
An Interpretation of Cognitive Theory inConcurrency Theory (Long Version)�Howard BowmanyComputing Laboratory, University of Kent at Canterbury,Canterbury, Kent, CT2 7NF, United KingdomEmail: H.Bowman@ukc.ac.ukWWW: http://www.cs.ukc.ac.uk/people/sta�/hb5/AbstractTheories of concurrent systems have been extensively investigated inthe computer science domain. However, these theories are very generalin nature and hence, we would argue, are applicable to many disciplinesin which concurrency arises. Furthermore, a number of existing theo-ries of cognitive science are formulated in terms of concurrent subsystemsinteracting in solving cognitive tasks. In this paper we investigate theapplication of a (process calculi based) concurrency theory to modellingsuch a (concurrent) cognitive theory. The cognitive theory chosen is ICS(Interacting Cognitive Subsystems), which we interpret using our processcalculus and then we verify some simple behavioural properties of theresulting interpretation. These properties concern the capabilities of thecognitive system to realise deictic reference.1 IntroductionConcurrency Theory. In a very broad sense, the history of computer sciencecan be characterised by two, often competing, views of how to build and un-derstand computer systems: the engineering view and the mathematical view.According to the former, computer systems should be viewed as engineeringartefacts which can be constructed using an \informal" process of design, im-plementation and testing. In contrast, the latter view advocates that formal,mathematically based, theories of computing should be developed. This brings�Reference - Technical Report University of Kent at Canterbury, Number 8-98, July 1998.yHoward Bowman is currently on leave at VERIMAG, Centre Equation, 2 rue Vignate,38610 GIERES, France and CNR-Istituto CNUCE, Via S. Maria 36, 56126 - Pisa - Italy withthe support of the European Commission's TMR programme.1

a number of potential bene�ts, not least of which is that computer systemscan be constructed in a more rigorous fashion leading to higher quality �nishedsystems containing fewer errors.In this paper we will be interested in this second view. In particular, we willconsider techniques which can broadly be categorised as formal methods [26].These provide notations for describing systems - formal speci�cation languagesand analysing these speci�cations - formal veri�cation techniques . From withinformal methods we will particularly focus on a set of techniques that have beendeveloped as mathematical models of concurrent systems .The majority of work on mathematical theories of computing has focused onsystems, which can be categorised as sequential i.e. systems containing a singlecomponent which evolves by performing a sequence of operations one after theother. Such systems can typically be viewed as input to output transformers, i.e.given a set of input values the system generates a set of output values and im-portantly, such transformers can be mathematically viewed as functions (frominputs to outputs). In line with [34], we call such systems transformationalsystems . Although perfectly adequate in the sequential setting, such trans-formational interpretations have proved insu�cient in the concurrent setting.Concurrency theory has sought to respond to this problem.Concurrency theory studies systems containing a number of components thatare evolving simultaneously. Such systems arise throughout computer science.To take a familiar example, the Internet is a concurrent system containing manythousands or even millions of components. In concurrent systems, the defaultbehaviour of each component is to evolve completely independently of all othercomponents1. However, components also interact with one another in perform-ing certain tasks.As suggested earlier, with transformational systems the key issue is whatresults the computation terminates with. With concurrent systems this is nolonger the case. Think again of our example of the Internet, �rstly, it is notclear whether the system will ever terminate and secondly, the outputs producedwhen it terminates (perhaps in the year 2000) are likely to be degenerate ratherthan useful. The interesting aspect of concurrent systems is rather their ongo-ing behaviour and how components respond to external stimuli throughout thesystem's life-time2. Thus, we will typically model concurrent systems in termsof the order in which they can perform external interactions.Perhaps the earliest work in concurrency theory was that in the 1960's byCarl Petri, which yielded Petri Nets [45]. However, it was in the 1980's thatthe �eld reached maturity. This was inspired by Tony Hoare's development ofCommunicating Sequential Processes (CSP) [28, 27] and Robin Milner's devel-opment of the Calculus of Communicating Systems (CCS) [36, 37, 38]. A wealthof techniques resulted from this 80's renaissance, e.g. communicating automata[23], further Petri Nets research [45], Temporal Logics [34], however, here we1In fact, there is a distinction between, so called synchronous and asynchronous concurrentsystems and what we discuss here is most relevant to asynchronous systems.2This interpretation has prompted the so called reactive [34] view of computing.2

will focus on the approach most closely inspired by Hoare and Milner - ProcessCalculi3. We will describe this approach in section 3.Although concurrency theory was developed with computer applications inmind the core concepts of concurrency theory are completely general and arethus applicable to modelling any variety of concurrent system. Although rare,some applications outside mainstream computer science have been made, e.g. tobiological systems [51] and in Physics [22]. Thus, one objective of this paper is topublicise the concurrency theory techniques to a wider audience. In doing thiswe will focus on applying concurrency theory in the area of cognitive modelling.Cognitive Theory. From very early in the history of computer science analo-gies between the mind and the digital computer were used in explaining humancognition, e.g. [12]. The resulting information processing paradigm [31] hascome to dominate cognitive psychology, with many diverse computational expla-nations of cognitive behaviour, e.g. semantic networks [14], production systems[42] and connectionist models [48, 49]. Furthermore, some of these approachesare argued to be \Uni�ed Theories" in the sense that they propose a \singlesystem of mechanisms that operate together to produce the full range of humancognition" [41], e.g. the Soar Architecture [41]. However importantly, many ofthese cognitive theories are concurrent in nature, for example, Soar containselements of concurrent behaviour [41].In this paper we will focus on a particular \general purpose" cognitive theorycalled Interacting Cognitive Subsystems (ICS) [1, 3, 2]. This is a theory ofworking memory developed at the (UK) Medical Research Councils AppliedPsychology Unit. The reasons for choosing this theory are two fold. Firstly,the model is highly concurrent in nature and is thus particularly amenable tothe concurrency theory techniques we have in mind. Secondly, there has beenprevious work [18, 17, 19, 21] (in the domain of Human Computer Interaction)on modelling ICS with formal methods. This previous work has been calledsyndetic modelling ; in it, both cognitive behaviour and the computer interfaceare modelled using the same formal method. Then properties of the composedsystem are determined.ICS adopts a \top down" approach to the design of a cognitive theory byproviding a framework containing a set of core components and mechanismsthat it is argued give a \potential design of a complete mental mechanism" [2].It describes cognitive tasks in terms of multiple
ows of representations, whichcompete for cognitive resources. We introduce ICS in section 2.Interpreting Cognitive Theory in Concurrency Theory. In illustratingthe central tenet of this paper - that concurrency theory can be used to modeland analyse cognitive theories - we will interpret ICS using a simple processcalculus. Then we will analyse our speci�cation of ICS to identify a numberof simple behavioural properties. These properties focus on the capabilities ofthe system to realise certain forms of deictic reference. Typical forms of deicticreference that we consider are the capability of a computer system user to select3The term Process Algebra is also often used.3

from a list of items in a computer display while performing some other task,e.g. speaking.An obvious question that arises is: why apply a (concurrent) formal methodto cognitive modelling? We would argue that the formal approach brings twomain bene�ts:� Rigorous Analysis. Perhaps the most powerful argument for adopting for-mal methods in computing is that they yield a description of the systemwhich is amenable to rigorous analysis, e.g. demonstrating that your sys-tem does not enter certain degenerate states, such as deadlock states. Thisanalysis can take one of two general forms - veri�cation through proof orautomated state space analysis . Under the former an, often hand crafted,series of formal steps are exhibited which show that a particular propertycan be derived from the formal speci�cation of the system. In contrast,in the latter case a tool is used which automatically analyses the statespace of a speci�cation to determine whether a certain property holds.The analysis we perform in section 3 will contain elements of both theseapproaches.Now how does the potential for rigorous analysis �t with cognitive science.Well, the standard cognitive science approach is to attempt to mimic cog-nitive behaviour by writing a computer program which when run simulatesthe particular cognitive task being considered. A rather obvious observa-tion about such simulation is that it can never be exhaustive. In fact, inpractice, such techniques will only be able to explore a small subset ofthe complete system behaviour4. One reason for the inexhaustiveness ofsimulation is that the behaviour of any non-trivial system will be in�nitein some respect, e.g. through using in�nite data sets or exhibiting in�niteconcurrent behaviour. Although, it would be wrong to over emphasize thepower of formal methods in resolving this problem, in particular formalmethods have their own constraining boundaries (e.g. the state explosionproblem), they do at least o�er the potential of a more exhaustive in-vestigation of the behaviour of cognitive theories. In particular, in�nitebehaviour can be handled using inductive and co-inductive techniques [53].It is also important to note that formal methods do not preclude simula-tion, since tool suites for such methods typically allow speci�cations to berun using simulation and animation packages. These runs can either bestep by step explorations of the state space or automatic generations of asingle path. Such a tool will be used in section 7 where we will in fact usea mixture of formal reasoning and simulation techniques.Finally, it is also worth pointing out that tools are now available whichenable programs which are executable in a traditional sense to be gener-ated from formal speci�cations. For example, the TOPO tool generates Ccode from process calculi speci�cations [33].4In this respect simulation is like testing, which as Djkstra so pertinently pointed out, canonly demonstrate the presence of errors, but can never demonstrate the absence of errors.4

The Specification
Plane

The Implementation
Plane

S

satisfaction

set of implementations
satisfying SFigure 1: The Nature of Formal Speci�cation� Avoiding Overspeci�cation. It is important to realise that formal speci-�cations are in nature very di�erent to computer programs or what wewill more broadly call implementations. A formal speci�cation is abstractin the sense that it characterises a set of possible implementations, whilea program characterises a single implementation - itself. A satisfactionrelation is typically used to associate sets of implementations with speci-�cations, i.e. a speci�cation characterises the set of implementations thatsatisfy it. This situation is shown in �gure 1.Associated with this aspect is the desire not to overspecify (or in otherterms to provide loose speci�cation), i.e. that the nature of the speci�ca-tion language should not force the speci�er to rule out acceptable imple-mentations. Formal methods typically use the notion of non-determinismin order to realise such loose speci�cation. We will introduce non-determinismin section 3.We believe this feature of formal methods is potentially very useful inthe cognitive setting. In particular, many of the more general theories(as indeed ICS is) leave much unexplained since a complete mechanisticinterpretation of cognitive behaviour is often not available. A di�cultproblem this raises is how to provide \executable" realizations of cognitivetheories such as ICS which do not overprescribe what is known. We believethis avoidance of overprescription has much in common with avoidance ofoverspeci�cation.Thus, in the sequel we will attempt to de�ne the \strongest known" con-straint about ICS. This will characterise many possible actual cognitivebehaviours. Then we will see what properties we can determine of such aloosely speci�ed cognitive theory.5

An associated point is the so called irrelevant speci�cation problem [46,41]. In order to construct a working simulation program a large numberof assumptions have to be made, leaving it unclear what aspect of thebehaviour of the program corresponds to known cognitive behaviour andwhat arises from expediency. We would argue that the abstract natureof formal methods enable cognitive systems to be described in a mannerthat is more likely to avoid the irrelevant speci�cation problem.The Paper. We have attempted to make this article as stand-alone as possi-ble. In particular, one of our goals has been to make it accessible to the widercognitive psychology �eld. The prerequisites that we assume are a basic knowl-edge of discrete mathematics, in particular, set theory and logic and some broadknowledge of computer science. The theory that is not generally accessible wehave placed in the appendix.The paper is structured as follows. Section 2 describes the basic ICS model.Section 3 introduces the LOTOS speci�cation notation that we use to describeICS. Section 4 presents a complete LOTOS speci�cation of ICS. Section 5 for-mulates a number of behaviour goals over ICS. These concern its capability toperform certain variaties of deictic reference. The goals are formulated in aninterval temporal logic called Mexitl which we also introduce. Section 6 ver-i�es the main negative goals that we consider. Section 7 presents simulationbased validation of our positive goals. Then section 8 presents some concludingremarks and discusses further work. Section 9 is the appendix.2 Interacting Cognitive SubsystemsAs pointed out previously, ICS is a \general purpose" cognitive theory, whichexhibits highly concurrent behaviour. It has been applied in a number of areas,e.g. performance of short term memory tasks [1], HCI [18, 19, 21], experimen-tation with theories of depression [4, 50].It is beyond the scope of this paper to give a complete introduction to theICS model, the interested reader is refered to [2]. What we present here followsin many places the exposition in [2], but in a summarised form. In particular,our presentation will largely concentrate on the control/behavioural aspects ofICS, while we will only give a cursory exposition of the data aspects of themodel.Subsection 2.1 works through the basic elements of the model, while sub-section 2.2 presents some sample scenarios of how particular cognitive taskscan be performed in ICS. We �nish the section with a summary and discussionsubsection 2.3.2.1 The ModelInformation Flows and Representations. The basic \data" items foundin ICS are representations . This term embraces all forms of mental codes,6

image record

transform C to X

transform C to Y

input of
code C

from store to store

transform C to Z

copy

input arrayFigure 2: General Subsystem Formatfrom \patterns of shapes and colour" as found in visual sensory systems; toencodings of \force, target positions and of articulatory musculatures" as foundin articulatory e�ectors; to \descriptions of entities and relationships in semanticspace" as found in a semantic subsystem [2].These representations are past amongst the components of the architecture,being transformed from one code to another in each component. Thus, thearchitecture can be seen as an information
ow model, where multiple
owsof representations (e.g. one from the acoustic sensory system and one from thevisual sensory system) are relayed through the architecture and compete forresources. Thus, we have a model containing data - representations and control- paths by which representations can
ow around the architecture.Subsystems. The components of the architecture are called subsystems and allsubsystems have the same general format, which is shown in �gure 2. Subsys-tems are representation transformers - they input representations in a particularcode, apply transformations to them and output them in a di�erent code. In ad-dition to this transformation function, they copy the representations that theyinput into a local record. This record can be accessed when applying futuretransformations.Each component (subsystem) itself contains components:-� Input Array. Representations received by a subsystem are placed into aninput array. The input array must be able to handle multiple representa-tions, since a subsystem can accept representations from multiple sourcesat any one time. We will return to this issue shortly.� Image Record. The image record preserves the history of a subsystem. Inorder to do this, whenever the input array has new contents the subsystemcopies them to the image record.� Transformations. Each subsystem contains a set of independently evolvingtransformations5. Transformations take representations from the input5In some formulations of the ICS model these transformations are refered to as processes.However, we will avoid this term, since it has a very speci�c meaning in process calculi.7

array, apply some transformational operations to them and then relay anew (transformed) representation to a target subsystem. Transformationswill typically change the code of the representation from the code of thecurrent subsystem to the code of the target subsystem, i.e. from C to X ,Y or Z in �gure 2.The Overall Architecture. The complete ICS architecture, which is shownin �gure 3, is composed of nine subsystems, each of which is a specializationof the general subsystem format just highlighted. These subsystems evolveindependently and concurrently to one another, subject to communication ofrepresentations when �ring transformations. This communication takes placeover a conceptual data network .Subsystems fall into one of three categories: sensory subsystems : acoustic,visual and body state; e�ector subsystems : articulatory and limb; and centralsubsystems : morphonolexical, propositional, implicational and object. Sensorysubsystems receive input from sensory systems, such as the auditory system;e�ector subsystems transmit outputs that control e�ector systems such as thelimbs; while central subsystems perform internal cognitive processing. We con-sider each subsystem in turn (our presentation here is particularly closely derivedfrom that to be found in [2]6.� Sensory{ Acoustic (AC) - receives representations from the auditory systemencoding sound frequency (pitch), rhythm, intensity, etc;{ Visual (VIS) - receives representations from the eyes encoding \pat-terns of shapes and colour", i.e. light wavelength (hue) and bright-ness;{ Body State (BS) - receives representations encoding body sensationsof pressure, pain, positions of parts of the body etc.� E�ector{ Articulatory (ART) - outputs representations that control the force,target positions and timing of articulatory muscalatures, i.e. performssubvocal speech rehearsal;{ Limb (LIM) - outputs representations that control the force, targetpositions and timing of skeletal muscalatures, i.e. initiates physicalmovement;� Central{ Morphonolexical (MPL) - works with an abstract structural descriptionof entities and relationships in sound space, i.e. lexical identities ofwords, their status and order;6Two additional subsystems: SOM and VISC are also considered in [2], but these will playno role in our analysis, so we will not consider them here.8

lim

leg

hand

visc

som

implic

art
bs

prop

ac

implic

mpl speech

type

art

prop

mpl

prop
mpl

obj

mpl

prop

implic

obj

implic
som

visc

vis

implic

obj
lim

lim

art

VISUAL
OBJECT

LIMB

IMPLICATIONAL

BODY-STATE
PROPOSITIONAL

ACUSTIC MORPHONOLEXICAL ARTICULATORY

Figure 3: The ICS Architecture
9

{ Object (OBJ) - works with an abstract structural description of entitiesand relationships in visual space, e.g. attributes of objects: shape andrelative position;{ Propositional (PROP) - works with descriptions of entities and rela-tionships in semantic space, i.e. gives semantic meaning to entitiesand highlights the semantic relationships between entities;{ Implicational (IMPLIC) - works with abstract descriptions of humanexistential space and holistic meaning;The possible transformations between subsystems are shown in �gure 3.Con�gurations. Not all transformations will be involved in every cognitivetask. For example, language understanding and production requires a di�erentset of transformations to be active than say a perceptual-motor tracking task [2].Thus, the concept of a (mental) con�guration is introduced. Each con�gurationis associated with a particular cognitive task and is de�ned to be the set of sub-systems and transformations involved in that task. Although, transformationsthat are not included in the con�guration may still be passing representations,what they transmit is not relevant to the cognitive task at hand.Multiple Flows and Blending. The \information
ow" nature of the modelshould be becoming clear. Sources of
ows are typically sensory subsystems,which receive sequences of representations from the external environment. Eachrepresentation is then relayed within the architecture by the �ring of transforma-tions. Thus, each sequence of representations received at each sensory subsystemgenerates a
ow of representations around the architecture. Clearly, multiple
ows can exist in the architecture at the same time. Thus, competition between
ows for resources becomes a major element of the functioning of the system.This is one reason why the architecture has been viewed as so useful in the HCIsetting where multi-modal human computer interfaces, which naturally gener-ate multiple
ows of input at multiple sensory subsystems, are being considered[44].The existence of multiple
ows also prompts the question of what happensif a subsystem is taking input from two di�erent
ows at the same time. Thispossibility arises in a number of subsystems, e.g. the implicational subsystemcan receive from all the e�ector subsystems - acoustic, visual and body state.In fact, the architecture accommodates a number of di�erent outcomes whenmultiple
ows are received. In some con�gurations di�erent
ows may be keptquite separate, being placed into the same input array, but then being relayedvia separate transformations.However, the more interesting outcome is if a con�guration requires an out-put transformation to use a representation which is a combination of two (ormore) \competing" input representations. This possibility leads to the conceptof blending .Representations from di�erent
ows can be blended to create a compositerepresentation. However, this can only happen if the two representations are10

consistent . Consistency between representations is not a precisely de�ned con-cept, although an indepth discussion of it is given in [2]. We can illustrate theconcept with a simple example. Representations of a scene from visual subsys-tem (or in fact from any subsystem) can be thought of as having a psychologicalsubject , informally, the object we are looking at in the scene, and a psychologicalpredicate. Informally, the relationship between other basic units in the scene.Now if two representations are received from di�erent
ows and they referencedi�erent psychological subjects then they might be viewed as inconsistent andhence, would not be blendable [2].Much of the richness of the architecture arises through this possibility toblend competing
ows. In particular, constraints on allowed cognitive process-ing can be formulated in terms of blending, e.g. that representations are onlyblendable if they all exhibit the same psychological subject. We will see anexample of such a constraint in section 4.Stability. A further important concept in the architecture is that of stability.This is a property of information
ows which gives one characterisation of the\quality" of the
ow. It characterises the level of variability over time of repre-sentations in the
ow. For example, in a constant visual environment it is likelythat the
ow of representations through the visual subsystem is very constantand thus, stable, i.e. there is little variability betwen adjacent and closely prox-imate representations. In contrast, in a rapidly changing visual environmentthere may be extreme variability between closely proximate representations andthus, the resulting
ow is likely to be unstable. We treate stability as a derivedconcept which can be applied to any subsystem in a con�guration. It is deter-mined by observing the variability of data representations entering or leavingthat subsystem over a period of time.Bu�ering. Another aspect of the architecture is that in certain circumstancesa subsystem can enter, so called bu�ered mode. In this mode a transformationin the subsystem switches from working directly on representations in the inputarray, to taking representations from the image record. This corresponds to\focal awareness" of an information
ow [35]. The transformation to code X in�gure 2 is in bu�ered mode.In bu�ered mode copying from the image record and applying the bu�eredtransformation become serial activities (in normal mode they are concurrentactivities), allowing the transformation to access a representation that is \ex-tended" in time [35]. This, in particular, enables the processing of representa-tions from past experience.When a transformation is bu�ered it selects representations from the imagerecord. This mechanism of selection can take a number of forms, for example,it may make a comparison between what is in the input array and items inthe image record using some aspect of the input array as a \key", e.g. thepsychological subject of a representation.The architecture imposes an important constraint on the process of bu�ering:only one transformation in a subsystem is allowed to be bu�ered at any giventime. Furthermore, only one subsystem is allowed to be bu�ered.11

Synchronous Evolution. In this paper we take a particular view of the con-current behaviour of ICS. There are really two assumptions, the �rst of whichis a necessary prerequisite for the second:1. Discreteness. We assume the system takes discrete steps. This followsfrom the view that an information
ow is a sequence of (discrete) repre-sentations.2. Synchrony. We assume that subsystems takes steps together synchronously.Consequently, we can distinguish between two kinds of steps:� Primitive Steps. These are steps by ICS subsystems.� Global Steps. These are steps by the entire (or global) system. Suchglobal steps comprise a set of primitive steps, typically, one (or more)for each subsystem and the overall system behaviour is a sequence ofglobal steps.For ICS, the �ring of a transformation represents a primitive step and aglobal step collects together the �rings of all transformations in the currentcon�guration. Thus, all possible �rings must complete before a new global stepis started.Although, such a synchrony assumption is not discussed in the standardintroductions to ICS, e.g. [2], we believe that the resulting external behaviourof ICS faithfully re
ects the spirit of the model.2.2 ICS ScenariosWe consider how three cognitive tasks would be performed in ICS:-� reading;� speaking/pronounciation; and� pointing.each of which yields a particular con�guration of the ICS system. Then webuild a con�guration which combines all these subcon�gurations. This is theICS con�guration for deictic reference which will be used in section 6 and 7.Our discussion in this section mirrors that given in [21].2.2.1 The Reading Con�gurationThe reading con�guration is called confread and is shown in �gure 4. It inputsa
ow of sensory information (which is assumed to be amenable to a readinginterpretation, i.e. it can be decoded in to lexical items) at the VIS subsystemand then interprets it. The goal of this interpretation process is to associatesemantic meaning to the lexical items contained in the representations receivedat VIS. In order to do this a number of subsystems have be be used:12

MPL

PROP

OBJVIS
eye_vis

vis_obj

obj_mpl

obj_prop

prop_mplmpl_prop

prop_obj

Figure 4: The Reading Con�guration� VIS is obviously used, it acts on representations received from the eyes,and generates object representations on vis obj. These structure thesensory representations into a collection of visual objects and their rela-tionships.� OBJ interprets representations in object code using two output transfor-mations: obj prop and obj mpl. The �rst of which associates semanticmeaning to objects and relationships in the object representation. Thesecond transforms the object code into a \structured representation ofsound" which is input by the morphonolexical subsystem. This transfor-mation is required in order that the items being viewed can be given alexical interpretation.� PROP receives representations in propositional code which express thesemantic meaning of objects and relationships between objects. It trans-forms these representations using two output transformations: prop objand prop mpl which feed semantic information back to the object andmorphonolexical subsystems respectively. These feedback transformationsenable the
ows passing through OBJ (respectively MPL) to be interpretedin a more re�ned way using the semantic information determined at PROP.Three of the subsystems in confreading input from multiple sources: OBJ,PROP and MPL, each of which blends the two input
ows it receives. The blendingsat MPL and at OBJ are conceptually similar: they both blend the representationsreceived from PROP in order to enrich the other
ow received with extra semanticinformation, e.g. prop obj enriches the
ow from vis obj.13

MPL

PROP

OBJVIS
eye_vis

vis_obj

obj_mpl

obj_prop

prop_mplmpl_prop

prop_obj

ART

mpl_art
art_speech

Figure 5: The Pronounciation Con�guration2.2.2 The Pronounciation Con�gurationThe speech/pronounciation con�guration, see �gure 5, called confpron, is ob-tained from confread by adding the transformations mpl art and art speech.This enhancement enables the morphonolexical code received in the readingcon�guration by MPL to be interpreted as articulatory codes and output atart speech.2.2.3 The Pointing Con�gurationThe activity of pointing requires the involvement of a number of subsystems:� VIS to observe the object to be pointed at;� OBJ and PROP to interpret the representation received at VIS;� BS to give information about the position of (for example) the hand;� LIM to generate code for moving the hand in the required direction.The con�guration that results is shown in �gure 6.2.2.4 The Deixis Con�gurationThe con�guration for deictic reference combines the con�gurations just pre-sented. It is called confdeixis and is shown in �gure 7. We incorporate bodystate feedback into the con�guration. This will play an important role in thegoals that we formulate in section 5. Intuitively, the bs lim transformationprovides feedback on the current position of the limbs, which enables future14

PROP

OBJVIS
eye_vis

vis_obj

obj_propprop_obj

BS

LIM

body_bs

lim_hand

obj_lim

bs_lim

Figure 6: The Pointing Con�gurationlim hand transformations to be formulated correctly relative to the currenthand position. The bs art transformation behaves similarly, enabling speechto be formulated according to the current state of the mouth and vocal chords.2.3 DiscussionThis completes our exposition of ICS. It will be clear to the reader that the modelis both extensive and general. Consequently, when \realizing" the architecture,as we will do in the next sections, we will not be able to capture its full generality.A good example of this is in the modelling of representations which we willdo in a rather primitive manner. This is partially because formalizing suchrepresentations is a data modelling problem and here we wish to concentrate onissues of concurrent behaviour. However, although we do make simpli�cations,we believe that the realization we present faithfully captures the spirit andessential elements of ICS. We document simpli�cations whenever they arise.3 Concurrency TheoryA complete theory of concurrency is quite complex with a number of compo-nents, e.g.,� A Speci�cation Language - or perhaps we should, more broadly, say aspeci�cation notation since graphical (non-language notations) can alsobe found, e.g. StateCharts [23]. However, what we will discuss here isa language in the classical sense, i.e. a syntax for writing descriptions ofsystems.� A Semantics - Speci�cation languages are at the user level: users describetheir systems with them. However, it is typically more straightforward toformulate the mathematical properties of speci�cations at a lower level,e.g. in terms of the execution traces of a speci�cation. Such lower level15

MPL

PROP

OBJVIS
eye_vis

vis_obj

obj_mpl

obj_prop

prop_mplmpl_prop

prop_obj

mpl_art

ART
art_speech

BS

LIM

body_bs

lim_hand

obj_lim

bs_art

bs_lim

Figure 7: The Deixis Con�gurationmathematical models are called semantic models and a mapping, called asemantic map de�nes the semantic model that corresponds to a particularspeci�cation [53].� Relations - Speci�cations can be related by comparing their semantic inter-pretations; many such relations exist. In particular, equivalence relationscan be identi�ed [38, 52], which play the role of identity in formal theories,in the same way that = does in the theory of numbers.Since we will not be using any heavy weight theory, we will not generallybe concerned with the last two of these, rather almost all of what we presentwill be at the speci�cation language level; the interested reader is refered to[6, 38, 47, 52] for further information on the other levels.We will use a process calculus speci�cation language, called LOTOS: Lan-guage of Temporal Ordering Speci�cation [5] (we will also consider a speci�ca-tion logic in section 5). The choice of this method over, say, CSP [27] or CCS[38] is largely pragmatic: we have more experience with LOTOS and there are anumber of tools available which are well suited to the analysis we will perform.LOTOS is really two languages - a language for describing concurrent be-haviour and a data language. The former is used to specify the order in whichsteps are made and the latter is used to describe data types associated withthese steps.
16

The data language is an algebraic speci�caton language; ACT-ONE [15]7,which allows data types, such as natural numbers, booleans, queues, tuples, etcto be de�ned. In the body of the paper we will restrict ourselves to informaldescriptions of these data types; the appendix contains full de�nitions.We will not use all the LOTOS language and thus we will only introducethe parts we need. In addition, we simplify some of the LOTOS syntax. Thesublanguage that we use is formally presented in the appendix (section 9.1).For a full introduction the interested reader is refered to [5, 6]. In the follow-ing subsections, we slowly build up the language using fragments of our ICSspeci�cation for illustration.3.1 The Nature of LOTOS Speci�cationAvoidance of overspeci�cation, as discussed in section 1, is at the heart of processcalculi. In particular, it is important that the correct interpretation is imposedon LOTOS descriptions: they express the \possible external behaviour" of asystem. Speci�cations should be viewed as black boxes; they describe the orderof possible external interaction, but do not prescribe how that interaction orderis internally realised. Any physical system that realises the external behaviouris a satisfactory implementation.The concept of the environment that a speci�cation evolves in is crucialin obtaining this interpretation. The term environment refers to the behaviourthat the external observer of a system wishes to perform. Note that this externalobserver could be either human or mechanical. Conceptually, a LOTOS speci-�cation only de�nes \possibilities" for evolution of a system and it is throughinteraction with a particular environment that these possibilities are resolvedand realised. For example, if an environment cannot o�er an action that a spec-i�cation must perform deadlock will ensue. A deadlock is a state from whichthe system is unable to evolve.As an illustration, we might view a LOTOS speci�cation of ICS in the formdepicted in �gure 8, i.e. as a black box with interaction points, eye vis, lim leg,lim hand, body bs, art speech, art hand and ear ac. Such interaction pointsare called gates (the term port is also sometimes used). It is only through thesegates that an external observer can interact with the system.Gates reference locations at which interactions can take place. At such gatesactions are performed. These can be thought of as interaction activities, e.g.passing a value, sending a message or pressing a button8. In fact, the latter of7In fact, the choice of ACT-ONE as the LOTOS data language has not proved completelysuccessful [13] and in the current revision of the language [30] an alternative data language isbeing proposed.8An important theoretical aspect of actions is that they are atomic, i.e. they cannot bedivided in time. Consequently no two actions can occur at the same time and, thus, theoccurrence of actions cannot overlap. For example, performing an action at vis obj and ateye vis cannot happen at the same time. The atomicity of actions has important consequencesfor the modelling of concurrency, see for example [38, 6]. However, the restriction to atomicactions does not limit expressiveness, since non-atomic activities can be speci�ed in terms ofthe actions that delimit the activity, i.e. rather than de�ning an action which has duration we17

ICS

art_speech

body_bs

lim_leg lim_hand

ear_ac

eye_vis

art_hand

Figure 8: Black Box Interpretation of a LOTOS Speci�cation
ICS

art_speech

body_bs

lim_leg lim_hand

ear_ac

eye_vis

art_hand

Figure 9: Action O�ering as Buttons Popping Upthese yields a nice pictorial representation of interaction between environmentand speci�cation. LOTOS descriptions de�ne the order in which actions can beo�ered at gates. Thus typically, actions are only o�ered intermitently at gates.We can view the o�ering of an action to the environment as the popping upof a button. For example, �gure 9 depicts the situation in which an action iso�ered at art speech, but not at any other gate. The environment can decideto push art speech or to leave it unpushed. We could also have situations suchas that depicted in �gure 10 where both art speech and art hand are up andthe external observer has a choice of actions to perform.Actions come in two forms: basic actions and data passing actions . Theformer are unadorned gates. In ICS two such actions will be:tick and vis bufferedThe �rst is used to denote a clock tick and the latter is o�ered to the en-vironment when deciding whether a subsystem, here VIS, should enter bu�eredcan specify the atomic instant at which the activity starts and the atomic instant at which itstops. 18

ICS

art_speech

body_bs

lim_leg lim_hand

ear_ac

eye_vis

art_hand

Figure 10: Choice of Action O�ersmode.In contrast, data passing actions comprise a location for that interaction - agate and a data passing attribute that is associated with performing the action.This attribute can either correspond to outputting or inputting a value. Forexample, we could have outputting actions:vis obj!1 and obj mpl!2where vis obj and obj mpl are gates and 1 and 2 are representations (wewill model representations as natural numbers, since a richer model, such as thesuper/subordinate mechanism described in [2] is not required for our purposesin this paper). Thus, an action of the general form:g!Edenotes an output of the value of the (data) expression E on the gate g.Input actions can also be found in ICS, e.g.eye vis?r1:Rep and vis obj?r2:Repwhere eye vis and vis obj are gates and r1 and r2 are variables of typeRep, i.e. representations. The e�ect of an input action is to receive a value ona gate and associate that value (more precisely bind it) to a variable, here r1(and r2). Thus, an action of the general form:g?v:Tdenotes an input of a value on gate g, which is bound to a variable v of type T.Now importantly, two complementary actions can co-operate in performingan action (in precise terms they synchronise). For example, if,vis obj!1 19

is o�ered by one subsystem and,vis obj?r2:Repis o�ered by another subsystem, the two actions could be performed together.This is because they are complementary in the sense that they both take placeat the same gate, vis obj, and the �rst outputs a value, while the second inputsa value of the same type.A special distinguished action, i, is also used; it denotes an internal action,i.e. an action that is hidden from the external observer. The occurrence of aninternal action is not externally visible, thus, conceptually, no button is raisedwhen it is o�ered or pushed when it is performed. It is important to notethough that while an i action is not externally visible it may \indirectly" a�ectbehaviour that is externally visible. Typically an i action will represent aninternal decision, resolution of which, prescribes a particular visible behaviour.Internal actions play a central role in creating non-determinism, see section 3.6.3.2 Behaviour ExpressionsThe basic syntactic units of LOTOS speci�cation are behaviours. The operatorsthat we introduce will characterise the possible behaviours that can be writtenin LOTOS.There is one behaviour that we can highlight immediately, it is the nullbehaviour,stopwhich performs no actions and is synonymous with deadlock. stop is typi-cally used to terminate a non-null behaviour, i.e. it indicates that a point hasbeen reached at which no more behaviour can be performed.3.3 Process De�nitionAs suggested a number of times before, concurrent systems contain componentswhich evolve concurrently. Thus, in order to model such systems we clearlyneed a syntactic entity which corresponds to a component. In process calculi(hence their name) this syntactic entity is called a process .We de�ne processes using the syntax:P := Bwhere P is a process variable (i.e. a name for a process) and B is an arbitrarybehaviour. The e�ect of the de�nition is to associate (bind) the process variableP to the behaviour B. Thus, whenever we refer to P, B is executed.In our ICS speci�cation we will have processes for all the subsystems. Thesewill have the obvious names:VIS, OBJ, LIM, PROP, BS, IMPLIC, MPL, AC and ART20

We will also have a clock process called:CLOCKTo take a rather fatuous illustration, we could de�ne the process VIS as:VIS := stopwhich states that VIS cannot do anything, it just behaves as a stoppedsystem. In future sections we will give VIS a more interesting behaviour thanthis, you will be glad to know.We use the convention that all process variables will be written in capitals.3.4 SequenceBasic sequencing of actions is de�ned in LOTOS using action pre�x which hasthe general form,a;Bwhere a is an action and B is a behaviour. a;B is a behaviour that will o�eraction a to the environment and if it is taken will behave as B.We can also view a;B in terms of pushing buttons as a black box with a gatecorresponding to a (and gates for all the external actions in B). The button a isinitially the only button raised, if the environment pushes a then the black boxbehaves as B (e.g. new buttons will be raised).As an illustration of action pre�x,eye vis?r1:Rep ; stopwill o�er an action at gate eye vis (which binds a value to r1) and if it isperformed, will deadlock. In addition, the behaviour,vis normal ; VIS NORMALo�ers an action vis normal and if it is taken will invoke the process VIS NORMAL.This fragment of speci�cation models the VIS subsystem o�ering the environ-ment the chance to go into normal mode.3.5 ChoiceChoice is denoted,B1 [] B2and states that either behaviour B1 or behaviour B2 will be performed. Thechoice of which is determined by the �rst action of the two behaviours. Bothactions will be o�ered to the environment which will choose which of the twoto perform; this decision will resolve the choice.21

The necessity to o�er such choices largely arises because of the move tosystems which contain concurrency. A behaviour o�ering a choice of a numberof actions to perform is really o�ering a menu of possible interactions thatconcurrently executing components can select from. The behaviour is de�ningthe set of actions it is willing to react to.We can illustrate choice using the sequencing fragment highlighted at theend of the last subsection.vis normal; VIS NORMAL [] vis buffered; VIS BUFFMDwhich will o�er the environment the choice of performing vis normal (andinstantiating the process VIS NORMAL) or performing vis buffered (and instan-tiating the process VIS BUFFMD). The broad structure of our subsystems will be:VIS := vis normal;VIS NORMAL [] vis buffered;VIS BUFFMDwhere VIS NORMAL and VIS BUFFMD are subprocesses of VIS which respec-tively implement normal behaviour and bu�ered behaviour.We will also use a generalised choice operator, denoted,choice x:T [] B(x)where x is a variable, T is a type and B is a behaviour expression thatis parameterised on the variable x. The operator allows choice over a set ofparameterised behaviours. We will give an ICS illustration of its use in the nextsubsection.3.6 Non-determinismNon-determinism is de�ned in LOTOS as a special case of choice. Speci�cforms of choice yield a non-deterministic resolution of the alternatives [6]. Wewill consider just one such form:-i; B1 [] i; B2The non-determinism arises because selection between the two initial actionsof the choice is beyond the control of the environment, since the initial evolutionof the behaviour is completely hidden from the external observer; in terms ofbutton pushing, no buttons are raised. Thus, a wholely internal choice will bemade to either evolve to behaviour B1 or to evolve to behaviour B2.Non-determinism plays a number of roles in process calculi. In general itacts as an abstraction device. For example, non-determinism is often introducedwhen at a certain level of system development, we wish to abstract away froma particularly complex mechanism.As an example from ICS, consider a transformation acting in bu�ered mode,say vis implic, which rather than selecting from the VIS input array selectsfrom VIS's image record. The question this raises is which element of the imagerecord does vis implic select. Well there are many possible mechanisms and22

rather than delving into the intricacies of them, we simply abstract away fromthe issue and view selection from the image record as non-deterministic. Wecould describe the selection in the following way:i; SELECT(0) [] i; SELECT(1) [] i; SELECT(2) ...where SELECT(j) indicates selection of the jth entry in the image record.Due to the in�nite number of options here we would actually write this usinggeneralised choice as:choice x:Nat [] i; SELECT(x)where Nat is the type of natural numbers.What we are really doing here is abstracting away from the speci�c mecha-nism by which selection occurs. We are stating that some internal mechanismcould occur and result in a selection being made, but at the particular level ofabstraction we are considering, we are not interested in how this happens.Non-determinism is also used in speci�cation to allow implementation free-dom. A non-deterministic choice between evolving to B1 or to B2 can be viewedas stating that implementations that behave in either way are satisfactory. Inother terms, the speci�er does not mind whether the system behaves as B1 oras B2. Such non-determinism may then be re�ned out during development.3.7 Concurrency3.7.1 Independent ParallelismWe begin with a special case of concurrency; this has the form,B1 ||| B2which states that the two behaviours B1 and B2 evolve independently inparallel (we will refer to B1 and B2 as parallel threads). Independent in thiscontext means that there is no shared behaviour, which would arise if B1 andB2 performed actions together.We will use this construct in order to describe the behaviour of subsystemswhen they are working in normal or bu�ered mode. For example, we can state,as follows,vis obj!1; stop ||| vis implic!1; stopthat the output transformations of VIS are independent of one another.Furthermore, input and output activity will be independent of each other.Thus, a basic structure for VIS NORMAL could be:VIS_NORMAL :=(eye_vis?r1:Rep; stop)(* Input Ports *)|||(vis_obj!1; stop ||| vis_implic!1; stop)(* Output Ports *)23

stating that VIS NORMAL's three transformations are performed indepen-dently in parallel of one another. Text within (* and *) are comments.This process structure is general to all ICS subsystems, e.g. a description ofOBJ NORMAL would have the form:-OBJ_NORMAL :=(vis_obj?r1:Rep; stop ||| prop_obj?r2:Rep; stop)(* Input Ports *)|||(obj_mpl!1; stop ||| obj_prop!1; stop||| obj_lim!1; stop)(* Output Ports *)which has the same form as VIS NORMAL only we have di�erent kinds andnumbers of transformations.As it stands, these descriptions of VIS NORMAL and OBJ NORMAL are verylimited: they just perform a set of transformations and then deadlock. However,subsystems should clearly be able to perform their transformations repeatedly.This is something we will consider shortly.3.7.2 General FormAs already stated, independent parallelism is a speci�c class of concurrent be-haviour. Concurrency, in its most general form, is denoted,B1 |[x1,...,xn]| B2which states that B1 and B2 evolve independently in parallel subject to thesynchronisation of actions x1,...,xn, i.e. an action xi (1 � i � n) appearing ineither B1 or B2 can only be executed if it synchronises with an xi in the otherbehaviour.As an example, we can compose the two processes, VIS NORMAL and OBJ NORMALtogether in parallel, subject to synchronisation on the common action, vis obj:VIS NORMAL |[vis obj]| OBJ NORMALwhich expresses that the processes VIS NORMAL and OBJ NORMAL will performall actions separately, apart from vis obj, which they will perfom together.Such synchronisation has two implications:-1. Synchronising processes wait for one another. For example, if VIS NORMALreaches a point where it wishes to perform vis obj, it must wait forOBJ NORMAL to be ready before it can do it. Thus, when attempting toperform synchronised actions processes become blocked waiting for partnerprocesses.2. Data attributes must match. With VIS NORMAL and OBJ NORMAL this con-straint is met since VIS NORMAL outputs a representation on vis obj, i.e.it performs, 24

vis obj!1while, OBJ NORMAL inputs a representation on vis obj, i.e. it performs,vis obj?r1:RepWhen synchronisation occurs, the value 1 is bound to the variable r1.The rules for matching of data attributes are a little subtle and we willnot delve into their intricacies, see [5] for an explanation.We call |[...]| generalised parallelism since independent parallelism can bederived from it, B1 ||| B2 = B1 |[]| B2, i.e. general parallel composition withan empty synchronisation set (a further operator B1 || B2, fully synchronisedparallelism can also be derived, but we will not need it here).3.8 RecursionAs just discussed, speci�cations are not particularly interesting unless they con-tain repetitive behaviour. Process calculi use recursion in order to do this. As avery simple illustration we will use a clock process, which is de�ned as follows:-CLOCK := tick; CLOCKwhich will o�er a tick action and then recur (by instantiating itself again).It will perform an in�nite number of �nite traces of the form9:ticktick ticktick tick tick........3.9 EnablingAction pre�x de�nes sequencing for actions, however, we would also like tode�ne sequencing of complete behaviours. This is supported by enabling,B1 >> B2which will evolve as B1, then if B1 terminates successfully, it will behave asB2. The concept of successful termination is pivotal here. We do not wish B1>> B2 to evolve to B2 unless B1 completes its evolution. In particular, if B1 is ina deadlock state we would wish B1 >> B2 to also deadlock. Thus, we introducea distinguished behaviour,9In fact, we can give a number of di�erent interpretations to such recursive behaviour,including in�nite trace semantics [47]. However, the standard approach is to use �nite tracessince these re
ect the role of the environment and the reactive nature of the model - we areinterested in what can happen over time rather than the terminal behaviour. At a particulartime the system will have performed some �nite trace of the recursive behaviour.25

exitto denote successful termination.Returning to our speci�cation of VIS NORMAL, we will replace the stop stateswith successful terminations in order that we can evolve through enabling toVIS NORMAL again. The desired behaviour is:VIS_NORMAL :=(eye_vis?r1:Rep; exit)(* Input Ports *)|||(vis_obj!1; exit ||| vis_implic!1; exit)(* Output Ports *)>> tick; VIS_NORMALThis process will perform some interleaving of the actions: eye vis, vis objand vis implic; then a successful termination will take place, from which atick is performed (this is used to control synchronous behaviour, see discussionin section 4.2.2) then VIS NORMAL is called recursively. An important aspect ofsuccessful termination is that if a number of parallel threads exist, they mustall terminate before the whole behaviour can terminate. Thus, all the threethreads:eye vis?r1:Rep;exit , vis obj!1;exit and vis implic!1;exitmust terminate before the enabling operator >> can �re.3.10 Hiding and RelabellingThese are the �nal operators of this section. The �rst, hiding, has the form,hide x1,....,xn in Bwhere x1,....,xn are observable actions and B is an arbitrary behaviour.The operator behaves as B except that all actions in x1,....,xn are turned intointernal actions.Hiding enables information hiding: actions which are observable at one levelof speci�cation can be transformed into hidden actions at another level. Thus,behaviour that should not be visible, can be hidden. In e�ect, such hidingsupports a form of abstraction, since the complexity of a part of the system isabstracted away from, by hiding it, when specifying another part.As an illustraction, ICS contains a number of transformations which canbe viewed as internal to the full system. Thus, we will naturally hide thesetransformations when we build the top level system. As an illustrative fragment,we might hide vis obj, vis implic, prop obj, obj mpl, obj prop and obj limin our composition of VIS NORMAL and OBJ NORMAL,26

hide vis_obj, vis_implic, prop_obj,obj_mpl, obj_prop, obj_lim inVIS_NORMAL |[vis_obj]| OBJ_NORMALleaving only the sensory subsystem action eye vis observable.A relabelling operator is also provided. It has the form:B n [x1/y1,....,xn/yn]where x1,...,xn, y1,....,yn are actions. It behaves as B apart from thefact that the occurrence of any action yi is replaced by the action xi.As an ICS illustration, we will de�ne processes to perform blending. Thesede�ne blending mechanisms that are general, in the sense that they are de�nedover an arbitrary gate, g say. Then we specialise these general mechanisms usingrelabelling, e.g. if,BLENDis such a process, we might specialize it to act on the transformation obj propby invoking:BLEND n [obj prop/g]4 Speci�cation of ICSIn this section we use the operators introduced in the last section to build aspeci�cation of ICS. The extra speci�cation features we will need concern datatypes; these will be introduced in the next subsection (subsection 4.1). Then insubsection 4.2, we present the full ICS description.4.1 Data Types in ICSAlthough we will treate representations in a very simple way, we will use anumber of other data structures in our speci�cation. We introduce each of themain data types in turn:Representations. We assume a type10.Repof representations, which we de�ne as a type synonym for Nat (i.e. Rep isjust a di�erent name for Nat), the natural numbers. Thus, the elements of Repwill be:0, 1, 2, 3,10Note what we refer to as types are called sorts in ACT-ONE.27

and we can use the natural number operations, e.g. +, =, �, with represen-tations. By convention, 0 denotes a \null" representation, i.e. one that doesnot contain any information. We give a more indepth justi�cation for using thenatural numbers as representations at the start of subsection 5.4.Input Array. We model the input array using a 4-tuple. This use of a statictype, i.e. one with a �xed size, is only su�cient because no subsystem hasmore than 4 source subsystems The use of static types pervades all our datatypes. This is not an optimal or particularly elegant solution, in particular,the resulting data types are not easily extended, however, we have adopted itbecause it enables us to restrict ourselves to simple data types. Thus, we assumea type,inArrof 4-tuples of representations. In the sequel we will refer to elements of tuplesas slots. Typical elements are:#(2,3,0,4) , #(0,0,0,0) , #(1,2,1,3)where the four elements of the tuple are indeed representations. Notice thesecond of these denotes a null input array.The only operation de�ned over inArr is accessing elements of the array,iaget : indices, inArr -> Repwhich when given an index (we have four indice j0, j1, j2 and j3, whichindex corresponding entries in an input array) and an input array, returns therepresentation that is located at that slot, e.g.iaget(j0 , #(2,3,0,4)) = 2 andiaget(j1 , #(2,3,0,4)) = 3Each subsystem will have an input array, of type inArr, and each slot in theinput array will receive input from a particular source subsystem. For example,prop has three input transformations:obj prop, implic prop, mpl propsuch that obj prop maps into slot 0, implic prop maps into slot 1 andmpl prop maps into slot 2. Clearly, since PROP only has three input transforma-tions, there will be an empty slot - the 4th slot. We adopt the convention thatnull representations are placed in empty slots.This use of a static type, i.e. one with a �xed size, is only su�cient because nosubsystem has more than 4 source subsystems The use of static types pervadesall our data types. This is not an optimal or particularly elegant solution, inparticular, the resulting data types are not easily extended, however, we haveadopted it because it enables us to restrict ourselves to simple data types.28

Image Record. We model image records as queues, where the elements ofthe queues are input arrays (in fact, many di�erent varieties of dynamic datastructure could be used here. We use queues because they are very easy to workwith in ACT-ONE.). The type of image records is denotedimRcThe full de�nition of the imRc type can be found in the appendix. Here wesave the reader the details, but simply introduce the main operations, that wewill need. Firstly, we assume a constant,nilwhich denotes an empty image record. Secondly, the operator,add : inArr, imRc -> imRcadds an element, i.e. an input array, to an image record, returning a newimage record. Thirdly, the operation,select : Nat, inArr, imRc -> inArrgets an element from the image record. It takes a number (indicating whichelement in the image record is sought), an input array (which is not actuallyused in our current implementation11) and an image record and returns the itemsought.As an illustration, let ir denote the two element image record constructedas follows:ir = add(#(1,2,1,3), add(#(2,3,0,4),nil))Then,select(0 , iA , ir) = #(2,3,0,4),select(1 , iA , ir) = #(1,2,1,3)for any input array iA and by default,select(x,iA,ir) = #(0,0,0,0)for all x> 1, i.e. selecting beyond the maximum element gives a null response.Transformation Maps. This is an important data structure that we havenot considered before. In fact, it does not appear in the basic formulationof ICS. We use it in order to record the slots in the input array from whicha particular output transformation takes representations. Remember, that anoutput transformation can be a blend of a set of representations (where eachrepresentation is taken from a particular slot in the input array).The transformation map is de�ned using two (4-tuple) types. Firstly, weassume a type:11The input array is included in the selection processes as a place holder for a more sophis-ticated select operation which choses elements from the image record according to what iscurrently in the input array. However, this extra sophistication is not yet implemented.29

slotmapof 4-tuples of booleans, a typical element might be:#(true,false,true,false)which indicates the slots in the input array that are relevant for (i.e. needto be blended by) a particular output transformation. In the sequel we will usethe term alive to describe the slots that are prescribed by a slot map.As an illustration, if this slot map was associated with the IMPLIC outputtransformation:implic propit would indicate that the representation to be transmitted over implic propmust be a blend of the 0th and the 2nd slots of IMPLICs input array.We assume an accessing function smget, e.g.smget(j0,#(true,false,true,false) = true andsmget(j3,#(true,false,true,false) = falseThen we build a data type of transformation maps, denoted,Mapwhich is a 4-tuple of slotmaps. For example, if associated with IMPLIC, thetransformation map:#(#(true, false, true, false),#(false, true, false, false),#(false, false, true, false),#(false, false, false, false))would indicate that output transformation,0 (i.e. implic prop) uses the 0th and 2nd slots1 (i.e. implic visc) uses the 1st slotetc,We also have an accessing operator over maps, mpget, which, for example,if we let m denote the transformation map just shown, will behave as follows:mpget(j0,m) = #(true, false, true, false)mpget(j2,m) = #(false, false, true, false)smget(j1,mpget(j2,m)) = falseTransformations. We assume a type, Subsyst, of constants:VISS, OBJJ, LIMM, IMPLICC, BSS, MPLL, ACC, ARTT30

one for each subsystem. Then we de�ne an operation:tran : Subsyst, Subsyst, Rep -> Repwhich when given a source and a target subsystem implements a particulartransformation. For example,tran(IMPLICC,PROPP,r)applys the implic to prop transformation to a representation r.Ultimately tran will perform transformations on representations, e.g. in thesuper/subordinate style outlined in [2]. However, for the moment we simplyinclude a place holder for such mappings and view all transformation operationsas the identity, i.e.tran(s,t,r) = rfor all subsystems s and t and representations r4.2 Complete Speci�cation4.2.1 General Subsystem FormatAs a typical subsystem we build up the full OBJ speci�cation.Top Level Behaviour of Subsystems. Firstly, the OBJ process has the top-level behaviour:-OBJ(iR:imRc,iA:inArr,m:Map) :=obj_normal; OBJ_NORMAL(iR,iA,m)[]obj_buffered?b:indice; OBJ_BUFFMD(iR,iA,m,b)which is in the same form as that presented in the previous subsection apartfrom some data aspects. OBJ is now a process with data parameters:iR of type imRc , iA of type inArr and m of type Mapcorresponding to the image record, input array and transformation map for OBJ.The process o�ers the environment the choice of entering normal mode orbu�ered mode. The variable b is used to indicate which transformation willbecome bu�ered.Blending. As suggested earlier, we use non-determinism to abstract away fromparticular mechanistic interpretations of blending. We can illustrate the generalissue of blending as follows:-Consider the output transformation, obj mpl; if this transformationuses representations from more than one slot in OBJs input array(the transformation map will prescribe this), i.e. slots 0 and 1, thenblending determines which representation obj mpl will act upon12.12We say \act upon" rather than \transmit" because if we consider the full ICS functionality,obj mpl can apply an information transforming mapping to the representation it acts upon.31

As discussed earlier, a central concept in blending is consistency of repre-sentations. Since we are using natural numbers to denote representations, anobvious way to model consistency is as (natural number) equality. This leadsto an admittedly very coarse interpretation of consistency, but it will su�ce forthe analysis we have in mind.We can consider a number of di�erent possible forms of blending, whichvary in their level of non-determinism. In our presentation we continue to useobj mpl in OBJ as our example transformation. We assume that representationr0 is in slot 0 and r1 is in slot 1.1. Fully Non-deterministic. Under this approach one value from the set ofall possible representations is non-deterministically selected for obj mplto act upon. Importantly, no attention is paid to the items in the inputarray. Selection is made completely non-deterministically over the set ofall representations.This behaviour can be realised with the following LOTOS process:-BLEND1(X,Y:Subsyst) :=choice r:Rep [] i; g!tran(X,Y,r); exitwhich inputs two subsystem constants indicating the source and desti-nation of the transformation to be performed and then o�ers a non-deterministic choice of the transformation acting on any possible repre-sentation.A particular instantiation of this process might be:BLEND1(OBJJ,PROPP)n[obj prop/g]which, on invocation, will bind OBJJ to X as the source of the transfor-mation, PROPP to Y as the destination of the transformation and will alsorelabel the gate g to obj prop.Due to the looseness of speci�cation involved, this approach yields someodd behaviour. For example, although OBJ might receive stable and con-sistent inputs in slots 0 and 1 if BLEND1 is applied, obj mpl might actupon an unstable
ow which has no relation to the representations input.The reason for considering such a non-deterministic approach is that itprovides an upper bound (in terms of loose speci�cation) on blending.Importantly, all other solutions will, in computer science terms, be re-�nements of such a fully non-deterministic blending. The useful propertythat this yields is that anything we can prove about ICS with fully non-deterministic behaviour will also hold of any re�nement. It might be thatwe cannot prove much about such an abstract speci�cation, however, weknow that what we can prove will hold of all ICS implementations. Thesubsection 9.6 in the appendix contains a formal justi�cation of this state-ment. 32

2. Non-deterministic Information Preservation. According to this approach,we do consider the relevant slots in the input array. However, our strat-egy is very simple: we just make a non-deterministic choice between actingupon r0 and acting upon r1. This approach has some interesting charac-teristics:� If r0 = r1 (i.e. they are consistent) then the (common) consistentrepresentation is automatically acted upon. Furthermore, if inputsto slots 0 and 1 are stable then the blended
ow acted upon byobj mpl will also be stable.� If r0 6= r1 (i.e. they are inconsistent) then obj mplwill act upon a
owthat is made up of a mixture of r0s and r1s (the mixture arising fromthe non-determinstic choice). Consequently, inconsistency over timebetween r0 and r1 will yield a \randomly varying"
ow at obj mpl13.Although still non-deterministic this approach is clearly more determinis-tic than approach 1. We can implement it as follows in LOTOS:BLEND2(X,Y:Subsyst,id:indice,iA:inArr,m:Map) :=choice j:indice [] [smget(j,mpget(id,m))] ->i; g!tran(X,Y,iaget(j,iA)); exitwhich has a similar structure to BLEND1 except:� It has extra parameters, id, iA, m, which respectively reference theindex of the transformation being applied; the input array and thetransformation map currently being used.� The non-deterministic choice here is more restricted than that inBLEND1. The choice is parameterised on the four possible indice.Then the guard14.[smget(j,mpget(id,m))] ->determines which index is \alive". It does this by accessing the rel-evant slot map (i.e. the idth) in the transformation map m and thenseeing if the jth element in this slot map is prescribed.� If j is alive iaget accesses the entry it prescribes in the input arrayiA.3. Deterministic Information Preservation. If r0 6= r1 (i.e. they are incon-sistent) then obj mpl might act upon the null representation, 0. The13The term randomly varying here is somewhat loaded, by its nature non-deterministicselection will also allow an implementation in which just one of the two slots is always sampledfrom and thus, stability could be regenerated from inconsistent inputs.14With bc a boolean condition, the syntax for a guard, [bc]->B will evolve to behaviour Bif bc holds, otherwise it will deadlock. 33

intuition being that since r0 and r1 are not blendable this should be re-
ected in the representation acted upon. Alternatively, if r0 = r1 (i.e.they are consistent) this approach preserves the consistent representationand obj mpl acts upon it.The following process implements this behaviour:BLEND3(X,Y:Subsyst,id:indice,iA:inArr,m:Map):=g!tran(X,Y,compare(mpget(id,m),iA)); exitwhere,compare : slotmap, inArr -> Reptakes a slotmap and an input array and relates the representations in allalive slots (as determined by the slotmap). It behaves as follows:If all alive slots are equal it returns that representation otherwiseit returns 0.The de�nition of compare can be found in the appendix.4. Consistent Information Generation (or Consistent Multiplicative Blend-ing). By this approach, when r0 = r1 we blend r0 and r1 and generate anew representation, which is conceptually a composite of r0 and r1. Withnatural numbers modelling representations we choose to multiply r0 andr1 together15. In addition, if r0 6=r1 we return 0.We can implement consistent multiplicative blending as16:BLEND4(X,Y:Subsyst,id:indice,iA:inArr,m:Map):=let sm:slotmap=mpget(id,m) in([equal(sm,iA)] -> g!tran(X,Y,mult(sm,iA)); exit[][not(equal(sm,iA))] -> g!0; exit)which with its �rst guard multiples representations in slots that are \alive".It uses mpget to access the relevant slot map in m and then it applies anoperation,mult : slotmap, inArr -> Rep15In general, such an approach ensures that any representation blended with the null rep-resentation inherits its instability, i.e. 8x : x � 0 = 0. In addition, it implies a special class ofblending if one of the representations is 1, i.e. 8x : x � 1 = x. Thus, we do not yield a newrepresentation in this case. In general, we assume all non-null representations are bigger than1, in order to avoid this situation.16The let construct enables local de�nitions to be made, e.g. here we de�ne a variable smwhich is used in the body of the let construct.34

which multiplies together representations in alive slots. The de�nition ofmult can be found in the appendix.In addition,equal : slotmap, inArr -> Booltakes a slotmap and an input array and relates the representations in allalive slots (as determined by the slotmap) for equality. This de�nition isalso in the appendix.5. Crude Information Generation (or Crude Multiplicative Blending). Inthis approach multiplicative blending is crudely applied, whether or notthe representations to be blended are consistent. It can be implementedas,BLEND5(X,Y:Subsyst,id:indice,iA:inArr,m:Map):=g!tran(X,Y,mult(mpget(id,m),iA)); exitNormal Mode. We can now present the full behaviour of OBJ NORMAL, it is,OBJ_NORMAL(iR:imRc,iA:inArr,m:Map) :=((vis_obj?r1:Rep; exit(r1,any Rep) |||prop_obj?r2:Rep; exit(any Rep,r2))(* Input Ports *)|||(BLENDk(OBJJ,MPLL,j0,iA,m)\[obj_mpl/g] >> exit(any Rep,any Rep)||| BLENDk(OBJJ,PROPP,j1,iA,m)\[obj_prop/g] >> exit(any Rep,any Rep)||| BLENDk(OBJJ,LIMM,j2,iA,m)\[obj_lim/g] >> exit(any Rep,any Rep))(* Output Ports *))>> accept r1,r2:rep intick; OBJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)The new aspects are:-� In a similar way to OBJ, OBJ NORMAL is now parameterised on the imagerecord, input array and transformation map.� We use parameterised successful termination. For example,exit(r1,any Rep)denotes a successful termination where two values are past through thetermination. The �rst is the value of the variable r1 and the secondis unprescribed, i.e. it could be any representation; it is typically pre-scribed by the exit processes that terminate alternative parallel threads,e.g. exit(any Rep,r2) above. 35

� As suggested by our blending discussion, each output transformation isnow applied through a process invocation, here BLENDk (the k determiningwhich blending strategy to use).� Companion to the parameterised termination is parameterised enabling.Thus, the enabling, >>, is followed by the behaviour:accept r1,r2:rep intick; OBJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)which will accept two values through the enabling (which are exactly thoseyielded by the parameterised termination), bind them to the variables r1and r2 and then evolve to:tick; OBJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)� Finally, we reinstantiate OBJ with a new input array:#(r1,r2,0,0)which is also added to the front of the image record. The transformationmap is returned unchanged.Bu�ered Mode. We can also show how bu�ered mode behaviour is realised.The key change here is to select from the image record when blending ratherthan from the input array. The following process gives a generic implementationof such a mechanism. The process is called OUTPUTk, where the k determines theblending strategy used. It encapsulates the behaviour of an arbitrary outputtransformation.OUTPUTk(X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map):=([b eqq j] -> choice n:Nat [] BLENDk(X,Y,j,select(n,iA,iR),m)[][b neq j] -> BLENDk(X,Y,j,iA,m))The process has the following parameters:� X, Y determine the transformations being realised;� b is a variable that states the indice that corresponds to the currentlybu�ered transformation;� j is the index of the current transformation.� iR, iA and m are respectively the relevant image record, input array andtransformation map.As an illustration, we could instantiate the process as follows:-36

OUTPUTk(OBJJ,PROPP,j1,j1,iR,iA,m)\[obj_prop/g]which implements the output transformation obj prop and speci�es that itis in bu�ered mode.The behaviour of OUTPUTk de�nes the necessary bu�ered behaviour. In par-ticular, if the transformation being considered is bu�ered (as determined by thecomparison between b and j) then the input array on which blending will beapplied is non-deterministically selected from the image record using the opera-tion select, which was described earlier. Thus, selection from the image recordis completely non-deterministic. Other implementations could be consideredbut this simple implementation is satisfactory for this paper. Alternatively, ifthe current transformation is not bu�ered then blending is applied on the inputarray.The overall behaviour of OBJ BUFFMD is:OBJ_BUFFMD(iR:imRc,iA:inArr,m:Map,b:indice) :=((vis_obj?r1:Rep; exit(r1,any Rep)||| prop_obj?r2:Rep; exit(any Rep,r2))(* Input Ports *)|||(OUTPUTk(OBJJ,MPLL,b,j0,iR,iA,m)\[obj_mpl/g] >> exit(any Rep,any Rep)|||OUTPUTk(OBJJ,PROPP,b,j1,iR,iA,m)\[obj_prop/g] >> exit(any Rep,any Rep)|||OUTPUTk(OBJJ,LIMM,b,j2,iR,iA,m)\[obj_lim] >> exit(any Rep,any Rep))(* Output Ports *))>> accept r1,r2:rep intick; OBJ(add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)Notice that the behaviour of OBJ BUFFMD is determined by the value of b pastto it - if b equals j0 then, obj mpl goes into bu�ered mode, while if b equals j1,then, obj prop goes into bu�ered mode and if b equals j2, then obj lim goesinto bu�ered mode.4.2.2 Top Level behaviourAll subsystems have the same basic format as that just shown for OBJ. The onlydi�erences are that di�erent transformations are �red in di�erent subsystemsand the number of transformations may be di�erent. However, using the gen-eral format just outlined, the reader can determine the make-up of particularsubsystems, by considering �gure 3.Using these subsystems we can de�ne the top level behaviour of ICS asfollows:hide vis_implic, vis_obj, obj_mpl, obj_prop,obj_lim, implic_prop, implic_som, implic_visc,prop_mpl, prop_implic, prop_obj, bs_art, bs_lim,37

bs_implic, ac_mpl, ac_implic, mpl_art, mpl_propin(clock|[tick]|(tick;((((((((VIS(nil,#(0,0,0,0),VISmap)|[vis_obj,tick]|OBJ(nil,#(0,0,0,0),OBJmap))|[obj_lim,tick]|LIM(nil,#(0,0,0,0),LIMmap))|[vis_implic,tick]|IMPLIC(nil,#(0,0,0,0),IMPLICmap))|[obj_prop,implic_prop,prop_obj,prop_implic,tick]|PROP(nil,#(0,0,0,0),PROPmap))|[bs_implic,bs_lim,tick]|BS(nil,#(0,0,0,0),BSmap))|[obj_mpl,prop_mpl,mpl_prop,tick]|MPL(nil,#(0,0,0,0),MPLmap))|[ac_mpl,ac_implic,tick]|AC(nil,#(0,0,0,0),ACmap))|[mpl_art,bs_art,tick]|ART(nil,#(0,0,0,0),ARTmap))|[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]|tick; buffConstraint))This construction follows the format of ICS given in �gure 3. However, inaddition we compose in parallel a clock process which forces the synchronousbehaviour we discussed in section 2 and a bu�er constraint which enforces theconstraint that only one transformation can be bu�ered at any one time. Inaddition, we hide all transformation that are neither e�ector or sensor actions.Subsystems are invoked with null image records and input arrays and witha particular transformation map. The make-up of each transformation map isde�ned before the particular subsystem is invoked, see the complete speci�catonof ICS to be found in the appendix.Bu�er Constraint. The bu�er constraint is de�ned as follows:buffConstraint :=obj_buffered?b:indice; tick; buffConstraint[]vis_buffered?b:indice; tick; buffConstraint[]lim_buffered?b:indice; tick; buffConstraint[]implic_buffered?b:indice; tick; buffConstraint38

...
...
.

...
...
.

...
...
.

...
...

.

tick

...
...
.

...
...
.

...
...
.

...
...

.

tick...
...
.

.....
tick...

...
.

.....

Figure 11: Synchronous Behaviour[]prop_buffered?b:indice; tick; buffConstraint[]mpl_buffered?b:indice; tick; buffConstraint[]ac_buffered?b:indice; tick; buffConstraint[]art_buffered?b:indice; tick; buffConstraint[]bs_buffered?b:indice; tick; buffConstraint[]tick; buffConstraintwhich ensures that the environment cannot select more than one action ofthe form Y buffered on each iteration of the system. This prevents more thanone subsystem entering bu�ered mode. The possibility that no subsystem isbu�ered is accommodated by the behaviour,tick; buffConstraintSynchronous Behaviour. It is also worth recapping on the issue of the overallformat of ICS behaviour. As discussed earlier, we interpret the behaviour of ICSin a synchronous manner. Evolution of our speci�cation has the general formatshown in �gure 11 where each synchronous step appears as a fan out of actions.This fan out contains an arbitrary interleaving of all ICS transformations. Thus,all transformations must complete before the next tick takes place.39

5 Goal Formulation in Interval Temporal Logic5.1 BackgroundWe now begin to consider what properties our ICS speci�cation exhibits. Wecall these properties goals . They express possible global behaviours of ICS andwe would like to verify whether our LOTOS speci�cation of ICS can indeedexhibit these behaviours.It is important to understand the nature of these goals. Speci�cally, we willbe interested in showing,what behaviours ICS can and what behaviours it cannot exhibit.however, we will at no stage verify that it must perform a particular task17.The goals we analyse are taken from previous syndetic modelling work. Inparticular, we consider two goals discussed in the work of Duke et al [18] andfour goals discussed in the work of Faconti et al [21]. These goals concern thecapability of ICS to perform particular forms of diectic reference and they areall formulated over the same ICS con�guration - confdeixis which we introducedin subsection 2.2.4.The next subsection 5.2 introduces the goal formulation notation that we willuse, this is called interval temporal logic. Then subsection 5.3 introduces someuseful operators that can be derived from the basic logic. Finally, subsection5.4 formulates the ICS goals that we are interested in in the interval temporallogic. We also give a number of axioms for the logic in the appendix which areused in our proofs.5.2 Interval Temporal LogicWe formulate our goals in a form of temporal logic called Interval TemporalLogic (ITL) [40]. The choice of temporal logic as a notation for formulatingglobal properties/requirements of parallel systems, which is what our goals canbroadly be interpreted as, is well accepted in concurrency theory [34]. Thechoice of ITL from the canon of temporal logics is perhaps less obvious. Themain reason for this choice is that the type of goals we formulate seem to beelegantly expressed in ITL. This is mainly because stability can very naturallybe expressed in such a logic.The ITL we use is called Mexitl; it was developed with application in themultimedia �eld in mind [8, 9, 11], however, it seems to also be well suited toour goal formulation. Indepth introductions to the logic can be found elsewhere[8], here we restrict ourselves to a brief introduction.Intervals. ITL's are de�ned over �nite traces, called intervals, which representruns/executions of a system (here ICS). Such intervals provide a semantic linkbetween our LOTOS description of ICS and the goals that we formulate in17This distinction is related to the distinction between may and must testing [24].40

Mexitl. In particular, intervals can be derived from LOTOS speci�cations; wegive such a semantic map in the appendix of this paper.As an illustration of intervals consider the intervals generated from the exe-cution of a single process, e.g. OBJ. A typical such interval would be:obj_normal prop_obj_4 obj_mpl_2 vis_obj_0 obj_prop_2 obj_lim_0i tick obj_normal obj_mpl_4 obj_lim_4 prop_obj_4 vis_obj_0 obj_prop_4i tickwhich represents the sequence of actions performed in a particular run ofOBJ. The run contains two iterations of the process, i.e. the complete set ofactions of the process are executed twice and these executions are divided by atick action. Observe the following points:� The OBJ transformations are arbitrarily interleaved18 and thus occur indi�erent orders in the two iterations.� The data element of actions is
attened out. For example, we denote aparticular instance of the action vis obj?r1:Rep happening as vis obj 0which indicates that the variable r1 is instantiated by the null represen-tation.� The internal actions appearing in this interval arise from the �ring of theenabling operator; see [5] for a discussion of the semantics of enabling.It is also worth pointing out that in interval temporal logic terms, these arevery simple interval models. In particular, the items in the traces are simplyactions. More sophisticated intervals also include data state valuations in suchitems, but this sophistication will not be required here.Mexitl Operators. We only consider a subset of the full Mexitl notation. Itcontains the following propositions, where P is an arbitrary proposition.P ::= a j p(E1; :::; En) j E = E j False j P) P jlen(n) j P ; P j P proj P j (9x 2 T)Pwhere a 2 Act; p is in a set of given predicates and E is an expression. Wehave the following operators:� Firstly we assume a simple expression language, which enables us to writeexpressions such as a+ 5.18The most standard approach for modelling concurrent behaviour in process algebra is touse interleaving. Thus, the actions of two (independently) concurrent behaviours are arbitrar-ily interleaved. For example, a b c, a c b and c a b are all traces of the behaviour, a; b;stop ||| c; stop. The use of interleaving to model concurrency is justi�ed by the assump-tion that all actions are atomic. Thus, no two actions can occur at overlapping instances -one must always get in before any of the others.41

P ; Q

P QFigure 12: The Chop Operator� p(E1; :::; En) denotes evaluation of a predicate according to n expressions.In standard fashion, we will often write binary predicates in�x, e.g. x < 10.� E = E gives equality of expressions, e.g. a+ 5 = b.� False and P) P are the familiar connectives of classical propositionallogic.� len is the length operator which measures the length of an interval. Byconvention the one item interval has length 0 and accordingly the n iteminterval has length n-1; i.e. len measures the number of transitions be-tween items rather than the number of items themselves. len(15) holdsover the OBJ interval that we highlighted above.� ; is the sequencing operator, chop, familiar from [40]. An interval satis�esP ; Q if the interval can be divided into two contiguous sub-intervals (withthe end-point of the �rst and the �rst-point of the second interval shared),such that P holds over the �rst sub-interval and Q holds over the second,see �gure 12. In this depiction intervals are represented as line segments.� proj is the projection operator, also described in [40]. An interval satis-�es P proj Q if it can be sub-divided into a series of sub-intervals eachof which satis�es P - we call P the projection formula - and a new intervalformed from the end points of the sub-intervals satis�es Q, which we callthe projected formula, see �gure 13. In this depiction, Q holds over theinterval formed by concatenating together the points shown.� (9x 2 T)P gives existential quanti�cation in the usual way.5.3 Derived OperatorsThe primitive operators of Mexitl can be used to derive a large spectrum offurther operators. In many circumstances these extra operators prove to bemore usable than those of the core language. We derive the other connectives ofclassical propositional logic in the next subsection. Then we consider a numberof di�erent classes of derived temporal operator.42

P P P P

Q

P proj Q

.Figure 13: The Projection Operator5.3.1 Logical ConnectivesThe remaining propositional logic connectives are derived in a standard fashion.:P � P) FalseP _ Q � (:P)) QP ^ Q � :(P) :Q)True � :FalseP , Q � (P) Q) ^ (Q) P)Vx 2 fy1; :::; yngP (x) � P (y1) ^ ::: ^ P (yn)5.3.2 Basic Derived Temporal OperatorsWe present a small set of derived temporal operators which will all be usedin our goal formulations and veri�cations. Additionally, we present a morecomprehensive list of derived temporal operators in the appendix.An interval is called empty if it contains one item:empty � len(0)
P is the next operator, which is related to
 in linear time temporal logic [34]:
P � len(1) ; PEventually, 3P , holds if there exists a terminal interval on which P holds:3P � True ; PHenceforth, 2P , is the dual of eventually; it holds if P holds over all terminalintervals: 2P � :3:P43

�n P requires that P holds at the last point in the interval:�n P � 2(empty) P)beg P requires that P holds at the �rst point in an interval:beg P � (empty ^ P) ; Truekeep P ensures that P holds throughout an interval (apart from at the lastpoint): keep P � 2(:empty) P)In addition, 3a P states that there exists an arbitrary interval on which P holds:3a P � True ; P ; True5.3.3 ICS Derived OperatorsWe need some more derived operators - these are ICS speci�c. Firstly, we needa way of expressing stability. We do it as follows:stable(S; T) � ((beg tick ^
 keep :tick ^ �n tick)^ Va 2 S 3 a)proj len(T)where S � Act and T 2 Nat. Also, we will write stable(fag; T) asstable(a; T).As an illustration,stable(fobj prop I; implic prop Ig; 5)states that to view obj prop I19 and implic prop I as simultaneously sta-ble we must observe the two transformations repeating for �ve time units. Interms of our de�nition this means that we divide the interval over which theproposition holds into 5 contiguous subintervals in which both obj prop I andimplic prop I occur. Each of these subintervals is bounded by tick actions,which ensure that the subinterval encodes the passage of one time unit. Wemeasure the �ve time units by applying len(5) as the projected formula.The following lemma encapsulates a very simple property of stability (it isa time continuity property).Lemma 18t; t0 2 Nat : stable(S; t+ t0) , stable(S; t) ; stable(S; t0)19This is a LOTOS action with data
attened out. By way of illustration, the synchronisa-tion of the two actions g!2 and g?n:Nat would yield a
attened action g 2.44

ProofAssume t; t0 2 Nat and let,� = ((beg tick ^
 keep :tick ^ �n tick) ^ Va 2 S 3 a)We can argue as follows (where we refer to speci�c laws of ITL, e.g. [DistProj]which are listed in the appendix):stable(S; t+ t0)� f de�nition of stability g� proj len(t+ t0)� f [AddLen] g� proj len(t) ; len(t0)� f [DistProj] g(� proj len(t)) ; (� proj len(t0))� f de�nition of stability gstable(S; t) ; stable(S; t0)
 Using stable we can de�ne an operator that determines the number of timeunits that will elapse in an interval:elapsed(0) � empty ^ tickelapsed(n) � stable(;; n) where n 6= 0Notice we count intervals between ticks rather than ticks themselves. This isin accordance with how intervals are treated in ITL, e.g. compare this with theinterpretation of len. The following is a simple property which relates stableand elapsed.Lemma 28S 2 Act; t 2 Nat (t 6= 0) : stable(S; t) =) elapsed(t).ProofAssume t 6= 0,stable(S; t)� f de�nition of stability g((beg tick ^
 keep :tick ^ �n tick) ^ Va 2 S 3 a) proj len(t)) f P ^ Q) P ; [MonoProj1] g(beg tick ^
 keep :tick ^ �n tick) proj len(t)45

� f de�nition of elapsed gelapsed(t)
 In addition, we can de�ne a number of operators that we will use later.These characterise stable output at particular subsystems. Let r be an arbitraryrepresentation. Then,lookat(r) � stable(eye vis r; Tla)speak(r) � stable(art speech r; Tsp)located(r) � stable(lim hand r; Tlo)associate(r) � stable(lim hand r; Tas)Notice that for each of these stability operators we assume a natural numberconstant (Tla, Tlo, ..) which de�nes the length of time the particular action hasto repeat for stability to have occured. For example, art speech r has to repeatfor Tsp time units (actually Tsp +1 ticks, because of the way len is de�ned) forstable speech (of representation r) to have occurred. As will be evident, locatedand associate are very similar properties, however, we distinguish them sincethey will arise at di�erent places in our reasoning.5.4 ICS GoalsAs highlighted earlier, we are building upon two previous pieces of work on deixisin ICS: Faconti et al [21] and Duke et al [18]. The kind of deixis scenario theyconsider would be the capability of a system user to select from a list of itemsin a computer display while performing some other task, e.g. speaking. Centralto both the Faconti et al and the Duke et al work is inconsistency arising dueto attempted blending with representations denoting con
icting psychologicalsubjects. So, the �rst issue to consider is, how will we model the notion ofpsychological subject.Since it is the only aspect of representations that is relevant to our analysiswe will view di�erent natural number denotations as representing di�erent psy-chological subjects. This means that comparing representations using naturalnumber equality exactly corresponds to comparing whether the two representa-tions have compatible psychological subject.We must now consider the type of blending used at di�erent subsystems. Inparticular, for the analysis that follows certain assumptions about blending andbu�ering will be needed in order that our analysis goes through. We considerthese now:-1. lim hand acts upon a crude multiplicative blend of bs lim and obj lim.This blending is particularly important when we consider a mouse basedinterface. In this situation, the blend re
ects that an association needs to46

be set-up between the cursor in the visual world (which will arrive at LIMvia obj lim) and the current hand state which identi�es the \zero" cursorposition (which will arrive at LIM via bs lim). Informally, the associationstates that \with my hand in the current position the cursor is locatedhere".2. art speech acts on a crude multiplicative blend of mpl art and bs artfor a similar reason to the previous point.3. mpl art acts on a deterministic information preserving blend of obj mpland prop mpl. This ensures that these two input
ows must be consistentfor mpl art to act on a non-null
ow.4. obj mpl and obj lim act on the same blend from OBJ's input array.5. We do not consider any bu�ering. However, the arguments would still bevalid even in the presence of bu�ering, unless it was performed at eitherthe LIM or the ART subsystems. Bu�ering at either of these subsystemswould invalidate the reasoning we give in section 6.Now let us highlight the goals that these previous workers have considered.� Duke et al [18] consider the property:[Duke et al 1] (8I 6= J):3a (speak(I) ^ 3a located(J))where I and J are representations. The property assumes that locatingan item on the screen (i.e. pointing at it) does not take more time tostabilise than speech. In other words, Tlo � Tsp, which seems a reasonableassumption.In informal terms the property states that it is not possible to speak andpoint at \di�erent" items on the screen at the same time, where di�erentmeans, having di�erent psychological subjects. Notice that no particularform of user interface, e.g. mouse or touch screen, is assumed.In addition, Duke et al consider the obvious related positive property:[Duke et al 2] (8I)3a (speak(I) ^ 3a located(I))i.e. it is possible to speak and point simultaneously as long as it is thesame item being considered in both cases.� Faconti et al [21] relate the use of mouse based and touch screen interfaces.A number of properties come out of this work. First we consider the centralnegative property that they consider. It expresses that having read an itemfrom the screen it is not possible to simultaneously pronounce/speak thatitem and point at it with a mouse based interface.47

Assuming Tla + Tas � Tsp we formalise the property using Mexitl as:[Faconti et al 1](8I; B; C):3a (lookat(I) ; (speak(B � I) ^ 3a (associate(B � C) ; lookat(I))))It has the following constituents:-{ I is a representation with psychological subject the desired item onthe screen.{ C is a representation with psychological subject the cursor on thescreen.{ B is an arbitrary representation (which will actually originate fromthe body state). It is used to indicate body feedback on the currentstate of the vocal chords and the hand.The behaviour, associate(B � C) ; lookat(I)is the most interesting part of the goal. It models that �rst body statefeedback (position of hand) and the cursor are associated together. Thenit denotes that the item is \seen". There is an assumption here that withan experienced user once he/she has the correct association between handstate and cursor and he/she �nds the item he/she can move the cursorand select the item \automatically". In cognitive terms, the experienceduser has a proceduralisedised understanding of the relationship between thedistance and direction of movement of the mouse and the correspondingdistance and direction of movement of the cursor.Continuing with the mouse interface, [21] also consider two positive prop-erties. These arise from sequentializing the actions involved in the deicticreference. We consider two such sequentializations20:[Faconti et al 2](8I; B; C)3a (lookat(I) ; speak(B � I) ; associate(B � C) ; lookat(I))and,20A third goal, in which the two cursor behaviours associate(B � C) and lookat(I) are notviewed as atomic could also be considered. This goal would be:(8I; B; I)3a (lookat(I) ; associate(B � C) ; speak(B � I) ; lookat(I))However, this goal is more di�cult to analyse since it requires the item I to be retrievedfrom an image record when it is spoken. Consideration of this goal is left for further work.48

[Faconti et al 3](8I; B; C)3a (lookat(I) ; 3a (associate(B � C) ; lookat(I)) ; speak(B � I))The second 3a is needed here since we must allow some time to look atthe cursor between the �rst lookat and the associate. This point will beclari�ed in section 7.In addition, [21] consider deictic reference with a touchscreen interface.They argue that the simultaneous selection and speaking that ([Facontiet al 1] suggests) is not possible with a Mouse based interface, is possiblewith a touch screen interface. Due to the change of device, a di�erent setof tasks is involved. The goal they consider is:[Faconti et al 4](8I; B)3a (lookat(I) ; (speak(B � I) ^ 3a located(B � I)))Importantly, in this goal it is not necessary to locate the cursor, thus, nochange of psychological subject is required.6 Veri�cationThis section veri�es that the two negative properties that we introduced in thelast section are indeed satis�ed by our ICS speci�cation. They are [Duke et al1]: (8I 6= J):3a (speak(I) ^ 3a located(J))and [Faconti et al 1]::3a (lookat(I) ; (speak(B � I) ^ 3a (associate(B � C) ; lookat(I))))Our strategy for verifying these properties is to show that they are bothimplied by a signi�cantly simpler property and then show that this simplerproperty holds over ICS. We consider the simpli�cation step in subsection 6.1and the veri�cation of the simpler property in subsection 6.2.6.1 Simpli�cation of GoalsLet us begin by considering [Faconti et al 1]. We work with the negation of[Faconti et al 1] (our �nal step will be to take the contrapositive of our argumentto regain [Faconti et al 1]). Firstly,:[Faconti et al 1]� f De Morgan's laws g 49

(9I; B; C)3a (lookat(I) ; (speak(B � I) ^ 3a (associate(B � C) ; lookat(I))))and we can further reason that,3a (lookat(I) ; (speak(B � I) ^ 3a (associate(B � C) ; lookat(I))))� f de�nition of 3a gTrue ; lookat(I) ; (speak(B � I) ^True ; associate(B � C) ; lookat(I) ; True) ; True) f AssChop ; MonoChop2 ; IdempChop ; P) True gTrue ; (speak(B � I) ^True ; associate(B � C) ; lookat(I) ; True) ; True) f AssChop ; MonoChop1 ; IdempChop ; monotonicity of ^ gTrue ; (speak(B � I) ^ True ; associate(B � C) ; True) ; True� f de�nition of associate and speak [STEP *] gTrue ; (stable(art speech B � I; Tsp) ^True ; stable(lim hand B � C; Tas) ; True) ; True) f Can replace True by (9x)elapsed(x) since at least one tickmust occur ; by comparing interval lengths g(9x1; x2)True ; (stable(art speech B � I; Tsp) ^elapsed(x1) ; stable(lim hand B � C; Tas) ; elapsed(x2)) ;True ^ x1 + Tas + x2 = Tsp� f lemma 1 ; AssChop g(9x1; x2)True ; ((stable(art speech B � I; x1) ;stable(art speech B � I; Tas) ;stable(art speech B � I; x2)) ^(elapsed(x1) ; stable(lim hand B � C; Tas) ; elapsed(x2))) ;True ^ x1 + Tas + x2 = Tsp) f lemma 2 ; MonoChop1 ; AssChop ; monotonicity of ^ g(9x1; x2)True ; ((elapsed(x1) ; stable(art speech B � I; Tas) ; elapsed(x2)) ^(elapsed(x1) ; stable(lim hand B � C; Tas) ; elapsed(x2))); True ^ x1 + Tas + x2 = Tsp) f elapsed(t) is rigid and DistChop g(9x1; x2)True ; (elapsed(x1) ;(stable(art speech B � I; Tas) ^ stable(lim hand B � C; Tas)) ;elapsed(x2)) ; True ^ x1 + Tas + x2 = Tsp� f de�nition of stable g(9x1; x2)True ; (elapsed(x1) ; 50

stable(fart speech B � I; lim hand B � Cg; Tas) ;elapsed(x2)) ; True ^ x1 + Tas + x2 = Tsp) f P) True ; IdempChop ; AssChop gTrue ; stable(fart speech B � I; lim hand B � Cg; Tas) ; True� f de�nition of 3a g3a stable(fart speech B � I; lim hand B � Cg; Tas)Finally, putting together this argument and our �rst argument we can reasonthat: :[Faconti et al 1]) f Monotonicity of 9 g(9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)
So, this line of argument gives us that:Property [a]:[Faconti et al 1]) f Above argument g(9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)Now let us additionally consider the property [Duke et al 1]. We can argue asfollows:-:[Duke et al 1]� f De Morgan's laws ; clash avoiding variable renaming g(9J 6= K)3a (speak(K) ^ 3a located(J))) f Weakening Conditions g(9J; K)3a (speak(K) ^ 3a located(J))� f f Y � Z j Y; Z 2 Rep g = Rep g(9I; B; C)3a (speak(B � I) ^ 3a located(B � C))Furthermore,3a (speak(B � I) ^ 3a located(B � C))� f Assuming Tlo = Tas21 g[STEP *]Now we can re-use the previous proof from [STEP *] to deduce that,21This assumption that the time required to achieve stability of location and of associationis the same, is an eminently reasonable assumption, since they are such related behaviours.51

Property [b]:[Duke et al 1]) f Above argument g(9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)We can now take the contrapositive of property [a] and [b] to obtain:-:(9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)) f Above argument g[Faconti et al 1] and [Duke et al 1]Thus, all we have to verify is,:(9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)and [Faconti et al 1] and [Duke et al 1] follow.Even if the formal reasoning we have given here is complex in places, theintuition behind our argument should be straightforward. We can summarise itas follows:If we can show that a stable output for art speech B*I and lim hand B*Ccannot be simultaneously generated for Tas time units, then it iscertainly the case that the more complicated properties encoded in:[Faconti et al 1] and :[Duke et al 1] will also fail to hold.6.2 Property Veri�cationNow we argue that the property,:(9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)holds over ICS. In standard fashion we denote satisfaction over ICS asICS j= P , i.e. ICS satis�es the property P . We proceed by considering whatthe implications would be if,ICS j= (9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)held. We can argue as follows:ICS j= (9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)� f de�nition of 3a ; from synchrony of ICS (9n)elapsed(n), True gICS j= (9I; B; C; n)elapsed(n) ;stable(fart speech B � I; lim hand B � Cg; Tas) ; True) f B*I is a multiplicative blend of mpl art and bs ;52

B*C is a multiplicative blend of obj lim and bs ;connectivity of confdeixis gICS j= (9I; C; n)elapsed(n� 1) ;stable(fmpl art I; obj lim Cg; Tas) ; True) f obj mpl and obj lim act on same blend from OBJ's input array gICS j= (9I; C; n)elapsed(n� 1) ;stable(fmpl art I; obj mpl Cg; Tas) ; True) f mpl art acts on deterministic information preserving blendof obj mpl (and prop mpl) gICS j= (9I; C; n)elapsed(n) ;stable(fmpl art I; obj mpl Cg; Tas � 1) ; True^ C = I) f P ^ Q) Q ; P) Q =) (M j= P) M j= Q) gICS j= C = I
Thus, we have the following:ICS j= (9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas)) f Above argument gICS j= C = Ifrom which we can take the contrapositive to obtain::(ICS j= C = I)) f Above argument g:(ICS j= (9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas))� f Logic gICS j= :((9I; B; C)3a stable(fart speech B � I; lim hand B � Cg; Tas))Now using the argument made in the previous subsection, we can deduce that:ICS j= [Faconti et al 1] and ICS j= [Duke et al 1]This line of reasoning is illustrated in table 1, which shows the represen-tations acted on by particular transformations over time. The indice in thistable do not indicate \semantically" di�erent representations, e.g. Ii =Ik forall 0 � j; k � n + Tas, but rather simply allow instances of representations indi�erent columns to be related, e.g. the I representation appearing on mpl art53

Time lim hand obj lim obj mpl mpl art art speech.n� 1 .. C0 C0 .. I0 ..n B*C0 C1 C1 C0 I1 B*I0. B*C1 C2 C2 C1 I2 B*I1. B*C2 C3 C3 C2 I3 B*I2. C3 B*CTas�1 CTas CTas .. ITas B*ITas�1n+ Tas B*CTas . . CTas . B*ITasTable 1: Illustration of Reasoning - Ci =Ii+1at n � 1 is the same instance of I that appears at art speech at time n. Thearguments given induce that Ci =Ii+1.It is also worth pointing out that we have made a number of assumptionswhile making this argument. These are basic constraints which need to beimposed on ICS in order for [Faconti et al 1] and [Duke et al 1] to hold. Theycan be summarised as:1. lim hand acts upon a crude multiplicative blend of bs lim and obj lim.2. art speech acts upon a crude multiplicative blend of bs art and mpl art.3. obj mpl and obj lim act on the same blend from OBJ's input array.4. mpl art acts on a deterministic information preserving blend of obj mpl(and prop mpl).5. Tas > 0 (notice that if Tas = 0, i.e. for stability only one transformationneeds to be observed, then I and C do not have to be related).6. There is no bu�ering at LIM or ART.However, these all seem reasonable assumptions, considering the nature ofthe cognitive task we are focusing on.7 Simulation AnalysisUp to now we have restricted ourselves to veri�cation of negative goals - whatICS cannot do. In this section we consider positive goals - what ICS is capableof doing. Importantly, we can only consider what it is capable of doing, whatwe do not verify is that it always performs a particular goal if it is set running.We would need a more prescriptive/mechanistic interpretation of ICS for this.54

So, we are interested in possible behaviour, in testing theory terms - what maybe performed rather than what must be performed.There are a number of ways to perform such may veri�cations, one of whichis indeed to use a testing approach. This would involve de�ning a tester processwhich exhibits the behaviour required by the goal, composing it in parallel withICS and checking whether the test may succeed. Furthermore, there are toolsavailable which when given a system and a testing process determine whetherthe test can succeed, e.g. the tool LOLA [16]. Although such testing is certainlyvery applicable to veri�cation of positive goals, here we have taken a di�erentapproach. Our alternative is extremely simple and does not require as extensivean analysis of the system state space as a testing approach. The alternativeis to simply explore by hand the state space of our ICS speci�cation using asimulation engine in order to show that a particular trace (interval) can beperformed by the speci�cation. Exhibiting this interval will exactly show thatICS can satisfy the particular ITL goal being considered. In order to show thatit must satisfy a particular goal would require us to look at all the intervals thatcan be generated from ICS.We have used two tools in this simulation work - LOLA [16] and Smile [20]which are provided with the LOTOS tool kit - Lite [32]. Both tools allow theuser of the system to step through the state space of a LOTOS speci�cation.Whenever the speci�cation reaches a choice point, the user decides how to re-solve the choice. Thus conceptually, the user is providing the behaviour of theenvironment. Actually the user provides more than this, since the user alsoresolves any non-determinism in the speci�cation.The four positive goals that we highlighted in section 5 are:[Duke et al 2] (8I)3a (speak(I) ^ 3a located(I))[Faconti et al 2](8I; B; C)3a (lookat(I) ; speak(B � I) ; associate(B � C) ; lookat(I))[Faconti et al 3](8I; B; C)3a (lookat(I) ; 3a (associate(B � C) ; lookat(I)) ; speak(B � I))[Faconti et al 4](8I; B)3a (lookat(I) ; (speak(B � I) ^ 3a located(B � I)))We consider these in turn.[Duke et al 2] and [Faconti et al 4]. We can show that [Faconti et al 4]implies [Duke et al 2] as follows:(8I; B)3a (lookat(I) ; (speak(B � I) ^ 3a located(B � I)))55

Time eye vis art speech lim hand body bs0 # I0 0 0 B01 # I1 0 0 B12 # I2 0 0 B23 # I3 0 I0*B1 B34 I4 + I0*B2 $ I1*B2 B45 I5 + I1*B3 $ I2*B3 B56 I6 + I2*B4 $ I3*B4 B67 I7 + I3*B5 $ I4*B5 B78 I8 + I4*B6 I5*B6 B89 I9 + I5*B7 I6*B7 B910 I10 + I6*B8 I7*B8 B1011 I11 + I7*B9 I8*B9 B11Table 2: Interval for [Duke et al 2] and [Faconti et al 4]) f P) True ; MonoChop1 ; AssChop ; IdempChop g(8I; B)3a (speak(B � I) ^ 3a located(B � I))� f f Z � Y j Z; Y 2 Rep g = Rep g(8J)3a (speak(J) ^ 3a located(J))Thus, a trace which validates [Faconti et al 4] will also validate [Duke et al2]. This joint validation will be clear from inspection of the trace we exhibit.The full trace/interval is too big to present since during each time unit allthe ICS transformations have to be performed. However, table 2 depicts howrepresentations arise on the key transformations eye vis, art speech, lim handand body bs in the ful�lling interval.In order to perform this validation we have to assign values to Tsp and Tlo,i.e. we have to decide how many time units have to pass for stability of speechand location to have occured. We take the decision that22:Tsp = 8 and Tlo = 4however, it is also clear from our simulation runs that if Tsp and Tlo areset to any arbitrary values we could generate the necessary intervals to validate[Duke et al 2] and [Faconti et al 4]. We indicate the stable outputs that yieldkey satisfying components as follows:lookat - # ; speak - + ; located - $22Factors in
uencing this choice of values are that we have accumulated the following con-straints from earlier arguments, Tlo = Tas and Tas + Tla � Tsp.56

Time eye vis art sp lim hand body bs0 # I0 0 0 B01 # I1 0 0 B12 # I2 0 0 B23 # I3 0 I0 * B1 B34 I4 + I0 * B2 I1 * B2 B45 I5 + I1 * B3 I2 * B3 B56 I6 + I2 * B4 I3 * B4 B67 I7 + I3 * B5 I4 * B5 B78 C0 + I4 * B6 I5 * B6 B89 C1 + I5 * B7 I6 * B7 B910 C2 + I6 * B8 I7 * B8 B1011 C3 + I7 * B9 $ C0 * B9 B1112 # I8 C0 * B10 $ C1 * B10 B1213 # I9 C1 * B11 $ C2 * B11 B1314 # I10 C2 * B12 $ C3 * B12 B1415 # I11 C3 * B13 C4 * B13 B15Table 3: Interval for [Faconti et al 2]What the validation states is that if we have a stable input of I for a su�cientperiod of time at eye vis eventually this input will feed through the system(blending with body state input on the way) to provide a stable (simultaneous)output at art speech and lim hand (consider the 8 time units, 4, 5, 6, 7, 8,9, 10 and 11). Notice that meaningful output at lim hand starts one time unitbefore it does at art speech. This is due to the connectivity in conf deixis.[Faconti et al 2]. In a similar way we can validate this property. We canexhibit a trace/interval that exactly realises the property. However, we haverather presented an optimum trace/interval which exhibits the earliest timepoints at which a transformation can stabilise. Consequently, the subtasks ofthis goal, e.g. lookat(I) and speak(B � I), are not completely sequentialised,rather they have some (but not complete) overlap. In addition, in the same wayas previously we make the assumption:Tla = Tas = 4 and Tsp = 8Table 3 illustrates the key aspects of the required interval. We indicate thestable outputs that yield components of [Faconti et al 2] as follows:lookat - # ; speak - + ; associate - $[Faconti et al 3]. Once again we exhibit an \optimum" trace to validate thisproperty, it is shown in table 4. Notice that as suggested by the second 3a inour goal: 57

Time eye vis art sp lim hand body bs0 # I0 . . B01 # I1 . . B12 # I2 . . B23 # I3 . . B34 C0 . . B45 C1 . . B56 C2 . . B67 C3 . $ C0*B5 B78 I4 . $ C1*B6 B89 I5 . $ C2*B7 B910 I6 . $ C3*B8 B1011 # I7 . . B1112 # I8 + B10*I4 . B1213 # I9 + B11*I5 . B1314 # I10 + B12*I6 . B1415 I11 + B13*I7 . B1516 I12 + B14*I8 . B1617 I13 + B15*I9 . B1718 I14 + B16*I10 . B1819 I15 + B17*I11 . B19Table 4: Interval for [Faconti et al 3](8I; B; C)3a (lookat(I) ; 3a (associate(B � C) ; lookat(I)) ; speak(B � I))the stable output of B*C at lim hand cannot occur directly after lookat(I)since a stable input with psychological subject the cursor, i.e. C, must be receivedat eye vis between the two behaviours. We indicate component stable outputsin the same way as in the previous table.8 Conclusions8.1 DiscussionWe have applied techniques from concurrency theory to cognitive modelling.Our strategy has been to take an existing cognitive model, ICS, and interpretit in a standard concurrency theory notation - the process calculus, LOTOS.In addition, we have introduced an interval temporal logic, Mexitl, in which wehave formulated a number of goals for ICS. Finally, we veri�ed these goals usinglogical deduction and simulation techniques.58

We have given a number arguments in the introduction to this paper forapplying concurrency theory techniques to cognitive modelling. We will not re-iterate these here. However, it is worth reconsidering the nature of the LOTOSspeci�cation of ICS and how our concurrency theory notations relate to morestandard techniques for cognitive modelling.Firstly, there is a clear spectrum of available modelling techniques, withthe two extremes being programming based approaches, such as those typicallyused in cognitive modelling and techniques based on mathematical logic. Aweakness of the former approaches is that they are often too prescriptive, forcinga particular \mechanistic" interpretation on the cognitive model. In contrast, aweakness of modelling based on the latter approaches is that logical descriptionsoften express global properties across the entire system. Consequently, suchapproaches typically fail to re
ect the underlying component structure of thesystem being modelled. This can, for example, be seen in our interval temporallogic goals which express desired \overall" behaviour of ICS, but do not describethe system componentwise in any way.Process calculi can be seen to sit between these two extremes. Firstly, theLOTOS speci�cation we have given certainly re
ects the component structureof the ICS model, e.g. we have a LOTOS process for each ICS subsystem. Thismakes the speci�cation easier to understand and to maintain. Previous ModalAction Logic [21] based descriptions of ICS have not so directly re
ected thecomponent structure of ICS.Secondly, process calculi provide tools for avoiding overprescriptive descrip-tion of systems. In particular, they facilitate loose speci�cation by allowingdescriptions to contain non-determinism.Another feature that prevents overspeci�cation is the role of the environ-ment. Often when describing systems it is unclear how to prescribe a certainbehaviour. In process calculi, rather than forcing a particular mechanistic in-terpretation we can leave the decision open and let the environment make it. Agood example of the use of such a strategy arises in our modelling of bu�eredmode behaviour. Speci�cally, the mechanism by which bu�ered mode is enteredis still a matter for debate. Thus, rather than forcing a particular interpretation,we allow the observer of the system to control which subsystem enters bu�eredmode. This is done by o�ering actions such as:obj bufferedto the environment.Another sense in which LOTOS speci�cations have a logical character isthat they enable \conjunction" of global constraints. Such constraints can becomposed in parallel with the system with the e�ect that the composite systemre
ects both the properties of the system and the added constraint23. Forexample, the process,23In fact, it can be shown that parallel composition does not always behave in a trulyconjunctive manner [7, 10], however, this subtlety is not important in the context of thispaper. 59

buffConstraint(globally) constrains the number of subsystems that can enter bu�ered mode.Finally, we believe that the work presented here has made a valuable �rststep in a new area of research. However, clearly the techniques considered arenot mature and there are many avenues for future research, which we considernow.8.2 Further WorkWe list some of the many topics for future research:-� LOTOS Speci�cation Re�nements. There are a number of ways inwhich our LOTOS speci�cation of ICS could be re�ned.{ More Generic Description The description of ICS is not as simpleor elegant as one might like. This is largely due to limitations inthe expressiveness of LOTOS. One issue, for example, is that eventhough all subsystems have a very similar structure, we have to givea complete \specialized" description of each subsystem. Thus, weare not able to capture the generality of ICS subsystems. A bettersolution would be to de�ne a single process which models a genericsubsystem and then specialize it through parameter instantiation foreach particular subsystem. An extended version of the LOTOS nota-tion, to be called E-LOTOS, is currently being de�ned [30]. It adds anumber of features that enhance the expressiveness of the language.It would be very interesting to see if using these enhancements wouldlead to a simpler and more elegant description of ICS.{ Alternative Top Level Structure. In order to, perhaps, even more fullycapture the basic ICS structure, we could give a top level structureto our description that has the following form:Subsystem_1 ||| Subsystem_2 ||| ||| Subsystem_n|[..... synch. gates]|Networkwhere the Network process would receive outputed representationsfrom Subsystems and relay them to target Subsystems. Clearly,each of our current inter subsystem actions would have to be sub-divided into two actions - a subsystem to network output action anda network to subsystem input action.{ Interactive Choice of Con�gurations. We could allow the system userto choose the particular con�guration he/she is interested in whenhe/she starts simulating with ICS. Depending upon the user input thesystem would evolve to a di�erent top level composition of processes.60

{ A Set-up Constraint. It might also aid usage of the system if we in-cluded a constraint process which could enforce user preferences on aparticular simulation. For example, we could leave all decisions, suchas which subsystem enters bu�ered mode or what forms of blendingto use, for the user. Perhaps he/she could select a di�erent constraintdepending upon his/her particular preferences.� Redundant Outputs. A technical issue which arises is that our ICSsimulations typically generate \redundant" as well as meaningful outputs.For example, table 3 shows a ful�lling interval for the property [Facontiet al 2] and the trace is indeed satisfactory for this purpose. However, asa by product of ful�lling the goal, a stable output of the representationC*B is also generated at art speech between time units 12 and 15. Itis somewhat di�cult to assign a sensible meaning to such \speaking of arepresentation of the cursor". The existence of such noise in our systemdoes not prevent us from analysing may capabilities, however, our veri�-cations would be more justi�able if we could give an intuitive explanationfor such redundant output. Alternatively of course, we could try to reworkour LOTOS speci�cation in order to eradicate such noise.� More Expressive Process Calculi. In many respects the process cal-culus that we have used, LOTOS, is rather primitive. It is a product ofthe \�rst generation" of process calculi. However, there are now richertechniques (indeed such as E-LOTOS) which incorporate more advancedmodelling capabilities, e.g. real-time process calculi [43], probabilistic andstochastic notations [25] andmobile calculi [39]. All of these added featuresare in one way or another relevant to the modlling of cognitive systems.For example, a full description of ICS would clearly need to explain howto move between con�gurations. Such dynamic recon�guration of systemssuggests that a mobile calculus should be used.� Executable Description. A further limitation of the work presentedhere is that we do not generate an executable (in programming languageterms) description of ICS. However, tools exist for generating executablecode from LOTOS speci�cations, e.g. [33]. Applying these tools in theICS context is an important topic for future research.� Alternative Formal Paradigms. The concurrency theory �eld is nowvery rich and in addition to LOTOS and, process calculi in general, thereare many alternative techniques. These each have di�erent
avours anddi�erent relative bene�ts. Describing and analysing ICS in these alter-native approaches is an obvious topic for future work. Three approachesthat we are particularly interested to investigate are:1. Complete Mexitl Description. Describing ICS in Mexitl. This wouldenable us to reason directly (in the same formalism) between our ICSgoals and ICS speci�cation.61

2. Model Checking. One of the most mature concurrency theory ap-proaches is model checking, where by, an automata based descriptionof a system is checked for satis�ability against a temporal logic prop-erty. Such veri�cation could clearly be applied to ICS. The obvioustechnique to use would be Holzmann's SPIN/PROMELA formalism[29].3. Other Process Calculi. Finally, we could use a di�erent process calcu-lus approach, say CSP (or even CCS). With CSP we could addition-ally formulate our ICS goals as CSP processes and check re�nementbetween the system description and the goal description using theFDR tool [47].AcknowledgementsThe work presented here has been performed in the context of the TMR TACITproject and thus, I must thank all the members of the project. In particular, Iwould like to thank David Duke, David Duce, Meike Massink and JohnMay withwhom I have had valuable discussions about ICS. In addition, Meike Massinkprovided valuable comments on a draft of this paper. However, my greatestthanks go to Giorgio Faconti who has championed this work at CNR Istituto-CNUCE and has frequently over a Capuccino and a Ciocolatina (or is it aCiocalatino, I can never remember) put me straight with regard to ICS.References[1] P.J. Barnard. Interacting cognitive subsystems: A psycholinguistic approachto short-term memory. In Progress in the Psychology of Language, volume 2.Lawrence Erlbaum Associates, 1985.[2] P.J. Barnard. Interactive cognitive subsystems: Modelling working memory phe-nomena with a multi-processor architecture. In Models of Working Memory.Cambridge University Press, 1998. NEED TO CHECK THIS REFERENCE.[3] P.J. Barnard and J. May. Interactions with advanced graphical interfaces and thedeployment of latent human knowledge. In Eurogrpahics Workshop on Design,Speci�cation and Veri�cation of Interactive Systes, pages 15{49. Springer, June1995.[4] P.J Barnard and J.D. Teasdale. Interacting cognitive subsystems: A systemicapproach to cognitive-a�ective interaction and change. Cognition and Emotion,5:1{39, 1991.[5] T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation LanguageLOTOS. Computer Networks and ISDN Systems, 14(1):25{29, 1988.[6] H. Bowman. An introduction to formal models of concurrency using LOTOS.Technical Report 15-96, University of Kent at Canterbury, 1996.[7] H. Bowman, E. A. Boiten, J. Derrick, and M. W. A. Steen. Strategies for consis-tency checking based on uni�cation. Science of Computer Programming, Decem-ber 1998. To Appear. 62

[8] H. Bowman, H. Cameron, P. King, and S. Thompson. Mexitl: Multimedia in Ex-ecutable Interval Temporal Logic. Technical Report 3-97, Computing Laboratory,University of Kent at Canterbury, May 1997.[9] H. Bowman, H. Cameron, P. King, and S. Thompson. Speci�cation and Proto-typing of Structured Multimedia Documents using Interval Temporal Logic. InInternational Conference on Temporal Logic, Applied Logic Series. Kluwer, July1997.[10] H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal frameworkfor viewpoint consistency. Technical report, Submitted for Publication, 1996.[11] H. Bowman and S. J. Thompson. A tableaux method for interval temporallogic with projection. In TABLEAUX'98, International Conference on AnalyticTableaux and Related Methods, volume 1397 of Lecture Notes in AI, pages 108{123. Springer-Verlag, May 1998.[12] D.E. Broadbent. Perception and Communication. Pergamon, 1958.[13] N. Charles, H. Bowman, and S. Thompson. From ACT-ONE to Miranda, aTranslation Experiment. Computer Standards and Interfaces, 19(1), May 1997.[14] A.M. Collins and E.F. Loftus. A spreading activation theory of semantic process-ing. Psychological Review, 82:407{428, 1975.[15] J. de Meer, R. Roth, and S. Vuong. Introduction to algebraic speci�cations basedon the language ACT ONE. Computer Networks and ISDN Systems, 23:363{392,1992.[16] DIT. LOLA: LOtos LAboratory. Departamento de Ingenieria Telematica, Uni-versidad Politecnica de Madrid, 1988. WWW : http://selva.dit.upm.es/ lo-tos/tools/lola.html.[17] D.J. Duke. Reasoning about gestural interaction. Eurographics'95, 14(3), 1995.[18] D.J. Duke, P.J. Barnard, J. May, and D.A. Duce. Systematic development of thehuman interface. In Proceedings of APSEC'95, Second Asia Paci�c Software En-gineering Conference, Brisbane. IEEE Computer Society Press, December 1995.[19] D.J. Duke and D.A. Duce. The formalisation of a cognitive architecture and itsapplication to reasoning about human computer interaction. Formal Aspects ofComputing, 3, 1996.[20] H. Eertink. Executing lotos speci�cations: the smile tool. In LOTOSphere:Software development with LOTOS. Kluwer Academic Publishers, 1994.[21] G.P. Faconti and M. Massink. A formal account of deixis in multimodal interac-tion. In Submitted for Publication, 1998.[22] A. Giacolone, C. Jou, and S.A. Smolka. Probabilities in processes: an alge-braic/operational framework. Technical Report 88/20, Department of ComputerScience, SUNY at Stony Brook, 1988.[23] D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-puter Programming, 8:231{274, 1987.[24] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.[25] J. Hillston. A Compositional Approach to Performance Modelling. CambridgeUniversity Press, 1996. Distinguished Dissertations in Computer Science.63

[26] M.G. Hinchey and J.P. Bowen, editors. Applications of Formal Methods. Prentice-Hall, 1995.[27] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[28] C.A.R. Hoare. Communicating Sequential Processes. Communications of theACM, 21(8):666{677, 1978.[29] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-neering, 23:279{295, 1997.[30] ISO. Working Draft on Enhancements to LOTOS ISO/IEC JTC1/SC21/WG7/E-LOTOS, January 1997.[31] T.S. Kuhn. The Structure of Scienti�c Evolutions. Chicago University Press,1970.[32] LOTOSPHERE. LOTOS Integrated Tool Environment. LOTOSPHERE Project,1988. WWW : http://wwwtios.cs.utwente.nl/lotos/lite/.[33] J.A. Manas and T. de Miguel. From LOTOS to C. In Formal Description Tech-niques. Elsevier Science Publishers (North-Holland), 1989.[34] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer-Verlag, 1992.[35] The Medical Research Councils, Applied Psychology Unit, http://www.mrc-apu.cam.ac.uk/personal/phil.barnard/ics/index.html. ICS Home Page, 1998.[36] R. Milner. Calculi for synchrony and asynchrony. Journal of Theoretical ComputerScience, 25:267{310, 1985.[37] R. Milner. Process constructors and interpretations. In Information Processing86. Elsevier Publishers, 1986.[38] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[39] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Informationand Computation, 100:1{77, 1992.[40] B. Moskowski. Executing Temporal Logic. Cambridge University Press, 1986.[41] A. Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.[42] A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, 1972.[43] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebra. InReal-time Theory in Practice, LNCS 600, pages 549{572. Springer-Verlag, June1991.[44] L. Nigay and J. Coutaz. A generic platform for addressing the multimodal chal-lenge. In Proceedings of ACM CHI'95, pages 98{105. ACM Press, 1995.[45] W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1982.[46] W. Reitman. Cognition and Thought. Wiley, 1965.[47] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Interna-tional Series in Computer Science, 1997.[48] D.E. Rumelhart, J.L. McClelland, and The PDP Research Group, editors. Par-allel Distributed Processing, Volume 1. Foundations. MIT Press, 1986.[49] D.E. Rumelhart, J.L. McClelland, and The PDP Research Group, editors. Par-allel Distributed Processing, Volume 2. Psychological and Biological Models. MITPress, 1986. 64

[50] J.D. Teasdale and P.J. Barnard. A�ect, Cognition and Change: Re-modellingDepressive Thought. Lawrence Erlbaum Associates, 1993.[51] Chris Tofts. Describing social insect behaviour using process alge-bra. Technical report, University College Swansea, 1996. WWW -http://www.scs.leeds.ac.uk/chris/papers.html.[52] R.J. van Glabbeek. The linear time - branching time spectrum (I and II). InConcur'90 and Concur'93, LNCS 458 and LNCS 715. Springer-Verlag, 1990 and1993.[53] G. Winskel. The Formal Semantics of Programming Languages. MIT, 1993.9 Appendix9.1 LOTOSWe give a more formal treatment of the LOTOS sublanguage that we use andwe discuss semantic models for the sublanguage.The Sublanguage. The set of all possible LOTOS behaviour expressions isdenoted Beh; the variables B, B1, B2, ... range over the set Beh and we assumea set GATE of gate names. Behaviours can take the following forms:-B � stop j exit(e�) j g d�; B j i; B j [bc]� > B j B1 [] B2 jchoice x : T [] B(x) j B1 j[G]j B2 j B1 >> accept b� in B2 jhide G in B j Bn[g1=h1; :::; gn=hn] j let c� in Bwhere f� denotes zero or more occurrences of f; e is an expression; g, g1, g2,.., h1, h2, ... are in the set GATE; d is a data attribute of the form !e or ?x:T;bc is a boolean condition; x is a data variable; T is an ACT-ONE type; G is asubset of GATE; b is a declaration of the form x:T and c is a de�nition of theform x:T=e.Process de�nitions have the form P := B.Labelled Transition Systems. The standard semantics for LOTOS are ex-pressed in a structured operational semantic style and they map LOTOS be-haviour expressions to labelled transition systems. Such a semantic de�nitioncan be found in [6]. Here we assume that such a mapping can be de�ned andwe work with labelled transition systems.Labelled transition systems, are labelled directed graphs with the followingform: (S;A; T; s0)where S is a set of states (the nodes of the graph), A is a set of actions(the labels of the graph); T is a transition relation (the edges of the graph) ands0 is a start state. Elements of T are triples, e.g. (s; a; t), where s; t 2 S anda 2 A, which states that there is a transition (edge) from state s to state t and65

it is labelled with the action a. In standard fashion we write (s; a; t) 2 T ass� a! t.Intervals. Mexitl is de�ned over �nite state sequences. Each sequence is calledan interval and I denotes the set of all possible intervals; � 2 I has the form:�0; �1; :::; �j�jwhere j�j denotes the length of an interval and �i denotes the ith state in aninterval. By convention the length of an interval is the number of states minusone and all intervals must have at least one item. We use [�]i to denote the ithpre�x of an interval and (�)i to denote the ith su�x of an interval. Formally,[�]i = �0; :::; �i(�)i = �i; :::; �j�jWe de�ne intervals from behaviour expressions (via labelled transition sys-tems) in two steps. First we de�ne action intervals, then we build intervals.Action intervals are traces of actions and the set of action intervals of an arbi-trary B0 2Beh is denoted �(B0), which is de�ned:�(B0) = fa0; :::; an j 9B1; ::; Bn+1 : B0 � a0 ! B1 ^ ::: ^ Bn � an ! Bn+1gNow all states in an interval contain a distinguished entry, which indicatesthe action performed at that state. For a state �j the entry is indicated by thesyntax, �acj .The set of all intervals of B0 is denoted
(B0), which is de�ned as:
(B0) = f�0; :::; �n j 9a0; :::; an 2 �(B0) : 8i(0 � i � n) : �aci = aig9.2 MexitlAs stated earlier Mexitl is interpreted over intervals and satisfaction is de�nedover an arbitrary interval as follows (the notation � j= P states that the trace� satis�es the proposition P):-� j= a i� a = �ac0� j= p(E1; :::; En) i� [[p]]([[E1]]�0; :::; [[En]]�0)� j= E1 = E2 i� [[E1]]�0 = [[E2]]�0where [[]] maps predicates to their semantic interpretation and [[]]�i evalu-ates expressions (in the obvious way) according to the bindings at state �i.� 6j= False66

� j= P1 =) P2 i� � j= P1 implies � j= P2� j= len(n) i� j�j = n� j= P1;P2 i� 9k 2 N (k � j�j and [�]k j= P1 and (�)k j= P2)� j= P1 proj P2 i� 9m 2 N and 9�0; �1; :::; �m 2 N(0 = �0 < �1 < ::: < �m = j�j and8j < m ([�]�j+1)�j j= P1 and��0��1 :::��m j= P2)� j= (9x : T)P i� �0 j= x ^ P for some �0 'x �We say that �0 'x � if � and �0 are the same length and they have the samevalue on all actions and variables except (perhaps) x.9.3 Linking LOTOS and MexitlNow we can link speci�cations in LOTOS and formulae in Mexitl in the obviousway. We de�ne that a process satis�es, denoted �, a formula as follows:8B 2 Beh; Q 2 Mexitl : B � Q i� 8� 2
(B) : � j= QThus, a LOTOS process B satis�es a Mexitl formula Q if and only if everytrace of B satis�es/is a model of Q.9.4 Derived Temporal OperatorsThe following derived operators have all been considered previously in the in-terval temporal logic literature. See for example, [40], [8].An interval is called empty if it contains one item:empty � len(0)more holds over non-empty intervals:more � :empty
P is the next operator, which is related to
 in linear time temporal logic [34]:
P � len(1) ; PThe weak next operator also holds over empty intervals:
wP �
P _ emptyEventually, 3P , holds if there exists a terminal interval on which P holds:3P � True ; P67

Henceforth, 2P , is the dual of eventually; it holds if P holds over all terminalintervals: 2P � :3:Pskip holds over intervals of length 1:skip �
empty�n P requires that P holds at the last point in the interval:�n P � 2(empty) P)halt P states that P only holds at the �nal point in an interval:halt P � 2(P , empty)beg P requires that P holds at the �rst point in an interval:beg P � (empty ^ P) ; Truekeep P ensures that P holds throughout an interval (apart from at the lastpoint): keep P � 2(:empty) P)Double chop is a strong chop which requires that P does not hold over the onepoint interval: P ;; Q � (P ^ :empty) ; QWe can also de�ne alternative eventually and henceforth operators. Such as3i P which requires that there exists an initial interval on which P holds:3i P � P ; Trueand its dual 2i P which requires that for all initial intervals P holds:2i P � :3i :PIn addition, 3a P states that there exists an arbitrary interval on which P holds:3a P � True ; P ; Trueand 2a P states that for all arbitrary intervals P holds:2a P � :3a :P
68

9.5 Axiomatization of MexitlAxiomatization of Mexitl has been considered elsewhere [8, 11]. Here we justpick out some rules that we will use. Justi�cation for the rules can be found in[8]. [AssChop] P ; (Q ; R) () (P ; Q) ; R[IdepmChop] True ; True () True[MonoChop1] P) Q ` P ; R) Q ; R[MonoChop2] P) Q ` R ; P) R ; Q[DistChop] for R rigid (R ; P) ^ (R ; Q) =) (R ; (P ^ Q))[AddLen] len(x+ y)() len(x) ; len(y)[DistProj] P proj (Q ; R) () P proj Q ; P proj R[MonoProj1] P) Q ` P proj R) Q proj R9.6 Formal Properties of Non-determinismWe justify the statement that,Whatever property holds over a process will also hold over its (non-deterministic) re�nements.In the context of this paper, this statement can be reformulated as,Whatever ICS formula holds over a LOTOS process will also holdover any reduction of the process,where reduction, denoted red, is the LOTOS re�nement relation. Its de�ni-tion, see [6], ensures that,B red C i� B is more deterministic than C.A standard property of reduction is,B red C =) (8� 2 I : � 2
(B)) � 2
(C))69

i.e. if B is a reduction of C then any trace of B is also a trace of C. We usethis property to derive the result that we require. Our argument is as follows:C � Q ^ B red C� f De�nition of �; above property of red g8� 2 I : � 2
(C)) � j= Q ^ � 2
(B)) � 2
(C)) f Transitivity of Implication g8� 2 I : � 2
(B)) � j= Q� f De�nition of � gB � Q9.7 ICS Speci�cationThe following is the full LOTOS speci�cation of ICS. The LOTOS notation usedis slightly di�erent from that used in the paper. For a complete introduction tothis syntax see [5].(* This is the full ICS specification. *)specification ics [tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered,eye_vis,vis_implic,vis_normal,vis_buffered,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered,mpl_prop,prop_mpl,prop_normal,prop_buffered,ac_mpl,mpl_art,mpl_normal,mpl_buffered,ear_ac,ac_normal,ac_buffered,bs_art,art_sp,art_wr,art_normal,art_buffered,vocal_bs,hand_bs,bs_normal,bs_buffered]: noexitlibrary Boolean, NaturalNumber endlibtype Rep is NaturalNumber renamedbysortnames Rep for Natendtype(* 0 is reserved for null representations *)type indice is Booleansorts indiceopns j0, j1, j2, j3 : -> indice_eqq_, _neq_ : indice, indice -> Booleqns forall k,r: indiceofsort Boolk=r =>k eqq r = true;k neq r = not(k eqq r) 70

endtypetype tuple is indiceformalsorts itemsorts tupleopns # : item, item, item, item -> tupleget : indice, tuple -> itemeqns forall v,x,y,z: itemofsort itemget(j0,#(v,x,y,z)) = v;get(j1,#(v,x,y,z)) = x;get(j2,#(v,x,y,z)) = y;get(j3,#(v,x,y,z)) = z;endtypetype inArr is tuple actualizedby Rep usingsortnames inArr for tupleRep for itemopnnames iaget for getendtype(* We assume a maximum size for input Array's of 4. Consequently,smaller arrays will have empty slots at the end. These will be setto the null representation 0. *)type imRc is inArr, NaturalNumbersorts imRcopns nil : -> imRcadd : inArr, imRc -> imRcfirst : imRc -> inArrselect : Nat, inArr, imRc -> inArr (* Selects from the image arrayduring buffered mode accordingto the first parameter. *)remove : imRc -> imRceqns forall x,y : inArr, z : imRc, n : Natofsort inArrfirst(nil) = #(0,0,0,0);first(add(x,nil)) = x;first(add(x,add(y,z))) = first(add(y,z));select(0,x,z) = first(z);select(succ(n),x,z) = select(n,x,remove(z))(* This definition is a placeholder for something moresophisticated. It allows selection from the image recordto be made by referencing a location in the image record. *)ofsort imRc 71

remove(nil) = nil;remove(add(x,nil)) = nil;remove(add(x,add(y,z))) = add(x,remove(add(y,z)));endtypetype slotmap is tuple actualizedby Boolean usingsortnames slotmap for tupleBool for itemopnnames smget for getendtypetype Map is tuple actualizedby slotmap usingsortnames Map for tupleslotmap for itemopnnames mpget for getendtype(* The ith entry in the Map tuple indicates the set of slots in theinput array blendable at the ith output transformation. This set ofslots is indicated by a slotmap - true in the jthlocation indicates that the jth slot is required. Thus,in a similar way to with the input array, we assume no morethan 4 output transformations. *)type subsyst issorts subsystopns VISS, OBJJ, LIMM, LEGG, ARMM, HANDD, VISCC, SOMM, SPP, WRR,IMPLICC, BSS, PROPP, MPLL, ACC, ARTT : -> subsystendtypetype trans is subsyst, Repsorts transopns tran : subsyst, subsyst, Rep -> Repeqns forall s,t: subsyst, r : Repofsort Reptran(s,t,r)=rendtype(* For the moment all transformations between all subsystems are definedas the identity operation *)type blending is slotmap, inArr, Rep, Booleansorts blendingopns compare : slotmap, inArr -> Repeval : Bool, Rep -> Rep_@_ : Rep, Rep -> Repmult : slotmap, inArr -> Repeqns forall x0,x1,x2,x3:Bool, r,r0,r1,r2,r3:Rep72

ofsort Repcompare(#(x0,x1,x2,x3),#(r0,r1,r2,r3)) =(((eval(x0,r0) @ eval(x1,r1)) @ eval(x2,r2)) @ eval(x3,r3));eval(true,r) = r;eval(false,r) = succ(0);r1 eq r2 => r1 @ r2 = r1;r1 ne r2 and ((r1 eq succ(0)) or (r2 eq succ(0))) => r1 @ r2 = r1 * r2;r1 ne r2 and ((r1 ne succ(0)) and (r2 ne succ(0))) => r1 @ r2 = 0;mult(#(x0,x1,x2,x3),#(r0,r1,r2,r3)) =(((eval(x0,r0) * eval(x1,r1)) * eval(x2,r2)) * eval(x3,r3));endtypebehaviour(* Initalize the transformation maps for each of the subsystems. *)letVISmap:Map = #(#(true,false,false,false) ,#(true,false,false,false) ,#(false,false,false,false) , (* Redundant entry *)#(false,false,false,false)), (* Redundant entry *)OBJmap:Map = #(#(true,true,false,false) ,#(true,true,false,false) ,#(true,true,false,false) ,#(false,false,false,false)), (* Redundant entry *)LIMmap:Map = #(#(true,true,false,false) ,#(true,true,false,false) ,#(true,true,false,false) ,#(false,false,false,false)), (* Redundant entry *)IMPLICmap:Map = #(#(true,true,true,true) ,#(true,true,true,true) ,#(true,true,true,true) ,#(false,false,false,false)), (* Redundant entry *)PROPmap:Map = #(#(true,true,true,false) ,#(true,true,true,false) ,#(true,true,true,false) ,#(false,false,false,false)), (* Redundant entry *)BSmap:Map = #(#(true,false,false,false) ,73

#(true,true,false,false) ,#(false,true,false,false) ,#(false,false,false,false)), (* Redundant entry *)MPLmap:Map = #(#(true,true,true,false) ,#(true,true,true,false) ,#(false,false,false,false) , (* Redundant entry *)#(false,false,false,false)), (* Redundant entry *)ACmap:Map = #(#(true,false,false,false) ,#(true,false,false,false) ,#(false,false,false,false) , (* Redundant entry *)#(false,false,false,false)), (* Redundant entry *)ARTmap:Map = #(#(true,true,false,false) ,#(true,true,false,false) ,#(false,false,false,false) , (* Redundant entry *)#(false,false,false,false)) (* Redundant entry *)in((* Top Level Behaviour of ICS. *)clock[tick]|[tick]|(tick;((((((((VIS[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](nil,#(0,0,0,0),VISmap)|[vis_obj,tick]|OBJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](nil,#(0,0,0,0),OBJmap))|[obj_lim,tick]|LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](nil,#(0,0,0,0),LIMmap))|[vis_implic,tick]|IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](nil,#(0,0,0,0),IMPLICmap))|[obj_prop,implic_prop,prop_obj,prop_implic,tick]|PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](nil,#(0,0,0,0),PROPmap))|[bs_implic,bs_lim,tick]|BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](nil,#(0,0,0,0),BSmap))|[obj_mpl,prop_mpl,mpl_prop,tick]|74

MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](nil,#(0,0,0,0),MPLmap))|[ac_mpl,ac_implic,tick]|AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](nil,#(0,0,0,0),ACmap))|[mpl_art,bs_art,tick]|ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](nil,#(0,0,0,0),ARTmap))|[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]|tick;buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]))where(************************* CLOCK process ****************************)process clock[tick]:noexit:=tick; clock[tick]endproc (* clock *)(************************* Buffer Constraint *****************************)(* This process defines a constraint on the number of subsystemsthat can be in buffered mode. The constraint is that at most onesubsystem may be in buffered mode (and the subsystem definitionsensure that only one transformation within a subsystem can bebuffered). This is a basic constraint in the ICS model. *)process buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]:noexit:=obj_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]vis_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][] 75

lim_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]implic_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]prop_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]mpl_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]ac_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]art_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]bs_buffered?b:indice; tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick][]tick; buffConstraint[obj_buffered,vis_buffered,lim_buffered,implic_buffered,prop_buffered,mpl_buffered,ac_buffered,art_buffered,bs_buffered,tick]endproc (* buffConstraint *)(************************* The VIS process *******************************)process VIS[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](iR:imRc,iA:inArr,m:Map): noexit :=76

((vis_normal;VIS_NORMAL[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](iR,iA,m))[](vis_buffered?b:indice; (* b indicates which transformation is buffered *)VIS_BUFFMD[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions vis_normal and vis_buffered. *)whereprocess VIS_NORMAL[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((eye_vis?r1:Rep ; exit(r1))(* Input Ports *)|||((BLEND2[vis_obj](VISS,OBJJ,j0,iA,m) >> exit(any Rep))||| (BLEND2[vis_implic](VISS,IMPLICC,j1,iA,m) >> exit(any Rep)))(* Output Ports *))>> accept r1:rep intick; VIS[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](add(#(r1,0,0,0),iR),#(r1,0,0,0),m)endproc (* VIS_NORMAL *)process VIS_BUFFMD[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((eye_vis?r1:Rep ; exit(r1))(* Input Ports *)|||((OUTPUT2[vis_obj](VISS,OBJJ,b,j0,iR,iA,m) >> exit(any Rep))|||(OUTPUT2[vis_implic](VISS,IMPLICC,b,j1,iR,iA,m) >> exit(any Rep)))(* Output Ports *))>> accept r1:rep intick; VIS[tick,eye_vis,vis_obj,vis_implic,vis_normal,vis_buffered](add(#(r1,0,0,0),iR),#(r1,0,0,0),m)endproc (* VIS_BUFFMD *)endproc (* VIS *) 77

(************************* The OBJ process *******************************)process OBJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((obj_normal;OBJ_NORMAL[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](iR,iA,m))[](obj_buffered?b:indice; (* b indicates which transformation is buffered *)OBJ_BUFFMD[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions obj_normal and obj_buffered. *)whereprocess OBJ_NORMAL[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((vis_obj?r1:Rep ; exit(r1,any Rep) ||| prop_obj?r2:Rep ; exit(any Rep,r2))(* Input Ports *)|||((BLEND2[obj_mpl](OBJJ,MPLL,j0,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[obj_prop](OBJJ,PROPP,j1,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[obj_lim](OBJJ,LIMM,j2,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; OBJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* OBJ_NORMAL *)process OBJ_BUFFMD[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((vis_obj?r1:Rep ; exit(r1,any Rep) ||| prop_obj?r2:Rep ; exit(any Rep,r2))(* Input Ports *)|||((OUTPUT2[obj_mpl](OBJJ,MPLL,b,j0,iR,iA,m) >> exit(any Rep,any Rep))|||(OUTPUT2[obj_prop](OBJJ,PROPP,b,j1,iR,iA,m) >> exit(any Rep,any Rep))||| 78

(OUTPUT2[obj_lim](OBJJ,LIMM,b,j2,iR,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; OBJ[tick,vis_obj,prop_obj,obj_mpl,obj_prop,obj_lim,obj_normal,obj_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* OBJ_BUFFMD *)endproc (* OBJ *)(************************* The LIM process *******************************)process LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((lim_normal;LIM_NORMAL[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](iR,iA,m))[](lim_buffered?b:indice; (* b indicates which transformation is buffered *)LIM_BUFFMD[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions lim_normal and lim_buffered. *)whereprocess LIM_NORMAL[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((obj_lim?r1:Rep ; exit(r1,any Rep) ||| bs_lim?r2:Rep ; exit(any Rep,r2))(* Input Ports *)|||((BLEND2[lim_leg](LIMM,LEGG,j0,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[lim_arm](LIMM,ARMM,j1,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[lim_hand](LIMM,HANDD,j2,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* LIM_NORMAL *) 79

process LIM_BUFFMD[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((obj_lim?r1:Rep ; exit(r1,any Rep) ||| bs_lim?r2:Rep ; exit(any Rep,r2))(* Input Ports *)|||((OUTPUT2[lim_leg](LIMM,LEGG,b,j0,iR,iA,m) >> exit(any Rep,any Rep))|||(OUTPUT2[lim_arm](LIMM,ARMM,b,j1,iR,iA,m) >> exit(any Rep,any Rep))|||(OUTPUT2[lim_hand](LIMM,HANDD,b,j2,iR,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; LIM[tick,obj_lim,bs_lim,lim_leg,lim_arm,lim_hand,lim_normal,lim_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* LIM_BUFFMD *)endproc (* LIM *)(************************* SOM_VISC *******************************)(* These subsystems are not currently implemented. *)(************************* The IMPLIC process *******************************)process IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((implic_normal;IMPLIC_NORMAL[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](iR,iA,m))[](implic_buffered?b:indice; (* b indicates which transformation is buffered *)IMPLIC_BUFFMD[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions implic_normal and implic_buffered. *)80

whereprocess IMPLIC_NORMAL[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((vis_implic?r1:Rep ; exit(r1,any Rep,any Rep,any Rep)||| prop_implic?r2:Rep ; exit(any Rep,r2,any Rep,any Rep)||| bs_implic?r3:Rep ; exit(any Rep,any Rep,r3,any Rep)||| ac_implic?r4:Rep ; exit(any Rep,any Rep,any Rep,r4))(* Input Ports *)|||((BLEND2[implic_prop](IMPLICC,PROPP,j0,iA,m) >>exit(any Rep,any Rep,any Rep,any Rep))||| (BLEND2[implic_visc](IMPLICC,VISCC,j1,iA,m) >>exit(any Rep,any Rep,any Rep,any Rep))||| (BLEND2[implic_som](IMPLICC,SOMM,j2,iA,m) >>exit(any Rep,any Rep,any Rep,any Rep)))(* Output Ports *))>> accept r1,r2,r3,r4:rep intick; IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](add(#(r1,r2,r3,r4),iR),#(r1,r2,r3,r4),m)endproc (* IMPLIC_NORMAL *)process IMPLIC_BUFFMD[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,implic_visc,implic_som,implic_normal,implic_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((vis_implic?r1:Rep ; exit(r1,any Rep,any Rep,any Rep)||| prop_implic?r2:Rep ; exit(any Rep,r2,any Rep,any Rep)||| bs_implic?r3:Rep ; exit(any Rep,any Rep,r3,any Rep)||| ac_implic?r4:Rep ; exit(any Rep,any Rep,any Rep,r4))(* Input Ports *)|||((OUTPUT2[implic_prop](IMPLICC,PROPP,b,j0,iR,iA,m) >>exit(any Rep,any Rep,any Rep,any Rep))|||(OUTPUT2[implic_visc](IMPLICC,VISCC,b,j1,iR,iA,m) >>exit(any Rep,any Rep,any Rep,any Rep))|||(OUTPUT2[implic_som](IMPLICC,SOMM,b,j2,iR,iA,m) >>exit(any Rep,any Rep,any Rep,any Rep)))(* Output Ports *))>> accept r1,r2,r3,r4:rep intick; IMPLIC[tick,vis_implic,prop_implic,bs_implic,ac_implic,implic_prop,81

implic_visc,implic_som,implic_normal,implic_buffered](add(#(r1,r2,r3,r4),iR),#(r1,r2,r3,r4),m)endproc (* IMPLIC_BUFFMD *)endproc (* IMPLIC *)(************************* The PROP process *******************************)process PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((prop_normal;PROP_NORMAL[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](iR,iA,m))[](prop_buffered?b:indice; (* b indicates which transformation is buffered *)PROP_BUFFMD[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions prop_normal and prop_buffered. *)whereprocess PROP_NORMAL[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((obj_prop?r1:Rep ; exit(r1,any Rep,any Rep)||| implic_prop?r2:Rep ; exit(any Rep,r2,any Rep)||| mpl_prop?r3:Rep ; exit(any Rep,any Rep,r3))(* Input Ports *)|||((BLEND2[prop_mpl](PROPP,MPLL,j0,iA,m) >> exit(any Rep,any Rep,any Rep))||| (BLEND2[prop_obj](PROPP,OBJJ,j1,iA,m) >> exit(any Rep,any Rep,any Rep))||| (BLEND2[prop_implic](PROPP,IMPLICC,j2,iA,m) >>exit(any Rep,any Rep,any Rep)))(* Output Ports *))>> accept r1,r2,r3:rep intick; PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](add(#(r1,r2,r3,0),iR),#(r1,r2,r3,0),m)82

endproc (* PROP_NORMAL *)process PROP_BUFFMD[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](iR:imRc,iA:inArr,m:Map,b:indice):noexit :=((obj_prop?r1:Rep ; exit(r1,any Rep,any Rep)||| implic_prop?r2:Rep ; exit(any Rep,r2,any Rep)||| mpl_prop?r3:Rep ; exit(any Rep,any Rep,r3))(* Input Ports *)|||((OUTPUT2[prop_mpl](PROPP,MPLL,b,j0,iR,iA,m) >> exit(any Rep,any Rep,any Rep))|||(OUTPUT2[prop_obj](PROPP,OBJJ,b,j1,iR,iA,m) >> exit(any Rep,any Rep,any Rep))|||(OUTPUT2[prop_implic](PROPP,IMPLICC,b,j2,iR,iA,m) >>exit(any Rep,any Rep,any Rep)))(* Output Ports *))>> accept r1,r2,r3:rep intick; PROP[tick,obj_prop,implic_prop,mpl_prop,prop_mpl,prop_obj,prop_implic,prop_normal,prop_buffered](add(#(r1,r2,r3,0),iR),#(r1,r2,r3,0),m)endproc (* PROP_BUFFMD *)endproc (* PROP *)(************************* The BS process *******************************)process BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((bs_normal;BS_NORMAL[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](iR,iA,m))[](bs_buffered?b:indice; (* b indicates which transformation is buffered *)BS_BUFFMD[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions bs_normal and bs_buffered. *)83

whereprocess BS_NORMAL[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((vocal_bs?r1:Rep; exit(r1,any Rep) ||| hand_bs?r2:Rep; exit(any Rep,r2))(* Input Ports *)|||((BLEND2[bs_art](BSS,ARTT,j0,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[bs_implic](BSS,IMPLICC,j1,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[bs_lim](BSS,LIMM,j2,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* BS_NORMAL *)process BS_BUFFMD[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((vocal_bs?r1:Rep; exit(r1,any Rep) ||| hand_bs?r2:Rep; exit(any Rep,r2))(* Input Ports *)|||((OUTPUT2[bs_art](BSS,ARTT,b,j0,iR,iA,m) >> exit(any Rep,any Rep))|||(OUTPUT2[bs_implic](BSS,IMPLICC,b,j1,iR,iA,m) >> exit(any Rep,any Rep))|||(OUTPUT2[bs_lim](BSS,LIMM,b,j2,iR,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; BS[tick,vocal_bs,hand_bs,bs_art,bs_implic,bs_lim,bs_normal,bs_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* BS_BUFFMD *)endproc (* BS *)(************************* The MPL process *******************************)process MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((mpl_normal; 84

MPL_NORMAL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](iR,iA,m))[](mpl_buffered?b:indice; (* b indicates which transformation is buffered *)MPL_BUFFMD[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions mpl_normal and mpl_buffered. *)whereprocess MPL_NORMAL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((obj_mpl?r1:Rep ; exit(r1,any Rep,any Rep)||| prop_mpl?r2:Rep ; exit(any Rep,r2,any Rep)||| ac_mpl?r3:Rep ; exit(any Rep,any Rep,r3))(* Input Ports *)|||((BLEND2[mpl_art](MPLL,ARTT,j0,iA,m) >> exit(any Rep,any Rep,any Rep))||| (BLEND2[mpl_prop](MPLL,PROPP,j1,iA,m) >> exit(any Rep,any Rep,any Rep)))(* Output Ports *))>> accept r1,r2,r3:rep intick; MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](add(#(r1,r2,r3,0),iR),#(r1,r2,r3,0),m)endproc (* MPL_NORMAL *)process MPL_BUFFMD[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((obj_mpl?r1:Rep ; exit(r1,any Rep,any Rep)||| prop_mpl?r2:Rep ; exit(any Rep,r2,any Rep)||| ac_mpl?r3:Rep ; exit(any Rep,any Rep,r3))(* Input Ports *)|||((OUTPUT2[mpl_art](MPLL,ARTT,b,j0,iR,iA,m) >> exit(any Rep,any Rep,any Rep))|||(OUTPUT2[mpl_prop](MPLL,PROPP,b,j1,iR,iA,m) >>exit(any Rep,any Rep,any Rep)))(* Output Ports *))>> accept r1,r2,r3:rep intick; MPL[tick,obj_mpl,prop_mpl,ac_mpl,mpl_art,mpl_prop,mpl_normal,mpl_buffered](add(#(r1,r2,r3,0),iR),#(r1,r2,r3,0),m)85

endproc (* MPL_BUFFMD *)endproc (* MPL *)(************************* The AC process *******************************)process AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((ac_normal;AC_NORMAL[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](iR,iA,m))[](ac_buffered?b:indice; (* b indicates which transformation is buffered *)AC_BUFFMD[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions ac_normal and ac_buffered. *)whereprocess AC_NORMAL[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((ear_ac?r1:Rep ; exit(r1))(* Input Ports *)|||((BLEND2[ac_mpl](ACC,MPLL,j0,iA,m) >> exit(any Rep))||| (BLEND2[ac_implic](ACC,IMPLICC,j1,iA,m) >> exit(any Rep)))(* Output Ports *))>> accept r1:rep intick; AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](add(#(r1,0,0,0),iR),#(r1,0,0,0),m)endproc (* AC_NORMAL *)process AC_BUFFMD[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=((ear_ac?r1:Rep ; exit(r1))(* Input Ports *)|||((OUTPUT2[ac_mpl](ACC,MPLL,b,j0,iR,iA,m) >> exit(any Rep))||| 86

(OUTPUT2[ac_implic](ACC,IMPLICC,b,j1,iR,iA,m) >> exit(any Rep)))(* Output Ports *))>> accept r1:rep intick; AC[tick,ear_ac,ac_mpl,ac_implic,ac_normal,ac_buffered](add(#(r1,0,0,0),iR),#(r1,0,0,0),m)endproc (* AC_BUFFMD *)endproc (* AC *)(************************* The ART process *******************************)process ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](iR:imRc,iA:inArr,m:Map): noexit :=((art_normal;ART_NORMAL[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](iR,iA,m))[](art_buffered?b:indice; (* b indicates which transformation is buffered *)ART_BUFFMD[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](iR,iA,m,b)))(* The choice here is between normal mode and buffered mode. The actualmechanism used is not currently clear. Thus, we allow the environment tochoose through actions art_normal and art_buffered. *)whereprocess ART_NORMAL[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](iR:imRc,iA:inArr,m:Map) : noexit :=((bs_art?r1:Rep ; exit(r1,any Rep) ||| mpl_art?r2:Rep ; exit(any Rep,r2))(* Input Ports *)|||((BLEND2[art_sp](ARTT,SPP,j0,iA,m) >> exit(any Rep,any Rep))||| (BLEND2[art_wr](ARTT,WRR,j1,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* ART_NORMAL *)process ART_BUFFMD[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](iR:imRc,iA:inArr,m:Map,b:indice): noexit :=87

((bs_art?r1:Rep ; exit(r1,any Rep) ||| mpl_art?r2:Rep ; exit(any Rep,r2))(* Input Ports *)|||((OUTPUT2[art_sp](ARTT,SPP,b,j0,iR,iA,m) >> exit(any Rep,any Rep))|||(OUTPUT2[art_wr](ARTT,WRR,b,j1,iR,iA,m) >> exit(any Rep,any Rep)))(* Output Ports *))>> accept r1,r2:rep intick; ART[tick,bs_art,mpl_art,art_sp,art_wr,art_normal,art_buffered](add(#(r1,r2,0,0),iR),#(r1,r2,0,0),m)endproc (* ART_BUFFMD *)endproc (* ART *)(************************** BLENDING Functions ********************)process BLEND1[g](X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=choice r:Rep [] i; g!tran(X,Y,r); exitendproc (* BLEND1 *)process BLEND2[g](X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=choice j:indice [] [smget(j,mpget(id,m))] ->i; g!tran(X,Y,iaget(j,iA)); exitendproc (* BLEND2 *)process BLEND3[g](X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=g!tran(X,Y,compare(mpget(id,m),iA)); exitendproc (* BLEND3 *)process BLEND4[g](X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=let sm:slotmap=mpget(id,m) in([compare(sm,iA) gt succ(0)] -> g!tran(X,Y,mult(sm,iA)); exit[][compare(sm,iA) le succ(0)] -> g!tran(X,Y,0); exit)endproc (* BLEND4 *)process BLEND5[g](X,Y:Subsyst,id:indice,iA:inArr,m:Map): exit :=g!tran(X,Y,mult(mpget(id,m),iA)); exitendproc (* BLEND4 *)(************************** OUTPUTING Functions *********************)(* Used in buffered mode *)process OUTPUT1[g](X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :=88

[b eqq j] -> (choice n:Nat [] BLEND1[g](X,Y,j,select(n,iA,iR),m))[][b neq j] -> (BLEND1[g](X,Y,j,iA,m))endproc (* OUTPUT1 *)process OUTPUT2[g](X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :=[b eqq j] -> (choice n:Nat [] BLEND2[g](X,Y,j,select(n,iA,iR),m))[][b neq j] -> (BLEND2[g](X,Y,j,iA,m))endproc (* OUTPUT2 *)process OUTPUT3[g](X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :=[b eqq j] -> (choice n:Nat [] BLEND3[g](X,Y,j,select(n,iA,iR),m))[][b neq j] -> (BLEND3[g](X,Y,j,iA,m))endproc (* OUTPUT3 *)process OUTPUT4[g](X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :=[b eqq j] -> (choice n:Nat [] BLEND4[g](X,Y,j,select(n,iA,iR),m))[][b neq j] -> (BLEND4[g](X,Y,j,iA,m))endproc (* OUTPUT4 *)process OUTPUT5[g](X,Y:Subsyst,b,j:indice,iR:imRc,iA:inArr,m:Map): exit :=[b eqq j] -> (choice n:Nat [] BLEND5[g](X,Y,j,select(n,iA,iR),m))[][b neq j] -> (BLEND5[g](X,Y,j,iA,m))endproc (* OUTPUT5 *)endspec

89

9.8 NotesThere are some remaining isues and points:-� Notio of system hitting equilibrium - where outputs have stabilised andwill nto change unless the inputs change.� Distinction between implicit and explicit blending of body state withLIM/SPEECH. We only apply a multiplicative blend when the body statehas to be considered explicitly, i.e. if the cursor needs to be associatedwith the body state. Normal speech and pointing does not require such amultiplicative blend. It is an implicit action.� id and X, Y represent the same information - should combine the two intoa single concept.

90

