31,B,C) @ stable({art_speech B« I,1im hand B * C}, Ty)

Now let us additionally consider the property [Duke et al 1]. We can argue as
follows:-

—[Duke et al 1]
= { De Morgan’s laws ; clash avoiding variable renaming }
(33 #K) ©(speak(K) A ©located(J))
= { Weakening Conditions }
(33,K) ©(speak(K) A ®located(J))
= { {YxZ|Y,Z€Rep} =Rep }
(31,B,C) ©(speak(B* I) A ®located(BxC))

Furthermore,

& (speak(BxI) A @ located(BxC))
= { Assuming T}, = T,s*' }
[STEP *|

Now we can re-use the previous proof from [STEP *] to deduce that,

21This assumption that the time required to achieve stability of location and of association
is the same, is an eminently reasonable assumption, since they are such related behaviours.

ol

Property [b]

—[Duke et al 1]
= { Above argument }
(31,B,C) © stable({art_speech B x I,1im hand B % C}, Tyy)

We can now take the contrapositive of property [a] and [b] to obtain:-

—(31,B,C) ® stable({art_speech B x I,1im hand B * C}, T,s)
= { Above argument }
[Faconti et al 1] and [Duke et al 1]

Thus, all we have to verify is,

—(31,B,C) © stable({art_speech B % I,1im hand B C},T};)

and [Faconti et al 1] and [Duke et al 1] follow.

Even if the formal reasoning we have given here is complex in places, the
intuition behind our argument should be straightforward. We can summarise it
as follows:

If we can show that a stable output for art_speech B*I and 1im_hand B*C
cannot be simultaneously generated for T, time units, then it is
certainly the case that the more complicated properties encoded in
—[Faconti et al 1] and —[Duke et al 1] will also fail to hold.

6.2 Property Verification
Now we argue that the property,
—(31,B,C) ® stable({art_speech B x I,1im hand B * C}, T})

holds over ICS. In standard fashion we denote satisfaction over ICS as
ICS |= P, i.e. ICS satisfies the property P. We proceed by considering what
the implications would be if,

ICS |= (31,B,C) © stable({art_speech B * I,1im hand B % C}, Ty)
held. We can argue as follows:
ICS E (31,B,C) ®stable({art_speechB* I,1lim hand B C},T,s)
= { definition of ©® ; from synchrony of ICS (In)elapsed(n) < True }
ICS E (31,B,C,n)elapsed(n) ;

stable({art_speech B x I, 1im hand B * C},T,;) ; True
= { Bx*I is a multiplicative blend of mpl_art and bs ;

92

BxC is a multiplicative blend of obj_1im and bs ;
connectivity of confieizis }
ICS E (31,C,n)elapsed(n — 1) ;
stable({mpl_art.I,obj 1im C}, T,s) ; True
= { objmpl and obj_lim act on same blend from 0BJ’s input array }
ICS E (31,C,n)elapsed(n — 1) ;
stable({mpl_art_I,objmpl C},T,s) ; True
= { mpl_art acts on deterministic information preserving blend
of obj mpl (and propmpl) }
ICS [(31,C,n)elapsed(n) ;
stable({mpl_art_I,objmpl C},T,s — 1) ; True

ANC=1
= {PANQ=Q;P=Q = (M=P = ME=Q) }
ICSkEc=1

O
Thus, we have the following:
ICS E (31,B,C) ®stable({art_speech B * I,1lim hand B C},T,)

= { Above argument }
ICSEC=1

from which we can take the contrapositive to obtain:
-(ICS=Cc=1)

= { Above argument }
-(ICS = (31,B,C) ®stable({art_speechB* I, 1im hand B C}, T,s))

= { Logic }
ICS E -((31,B,C) ®stable({art_speech B * I, lim hand B * C}, T,s))

Now using the argument made in the previous subsection, we can deduce that:
ICS = [Facontiet al 1] and ICS = [Duke et al 1]

This line of reasoning is illustrated in table 1, which shows the represen-
tations acted on by particular transformations over time. The indice in this
table do not indicate “semantically” different representations, e.g. I; =I; for
all 0 < j,k < n+ Ty, but rather simply allow instances of representations in
different columns to be related, e.g. the I representation appearing on mpl_art

53

Time

lim_hand | obj_lim | obj_mpl mpl_art art_speech

n—1 .. C[) C(] .. I[) ..
n B*Cy Cq Cq Co I, BxIg
B*C, Co Co Cq I, B*I;
B*Cy Cs Cs Co I3 BxI,
: BxCr,, 1 Cr,, Cr,, - Ir,, | B*Iz, 1
n+ T, BxCr,, . . Cr,, BxIr .

Table 1: Tllustration of Reasoning - C; =T ;41

at n — 1 is the same instance of I that appears at art_speech at time n. The
arguments given induce that C; =I;;;.

It is also worth pointing out that we have made a number of assumptions
while making this argument. These are basic constraints which need to be
imposed on ICS in order for [Faconti et al 1] and [Duke et al 1] to hold. They
can be summarised as:

1. 1im hand acts upon a crude multiplicative blend of bs_1im and obj_1lim.
2. art_speech acts upon a crude multiplicative blend of bs_art and mpl_art.
3. objmpl and obj_lim act on the same blend from 0BJ’s input array.

4. mpl_art acts on a deterministic information preserving blend of obj_mpl
(and prop-mpl).

5. Tas > 0 (notice that if T,s = 0, i.e. for stability only one transformation
needs to be observed, then I and C do not have to be related).

6. There is no buffering at LIM or ART.

However, these all seem reasonable assumptions, considering the nature of
the cognitive task we are focusing on.

7 Simulation Analysis

Up to now we have restricted ourselves to verification of negative goals - what
ICS cannot do. In this section we consider positive goals - what ICS is capable
of doing. Importantly, we can only consider what it is capable of doing, what
we do not verify is that it always performs a particular goal if it is set running.
We would need a more prescriptive/mechanistic interpretation of ICS for this.

54

So, we are interested in possible behaviour, in testing theory terms - what may
be performed rather than what must be performed.

There are a number of ways to perform such may verifications, one of which
is indeed to use a testing approach. This would involve defining a tester process
which exhibits the behaviour required by the goal, composing it in parallel with
ICS and checking whether the test may succeed. Furthermore, there are tools
available which when given a system and a testing process determine whether
the test can succeed, e.g. the tool LOLA [16]. Although such testing is certainly
very applicable to verification of positive goals, here we have taken a different
approach. Our alternative is extremely simple and does not require as extensive
an analysis of the system state space as a testing approach. The alternative
is to simply explore by hand the state space of our ICS specification using a
simulation engine in order to show that a particular trace (interval) can be
performed by the specification. Exhibiting this interval will exactly show that
ICS can satisfy the particular ITL goal being considered. In order to show that
it must satisfy a particular goal would require us to look at all the intervals that
can be generated from ICS.

We have used two tools in this simulation work - LOLA [16] and Smile [20]
which are provided with the LOTOS tool kit - Lite [32]. Both tools allow the
user of the system to step through the state space of a LOTOS specification.
Whenever the specification reaches a choice point, the user decides how to re-
solve the choice. Thus conceptually, the user is providing the behaviour of the
environment. Actually the user provides more than this, since the user also
resolves any non-determinism in the specification.

The four positive goals that we highlighted in section 5 are:

[Duke et al 2]
(VI) ©(speak(I) A ®located(I))

[Faconti et al 2]

(V1,B,C) ©(lookat(I) ; speak(B * I) ; associate(B x C) ; lookat(I))

[Faconti et al 3]

(V1,B,C) ©(lookat(I) ; ©(associate(BxC) ; lookat(I)) ; speak(B x I))

[Faconti et al 4]
(VI,B) ®(lookat(I) ; (speak(B*I) A ©located(BxI)))

We consider these in turn.
[Duke et al 2] and [Faconti et al 4]. We can show that [Faconti et al 4]
implies [Duke et al 2] as follows:

(VI,B) ®(lookat(I) ; (speak(B*I) A ® located(Bx1I)))

95

Time
eye_vis | art_speech | 1lim_hand | body_bs
0 # 1, 0 0 By
1 # 1, 0 0 B,
2 # I, 0 0 B,
3 # I3 0 Io*B, B3
4 I4 + Iy*Bo $ I,*By By
) I5 + I;%*Bs3 $ I,%B3 Bs
6 Ig + Io%*By $ I3%By Bg
7 I, + I3*Bj $ I,4%B5 B~
8 Ig + I4*Bg I5*Bg Bg
9 I, + I5%B; T*By By
10 INT) + Ig*Bg I,*Bg Bio
11 Iy + I7*Byg Ig*Byg Bi1

Table 2: Interval for [Duke et al 2] and [Faconti et al 4]

= { P = True; MonoChopl ; AssChop ; IdempChop }
(VI,B) ©(speak(BxI) A © located(Bx*1I))

= { {ZxY|Z,YERep} =Rep }
(VJ) ©(speak(J) A @ located(J))

Thus, a trace which validates [Faconti et al 4] will also validate [Duke et al
2]. This joint validation will be clear from inspection of the trace we exhibit.
The full trace/interval is too big to present since during each time unit all
the ICS transformations have to be performed. However, table 2 depicts how
representations arise on the key transformations eye_vis, art_speech, 1im hand
and body_bs in the fulfilling interval.

In order to perform this validation we have to assign values to Ty, and Tj,,
i.e. we have to decide how many time units have to pass for stability of speech
and location to have occured. We take the decision that??:

Ty =8 and T), =4

however, it is also clear from our simulation runs that if 75, and Tj, are
set to any arbitrary values we could generate the necessary intervals to validate
[Duke et al 2] and [Faconti et al 4]. We indicate the stable outputs that yield
key satisfying components as follows:

lookat - # ; speak - + ; located - $

22Factors influencing this choice of values are that we have accumulated the following con-
straints from earlier arguments, 7j, = Tas and Tas + Tiq < Tsp.

56

Time
eye_vis art_sp 1lim_hand body_bs
0 # 1o 0 0 Bo
1 # 1 0 0 B1
2 # 1o 0 0 Bs
3 # I3 0 Iy * By B3
4 I4 + Iy * By I; * By B4
) I5 + I, * Bg I, * Bj Bs
6 Ig + I, *x By I3 *x By Bg
7 I, + I3 * By I, * Bj B~
8 Co + I, * Bg Is * Bg Bg
9 Cq + I5 * By Ig * By Bog
10 Ca + Ig * Bg I, * Bg Bio
11 Cs + Iy * By $ Co * By Bi1
12 # Ig Co * Bio | $C; * By B2
13 # Iy Ci * By | $Co x By B3
14 # Iig Co * Biz | $C3 * Byo By
15 # 1 C3 * B3 C4 * Bi3 Bis

Table 3: Interval for [Faconti et al 2]

What the validation states is that if we have a stable input of I for a sufficient
period of time at eye_vis eventually this input will feed through the system
(blending with body state input on the way) to provide a stable (simultaneous)
output at art_speech and lim hand (consider the 8 time units, 4, 5, 6, 7, 8,
9, 10 and 11). Notice that meaningful output at 1im hand starts one time unit
before it does at art_speech. This is due to the connectivity in conf jp;ic-

[Faconti et al 2]. In a similar way we can validate this property. We can
exhibit a trace/interval that exactly realises the property. However, we have
rather presented an optimum trace/interval which exhibits the earliest time
points at which a transformation can stabilise. Consequently, the subtasks of
this goal, e.g. lookat(I) and speak(B * I), are not completely sequentialised,
rather they have some (but not complete) overlap. In addition, in the same way
as previously we make the assumption:

Tiqg =Tqs =4 and T,y =8

Table 3 illustrates the key aspects of the required interval. We indicate the
stable outputs that yield components of [Faconti et al 2] as follows:

lookat - # ; speak - + ; associate - §$

[Faconti et al 3]. Once again we exhibit an “optimum” trace to validate this
property, it is shown in table 4. Notice that as suggested by the second @ in
our goal:

57

Time
eye_vis art_sp lim bhand | body_bs
0 Z 1, . . B,
1 # I,)) B,
2 # Io)) B,
3 4 1, . . By
4 Co . . B,
5 c, . . Bs
6 Co . . Bg
7 Cs $ Co*Bs B~
8 I4 $ C1*Bg Bg
9 15 $ Co*By By
10 IG $ C3*B8 B]O
11 # I, . . B
12 # Ig + Bio*I4 . B2
13 # Ig + By1*I5 . Bis
14 # I]O + B]Q*I(; . B]4
15 Iq + Byg*Iy . Bis
16 Io + Big*Ig . Big
17 I3 + Bis*Ig . Bi7
18 I1g + Bie*I1o . Big
19 Iis + BizxIqy . Big

Table 4: Interval for [Faconti et al 3]

(V1,B,C) ©(lookat(I) ; ©(associate(B xC) ; lookat(I)) ; speak(B x I))

the stable output of B¥C at 1im_hand cannot occur directly after lookat(I)
since a stable input with psychological subject the cursor, i.e. C, must be received
at eye_vis between the two behaviours. We indicate component stable outputs
in the same way as in the previous table.

8 Conclusions

8.1 Discussion

We have applied techniques from concurrency theory to cognitive modelling.
Our strategy has been to take an existing cognitive model, ICS, and interpret
it in a standard concurrency theory notation - the process calculus, LOTOS.
In addition, we have introduced an interval temporal logic, Mexitl, in which we
have formulated a number of goals for ICS. Finally, we verified these goals using
logical deduction and simulation techniques.

58

We have given a number arguments in the introduction to this paper for
applying concurrency theory techniques to cognitive modelling. We will not re-
iterate these here. However, it is worth reconsidering the nature of the LOTOS
specification of ICS and how our concurrency theory notations relate to more
standard techniques for cognitive modelling.

Firstly, there is a clear spectrum of available modelling techniques, with
the two extremes being programming based approaches, such as those typically
used in cognitive modelling and techniques based on mathematical logic. A
weakness of the former approaches is that they are often too prescriptive, forcing
a particular “mechanistic” interpretation on the cognitive model. In contrast, a
weakness of modelling based on the latter approaches is that logical descriptions
often express global properties across the entire system. Consequently, such
approaches typically fail to reflect the underlying component structure of the
system being modelled. This can, for example, be seen in our interval temporal
logic goals which express desired “overall” behaviour of ICS, but do not describe
the system componentwise in any way.

Process calculi can be seen to sit between these two extremes. Firstly, the
LOTOS specification we have given certainly reflects the component structure
of the ICS model, e.g. we have a LOTOS process for each ICS subsystem. This
makes the specification easier to understand and to maintain. Previous Modal
Action Logic [21] based descriptions of ICS have not so directly reflected the
component structure of ICS.

Secondly, process calculi provide tools for avoiding overprescriptive descrip-
tion of systems. In particular, they facilitate loose specification by allowing
descriptions to contain non-determinism.

Another feature that prevents overspecification is the role of the environ-
ment. Often when describing systems it is unclear how to prescribe a certain
behaviour. In process calculi, rather than forcing a particular mechanistic in-
terpretation we can leave the decision open and let the environment make it. A
good example of the use of such a strategy arises in our modelling of buffered
mode behaviour. Specifically, the mechanism by which buffered mode is entered
is still a matter for debate. Thus, rather than forcing a particular interpretation,
we allow the observer of the system to control which subsystem enters buffered
mode. This is done by offering actions such as:

obj_buffered

to the environment.

Another sense in which LOTOS specifications have a logical character is
that they enable “conjunction” of global constraints. Such constraints can be
composed in parallel with the system with the effect that the composite system
reflects both the properties of the system and the added constraint?®. For
example, the process,

231n fact, it can be shown that parallel composition does not always behave in a truly
conjunctive manner [7, 10], however, this subtlety is not important in the context of this
paper.

59

buffConstraint

(globally) constrains the number of subsystems that can enter buffered mode.

Finally, we believe that the work presented here has made a valuable first
step in a new area of research. However, clearly the techniques considered are
not mature and there are many avenues for future research, which we consider
now.

8.2 Further Work

We list some of the many topics for future research:-

e LOTOS Specification Refinements. There are a number of ways in
which our LOTOS specification of ICS could be refined.

— More Generic Description The description of ICS is not as simple
or elegant as one might like. This is largely due to limitations in
the expressiveness of LOTOS. One issue, for example, is that even
though all subsystems have a very similar structure, we have to give
a complete “specialized” description of each subsystem. Thus, we
are not able to capture the generality of ICS subsystems. A better
solution would be to define a single process which models a generic
subsystem and then specialize it through parameter instantiation for
each particular subsystem. An extended version of the LOTOS nota-
tion, to be called E-LOTOS, is currently being defined [30]. It adds a
number of features that enhance the expressiveness of the language.
It would be very interesting to see if using these enhancements would
lead to a simpler and more elegant description of ICS.

— Alternative Top Level Structure. In order to, perhaps, even more fully
capture the basic ICS structure, we could give a top level structure
to our description that has the following form:

Subsystem_1 ||| Subsystem_2 ||| ||| Subsystem_n
I synch. gates]|
Network

where the Network process would receive outputed representations
from Subsystems and relay them to target Subsystems. Clearly,
each of our current inter subsystem actions would have to be sub-
divided into two actions - a subsystem to network output action and
a network to subsystem input action.

— Interactive Choice of Configurations. We could allow the system user
to choose the particular configuration he/she is interested in when
he/she starts simulating with ICS. Depending upon the user input the
system would evolve to a different top level composition of processes.

60

— A Set-up Constraint. It might also aid usage of the system if we in-
cluded a constraint process which could enforce user preferences on a
particular simulation. For example, we could leave all decisions, such
as which subsystem enters buffered mode or what forms of blending
to use, for the user. Perhaps he/she could select a different constraint
depending upon his/her particular preferences.

¢ Redundant Outputs. A technical issue which arises is that our ICS
simulations typically generate “redundant” as well as meaningful outputs.
For example, table 3 shows a fulfilling interval for the property [Faconti
et al 2] and the trace is indeed satisfactory for this purpose. However, as
a by product of fulfilling the goal, a stable output of the representation
Cx*B is also generated at art_speech between time units 12 and 15. It
is somewhat difficult to assign a sensible meaning to such “speaking of a
representation of the cursor”. The existence of such noise in our system
does not prevent us from analysing may capabilities, however, our verifi-
cations would be more justifiable if we could give an intuitive explanation
for such redundant output. Alternatively of course, we could try to rework
our LOTOS specification in order to eradicate such noise.

e More Expressive Process Calculi. In many respects the process cal-
culus that we have used, LOTQS, is rather primitive. It is a product of
the “first generation” of process calculi. However, there are now richer
techniques (indeed such as E-LOTOS) which incorporate more advanced
modelling capabilities, e.g. real-time process calculi [43], probabilistic and
stochastic notations [25] and mobile calculi [39]. All of these added features
are in one way or another relevant to the modlling of cognitive systems.
For example, a full description of ICS would clearly need to explain how
to move between configurations. Such dynamic reconfiguration of systems
suggests that a mobile calculus should be used.

e Executable Description. A further limitation of the work presented
here is that we do not generate an executable (in programming language
terms) description of ICS. However, tools exist for generating executable
code from LOTOS specifications, e.g. [33]. Applying these tools in the
ICS context is an important topic for future research.

e Alternative Formal Paradigms. The concurrency theory field is now
very rich and in addition to LOTOS and, process calculi in general, there
are many alternative techniques. These each have different flavours and
different relative benefits. Describing and analysing ICS in these alter-
native approaches is an obvious topic for future work. Three approaches
that we are particularly interested to investigate are:

1. Complete Mexitl Description. Describing ICS in Mexitl. This would
enable us to reason directly (in the same formalism) between our ICS
goals and ICS specification.

61

2. Model Checking. One of the most mature concurrency theory ap-
proaches is model checking, where by, an automata based description
of a system is checked for satisfiability against a temporal logic prop-
erty. Such verification could clearly be applied to ICS. The obvious
technique to use would be Holzmann’s SPIN/PROMELA formalism
[29].

3. Other Process Calculi. Finally, we could use a different process calcu-
lus approach, say CSP (or even CCS). With CSP we could addition-
ally formulate our ICS goals as CSP processes and check refinement

between the system description and the goal description using the
FDR tool [47].

Acknowledgements

The work presented here has been performed in the context of the TMR, TACIT
project and thus, I must thank all the members of the project. In particular, I
would like to thank David Duke, David Duce, Meike Massink and John May with
whom I have had valuable discussions about ICS. In addition, Meike Massink
provided valuable comments on a draft of this paper. However, my greatest
thanks go to Giorgio Faconti who has championed this work at CNR Istituto-
CNUCE and has frequently over a Capuccino and a Ciocolatina (or is it a
Ciocalatino, I can never remember) put me straight with regard to ICS.

References

[1] P.J. Barnard. Interacting cognitive subsystems: A psycholinguistic approach
to short-term memory. In Progress in the Psychology of Language, volume 2.
Lawrence Erlbaum Associates, 1985.

[2] P.J. Barnard. Interactive cognitive subsystems: Modelling working memory phe-
nomena with a multi-processor architecture. In Models of Working Memory.
Cambridge University Press, 1998. NEED TO CHECK THIS REFERENCE.

[3] P.J. Barnard and J. May. Interactions with advanced graphical interfaces and the
deployment of latent human knowledge. In FEurogrpahics Workshop on Design,
Specification and Verification of Interactive Systes, pages 15 49. Springer, June
1995.

[4] P.J Barnard and J.D. Teasdale. Interacting cognitive subsystems: A systemic
approach to cognitive-affective interaction and change. Cognition and Emotion,
5:1 39, 1991.

[5] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25 29, 1988.

[6] H. Bowman. An introduction to formal models of concurrency using LOTOS.
Technical Report 15-96, University of Kent at Canterbury, 1996.

[7] H. Bowman, E. A. Boiten, J. Derrick, and M. W. A. Steen. Strategies for consis-
tency checking based on unification. Science of Computer Programming, Decem-
ber 1998. To Appear.

62

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
18]

[19]

H. Bowman, H. Cameron, P. King, and S. Thompson. Mexitl: Multimedia in Ex-
ecutable Interval Temporal Logic. Technical Report 3-97, Computing Laboratory,
University of Kent at Canterbury, May 1997.

H. Bowman, H. Cameron, P. King, and S. Thompson. Specification and Proto-
typing of Structured Multimedia Documents using Interval Temporal Logic. In
International Conference on Temporal Logic, Applied Logic Series. Kluwer, July
1997.

H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal framework
for viewpoint consistency. Technical report, Submitted for Publication, 1996.

H. Bowman and S. J. Thompson. A tableaux method for interval temporal
logic with projection. In TABLEAUX'98, International Conference on Analytic
Tableauzr and Related Methods, volume 1397 of Lecture Notes in Al pages 108—
123. Springer-Verlag, May 1998.

D.E. Broadbent. Perception and Communication. Pergamon, 1958.

N. Charles, H. Bowman, and S. Thompson. From ACT-ONE to Miranda, a
Translation Experiment. Computer Standards and Interfaces, 19(1), May 1997.

A .M. Collins and E.F. Loftus. A spreading activation theory of semantic process-
ing. Psychological Review, 82:407-428, 1975.

J. de Meer, R. Roth, and S. Vuong. Introduction to algebraic specifications based
on the language ACT ONE. Computer Networks and ISDN Systems, 23:363-392,
1992.

DIT. LOLA: LOtos LAboratory. Departamento de Ingenieria Telematica, Uni-
versidad Politecnica de Madrid, 1988. WWW : http://selva.dit.upm.es/ lo-
tos/tools/lola.html.

D.J. Duke. Reasoning about gestural interaction. Eurographics’95, 14(3), 1995.

D.J. Duke, P.J. Barnard, J. May, and D.A. Duce. Systematic development of the
human interface. In Proceedings of APSEC’95, Second Asia Pacific Software En-
gineering Conference, Brisbane. IEEE Computer Society Press, December 1995.

D.J. Duke and D.A. Duce. The formalisation of a cognitive architecture and its
application to reasoning about human computer interaction. Formal Aspects of
Computing, 3, 1996.

H. Eertink. Executing lotos specifications: the smile tool. In LOTOSphere:
Software development with LOTOS. Kluwer Academic Publishers, 1994.

G.P. Faconti and M. Massink. A formal account of deixis in multimodal interac-
tion. In Submitted for Publication, 1998.

A. Giacolone, C. Jou, and S.A. Smolka. Probabilities in processes: an alge-
braic/operational framework. Technical Report 88/20, Department of Computer
Science, SUNY at Stony Brook, 1988.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231-274, 1987.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996. Distinguished Dissertations in Computer Science.

63

[26]

[27]
[28]

[29]
[30]
31]
[32]
[33]
[34]
[35]
136]
[37]

[38]
[39]

[44]
[45]
[46]
[47]

[48]

[49]

M.G. Hinchey and J.P. Bowen, editors. Applications of Formal Methods. Prentice-
Hall, 1995.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

C.A.R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666-677, 1978.

G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23:279-295, 1997.

ISO. Working Draft on Enhancements to LOTOS ISO/IEC JTC1/5C21/WG7/
E-LOTOS, January 1997.

T.S. Kuhn. The Structure of Scientific Evolutions. Chicago University Press,
1970.

LOTOSPHERE. LOTOS Integrated Tool Environment. LOTOSPHERE Project,
1988. WWW : http://wwwtios.cs.utwente.nl/lotos/lite/.

J.A. Manas and T. de Miguel. From LOTOS to C. In Formal Description Tech-
niques. Elsevier Science Publishers (North-Holland), 1989.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

The Medical Research Councils, Applied Psychology Unit, http://www.mrc-
apu.cam.ac.uk/personal/phil.barnard/ics/index.html. ICS Home Page, 1998.

R. Milner. Calculi for synchrony and asynchrony. Journal of Theoretical Computer
Science, 25:267-310, 1985.

R. Milner. Process constructors and interpretations. In Information Processing
86. Elsevier Publishers, 1986.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1 77, 1992.

B. Moskowski. Ezecuting Temporal Logic. Cambridge University Press, 1986.
A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.
A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, 1972.

X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebra. In
Real-time Theory in Practice, LNCS 600, pages 549-572. Springer-Verlag, June
1991.

L. Nigay and J. Coutaz. A generic platform for addressing the multimodal chal-
lenge. In Proceedings of ACM CHI’95, pages 98 105. ACM Press, 1995.

W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1982.
W. Reitman. Cognition and Thought. Wiley, 1965.

AW. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Interna-
tional Series in Computer Science, 1997.

D.E. Rumelhart, J.L. McClelland, and The PDP Research Group, editors. Par-
allel Distributed Processing, Volume 1. Foundations. MIT Press, 1986.

D.E. Rumelhart, J.L. McClelland, and The PDP Research Group, editors. Par-
allel Distributed Processing, Volume 2. Psychological and Biological Models. MIT
Press, 1986.

64

[50] J.D. Teasdale and P.J. Barnard. Affect, Cognition and Change: Re-modelling
Depressive Thought. Lawrence Erlbaum Associates, 1993.

[61] Chris Tofts. Describing social insect behaviour wusing process alge-
bra. Technical report, University College Swansea, 1996. WWW -
http://www.scs.leeds.ac.uk/chris/papers.html.

[52] R.J. van Glabbeek. The linear time - branching time spectrum (I and II). In
Concur’90 and Concur’93, LNCS 458 and LNCS 715. Springer-Verlag, 1990 and
1993.

[63] G. Winskel. The Formal Semantics of Programming Languages. MIT, 1993.

9 Appendix
9.1 LOTOS

We give a more formal treatment of the LOTOS sublanguage that we use and
we discuss semantic models for the sublanguage.

The Sublanguage. The set of all possible LOTOS behaviour expressions is
denoted Beh; the variables B, By, B,, ... range over the set Beh and we assume
a set GATE of gate names. Behaviours can take the following forms:-

w
Il

stop | exit(e”) | gd*; B|i; B|[bc]— >B|B; [B, |
choicex : T[] B(x) | By |[G]| B, | B1 >> accept b” in By |
hide G in B | B\[g, /h;,...,g,,/h,] | let c* inB

where £* denotes zero or more occurrences of f; e is an expression; g, g1, g2,
.., hy, ho, ... are in the set GATE; 4 is a data attribute of the form 'e or 7x:T;
bc is a boolean condition; x is a data variable; T is an ACT-ONE type; G is a
subset of GATE; b is a declaration of the form x:T and c is a definition of the
form x:T=e.

Process definitions have the form P := B.

Labelled Transition Systems. The standard semantics for LOTOS are ex-
pressed in a structured operational semantic style and they map LOTOS be-
haviour expressions to labelled transition systems. Such a semantic definition
can be found in [6]. Here we assume that such a mapping can be defined and
we work with labelled transition systems.

Labelled transition systems, are labelled directed graphs with the following
form:

(Sa A: T: SO)

where S is a set of states (the nodes of the graph), A is a set of actions
(the labels of the graph); T is a transition relation (the edges of the graph) and
So is a start state. Elements of T' are triples, e.g. (s,a,t), where s,t € S and

a € A, which states that there is a transition (edge) from state s to state ¢ and

65

it is labelled with the action a. In standard fashion we write (s,a,t) € T as
s —a—t.

Intervals. Mexitl is defined over finite state sequences. Each sequence is called
an interval and 7 denotes the set of all possible intervals; ¢ € 7 has the form:

00,015+, 0|g|

where |o| denotes the length of an interval and o; denotes the ith state in an
interval. By convention the length of an interval is the number of states minus
one and all intervals must have at least one item. We use [o]’ to denote the ith
prefix of an interval and (¢)? to denote the ith suffix of an interval. Formally,

[U]i = 0Q,-.--,0;

(o) =0y, s Olg|

We define intervals from behaviour expressions (via labelled transition sys-
tems) in two steps. First we define action intervals, then we build intervals.
Action intervals are traces of actions and the set of action intervals of an arbi-
trary By €Beh is denoted I1(Bg), which is defined:

H(Bo) = {ao, ...,ap | HB],..7BH+] .Bop—ay—=B1 A ... AN B, —a, = Bn+]}

Now all states in an interval contain a distinguished entry, which indicates
the action performed at that state. For a state o; the entry is indicated by the
syntax, o;w.

The set of all intervals of By is denoted Q(By), which is defined as:

Q(By) = {00, ...,0n | Fa0,...,an € (Bg) . Vi(0 < i < n) .ol =a;}

k3

9.2 Mexitl

As stated earlier Mexitl is interpreted over intervals and satisfaction is defined
over an arbitrary interval as follows (the notation o |= P states that the trace
o satisfies the proposition P):-

ol=a iff a=o05°

o = p(Er, ., Bn) it [pl([E T, [En)

oo ago

c=E =B iff [E]=[E]

oo (4]

where [|]| maps predicates to their semantic interpretation and [[, evalu-
ates expressions (in the obvious way) according to the bindings at state o;.

o [False

66

U‘:P] :>P2 iff U|:P1imp1iesa\:P2
o |Elen(n) iff |o|=n

o= PPy iff 3ke N (k<|o|and [0]F |E P and (0)* = P,)

o= P proj P iff Im e N and I, 1, oo, Ty EN
O0=19<7 <..<Ty =|o| and
Vi <m ([o]7*)" |= P, and

OrgOry--Or,, E Po)

o= @z:T)P iff o' Ex AP forsomeo ~, 0

We say that ¢’ ~, o if o and ¢’ are the same length and they have the same
value on all actions and variables except (perhaps) z.

9.3 Linking LOTOS and Mexitl

Now we can link specifications in LOTOS and formulae in Mexitl in the obvious
way. We define that a process satisfies, denoted >, a formula as follows:

VB € Beh, () € Mexitl. B> Q iff Vo € Q(B) .0 =@

Thus, a LOTOS process B satisfies a Mexitl formula @ if and only if every
trace of B satisfies/is a model of).

9.4 Derived Temporal Operators

The following derived operators have all been considered previously in the in-
terval temporal logic literature. See for example, [40], [8].

3

An interval is called empty if it contains one item:
empty = len(0)
more holds over non-empty intervals:
more = —empty
OP is the next operator, which is related to Oin linear time temporal logic [34]:
OP = len(1); P
The weak next operator also holds over empty intervals:
®@P = OP V empty
Eventually, &P, holds if there exists a terminal interval on which P holds:

OP = True; P

67

Henceforth, OP, is the dual of eventually; it holds if P holds over all terminal
intervals:
gpP = —-O-P

skip holds over intervals of length 1:
skip = OCempty

fin P requires that P holds at the last point in the interval:

fin P = O(empty = P)
halt P states that P only holds at the final point in an interval:

halt P = O(P < empty)
beg P requires that P holds at the first point in an interval:

beg P = (empty A P); True

keep P ensures that P holds throughout an interval (apart from at the last

point):
keep P = O(—empty = P)

Double chop is a strong chop which requires that P does not hold over the one
point interval:

P33 Q = (P A —empty) ; Q

We can also define alternative eventually and henceforth operators. Such as
& P which requires that there exists an initial interval on which P holds:

&SP = P True
and its dual @ P which requires that for all initial intervals P holds:
AP = ~®-P
In addition, @ P states that there exists an arbitrary interval on which P holds:
® P = True ; P ; True
and & P states that for all arbitrary intervals P holds:

@GP = -®-P

68

9.5 Axiomatization of Mezitl

Axiomatization of Mezitl has been considered elsewhere [8, 11]. Here we just
pick out some rules that we will use. Justification for the rules can be found in

8.

[AssChop] P;(Q;R) <= (P;Q);R
[[depmChop] True ; True < True
[MonoChopl] P=Q + P;R =Q;R
[MonoChop2] P=@Q + R;P =R;Q
[DistChop] for Rrigid (R;P) A (R;Q) = (R;(P A Q))
[AddLen] len(z +y) <= len(z) ; len(y)
[DistProj] P proj (Q; R) < P proj Q; P proj R

[MonoProjl] P=Q@ + P proj R=(Q proj R

9.6 Formal Properties of Non-determinism
We justify the statement that,

Whatever property holds over a process will also hold over its (non-
deterministic) refinements.

In the context of this paper, this statement can be reformulated as,

Whatever ICS formula holds over a LOTOS process will also hold
over any reduction of the process,

where reduction, denoted red, is the LOTOS refinement relation. Its defini-
tion, see [6], ensures that,

B red C iff B is more deterministic than C'.
A standard property of reduction is,

BredC = (NVoel.oe€QB) = oeQ0))

69

i.e. if B is a reduction of C then any trace of B is also a trace of C'. We use
this property to derive the result that we require. Qur argument is as follows:

C> Q@ AN BredC
= { Definition of >; above property of red }
VoeZ.ceQC)=>oc=0Q ANoeQB)=o0ecQC)
= { Transitivity of Implication }
VoeZ.ceQ(B) = oECQ
= { Definition of > }
B> Q

9.7 ICS Specification

The following is the full LOTOS specification of ICS. The LOTOS notation used
is slightly different from that used in the paper. For a complete introduction to
this syntax see [5].

(* This is the full ICS specification. *)

specification ics [tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,
obj_normal,obj_buffered,eye_vis,vis_implic,vis_normal,vis_buffered,bs_lim,
lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered,prop_implic,bs_implic,
ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered,
mpl_prop,prop_mpl,prop_normal,prop_buffered,ac_mpl,mpl_art,mpl_normal,
mpl_buffered,ear_ac,ac_normal,ac_buffered,bs_art,art_sp,art_wr,art_normal,
art_buffered,vocal_bs,hand_bs,bs_normal,bs_buffered]: noexit

library Boolean, NaturalNumber endlib

type Rep is NaturalNumber renamedby
sortnames Rep for Nat

endtype

(* 0 is reserved for null representations *)

type indice is Boolean
sorts indice
opns jO, j1, j2, j3 : -> indice
eqq, _neq_ : indice, indice -> Bool
eqns forall k,r: indice
ofsort Bool
k=r =>
k eqq r = true;

k neq r = not(k eqq r)

70

endtype

type tuple is indice

formalsorts item

sorts tuple

opns # : item, item, item, item -> tuple
get : indice, tuple -> item

eqns forall v,x,y,z: item

ofsort item

get(jO,#(v,x,y,2)) = v;

get(j1,#(v,x,y,2)) = x;

get(j2,#(v,x,y,2)) = y;

get(j3,#(v,x,y,2)) = z;
endtype

type inArr is tuple actualizedby Rep using
sortnames inArr for tuple
Rep for item
opnnames iaget for get
endtype
(* We assume a maximum size for input Array’s of 4. Consequently,
smaller arrays will have empty slots at the end. These will be set
to the null representation O. *)

type imRc is inArr, NaturalNumber
sorts imRc
opns nil : -> imRc
add : inArr, imRc -> imRc
first : imRc -> inArr
select : Nat, inArr, imRc -> inArr (* Selects from the image array
during buffered mode according
to the first parameter. *)
remove : imRc -> imRc
eqns forall x,y : inArr, z : imRc, n : Nat
ofsort inArr
first(nil) = #(0,0,0,0);
first(add(x,nil)) = x;
first(add(x,add(y,z))) = first(add(y,z));

select(0,x,z) = first(z);

select(succ(n),x,z) = select(n,x,remove(z))

(* This definition is a placeholder for something more
sophisticated. It allows selection from the image record
to be made by referencing a location in the image record. *)

ofsort imRc

71

remove(nil) = nil;

remove(add(x,nil)) = nil;

remove (add(x,add(y,z))) = add(x,remove(add(y,z)));
endtype

type slotmap is tuple actualizedby Boolean using
sortnames slotmap for tuple
Bool for item
opnnames smget for get
endtype

type Map is tuple actualizedby slotmap using
sortnames Map for tuple
slotmap for item
opnnames mpget for get
endtype
(¥ The ith entry in the Map tuple indicates the set of slots in the
input array blendable at the ith output transformation. This set of
slots is indicated by a slotmap - true in the jth
location indicates that the jth slot is required. Thus,
in a similar way to with the input array, we assume no more
than 4 output transformations. *)

type subsyst is

sorts subsyst

opns VISS, 0BJJ, LIMM, LEGG, ARMM, HANDD, VISCC, SOMM, SPP, WRR,
IMPLICC, BSS, PROPP, MPLL, ACC, ARTT : -> subsyst

endtype

type trans is subsyst, Rep
sorts trans
opns tran : subsyst, subsyst, Rep -> Rep
eqns forall s,t: subsyst, r : Rep
ofsort Rep
tran(s,t,r)=r
endtype
(* For the moment all transformations between all subsystems are defined
as the identity operation *)

type blending is slotmap, inArr, Rep, Boolean
sorts blending
opns compare : slotmap, inArr -> Rep

eval : Bool, Rep —> Rep

@ : Rep, Rep > Rep

mult : slotmap, inArr -> Rep
eqns forall x0,x1,x2,x3:Bool, r,r0,rl1,r2,r3:Rep

72

ofsort Rep
compare (#(x0,x1,x2,x3) ,#(r0,r1,r2,r3)) =
(((eval(x0,r0) @ eval(xl,rl)) @ eval(x2,r2)) @ eval(x3,r3));

eval(true,r) = r;
eval (false,r) = succ(0);

rl eqr2 =>rl1 @ r2 =ri;
rl ne r2 and ((r1l eq succ(0)) or (r2 eq succ(0))) =>rl @ r2 = rl1 * r2;
rl ne r2 and ((rl ne succ(0)) and (r2 ne succ(0))) =>rl1 @ r2 = 0;
mult (#(x0,x1,x2,x3),#(r0,r1,r2,r3)) =

(((eval(x0,r0) * eval(xl,rl)) * eval(x2,r2)) * eval(x3,r3));
endtype
behaviour

(* Initalize the transformation maps for each of the subsystems. *)

let
VISmap:Map

#(#(true,false,false,false) ,
#(true,false,false,false) ,
#(false,false,false,false) , (* Redundant entry *)
#(false,false,false,false)), (* Redundant entry *)

#(#(true,true,false,false) ,
#(true,true,false,false) ,

0BJmap : Map

#(true,true,false,false) ,
#(false,false,false,false)), (* Redundant entry *)

#(#(true,true,false,false) ,
#(true,true,false,false) ,

LIMmap:Map

#(true,true,false,false) ,
#(false,false,false,false)), (* Redundant entry *)

IMPLICmap:Map = #(#(true,true,true,true) ,
#(true,true,true,true) ,
#(true,true,true,true) ,
#(false,false,false,false)), (* Redundant entry *)

PROPmap:Map = #(#(true,true,true,false) ,
#(true,true,true,false) ,
#(true,true,true,false) ,

#(false,false,false,false)), (* Redundant entry x)

BSmap:Map = #(#(true,false,false,false) ,

73

#(true,true,false,false) ,
#(false,true,false,false) ,
#(false,false,false,false)), (* Redundant entry *)

MPLmap:Map = #(#(true,true,true,false) ,
#(true,true,true,false) ,
#(false,false,false,false) , (* Redundant entry *)
#(false,false,false,false)), (* Redundant entry *)

ACmap:Map = #(#(true,false,false,false) ,
#(true,false,false,false) ,
#(false,false,false,false) , (* Redundant entry *)
#(false,false,false,false)), (* Redundant entry *)

ARTmap:Map = #(#(true,true,false,false) ,
#(true,true,false,false) ,
#(false,false,false,false) , (* Redundant entry *)
#(false,false,false,false)) (* Redundant entry *)
in
(
(* Top Level Behaviour of ICS. *)
clock[tick]
| [tick] |
(
tick;
CCCeCcC
VIS[tiCk,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered]
(nil,#(0,0,0,0),VISmap)
| [vis_obj,tick] |
0BJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered]
(nil,#(0,0,0,0),0BJmap))
| [obj_lim,tick] |
LIM[tiCk,obj_lim,bs_lim,1im_1eg,1im_arm,lim_hand,lim_normal,lim_buffered]
(nil,#(0,0,0,0),LIMmap))
| [vis_implic,tick] |
IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,
implic_visc,implic_som,implic_normal,implic_buffered]
(nil,#(0,0,0,0),IMPLICmap))
| [obj_prop,implic_prop,prop_obj,prop_implic,tick] |
PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,
prop_normal,prop_buffered]
(nil,#(0,0,0,0) ,PROPmap))
| [bs_implic,bs_lim,tick] |
BS[tiCk,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered]
(nil,#(0,0,0,0) ,BSmap))
| [obj_mpl,prop_mpl,mpl_prop,tick] |

74

MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered]

(nil,#(0,0,0,0) ,MPLmap))

| [ac_mpl,ac_implic,tick] |
AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered]

(nil,#(0,0,0,0) ,ACmap))

| [mpl_art,bs_art,tick] |
ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(nil,#(0,0,0,0) ,ARTmap)

)
|[obj_buffered,vis_buffered,1im_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick] |

tick;
buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,
prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]
))

where

(ko ko ok kb ok kokokokok ok okok CLOCK PTOCESS ok skokok ok skakok ok sk skok ok ok ok ko ok ok ok ok)

process clock[tick] :noexit:=
tick; clock[tick]
endproc (* clock *)

(Sskskok ook ok ok sk ok ok kR ok kokkokokkok ok Buffer Constraint ksksksk sk sk ook sk sk sk ok sk s ok sk sk k sk ok 5k ok ok ok)

(* This process defines a constraint on the number of subsystems
that can be in buffered mode. The constraint is that at most one
subsystem may be in buffered mode (and the subsystem definitions
ensure that only one transformation within a subsystem can be
buffered). This is a basic constraint in the ICS model. *)

process buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,
prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]:noexit:=

obj_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

(1

vis_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[]

75

lim_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[1

implic_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[]

prop_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[1

mpl_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[1

ac_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

(]

art_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[1

bs_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

[1

tick; buffConstraint[obj_buffered,vis_buffered,
lim_buffered,implic_buffered,prop_buffered,
mpl_buffered,ac_buffered,art_buffered,
bs_buffered,tick]

endproc (* buffConstraint *)

(ks kkkokok ok kokok ok ok kokokokkkk The VIS process sokskkskskskskokokkokkskokokok kkokokokkkkokokkk k)

process VIS[tiCk,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered]
(iR:imRc,iA:inArr,m:Map) : noexit :=

76

((vis_normal;
VIS_NORMAL[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered] (iR,iA,m))

(]

(vis_buffered?b:indice; (* b indicates which transformation is buffered *)
VIS_BUFFMD[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered] (iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions vis_normal and vis_buffered. *)

where
process VIS_NORMAL[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered]
(iR:imRc,iA:inArr,m:Map) : noexit :=

((eye_vis?rl:Rep ; exit(rl))
(* Input Ports *)
[1]
((BLEND2[vis_obj](VISS,0BJJ,j0,iA,m) >> exit(any Rep))
|11 (BLEND2[vis_implic] (VISS,IMPLICC,j1,iA,m) >> exit(any Rep)))
(* Output Ports *))
>> accept rl:rep in
tick; VIS[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered]
(add(#(r1,0,0,0),iR) ,#(r1,0,0,0) ,m)

endproc (* VIS_NORMAL x)

process VIS_BUFFMD[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

((eye_vis?rl:Rep ; exit(rl))
(* Input Ports x)
[11
((OUTPUT2[vis_obj](VISS,0BJJ,b,jO,iR,iA,m) >> exit(any Rep))
[11
(OUTPUT2[vis_implic] (VISS,IMPLICC,b,jl,iR,iA,m) >> exit(any Rep)))
(* Output Ports *))
>> accept rl:rep in
tick; VIS[tiCk,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered]
(add(#(r1,0,0,0),iR) ,#(r1,0,0,0) ,m)

endproc (* VIS_BUFFMD *)

endproc (* VIS *)

7

(ks kkkokok ok kokok ok ok kkokokokkk The OBJ process sokskkkkskskokok ko kokskokok dokkokok ok kokok ok ok %k)

process 0BJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered] (iR:imRc,iA:inArr,m:Map): noexit :=

((obj_normal;
OBJ_NORMAL[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered] (iR,iA,m))

1

(obj_buffered?b:indice; (* b indicates which transformation is buffered *)
0BJ_BUFFMD[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered] (iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions obj_normal and obj_buffered. *)

where

process OBJ_NORMAL[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered]

(iR:imRc,iA:inArr,m:Map) : noexit :=

((vis_obj?rl:Rep ; exit(rl,any Rep) ||| prop_obj?r2:Rep ; exit(any Rep,r2))
(* Input Ports *)
[1]
((BLEND2[obj_mpl] (0BJJ,MPLL,jO,iA,m) >> exit(any Rep,any Rep))
||| (BLEND2[obj_prop] (0BJJ,PROPP,j1,iA,m) >> exit(any Rep,any Rep))
||| (BLEND2[obj_1im] (OBJJ,LIMM, j2,iA,m) >> exit(any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl,r2:rep in
tick; OBJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered] (add(#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* OBJ_NORMAL *)

process OBJ_BUFFMD[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

((vis_obj?rl:Rep ; exit(rl,any Rep) ||| prop_obj?r2:Rep ; exit(any Rep,r2))
(* Input Ports *)
[
((OUTPUT2[obj_mpl] (OBJJ,MPLL,b,jO,iR,iA,m) >> exit(any Rep,any Rep))
11
(OUTPUT2[obj_prop] (0BJJ,PROPP,b,j1,iR,iA,m) >> exit(any Rep,any Rep))
11

78

(OUTPUT2[obj_1im] (OBJJ,LIMM,Db,j2,iR,iA,m) >> exit(any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl,r2:rep in
tick; 0BJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,
obj_buffered] (add(#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* OBJ_BUFFMD)

endproc (* 0BJ *)

(koo ook ook ok ok okdkokkokkokokok The LIM process kikokskokokskokkokok ok kokokstok ook ook ok ko ok)

process LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,
lim_buffered] (iR:imRc,iA:inArr,m:Map): noexit :=

((1im_normal;
LIM_NORMAL[tick,obj_lim,bs_lim,lim_leg,1im_arm,1im_hand,lim_normal,
lim_buffered] (iR,iA,m))

[1

(lim_buffered?b:indice; (* b indicates which transformation is buffered *)
LIM_BUFFMD[tick,obj_lim,bs_lim,lim_leg,1im_arm,1im_hand,lim_normal,
lim_buffered] (iR, iA,m,b)))

(x The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions lim_normal and lim_buffered. *)

where

process LIM_NORMAL[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,
lim_buffered]

(iR:imRc,iA:inArr,m:Map) : noexit :=

((obj_lim?r1:Rep ; exit(rl,any Rep) ||| bs_lim?r2:Rep ; exit(any Rep,r2))
(* Input Ports *)
[1]
((BLEND2[1im_leg] (LIMM,LEGG,jO,iA,m) >> exit(any Rep,any Rep))
||| (BLEND2[1lim_arm] (LIMM,ARMM,j1,iA,m) >> exit(any Rep,any Rep))
1| (BLEND2[1im_hand] (LIMM,HANDD, j2,iA,m) >> exit(any Rep,any Rep)))
(* Output Ports *))
>> accept rl,r2:rep in
tick; LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,
lim_buffered] (add(#(r1,r2,0,0),iR),#(r1,r2,0,0) ,m)

endproc (* LIM_NORMAL %)

79

process LIM_BUFFMD[tick,obj_1im,bs_1im,1im_1eg,1im_arm,lim_hand,lim_normal,
1lim_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

((obj_lim?rl:Rep ; exit(rl,any Rep) ||| bs_lim?r2:Rep ; exit(any Rep,r2))
(* Input Ports x)
[11
((OUTPUT2[1lim_leg] (LIMM,LEGG,b,jO,iR,iA,m) >> exit(any Rep,any Rep))
[11
(OUTPUT2[lim_arm] (LIMM,ARMM,b,j1,iR,iA,m) >> exit(any Rep,any Rep))
[11
(OUTPUT2([1im_hand] (LIMM,HANDD,b,j2,iR,iA,m) >> exit(any Rep,any Rep)))
(* Qutput Ports *))
>> accept ri1,r2:rep in
tick; LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,
lim_buffered] (add(#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* LIM_BUFFMD %)

endproc (* LIM *)

(* These subsystems are not currently implemented. *)

(koo ook dokok ok ok kdkokkok ok kok The TMPLIC process sokskokskskokkokokakokkokokkok ok ook ok ok ok ko)

process IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,
implic_visc,implic_som,implic_normal,implic_buffered]
(iR:imRc,iA:inArr,m:Map): noexit :=

(

(implic_normal;
IMPLIC_NORMAL[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,
implic_visc,implic_som,implic_normal,implic_buffered] (iR,iA,m))

[]

(implic_buffered?b:indice; (* b indicates which transformation is buffered *)
IMPLIC_BUFFMD[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,
implic_visc,implic_som,implic_normal,implic_buffered] (iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual

mechanism used is not currently clear. Thus, we allow the environment to
choose through actions implic_normal and implic_buffered. *)

80

where

process IMPLIC_NORMAL[tick,vis_implic,prop_implic,bs_implic,ac_implic,
implic_prop,implic_visc,implic_som,implic_normal,implic_buffered]
(iR:imRc,iA:inArr,m:Map) : noexit :=

((vis_implic?rl:Rep ; exit(rl,any Rep,any Rep,any Rep)
[l| prop_implic?r2:Rep ; exit(any Rep,r2,any Rep,any Rep)
[l bs_implic?r3:Rep ; exit(any Rep,any Rep,r3,any Rep)
[l ac_implic?r4:Rep ; exit(any Rep,any Rep,any Rep,rd))
(* Input Ports *)
11
((BLEND2[implic_prop] (IMPLICC,PROPP,j0,iA,m) >>
exit(any Rep,any Rep,any Rep,any Rep))
||| (BLEND2[implic_visc] (IMPLICC,VISCC,j1,iA,m) >>
exit(any Rep,any Rep,any Rep,any Rep))
||| (BLEND2[implic_som] (IMPLICC,SOMM,j2,iA,m) >>
exit(any Rep,any Rep,any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl1,r2,r3,r4:rep in
tick; IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,
implic_visc,implic_som,implic_normal,implic_buffered]
(add (#(r1,r2,r3,r4),iR) ,#(r1,r2,r3,r4) ,m)

endproc (* IMPLIC_NORMAL x)

process IMPLIC_BUFFMD[tick,vis_implic,prop_implic,bs_implic,ac_implic,
implic_prop,implic_visc,implic_som,implic_normal,implic_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

((vis_implic?rl:Rep ; exit(rl,any Rep,any Rep,any Rep)
[l prop_implic?r2:Rep ; exit(any Rep,r2,any Rep,any Rep)
[I| bs_implic?r3:Rep ; exit(any Rep,any Rep,r3,any Rep)
[l ac_implic?r4:Rep ; exit(any Rep,any Rep,any Rep,rd))
(* Input Ports x)
11
((OUTPUT2[implic_prop] (IMPLICC,PROPP,b,j0,iR,iA,m) >>
exit (any Rep,any Rep,any Rep,any Rep))
11
(OUTPUT2[implic_visc] (IMPLICC,VISCC,b,j1,iR,iA,m) >>
exit (any Rep,any Rep,any Rep,any Rep))
11
(OUTPUT2[implic_som] (IMPLICC,SOMM,b,j2,iR,iA,m) >>
exit (any Rep,any Rep,any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl,r2,r3,r4:rep in
tick; IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,

81

implic_visc,implic_som,implic_normal,implic_buffered]
(add (#(r1,r2,r3,r4),iR) ,#(r1,r2,r3,r4) ,m)

endproc (* IMPLIC_BUFFMD *)

endproc (* IMPLIC *)

(ko kskok kokok ok kokok ok kokokokok ok kok The PROP Process skkskokkokkskokkokok ok ok kokok ok ok okok ok ok k)

process PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,
prop_normal,prop_buffered] (iR:imRc,iA:inArr,m:Map): noexit :=

(

(prop_normal;
PROP_NORMAL[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,
prop_normal,prop_buffered]

(iR,iA,m))

1

(prop_buffered?b:indice; (* b indicates which transformation is buffered *)
PROP_BUFFMD[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,
prop_normal,prop_buffered]

(iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions prop_normal and prop_buffered. *)

where
process PROP_NORMAL[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,
prop_implic,prop_normal,prop_buffered] (iR:imRc,iA:inArr,m:Map) : noexit :=

((obj_prop?rl:Rep ; exit(rl,any Rep,any Rep)
[l implic_prop?r2:Rep ; exit(any Rep,r2,any Rep)
[l mpl_prop?r3:Rep ; exit(any Rep,any Rep,r3))
(* Input Ports *)

|

(BLEND2 [prop_obj] (PROPP,0BJJ,j1,iA,m) >> exit(any Rep,any Rep,any Rep))
(BLEND2[prop_implic] (PROPP,IMPLICC,j2,iA,m) >>
exit (any Rep,any Rep,any Rep)))

[11
((BLEND2[prop_mpl] (PROPP,MPLL,jO,iA,m) >> exit(any Rep,any Rep,any Rep))
[1]
[11

I
I
(* Output Ports *))

>> accept rl,r2,r3:rep in

tick; PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,
prop_normal,prop_buffered] (add (#(r1,r2,r3,0),iR) ,#(r1,r2,r3,0),m)

82

endproc (* PROP_NORMAL *)

process PROP_BUFFMD[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,
prop_implic,prop_normal,prop_buffered] (iR:imRc,iA:inArr,m:Map,b:indice)
:noexit :=

((obj_prop?rl:Rep ; exit(rl,any Rep,any Rep)
[l implic_prop?r2:Rep ; exit(any Rep,r2,any Rep)
[l mpl_prop?r3:Rep ; exit(any Rep,any Rep,r3))
(* Input Ports *)
11
(
(OUTPUT2 [prop_mpl] (PROPP,MPLL,b,jO,iR,iA,m) >> exit(any Rep,any Rep,any Rep))
11
(OUTPUT2 [prop_obj] (PROPP,0BJJ,b,j1,iR,iA,m) >> exit(any Rep,any Rep,any Rep))
11
(OUTPUT2 [prop_implic] (PROPP,IMPLICC,b,j2,iR,iA,m) >>
exit(any Rep,any Rep,any Rep)))
(* Output Ports *))
>> accept rl,r2,r3:rep in
tick; PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,
prop_normal,prop_buffered] (add (#(r1,r2,r3,0),iR) ,#(r1,r2,r3,0),m)

endproc (* PROP_BUFFMD *)

endproc (* PROP *)

(ks kkkokok ok ok kkok ok ok kokokok ok ok The BS Process sokkskkkskskskokkkkkokkokok kokokokokokkokok ko k)

process BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered]
(iR:imRc,iA:inArr,m:Map): noexit :=

(

(bs_normal;

BS_NORMAL [tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered]
(iR,iA,m))

[]

(bs_buffered?b:indice; (* b indicates which transformation is buffered *)
BS_BUFFMD[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered]
(iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual

mechanism used is not currently clear. Thus, we allow the environment to
choose through actions bs_normal and bs_buffered. *)

83

where
process BS_NORMAL[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,
bs_buffered] (iR:imRc,iA:inArr,m:Map) : noexit :=

((vocal_bs?ri:Rep; exit(rl,any Rep) ||| hand_bs?r2:Rep; exit(any Rep,r2))

(* Input Ports *)

11

(

(BLEND2[bs_art] (BSS,ARTT, jO,iA,m) >> exit(any Rep,any Rep))

|11 (BLEND2[bs_implic] (BSS,IMPLICC,j1,iA,m) >> exit(any Rep,any Rep))

1| (BLEND2[bs_1im] (BSS,LIMM,j2,iA,m) >> exit(any Rep,any Rep)))

(* Qutput Ports *))

>> accept rl,r2:rep in

tick; BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,

bs_buffered] (add(#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* BS_NORMAL *)

process BS_BUFFMD[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,
bs_buffered] (iR:imRc,iA:inArr,m:Map,b:indice): noexit :=

((vocal_bs?rl:Rep; exit(rl,any Rep) ||| hand_bs?r2:Rep; exit(any Rep,r2))
(* Input Ports x)
[11
((OUTPUT2[bs_art] (BSS,ARTT,b,jO,iR,iA,m) >> exit(any Rep,any Rep))
[11
(OUTPUT2[bs_implic] (BSS,IMPLICC,b,jl1,iR,iA,m) >> exit(any Rep,any Rep))
[11
(OUTPUT2[bs_lim] (BSS,LIMM,b,j2,iR,iA,m) >> exit(any Rep,any Rep)))
(* Output Ports *))
>> accept ri1,r2:rep in
tick; BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,
bs_buffered] (add(#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* BS_BUFFMD *)

endproc (* BS %)

(G kokrokkokok ok kokok ok kokokkokkokokok The MPL Process ko kokkskokkokokkokkokokskok ok ok ok kok ok ok ok k)

process MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered] (iR:imRc,iA:inArr,m:Map): noexit :=

(

(mpl_normal;

84

MPL_NORMAL [tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered] (iR,iA,m))

1

(mpl_buffered?b:indice; (* b indicates which transformation is buffered *)
MPL_BUFFMD[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered] (iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions mpl_normal and mpl_buffered. *)

where
process MPL_NORMAL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered] (iR:imRc,iA:inArr,m:Map) : noexit :=

((obj_mpl?ri:Rep ; exit(rl,any Rep,any Rep)
[|| prop_mpl?r2:Rep ; exit(any Rep,r2,any Rep)
[I| ac_mpl?r3:Rep ; exit(any Rep,any Rep,r3))
(* Input Ports *)
11
((BLEND2[mpl_art] (MPLL,ARTT,jO,iA,m) >> exit(any Rep,any Rep,any Rep))
[Il (BLEND2[mpl_prop] (MPLL,PROPP,j1,iA,m) >> exit(any Rep,any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl,r2,r3:rep in
tick; MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered] (add (#(r1,r2,r3,0),iR),#(rl1,r2,r3,0) ,m)

endproc (* MPL_NORMAL %)

process MPL_BUFFMD[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

((obj_mpl?ri:Rep ; exit(rl,any Rep,any Rep)
[l] prop_mpl?r2:Rep ; exit(any Rep,r2,any Rep)
[l ac_mpl?r3:Rep ; exit(any Rep,any Rep,r3))
(* Input Ports *)
11
((OUTPUT2[mpl_art] (MPLL,ARTT,b,jO,iR,iA,m) >> exit(any Rep,any Rep,any Rep))
11
(OUTPUT2[mpl_prop] (MPLL,PROPP,b,j1,iR,iA,m) >>
exit (any Rep,any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl,r2,r3:rep in
tick; MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,
mpl_buffered] (add (#(r1,r2,r3,0),iR),#(rl1,r2,r3,0) ,m)

85

endproc (* MPL_BUFFMD %)

endproc (* MPL *)

(ks kkkokok ok kokok ok ok kokokok ok ok k. The AC ProCess *okokskkkkskskoksk ok kkokkokokkokokokok ok okok k%)

process AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered]
(iR:imRc,iA:inArr,m:Map): noexit :=

(

(ac_normal;
AC_NORMAL[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered] (iR,iA,m))

(]

(ac_buffered?b:indice; (* b indicates which transformation is buffered *)
AC_BUFFMD[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered] (iR,iA,m,b)))

(* The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions ac_normal and ac_buffered. *)

where
process AC_NORMAL[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered]
(iR:imRc,iA:inArr,m:Map) : noexit :=

((ear_ac?rl:Rep ; exit(rl))
(* Input Ports *)
[1]
((BLEND2[ac_mpl] (ACC,MPLL,jO,iA,m) >> exit(any Rep))
Il (BLEND2[ac_implic] (ACC,IMPLICC,j1,iA,m) >> exit(any Rep)))
(* Qutput Ports *))
>> accept rl:rep in
tick; AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered]
(add (#(r1,0,0,0),iR) ,#(r1,0,0,0) ,m)

endproc (* AC_NORMAL *)

process AC_BUFFMD[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

((ear_ac?ri:Rep ; exit(rl))

(* Input Ports x)

[1]

((OUTPUT2[ac_mpl] (ACC,MPLL,b,jO,iR,iA,m) >> exit(any Rep))
[1]

86

(OUTPUT2[ac_implic] (ACC,IMPLICC,b,jl1,iR,iA,m) >> exit(any Rep)))
(* Qutput Ports *))
>> accept ril:rep in
tick; AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered]
(add(#(r1,0,0,0),iR) ,#(r1,0,0,0) ,m)

endproc (* AC_BUFFMD)

endproc (* AC x)

(G koksok ook ook ok ok ok dokkokkokokok The ART process ik skokokskokkokok ok ootk ok ook koo ok ko k)

process ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(iR:imRc,iA:inArr,m:Map): noexit :=

(

(art_normal;
ART_NORMAL[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered] (iR,iA,m))
(]

(art_buffered?b:indice; (* b indicates which transformation is buffered *)
ART_BUFFMD[tiCk,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(iR,iA,m,b)))

(x The choice here is between normal mode and buffered mode. The actual
mechanism used is not currently clear. Thus, we allow the environment to
choose through actions art_normal and art_buffered. *)

where
process ART_NORMAL[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(iR:imRc,iA:inArr,m:Map) : noexit :=

((bs_art?rl:Rep ; exit(rl,any Rep) ||| mpl_art?r2:Rep ; exit(any Rep,r2))
(* Input Ports *)
[1]
((BLEND2[art_sp] (ARTT,SPP,j0,iA,m) >> exit(any Rep,any Rep))
1| (BLEND2[art_wr] (ARTT,WRR,j1,iA,m) >> exit(any Rep,any Rep)))
(* Qutput Ports *))
>> accept rl,r2:rep in
tick; ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(add (#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* ART_NORMAL *)

process ART_BUFFMD[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(iR:imRc,iA:inArr,m:Map,b:indice) : noexit :=

87

((bs_art?rl:Rep ; exit(rl,any Rep) ||| mpl_art?r2:Rep ; exit(any Rep,r2)
(* Input Ports *)
[11
((OUTPUT2[art_sp] (ARTT,SPP,b,jO,iR,iA,m) >> exit(any Rep,any Rep))
[11
(OUTPUT2[art_wr] (ARTT,WRR,b,j1,iR,iA,m) >> exit(any Rep,any Rep)))
(* Output Ports *))
>> accept ri1,r2:rep in
tick; ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered]
(add (#(r1,r2,0,0),iR) ,#(r1,r2,0,0) ,m)

endproc (* ART_BUFFMD)
endproc (* ART *)

(ks skook sk sk ok ok kokok sk kokok ok kR kokokokok ok BLENDING Functions skskskskskskoskoksksksk sk sk ok ok kokkk)

process BLEND1[g] (X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit
choice r:Rep [] i; g'tran(X,Y,r); exit
endproc (* BLEND1 *)

process BLEND2[g] (X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=
choice j:indice [] [smget(j,mpget(id,m))] ->
i; g!tran(X,Y,iaget(j,iA)); exit
endproc (* BLEND2 *)

process BLEND3[g] (X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=
g!tran(X,Y,compare (mpget (id,m),iA)); exit
endproc (* BLEND3 *)

process BLEND4[g] (X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=
let sm:slotmap=mpget(id,m) in
([compare(sm,iA) gt succ(0)] -> gl!tran(X,Y,mult(sm,id)); exit
(]
[compare(sm,iA) le succ(0)] -> g!tran(X,Y,0); exit)
endproc (* BLEND4 *)

process BLEND5[g] (X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=
g!tran(X,Y,mult (mpget(id,m),iA)); exit
endproc (* BLEND4 *)

(kkskskokokokokokokokokkokkokokokokok ok ok ok ok ok ok QUTPUTING FUuncCtions k% kkskkkokkkkkkkkkokskokokok)
(* Used in buffered mode *)

process OUTPUT1[g] (X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :=

88

[b eqq jl -> (choice n:Nat [] BLEND1[g] (X,Y,j,select(n,iA,iR),m))
[]
[b neq jl -> (BLEND1[g]l(X,Y,j,iA,m))

endproc (* OUTPUT1 *)

process OUTPUT2[g] (X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr ,m:Map): exit :
[b eqq j1 -> (choice n:Nat [] BLEND2[g] (X,Y,j,select(n,iA,iR),m))
(]
[b neq jl -> (BLEND2[g] (X,Y,j,iA,m))

endproc (* OUTPUT2 *)

process OUTPUT3[g] (X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr ,m:Map): exit :
[b eqq jl -> (choice n:Nat [] BLEND3[g] (X,Y,j,select(n,iA,iR),m))
(]
[b neq jl -> (BLEND3[g] (X,Y,j,iA,m))

endproc (* OUTPUT3 x)

process QUTPUT4[g] (X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr ,m:Map): exit :
[b eqq j1 -> (choice n:Nat [] BLEND4[g] (X,Y,j,select(n,iA,iR),m))
(]
[b neq jl -> (BLEND4[g](X,Y,j,iA,m))

endproc (* OUTPUT4 *)

process 0OUTPUT5[g] (X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :
[b eqq jl -> (choice n:Nat [] BLEND5[g] (X,Y,j,select(n,iA,iR),m))
(]
[b neq j1 -> (BLEND5[g] (X,Y,j,iA,m))

endproc (* OUTPUTS *)

endspec

89

9.8 Notes

There are some remaining isues and points:-

e Notio of system hitting equilibrium - where outputs have stabilised and
will nto change unless the inputs change.

e Distinction between implicit and explicit blending of body state with
LIM/SPEECH. We only apply a multiplicative blend when the body state
has to be considered explicitly, i.e. if the cursor needs to be associated
with the body state. Normal speech and pointing does not require such a
multiplicative blend. It is an implicit action.

e id and X, Y represent the same information - should combine the two into
a single concept.

90

