
Computer S
ien
e at Kent
A Ba
kward Analysis for Constraint Logi
 Programs
Andy King and Lunjin Lu
Te
hni
al Report No: 4-01Date: De
ember 2001

Copyright

 2001 University of Kent at CanterburyPublished by the Computing Laboratory,University of Kent, Canterbury, Kent CT2 7NF, UK.
Abstra
tOne re
urring problem in program development is that of understanding how to re-use
odedeveloped by a third party. In the
ontext of (
onstraint) logi
 programming, part of thisproblem redu
es to �guring out how to query a program. If the logi
 program does not
omewith any do
umentation, then the programmer is for
ed to either experiment with queries inan ad ho
 fashion or tra
e the
ontrol-
ow of the program (ba
kward) to infer the modes inwhi
h a predi
ate must be
alled so as to avoid an instantiation error. This paper presents anabstra
t interpretation s
heme that automates the latter te
hnique. The analysis presented inthis paper
an infer moding properties whi
h if satis�ed by the initial query,
ome with theguarantee that the program and query
an never generate any moding or instantiation errors.Other appli
ations of the analysis are dis
ussed. The paper explains how abstra
t domains with
ertain
omputational properties (they
ondense)
an be used to tra
e
ontrol-
ow ba
kward(right-to-left) to infer useful properties of initial queries. A
orre
tness argument is presentedand an implementation is reported.

1

1 Introdu
tionThe myth of the lonely logi
 programmer writing a program in isolation is just that: a myth.Appli
ations (and appli
ation
omponents) are usually implemented and maintained by a team.One
onsequen
e of this is a signi�
ant proportion of the program development e�ort is devotedto understanding
ode developed by another. One advantage of (
onstraint) logi
 programs forsoftware development is that their de
larative nature makes them less opaque than, say, C++programs. One disadvantage of logi
 programs over C++ programs, however, is that the signature(argument types) of a predi
ate do not
ompletely spe
ify how the predi
ate should be invoked. Inparti
ular, a
all to a predi
ate from an unexpe
ted
ontext may generate an error if an argument ofthe
all is insuÆ
iently instantiated (even if the program and query are well-typed). This is be
auselogi
 programs
ontain builtins and
alls to these builtins often impose moding requirements onthe query. If the program is developed by another programmer, it may not be
lear how to querya predi
ate so as to avoid an instantiation error. In these
ir
umstan
es, the programmer willoften resort to a trial and error ta
ti
 in their sear
h for an initial
all mode. This
an be bothfrustrating and tedious and, of
ourse,
annot guarantee
overage of all the program exe
utionpaths. This paper presents an analysis for inferring moding properties whi
h, if satis�ed by theinitial query, ensure that the program does not generate instantiation errors. Of
ourse, it does notmean that the inferred
all has the form exa
tly intended by the original programmer { no analysis
an do that { the analysis just re
overs mode information. Nevertheless, this is a useful �rst stepin understanding the
ode developed by another.The problem of inferring initial queries whi
h do not lead to instantiation errors is an instan
eof the more general problem of dedu
ing how to
all a program so that it
onforms to some desiredproperty, for example,
alls to builtins do not error, the program terminates, or
alls to builtinsbehave predi
tably. The ba
kward analysis presented in this paper is designed to infer
onditionson the query whi
h, if satis�ed, guarantee that resulting derivations satisfy a property su
h asone of those above. Spe
i�
ally, the analysis framework
an be instantiated to solve the followinganalysis problems:� Builtins and library fun
tions
an behave unpredi
tably when
alled with in�nite rationaltrees. For example, the query ?- X = X + X, Y is X will not terminate in SICStus Prologbe
ause the arithmeti
 operator expe
ts its input to be a �nite tree rather than an in�niterational tree. Moreover, the standard term ordering of Prolog does not lift to rational trees,so the builtin sort
an behave unpredi
tably when sorting rational trees. These problems (andrelated problems with builtins) motivate the use of dependen
y analysis for tra
king whi
hterms are de�nitely �nite [3℄. The basi
 idea is to des
ribe the
onstraint x = f(x1; : : : ; xn)by the Boolean fun
tion x, ^ni=1xi whi
h en
odes that x is bound to a �nite tree i� ea
h xiis bound to a �nite tree. Although not proposed in the
ontext of ba
kward analysis [3℄, theframework proposed in this paper
an be instantiated with a �nite tree dependen
y domainto infer �niteness properties on the query whi
h, if satis�ed, guarantee that builtins are not
alled with problemati
 arguments.� Termination inferen
e is the problem of inferring initial modes for a query that, if satis�ed,ensure that a logi
 program terminates. This problem generalises termination
he
king whi
hveri�es program termination for a
lass of queries spe
i�ed by a given mode. Terminationinferen
e dates ba
k to [29℄ but it has been re
ently observed [17℄ that the missing link betweentermination
he
king and termination inferen
e is ba
kward analysis. A termination inferen
eanalyser is reported in [17℄
omposed from two
omponents: a standard termination
he
ker[8℄ and the ba
kward analysis des
ribed in this paper. The resulting analyser is similar to the2

TI analyser of [30℄ { the main di�eren
e is its design as two existing bla
k-box
omponentswhi
h, a

ording to [17℄, simpli�es the formal justi�
ation and implementation.� Mode analysis is useful for implementing

p programs. In parti
ular [12℄ explains howvarious low-level optimisations, su
h as returning output values in registers,
an be appliedif goals
an be s
heduled left-to-right without suspension. If the guards of the predi
ates arere-interpreted as moding requirements, then the ba
kward mode analysis
an infer suÆ
ient
onditions for avoiding deadlo
k under left-to-right s
heduling. The analysis presented in thispaper thus has appli
ations outside program development.To summarise, the analysis presented in this paper
an dedu
e properties of the
all whi
h, ifsatis�ed, guarantee that resulting derivations ful�ll some desired property. The analysis is unusualin that it applies lower approximation (see 2.4.1) as well as upper approximation (see 2.3.1); it isformulated in terms of a greatest �xpoint
al
ulation (see 2.4) as well as least �xpoint
al
ulation(see 2.3); the analysis also imposes some unusual restri
tions on the abstra
t domain (see 2.4.6).1.1 Ba
kward analysisBa
kward analysis has been applied extensively in fun
tional programming in, among other things,proje
tion analysis [38℄, stream stri
tness analysis [22℄, inverse image analysis [14℄, et
. By reasoningabout the
ontext of a fun
tion appli
ation, these analyses
an identify opportunities for eagerevaluation that are missed by (forward) stri
tness analysis as proposed by [31℄. Furthermore,ba
kward reasoning on imperative programs dates ba
k to the early days of stati
 analysis [9℄. Byway of
ontrast, ba
kward analysis has been rarely applied in logi
 programming. One notableex
eption is the demand analysis of [11℄. This analysis infers the degree of instantiation ne
essaryfor the guards of a
on
urrent
onstraint program (

p) to redu
e. It is a lo
al analysis thatdoes not
onsider the possible suspension of body
alls. This analysis dete
ts those (uni-modal)predi
ates whi
h
an be implemented with spe
ialised suspension ma
hinery. A more elaborateba
kward analysis for

p is presented by [15℄. This demand analysis infers how mu
h input isne
essary for a pro
edure to generate a
ertain amount of output. This information is useful foradding syn
hronisation (ask)
onstraints to a pro
edure to delay exe
ution and thereby in
reasegrain size, and yet not introdu
e deadlo
k. (Se
tion 7 provides more extensive and re
e
tive reviewof the related work.)1.2 ContributionsOur work is quite di�erent. As far as we are aware, it is unique in that it fo
uses on the ba
kwardanalysis of (
onstraint) logi
 programs with left-to-right s
heduling. Spe
i�
ally, our work makesthe following pra
ti
al and theoreti
al
ontributions:� it shows how to
ompute an initial mode of a predi
ate whi
h is safe in that if a query isat least as instantiated as the inferred mode, the exe
ution is guaranteed to be free frominstantiation errors. The modes inferred are often disjun
tive, sometimes surprising and, forthe small predi
ates that we veri�ed by hand, appear to be optimal.� it spe
i�es a pra
ti
al algorithm for
al
ulating initial modes that is straightforward to imple-ment in that it redu
es to two bottom-up �xpoint
al
ulations. Furthermore, this ba
kwardanalysis problem
annot be solved with any existing abstra
t interpretation ma
hinery.� to the best our knowledge, it is the �rst time domains that are
losed under Heyting
omple-tion [21℄, or equivalently are
ondensing [27℄, have been applied to ba
kward analysis. Put3

another way, our work adds
reden
e to the belief that
ondensation is an important propertyin the analysis of logi
 programs.The �nal point requires some unpa
king. Condensation was originally proposed in [26℄, thougharguably the simplest statement of this property [27℄ is for downward
losed domains su
h asPos [1℄ and the Pos-like type dependen
y domains [7℄. Suppose that f : X ! X is an abstra
toperation on a downward
losed domain X equipped with an operation ^ that mimi
s uni�
ation or
onstraint solving. X is
ondensing i� x^f(y) = f(x^y) for all x; y 2 X. Hen
e, if X is
ondensing,x^ f(true) = f(x) where true represents the weakest abstra
t
onstraint. More exa
tly, if f(true)represents the result of the goal-independent analysis, and f(x) the result of the goal-dependentone with an initial
onstraint x, then the equivalen
e f(x) = x ^ f(true) enables goal-dependentanalysis to be performed in a goal-independent way without loss of pre
ision. This, in turn,
ansimplify the implementation of an analyser [1℄. Be
ause of this, domain re�nement ma
hinery hasbeen devised to enri
h a domain with new elements to obtain the desired
ondensing property [21℄.It turns out that it is always possible to systemati
ally design a
ondensing domain for a givendownward
losed property [21℄[Theorem 8.2℄ by applying Heyting
ompletion. Conversely, undersome reasonable hypotheses, all
ondensing domains
an be re
onstru
ted by Heyting
ompletion[21℄[Theorem 8.3℄. One
onsequen
e of this is that
ondensing domains
ome equipped with a(pseudo-
omplement) operator and this turns out to be an operation that is important in ba
kwardanalysis. To summarise, ma
hinery has been developed to synthesise
ondensing domains and
ondensing domains provide operations suitable for ba
kward analysis.1.3 Organisation of the paperThe rest of the paper is stru
tured as follows. Se
tion 2 introdu
es the key ideas of the paper inan informal way through a worked example. Se
tion 3 introdu
es the ne
essary preliminaries forthe formal se
tions that follow. Se
tion 4 presents an operational semanti
s for
onstraint logi
programs with assertions in whi
h the set of program states is augmented by a spe
ial error state.Se
tion 5 develops a semanti
s whi
h
omputes those initial states that
annot lead to the errorstate. The semanti
s de�nes a framework for ba
kward analysis and formally argues
orre
tness.Se
tion 6 des
ribes an instantiation of the framework for mode analysis. Se
tion 7 reviews therelated work and se
tion 8
on
ludes. Mu
h of the formal ma
hinery is borrowed dire
tly from[19, 21℄ and in parti
ular the reader is referred to [19℄ for proofs of the semanti
 results statedin se
tion 3 (albeit presented in a slightly di�erent form). To aid
ontinuity in the paper, theremaining proofs are relegated to appendix A.
2 Worked example2.1 Basi

omponentsThis se
tion informally presents an abstra
t interpretation s
heme whi
h infers how to query agiven predi
ate so as to avoid run-time moding errors. In other words, the analysis dedu
es modingproperties of the
all that, if satis�ed, guarantee that resulting derivations
annot en
ounter aninstantiation error. To illustrate,
onsider the Qui
ksort program listed in the left
olumn of�gure 1. This is the �rst ingredient of the analysis: the input program. The se
ond ingredient isan abstra
t domain whi
h, in this
ase, is Pos. Pos is the domain of positive Boolean fun
tions,that is, the set of fun
tions f : f0; 1gn ! f0; 1g su
h that f(1; : : : ; 1) = 1. Hen
e x_ y 2 Pos sin
e1 _ 1 = 1 but :x 62 Pos sin
e :1 = 0. Pos is augmented with the bottom element 0 with 1 being

4

the top element. The domain is ordered by entailment j= and, in this example, will be used torepresent grounding dependen
ies.Pos
omes equipped with the logi
al operations:
onjun
tion ^, disjun
tion _, impli
ation)(and thus bi-impli
ation ,). Conjun
tion is used to
onjoin the information from di�erent bodyatoms, while disjun
tion is used to
ombine the information from di�erent
lauses. Conjun
tion anddisjun
tion, in turn, enable two proje
tion operators to be de�ned: 9x(f) = f [x 7! 0℄ _ f [x 7! 1℄and 8x(f) = f 0 if f 0 2 Pos otherwise 8x(f) = 0 where f 0 = f [x 7! 0℄^f [x 7! 1℄. Note that althoughf [x 7! 0℄ _ f [x 7! 1℄ 2 Pos for all f 2 Pos it does not follow that f [x 7! 0℄ ^ f [x 7! 1℄ 2 Pos forall f 2 Pos. Indeed, (x (y)[x 7! 0℄ ^ (x (y)[x 7! 1℄ = :y. Both operators are used to proje
tout the body variables that are not in the head of a
lause. Spe
i�
ally, these operators eliminatethe variable x from the formula f . They are dual in the sense that 8x(f) j= f j= 9x(f). These arethe basi

omponents of the analysis.2.2 Normalisation and abstra
tionThe analysis
omponents are assembled in two steps. The �rst is a bottom-up analysis for su

esspatterns, that is, a bottom-up analysis whi
h infers the groundness dependen
ies whi
h are knownto be
reated by ea
h predi
ate regardless of the
alling pattern. This step is a least �xpoint(lfp)
al
ulation. The se
ond step is a bottom-up analysis for input modes (the obje
tive of theanalysis). This step is a greatest �xpoint (gfp)
omputation. To simplify both steps, the programis put into a form in whi
h the arguments of head and body atoms are distin
t variables. This givesthe normalised program listed in the
entre
olumn of �gure 1. This program is then abstra
tedby repla
ing ea
h Herbrand
onstraint x = f(x1; : : : ; xn) with a formula x, ^ni=1xi that des
ribesits grounding dependen
y. This gives the abstra
t program listed in the right
olumn of �gure 1.The formula 1 in the assertion represents true whereas the formulae gi that appear in the abstra
tprogram are as follows:g1 = t1 ^ (t2 , s)g2 = t1 , (m ^ xs) ^ t3 , (m ^ r)g3 = t1 ^ t2 ^ t3 g4 = t1 , (x ^ xs) ^ t2 , (x ^ l)g5 = t1 , (x ^ xs) ^ t2 , (x ^ h)g6 = m ^ xBuiltins that o

ur in the sour
e, su
h as the tests =< and >, are handled by augmenting theabstra
t program with fresh predi
ates, =<0 and >0, whi
h express the grounding behaviour ofthe builtins. The � symbol separates an assertion (the required mode) from another Pos formulades
ribing the grounding behaviour of a su

essful
all to the builtin (the su

ess mode). Forexample, the formula g6 left of � in the =<0
lause asserts that the =< test will error if its �rsttwo arguments are not ground, whereas the g6 right of � des
ribes the state that holds if the testsu

eeds. These formulae do not
oin
ide for all builtins (see Table 1). For qui
ksort, the only non-trivial assertions arise from builtins. This would
hange if the programmer introdu
ed assertionsfor veri�
ation [32℄.2.3 Least �xpoint
al
ulationAn iterative algorithm is used to
ompute the lfp and thereby
hara
terise the su

ess patternsof the program. A su

ess pattern is a pair
onsisting of an atom with distin
t variables forarguments paired with a Pos formula over those variables. Renaming and equality of formulaeindu
e an equivalen
e between su

ess patterns whi
h is needed to dete
t the �xpoint. The patternshp(u;w; v); u ^ (w , v)i and hp(x1; x2; x3); (x3 , x2) ^ x1i, for example, are
onsidered to beidenti
al: both express the same inter-argument groundness dependen
ies. Ea
h iteration produ
esa set of su

ess patterns: at most one pair for ea
h predi
ate in the program.5

qs([℄, s, s).qs([mjxs℄, s, t) :-pt(xs;m; l; h),qs(l, s, [mjr℄),qs(h, r, t).pt([℄, , [℄, [℄).pt([xjxs℄, m, [xjl℄, h) :-m =< x,pt(xs;m; l; h).pt([xjxs℄, m, l, [xjh℄) :-m > x,pt(xs;m; l; h).

qs(t1; s; t2) :-t1 = [℄, t2 = s.qs(t1; s; t) :-t1 = [mjxs℄,t3 = [mjr℄,pt(xs;m; l; h),qs(l; s; t3),qs(h; r; t).pt(t1; ; t2; t3) :-t1 = [℄,t2 = [℄, t3 = [℄.pt(t1;m; t2; h) :-t1 = [xjxs℄,t2 = [xjl℄,m =< xpt(xs;m; l; h).pt(t1;m; l; t2) :-t1 = [xjxs℄,t2 = [xjh℄,m > x,pt(xs;m; l; h).

qs(t1; s; t2) :-1 � g1.qs(t1; s; t) :-1 � g2,pt(xs;m; l; h),qs(l; s; t3),qs(h; r; t).pt(t1; ; t2; t3) :-1 � g3.pt(t1;m; t2; h) :-1 � g4,=<'(m, x),pt(xs;m; l; h).pt(t1;m; l; t2) :-1 � g5,>'(m, x),pt(xs;m; l; h).=<'(m, x) :- g6 � g6.>'(m, x) :- g6 � g6.
Figure 1: Qui
ksort: raw, normalised and abstra
ted

6

2.3.1 Upper approximation of su

ess patternsA su

ess pattern re
ords an inter-argument groundness dependen
y that des
ribes the bindinge�e
ts of exe
uting a predi
ate. If hp(~x); fi
orre
tly des
ribes the predi
ate p, and g holds wheneverf holds, then hp(~x); gi also
orre
tly des
ribes p. Su

ess patterns
an thus be approximated fromabove without
ompromising
orre
tness.Iteration is performed in a bottom-up fashion and
ommen
es with F0 = ;. Fj+1 is
omputedfrom Fj by
onsidering ea
h
lause p(~x) d � f; p1(~x1); : : : ; pn(~xn) in turn. Initially Fj+1 = ;. Thesu

ess pattern formulae fi for the n body atoms are
onjoined with f to obtain g = f ^ ^ni=1fi.Variables not present in p(~x), Y say, are then eliminated from g by
omputing g0 = 9Y (g) (weakeningg) where 9fy1:::yng(g) = 9y1(: : : 9yn(g)). Weakening g does not
ompromise
orre
tness be
ausesu

ess patterns
an be safety approximated from above.2.3.2 Weakening upper approximationsIf Fj+1 already
ontains a pattern of the form hp(~x); g00i, then this pattern is repla
ed with hp(~x); g0_g00i, otherwise Fj+1 is revised to in
lude hp(~x); g0i. Thus the su

ess patterns be
ome progressivelyweaker on ea
h iteration. Again,
orre
tness is preserved be
ause su

ess patterns
an be safetyapproximated from above.2.3.3 Least �xpoint
al
ulation for Qui
ksortFor brevity, let ~u = hx1; x2i, ~v = hx1; x2; x3i and ~w = hx1; x2; x3; x4i. Then the lfp for the abstra
tedQui
ksort program is obtained (and
he
ked) in the following 3 iterations:
F1 = 8>><>>:

hqs(~v); x1 ^ (x2 , x3)ihpt(~w); x1 ^ x3 ^ x4ih=<0(~u); x1 ^ x2ih>0(~u); x1 ^ x2i
9>>=>>; F2 = 8>><>>:

hqs(~v); x2 , (x1 ^ x3)ihpt(~w); x1 ^ x3 ^ x4ih=<0(~u); x1 ^ x2ih>0(~u); x1 ^ x2i
9>>=>>;

Finally, F3 = F2. The spa
e of su

ess patterns forms a
omplete latti
e whi
h ensures that a lfp(a most pre
ision solution) exists. The iterative pro
ess will always terminate sin
e the spa
e is�nite and hen
e the number of times ea
h su

ess pattern
an be updated is also �nite. Moreover,it will
onverge onto the lfp sin
e iteration
ommen
es with the bottom element F0 = ;.Observe that F2, the lfp, faithfully des
ribes the grounding behaviour of qui
ksort: a qs goalwill ground its se
ond argument if it is
alled with its �rst and third arguments already groundand vi
e versa. Note that assertions are not
onsidered in the lfp
al
ulation.2.4 Greatest �xpoint
al
ulationA bottom-up strategy is used to
ompute a gfp and thereby
hara
terise the safe
all patterns ofthe program. A safe
all pattern des
ribes queries that do not violate the assertions. A
all patternhas the same form as a su

ess pattern (so there is one
all pattern per predi
ate rather than oneper
lause). One starts with assuming no
all
auses an error and then
he
ks this assumption byreasoning ba
kwards over all
lauses. If an assertion is violated, the set of safe
all patterns forthe involved predi
ate is strengthened (made smaller), and the whole pro
ess is repeated until theassumptions turn out to be valid (the gfp is rea
hed).
7

2.4.1 Lower approximation of safe
all patternsIteration
ommen
es with D0 = fhp(~x); 1i j p 2 �g where � is the set of predi
ate symbols o

urringin the program. An iterative algorithm in
rementally strengthens the
all pattern formulae untilthey only des
ribe queries whi
h lead to
omputations that satisfy the assertions. Note that
allpatterns des
ribe a subset (rather than a superset) of those queries whi
h are safe. Call patternsare thus lower approximations in
ontrast to su

ess patterns whi
h are upper approximations. Putanother way, if hp(~x); gi
orre
tly des
ribes some safe
all patterns of p, and g holds whenever fholds, then hp(~x); fi also
orre
tly des
ribes some safe
all patterns of p. Call patterns
an thus beapproximated from below without
ompromising
orre
tness (but not from above).Dk+1 is
omputed from Dk by
onsidering ea
h p(~x) d � f; p1(~x1); : : : ; pn(~xn) in turn and
al
ulating a formula that
hara
terises its safe
alling modes. Initially set Dk+1 = Dk. A safe
alling mode is
al
ulated by propagating moding requirements right-to-left by repeated appli
ationof the logi
al operator). More exa
tly, let fi denote the su

ess pattern formula for pi(~xi) in thepreviously
omputed lfp and let di denote the
all pattern formula for pi(~xi) in Dk. Set en+1 = 1and then
ompute ei = di ^ (fi) ei+1) for 1 � i � n. Ea
h ei des
ribes a safe
alling mode for the
ompound goal pi(~xi); : : : ; pn(~xn).2.4.2 Intuition and explanationThe intuition behind the symbolism is that di represents the demand that is already known forpi(~xi) not to error whereas ei is di possibly strengthened with extra demand so as to ensure thatthe sub-goal pi+1(~xi+1); : : : ; pn(~xn) also does not error when exe
uted immediately after pi(~xi).Put another way, anything larger than di may possibly
ause an error when exe
uting pi(~xi) andanything larger than ei may possibly
ause an error when exe
uting pi(~xi); : : : ; pn(~xn).The basi
 indu
tive step in the analysis is to
ompute an ei whi
h ensures that pi(~xi); : : : ; pn(~xn)does not error, given di and ei+1 whi
h respe
tively ensure that pi(~xi) and pi+1(~xi+1); : : : ; pn(~xn)do not error. This step translates a demand after the
all to pi(~xi) into a demand before the
allto pi(~xi). The ta
ti
 is to set en+1 = 1 and then
ompute ei = di ^ (fi) ei+1) for i � n. Thista
ti
 is best explained by unfolding the de�nitions of en, then en�1, then en�2, and so on. Thisreverse ordering re
e
ts the order in whi
h the ei are
omputed; the ei are
omputed whilst walkingba
kward a
ross the
lause. Any
alling mode is safe for the empty goal and hen
e en+1 = 1. Notethat en = dn ^ (fn) en+1) = dn ^ (:fn _ 1) = dn. Hen
e en represents a safe
alling mode for thegoal pn(~xn).Observe that ei should not be larger than di, otherwise an error may o

ur while exe
ut-ing pi(~xi). Observe too that if pi(~xi); : : : ; pn(~xn) is
alled with a mode des
ribed by di, thenpi+1(~xi+1); : : : ; pn(~xn) is
alled with a mode des
ribed by (di ^ fi) sin
e fi des
ribes the su

esspatterns of pi(~xi). The mode (di ^ fi) may satisfy the ei+1 demand. If it does not, then theminimal extra demand is added to (di ^ fi) so as to satisfy ei+1. This minimal extra demand is((di ^ fi)) ei+1) { the weakest mode that, in
onjun
tion with (di ^ fi), ensures that ei+1 holds.Put another way, ((di ^ fi)) ei+1) = _ff 2 Pos j (di ^ fi) ^ f j= ei+1g.Combining the requirements to satisfy pi(~xi) and then pi+1(~xi+1); : : : ; pn(~xn), givesei = di ^ ((di ^ fi)) ei+1) whi
h redu
es to ei = di ^ (fi) ei+1) and
orresponds to the ta
-ti
 used in the basi
 indu
tive step.2.4.3 Pseudo-
omplementThis step of
al
ulating the weakest mode that when
onjoined with di ^ fi implies ei+1, is thevery heart of the analysis. Setting ei = 0 would trivially a
hieve safety, but ei should be as weak
8

as possible to maximise the
lass of safe queries inferred. For Pos,
omputing the weakest eiredu
es to applying the) operator, but more generally, this step amounts to applying the pseudo-
omplement operator. The pseudo-
omplement operator (if it exists for a given abstra
t domain)takes, as input, two abstra
tions and returns, as output, the weakest abstra
tion whose
onjun
tionwith the �rst input abstra
tion is at least as strong as the se
ond input abstra
tion. If the domaindid not possess a pseudo-
omplement, then there is not always a unique weakest abstra
tion (whose
onjun
tion with one given abstra
tion is at least as strong as another given abstra
tion).To see this,
onsider the domain Def [1℄ whi
h does not possess a pseudo-
omplement. Def isthe sub-
lass of Pos that is de�nite [1℄. This means that Def has the spe
ial property that ea
hof its Boolean fun
tions
an be expressed as a (possibly empty)
onjun
tion of propositional Horn
lauses. As with Pos, Def is assumed to be augmented with the bottom element 0. Def
an thusrepresent the grounding dependen
ies x ^ y, x, x, y, y, x(y, x) y, 0 and 1 but not x _ y.Suppose that di ^ fi = (x , y) and ei+1 = (x ^ y). Then
onjoining x with di ^ fi would be atleast as strong as ei+1 and symmetri
ally
onjoining y with di ^ fi would be at least as strong asei+1. However, Def does not
ontain a Boolean fun
tion stri
tly weaker than both x and y, namelyx _ y, whose
onjun
tion with di ^ fi is at least as strong as ei+1. Thus setting ei = x or ei = ywould be safe but setting ei = (x _ y) is prohibited be
ause x _ y falls outside Def . Moreover,setting ei = 0 would loose an una

eptable degree of pre
ision. A
hoi
e would thus have to bemade between setting ei = x and ei = y in some arbitrary fashion, so there would be no
lear ta
ti
for maximising pre
ision.Returning to the
ompound goal pi(~xi); : : : ; pn(~xn), a
all des
ribed by the mode di^((di^fi))ei+1) is thus suÆ
ient to ensure that neither pi(~xi) nor the sub-goal pi+1(~xi+1); : : : ; pn(~xn) error.Sin
e di ^ ((di ^ fi)) ei+1) = di ^ (fi) ei+1) = ei it follows that pi(~xi); : : : ; pn(~xn) will not errorif its
all is des
ribed by ei. In parti
ular, it follows that e1 des
ribes a safe
alling mode for thebody atoms of the
lause p(~x) d � f; p1(~x1); : : : ; pn(~xn).The next step is to
al
ulate g = d ^ (f) e1). The abstra
tion f des
ribes the groundingbehaviour of the Herbrand
onstraint added to the store prior to exe
uting the body atoms. Thus(f) e1) des
ribes the weakest mode that, in
onjun
tion with f , ensures that e1 holds, and hen
ethe body atoms are
alled safely. Hen
e d ^ (f) e1) represents the weakest demand that bothsatis�es the body atoms and the assertion d. One subtlety whi
h relates to the abstra
tion pro
ess,is that d is required to be a lower-approximation of the assertion whereas f is required to be anupper-approximation of the
onstraint. Put another way, if the mode d des
ribes the binding onthe store, then the (
on
rete) assertion is satis�ed, whereas if the (
on
rete)
onstraint is addedto the store, then the store is des
ribed by the mode f . Table 1 details how to abstra
t variousbuiltins for groundness for a de
larative subset of ISO Prolog.2.4.4 Strengthening lower approximationsVariables not present in p(~x), Y say, are then eliminated by g0 = 8Y (g) (strengthening g) where8fy1:::yng(g) = 8y1(: : : 8yn(g)). A safe
alling mode for this parti
ular
lause is then given by g0.Eliminating variables from g by strengthening g is unusual and initially appears strange. Re
all,however, that
all patterns
an be approximated from below without
ompromising
orre
tness (butnot from above). In parti
ular the standard proje
tion ta
ti
 of
omputing 9fy1:::yng(g) would resultin an upper approximation of g that possibly des
ribes a larger set of
on
rete
all patterns whi
hwould be in
orre
t. The dire
tion of approximation thus di
tates that eliminating the variables Yfrom g must strengthen g. Indeed, g holds whenever 8yi(g) holds and therefore g holds whenever8fy1:::yng(g) holds as required.Dk+1 will
ontain a
all pattern hp(~x); g00i and, assuming g0 ^ g00 6= g00, this is updated with
9

hp(~x); g0 ^ g00i. Thus the
all patterns be
ome progressively stronger on ea
h iteration. Corre
tnessis preserved be
ause
all patterns
an be safely approximated from below. The spa
e of
all pat-terns forms a
omplete latti
e whi
h ensures that a gfp exists. In fa
t, be
ause
all patterns areapproximated from below, the gfp is the most pre
ise solution, and therefore the desired solution.(This
ontrasts to the norm in logi
 program analysis where approximation is from above and thelfp is the most pre
ise solution). Moreover, sin
e the spa
e of
all patterns is �nite, terminationis assured. In fa
t, the s
heme will
onverge onto the gfp sin
e iteration
ommen
es with the topelement D0 = fhp(~x); 1i j p 2 �g.2.4.5 Greatest �xpoint
al
ulation for Qui
ksortUnder this pro
edure Qui
ksort generates the following Dk sequen
e:
D0 = 8>><>>:

hqs(~v); 1ihpt(~w); 1ih=<0(~u); 1ih>0(~u); 1i
9>>=>>; D1 = 8>><>>:

hqs(~v); 1ihpt(~w); 1ih=<0(~u); x1 ^ x2ih>0(~u); x1 ^ x2i
9>>=>>;

D2 = 8>><>>:
hqs(~v); 1ihpt(~w); x2 ^ (x1 _ (x3 ^ x4))ih=<0(~u); x1 ^ x2ih>0(~u); x1 ^ x2i

9>>=>>; D3 = 8>><>>:
hqs(~v); x1ihpt(~w); x2 ^ (x1 _ (x3 ^ x4))ih=<0(~u); x1 ^ x2ih>0(~u); x1 ^ x2i

9>>=>>;These
al
ulations are non-trivial so
onsider how D2 is obtained from D1 by applying the
lausept(t1;m; t2; h) : �1 � g4;=<0 (m;x); pt(xs;m; l; h). The following ei and g formulae are generated:e3 = 1e2 = 1 ^ ((xs ^ l ^ h)) 1) = 1e1 = (m ^ x) ^ ((m ^ x)) 1) = m ^ xg = 1 ^ (((t1 , x ^ xs) ^ (t2 , x ^ l))) (m ^ x))To
hara
terise those pt(t1;m; t2; h)
alls whi
h are safe, it is ne
essary to
ompute a fun
tion g0on the variables t1;m; t2; h whi
h, if satis�ed by the mode of a
all, ensures that g is satis�ed bythe mode of the
all. Put another way, it is ne
essary to eliminate the variables x; xs and l from g(those variables whi
h do not o

ur in the head pt(t1;m; t2; h)) to strengthen g obtain a fun
tiong0 su
h that g holds whenever g0 holds. This is a

omplished by
al
ulating g0 = 8l8xs8x(g). First
onsider the
omputation of 8x(g):g[x 7! 0℄ = (((t1 , x ^ xs) ^ (t2 , x ^ l))) (m ^ x))[x 7! 0℄= ((t1 , 0 ^ xs) ^ (t2 , 0 ^ l))) (m ^ 0)= (:t1 ^ :t2)) 0= t1 _ t2g[x 7! 1℄ = (((t1 , x ^ xs) ^ (t2 , x ^ l))) (m ^ x))[x 7! 1℄= ((t1 , xs) ^ (t2 , l))) mSin
e g[x 7! 0℄ ^ g[x 7! 1℄ 2 Pos it follows that:8x(g) = (((t1 , xs) ^ (t2 , l))) m) ^ (t1 _ t2)(otherwise 8x(g) would be set to 0). Eliminating the other variables in a similar way we obtain:8xs8x(g) = ((t2 , l)) m) ^ (t1 _ t2)g0 = 8l8xs8x(g) = m ^ (t1 _ t2)10

Observe that if 8l8xs8x(g) holds then g holds. Thus if the mode of a
all satis�es g0 then the modealso satis�es g as required. This
lause thus yields the
all pattern hpt(~w); x2^ (x1_x3)i. Similarlythe �rst and third
lauses
ontribute the patterns hpt(~w); 1i and hpt(~w) x2^ (x1_x4)i. Observealso that 1 ^ (x2 ^ (x1 _ x3)) ^ (x2 ^ (x1 _ x4)) = x2 ^ (x1 _ (x3 ^ x4))whi
h gives the �nal
all pattern formula for pt(~w) in D2. The gfp is rea
hed at D3 sin
e D4 = D3.The gfp often expresses elaborate
alling modes, for example, it states that pt(~w)
annot generatean instantiation error (nor any predi
ate that it
alls) if it is
alled with its se
ond, third and fourthargument ground. This is a surprising result whi
h suggests that the analysis
an infer informationthat might be normally missed by a programmer.2.4.6 Restri
tions posed by the frameworkThe
hief
omputational requirement of the analysis is that the input domain is equipped with apseudo-
omplement operation. As already mentioned, it is always possible to systemati
ally designa domain with this operator [21℄ and any domain that is known to be
ondensing (see se
tion 1.2)
omes equipped with this operator. Currently, however, there are only a few domains with apseudo-
omplement. Indeed, the domain des
ribed in [7℄ appears to be unique in that it is the onlytype domain that is
ondensing. This is the main limitation of the ba
kward analysis des
ribed inthis paper.Pos is downward-
losed in the sense that if a fun
tion f des
ribes a substitutions, then falso des
ribes all substitutions less general than the substitution. The type domain of [7℄ is alsodownward-
losed. It does not follow, however, that a domain equipped with a pseudo-
omplementoperation is ne
essarily downward-
losed. Heyting
ompletion, the domain re�nement te
hniqueused to
onstru
t pseudo-
omplement,
an be moved to linear impli
ation [20℄, though the ma
hin-ery is more
ompli
ated. However, it is likely, that in the short term tra
table
ondensing domainswill
ontinue to be downward-
losed. In fa
t,
onstru
ting tra
table downward-
losed
ondensingdomains is a topi
 within itself.
3 Preliminaries3.1 Basi
 Con
eptsSets and sequen
es Let N denote the set of non-negative integers. The powerset of S is denoted}(S). The empty sequen
e is denoted � and S? denotes the set of (possibly empty) sequen
es whoseelements are drawn from S. Sequen
e
on
atenation is denoted � and the length of a sequen
e sis jsj. Furthermore, let s0 = � and sn = s � sn�1 where n 2 N . If n 2 N and s 2 N ? thenmax(n � s) = max(n;max(s)) where max(�) = 0.Orderings A pre-order on a set S is a binary relation v that is re
exive and transitive. Apartial order on a set S is a pre-order that is anti-symmetri
. A poset hS;vi is a partial order ona set S. If hS;vi is a poset, then C � S is a
hain i� a v b or b v a for all a; b 2 C. A meetsemi-latti
e hL;v;ui is a poset hL;vi su
h that the meet (greatest lower bound) ufx; yg existsfor all x; y 2 L. A
omplete latti
e is a poset hL;vi su
h that the meet uX and the join tX(least upper bound) exist for all X � L. Top and bottom are respe
tively de�ned by > = u; and? = t;. A
omplete latti
e is denoted hL;v;u;t;>;?i. Let hS;vi be a pre-order. If X � S then#(X) = fy 2 S j 9x 2 X:y v xg. If x 2 S then #(x) = #(fxg). The set of order-ideals of S, denoted

11

}#(S), is de�ned by }#(S) = fX � S j X = #(X)g. Observe that h}#(S);�;[;\; S; ;i is a
ompletelatti
e.An algebrai
 stru
ture is a pair hS;Qi where S is a non-empty set and Q is
olle
tion of n-aryoperations f : Sn ! S where n 2 N . Let hS;vi and hS0;v0i be posets and hS;Qi and hS0;Q0ialgebrai
 stru
tures su
h that Q = ffi j i 2 Ig and Q0 = ff 0i j i 2 Ig for an index set I. Then � :S ! S0 is a semi-morphism between hS;Qi and hS0;Q0i i� �(fi(s1; : : : ; sn)) v f 0i(�(s1); : : : ; �(sn))for all hs1; : : : ; sni 2 Sn and i 2 I.Fun
tions and �xpoints Let f : A! B. Then dom(f) denotes the domain of f and if C � Athen f(C) = ff(
) j
 2 Cg. Furthermore,
od(f) = f(dom(f)). Let hL;v;t;ui and hL0;v0;t0;u0ibe
omplete latti
es. The map f : L ! L0 is additive i� f(tX) = t0f(X) for all X � L; fis
ontinuous i� f(tC) = t0f(C) for all
hains C � L; f is
o-
ontinuous i� f(uC) = u0f(C)for all
hains C � L and f is monotoni
 i� f(x) v0 f(y) for all x v y. Let x v y. If f is
ontinuous then f(y) = f(x t y) = t0ff(x); f(y)g and thus f(x) v0 f(y). If f is
o-
ontinuousthen f(x) = f(x u y) = u0ff(x); f(y)g and thus f(x) v0 f(y). Both
ontinuity and
o-
ontinuitythus imply monotoni
ity. If f : L ! L, then f is idempotent i� f(x) = f2(x) for all x 2 L andf is extensive i� x v f(x) for all x 2 L. The Knaster-Tarski theorem states that any monotoneoperator f : L! L on a
omplete latti
e hL;v;t;u;>;?i admit both greatest and least �xpointsthat are
hara
terised by gfp(f) = tfx 2 L j x v f(x)g and lfp(f) = ufx 2 L j f(x) v xg. If fis
o-
ontinuous then gfp(f) = un2N fn(>) and dually if f is
ontinuous then lfp(f) = tn2N fn(?).ffn(>) j n 2 N g and ffn(?) j n 2 N g are, respe
tively, the lower and upper Kleene iterationsequen
es of f .Galois insertions and
losure operators If hS;vi and hS0;v0i are posets and� : S ! S0 and
 : S0 ! S are monotoni
 maps su
h that 8x 2 S:x v
(�(x)) and 8x0 2S0:�(
(x0)) v0 x0, then the quadruple hS;
; S0; �i is a Galois
onne
tion between S and S0. Inother words, � is the lower (or left) adjoint of
 and
 is the upper (or right) adjoint of �. If, inaddition, 8x0 2 S0:x0 v0 �(
(x0)), then hS;
; S0; �i is a Galois insertion between S and S0. Theoperator � : L! L on a
omplete latti
e hL;vi is a
losure operator i� � is monotoni
, idempotentand extensive. The set of
losure operators on L is denoted u
o(L). The image set �(L) of a
losureoperator � is a
omplete latti
e with respe
t to v. A Galois insertion hL;
; L0; �i between the
omplete latti
es L and L0 de�nes the
losure operator � =
 Æ �. Conversely, a
losure opera-tor � : L ! L on the
omplete latti
e hL;v;ti de�nes the Galois insertion hL; id; �(L); �i whereid denotes identity. Galois insertions and
losure operators are thus isomorphi
, though
losureoperators are typi
ally more su

in
t and hen
e used in this paper.Substitutions Let Sub denote the set of (idempotent) substitutions and let Ren denote the setof (bije
tive) renaming substitutions.3.2 Cylindri

onstraint systemsLet V denote a (denumerable) universe of variables and let C denote a
onstraint system over V .An algebra hC;�;
; 1; f9xgx2V ; fdx;ygx;y2V i is a semi-
ylindri

onstraint system i� hC;�;
i isa meet semi-latti
e with a top 1; 9x is a family of (unary)
ylindri�
ation operations su
h that:
� 9x(
), 9x(
)� 9x(
0) if
�
0, 9x(

 9x(
0)) = 9x(
)
 9x(
0); and dx;y is a family of (
onstant)diagonalisation operations su
h that: dx;x = 1, dx;y = 9z(dx;z
 dz;y) and dx;y
 9x(

 dx;y)�
 ifx 6= y. Cylindri�
ation
aptures the
on
ept of proje
ting out a variable (and is useful in modelingvariables that go out of s
ope) whereas diagonalisation
aptures the notion of an alias between two12

variables (and is useful in modeling parameter passing). (The reader is referred to [19℄ for furtherdetails on
ylindri

onstraint systems and their appli
ation in abstra
t interpretation.)Example 3.1 An equation e is a pair (s = t) where s and t are terms. A �nite
onjun
tion ofequations is denoted E and Eqn denotes the set of �nite
onjun
tions of equations. Let eqn(�) =fx = t j x 7! t 2 �g and unify(E) = f� 2 Sub j 8(s = t) 2 E:�(s) = �(t)g. Eqn is pre-orderedby entailment E1 � E2 i� unify(E1) � unify(E2) and quotiented by E1 � E2 i� E1 � E2 andE2�E1. This gives the meet semi-latti
e hEqn=�;�;
i with a top 1 where
onjun
tion is de�ned[E1℄�
 [E2℄� = [E1[E2℄� and 1 = [;℄�. Let mgu(E) = f� 2 unify(E) j 8� 2 unify(E) : eqn(�)�eqn(�)g. Finally, let dx;y = [fx = yg℄� and de�ne proje
t out by 9x([E℄�) = [eqn(fy 7! t 2 � jx 6= yg)℄� if � 2 mgu(E). Otherwise, if mgu(E) = ;, de�ne 9x([E℄�) = [fa = bg℄� where a andb are distin
t
onstant symbols. Then hEqn=�;�;
; 1; f9xgx2V ; fdx;ygx;y2V i is a semi-
ylindri

onstraint system.An algebra hC;�;�;
; 1; 0; f9xgx2V ; fdx;ygx;y2V i that extends a semi-
ylindri

onstraint systemto a
omplete latti
e hC;�;�;
; 1; 0i is a
ylindri

onstraint system. A semi-
ylindri

onstraintsystem
an be lifted to a
ylindri

onstraint system via a power-domain
onstru
tion. In parti
ularh}#(C);�;[;\; C; ;, f90xgx2V , fd0x;ygx;y2V i is a
ylindri

onstraint system where 90x(C) = #(f9x(
) j
 2 Cg) and d0x;y = #(dx;y).Example 3.2 The semi-
ylindri
 system of example 3.1
an be lifted to the
ylindri
 systemh}#(Eqn);�;[;\; Eqn; ;;90 ; d0i where 90x(C)=#(f9x(
)j
 2 Cg) and d0x;y =#(dx;y).In the sequel, unless otherwise stated, all
onstraint systems
onsidered are over the same V andthus a
ylindri

onstraint system will be simply denotedhC;�;�;
; 1; 0;9; di. Let var(o) denote the set of the variables in the synta
ti
 obje
t o andlet FV (
) denote the set of free variables in a
onstraint
 2 C, that is, FV (
) = fx 2 var(
) j9y 2 V :
 6= 9x(

 dx;y)g. Abbreviate proje
t out by 9fx1;:::;xng(
) = 9x1(: : : (9xn(
))) and proje
tonto by 9X(
) = 9FV (
)nX(
). Let d~x;~y =
ni=1dxi;yi where ~x = hx1 : : : xni and ~y = hy1 : : : yni.If
 2 C then let �~y~x(
) denote the
onstraint obtained by repla
ing ~x with ~y, that is, �~y~x(
) =9~z(9~x(

 d~x;~z)
 d~z;~y) where var(~z) \ (FV (
) [var(~x) [var(~y)) = ;. Finally, if C � C then �~y~x(C)= f�~y~x(
) j
 2 Cg.Example 3.3 Let X be a �nite subset of V . The groundness domain hEPosX ; j=;g;^; 1; 0i [23℄is a �nite latti
e where EPosX = f0g [f^F j F � X [EXg, EX = fx , y j x; y 2 Xg andf1 g f2 = ^ff 2 EPosX j f1 j= f ^ f2 j= fg. EPosX is a
ylindri

onstraint system withdx;y = (x , y) and 9x(f) = f 0 ^ f 00 where f 0 = ^fy 2 Y j f j= yg, f 00 = ^fe 2 EY j f j= eg andY = X n fxg.Example 3.4 Let BoolX denote the Boolean fun
tions over X. The dependen
y domain PosX[1℄ is de�ned by PosX = f0g [ff 2 BoolX j ^X j= fg. Hen
eforth Y abbreviates ^Y . The latti
ehPosX ; j=;_;^; 1; 0i is �nite and is a
ylindri

onstraint system with dx;y = (x, y) and S
hr�oderelimination de�ning 9x(f) = f [x 7! 1℄ _ f [x 7! 0℄.3.3 Complete Heyting algebrasLet hL;v;ui be a latti
e with x; y 2 L. The pseudo-
omplement of x relatively to y, if it exists,is a unique element z 2 L su
h that x u w v y i� w v z. L is relatively pseudo-
ompleted i� the
13

pseudo-
omplement of x relative to y, denoted x! y, exists for all x; y 2 L. If L is also
ompletethen it is a
omplete Heyting algebra (
Ha). If x; y 2 L then x u (x ! y) = x u y. Furthermore,if hL;v;t;ui is a
Ha then x ! y = tfw 2 L j x u w v yg. The intuition behind the pseudo-
omplement of x relative to y is that it is the weakest element whose
ombination (meet) with ximplies y. Interestingly pseudo-
omplement
an be interpreted as the adjoint of
onjun
tion. (Thereader is referred to [37℄ for further details on
omplete Heyting algebras.) The following result[4℄[Chapter IX, Theorem 15℄ explains how a
Ha depends on the additivity of meet.Theorem 3.1 A
omplete latti
e L is relatively pseudo-
omplemented i� x u (tY) = tfx u y jy 2 Y g for all x 2 L and Y � L.Example 3.5 Let fx; yg � X and f = (x , y). Then returning to EPosX of example 3.3,f ^ (gfx; yg) = f ^ (1) = f 6= (x ^ y) = gfx ^ y; x ^ yg = gff ^ x; f ^ yg. Hen
e, by theorem 3.1,EPosX is not a
Ha. Now
onsider PosX of example 3.4, and spe
i�
ally let f 2 PosX andG � PosX . Sin
e ^ distributes over _, it follows that f u (tG) = tff u g j g 2 Gg, thus bytheorem 3.1, PosX is a
Ha. Similarly, \ distributes over [, and thus it follows by theorem 3.1that }#(C) is also a
Ha.3.4 Constraint logi
 programsLet � denote a (�nite) set of predi
ate symbols, let Atom denote the set of (
at) atoms over �with distin
t arguments drawn from V , and let hC;�;�;
; 1; 0;9; di be a semi-
ylindri

onstraintsystem. The set of
onstrained atoms is de�ned by BaseC = fp(~x) :-
 j p(~x) 2 Atom ^
 2 Cg.Let FV (p(~x) :-
) = var(~x) [FV (
). Entailment � lifts to BaseC by w1 � w2 i� 9~x(d~x;~x1

1) �9~x(d~x;~x2

2) where wi = p(~xi) :-
i and var(~x) \ (FV (w1) [FV (w2)) = ;. This pre-order de�nesthe equivalen
e relation w1 � w2 i� w1 � w2 and w2 � w1 to give a set of interpretations de�nedby IntC = }(BaseC=�). IntC is ordered by I1 v I2 i� for all [w1℄� 2 I1 there exists [w2℄� 2 I2su
h that w1 � w2. Let � denote the indu
ed equivalen
e relation I1 � I2 i� I1 v I2 and I2 v I1.hIntC=�;v;t;u;>;?i is a
omplete latti
e where [I1℄� t [I2℄� = [I1 [I2℄�, [I1℄� u [I2℄� = [[fI jI v I1 ^ I v I2g℄�, > = [f[p(~x) :- 1℄� j p(~x) 2 Atomg℄� and ? = [;℄�.A
onstraint logi
 program P over C is a �nite set of
lauses w of the form w = h :-
; g whereh 2 Atom,
 2 C, g 2 Goal and Goal = Atom?. The �xpoint semanti
s of P is de�ned in terms ofan immediate
onsequen
es operator FCP .De�nition 3.1 Given a
onstraint logi
 program P over a semi-
ylindri

onstraint system C, theoperator FCP : IntC ! IntC is de�ned by:
FCP (I) = 8<:[p(~x) :-
0℄� ������ 9 p(~x) :-
; p1(~x1); : : : ; pn(~xn) 2 P :9 f[pi(~xi) :-
i℄�gni=1 � I :
0 =

ni=19~xi(
i)

9=;The operator FCP lifts to IntC=� by FCP ([I℄�) = [FCP (I)℄�. The lifting is monotoni
 and hen
e the�xpoint semanti
s for a program P over C exists and is denoted FC(P) = lfp(FCP). (The reader isreferred to [5, 25℄ for further details on semanti
s and
onstraint logi
 programming.)The operational semanti
s of P is de�ned in terms of a transition system !P between statesof the form State = Goal � C. To de�ne the transition system, let FV (hg;
i) = var(g) [FV (
)and FV (h :-
; g) = var(h) [FV (
) [var(g). To rename
lauses with ' 2 Ren it is ne
essaryto rename
onstraints with '. Thus de�ne '(h :-
; g) = '(h) :-�'(~x)~x (
); '(g). To rename apartfrom a synta
ti
 obje
t o, let w �o P indi
ate that there exists w0 2 P and ' 2 Ren su
h thatvar(
od(')) \ FV (w0) = ;, '(w0) = w and FV (o) \ FV (w) = ;.14

De�nition 3.2 Given a
onstraint logi
 program P over a semi-
ylindri

onstraint system C,!P� State2 is the least relation su
h that:s = hp(~x); g;
i !P hg0; g;

 d~x;~x0

0iwhere p(~x0) :-
0; g0 �s P .The operational semanti
s is spe
i�ed by the transitive
losure of the transition relation on (atomi
)goals, that is, OC(P) = [f[p(~x) :-
℄� j hp(~x); 1i !?P h�;
ig℄�. The relationship between the opera-tional and �xpoint semanti
s is stated below.Theorem 3.2 OC(P) = FC(P).3.5 Abstra
t semanti
s for
onstraint logi
 programsTo apply abstra
tion te
hniques and �nitely
hara
terise FC(P), and thereby OC(P), the semi-
ylindri
 domain C is repla
ed by the
Ha }#(C) whi
h is parti
ularly amenable to approximationand ba
kward reasoning.If P is a
onstraint logi
 program over C, then #(P) = fh :- #(
); g j h :-
; g 2 Pg. Furthermore,if I 2 IntC, then let #([I℄�) = [f[p(~x) :- #(
)℄� j [p(~x) :-
℄� 2 Ig℄�. Note the overloading on � andhen
e �. The � of [p(~x) :-
℄� is indu
ed by hC;�i whereas the � of [p(~x) :- #(
)℄� is indu
ed byh}#(C);�i. The following proposition details the relationship between FC and F}#(C).Proposition 3.1 #(FC(P)) v F}#(C)(#(P)).Let hC;�;�;
; 1; 0;9; di denote a
ylindri

onstraint system. If � 2 u
o(C) then h�(C);�;
i isa
omplete latti
e. If � is additive, then h�(C);�;�;
i is a sub-latti
e of hC;�;�;
i. More gener-ally, the join is denoted �0. Observe that �(C) has 1 and �(0) for top and bottom and
1�
2��(
1�
2) =
1�0
2 for all
1;
2 2 �(C). A
ylindri

onstraint system is obtained by augmenting �(C) with
ylindri�
ation 90x and diagonalisation d0x;y operators. To abstra
t hC;�;�;
; 1; 0;9; di safely withh�(C);�;�0;
; 1; �(0);90; d0i, � is required to be a semi-morphism [19℄ whi
h additionally requiresthat �(9x(
)) � 90x(�(
)) for all
 2 C and�(dx;y)� d0x;y for all x; y 2 V . In fa
t, these requirements turn out to be relatively weak
ondi-tions: most abstra
t domains
ome equipped with (abstra
t) operators to model proje
tion andparameter passing.Example 3.6 Consider the
ylindri
 system h}#(Eqn);�;[;\; Eqn; ;;9; di derived from the semi-
ylindri
 system introdu
ed in example 3.1. Let Bool = BoolV and Pos = PosV . De�ne�Pos : }#(Eqn)! Pos by �Pos(C) = _f�(�) j � 2 mgu(E)^E 2 Cg and �(�) = ^fx, var(t) jx 7! t 2 �g.Also de�ne
Pos : Pos ! }#(Eqn) by
Pos(f) = [fC 2 }#(Eqn) j �Pos(C) j= fg and observe�Pos 2 u
o(}#(Eqn)) where �Pos =
Pos Æ �Pos. To
onstru
t a semi-morphism, put d0x;y =
Pos(x , y) and 90x(C) =
Pos(f [x 7! 1℄ _ f [x 7! 0℄) where f = �Pos(C). Then �Pos(dx;y) � d0x;yand �Pos(9x(C)) � 90x(�Pos(C)) for all C 2 }#(Eqn). Note that C1 \ C2 =
Pos(f1 ^ f2) andC1 �0 C2 =
Pos(f1 _ f2) where Ci =
Pos(fi). Surprisingly C1 �0 C2 6= C1 [C2 [16℄, aswitnessed by C1 =
Pos(x) and C2 =
Pos(x , y) sin
e fy = f(x; z)g 62 C1 [C2 whereas�Pos(fy = f(x; z)g) = y , (x ^ z) j= x _ (x , y) so that fy = f(x; z)g 2 C1 �0 C2 =
Pos(x _ (x , y)). Nevertheless, �Pos is a semi-morphism between h}#(Eqn);�;[;\; Eqn; ;;9; diand h�Pos(}#(Eqn));�;�0;\; Eqn; �Pos(;);90; d0i.
15

The operator � lifts to the
omplete latti
e IntC=� by �([I℄�) = [�(I)℄� where �(I) = f[p(~x) :- �(
)℄� j[p(~x) :-
℄� 2 Ig. Thus � 2 u
o(IntC=�). It is also useful to lift � to programs by �(P) = fh :- �(
); g jh :-
; g 2 Pg. The following result relates the �xpoint semanti
s of P to that of its abstra
tion�(P).Theorem 3.3 Let C be a
ylindri

onstraint system. If � 2 u
o(C) is a semi-morphism, then�(FC(P)) v F
od(�)(�(P)).Corollary 3.1 Let C be a semi-
ylindri

onstraint system. If � 2 u
o(}#(C)) is a semi-morphism,then �(#(FC(P))) v F
od(�)(�(#(P))).
4 Constraint logi
 programs with assertionsWe
onsider programs annotated with assertions [13℄. When
onsidering the operational semanti
sof a
onstraint logi
 program, it is natural to asso
iate assertions with synta
ti
 elements of theprogram su
h as predi
ates or the program points between body atoms. Without loss of generality,we de
orate the ne
k of ea
h
lause with a set of
onstraints C that is interpreted as an assertion.When C is en
ountered, the store
 is examined to determine whether
 2 C (modulo renaming).If
 2 C exe
ution pro
eeds normally, otherwise an error state, denoted �, is entered and exe
utionhalts.To formalise this idea, let C be a semi-
ylindri

onstraint system and� 2 u
o(}#(C)). The assertion language (in whatever synta
ti
 form it takes) is des
ribed by �.A
lause of a
onstraint logi
 program over C with assertions over
od(�) then takes the formh :-C �
; g where h 2 Atom, C 2
od(�),
 2 C, g 2 Goal and � separates the assertion fromthe body of the
lause. Noti
e that C is an order-ideal and thus downward
losed. (C
an thusrepresent disjun
tions of
onstraints, but the semanti
s presented in this se
tion should not be
onfused with a
olle
ting semanti
s.) Note also that program transformation [32℄
an be used toexpress program point assertions in terms of our assertion language. To spe
ify the behaviour ofprograms with assertions, let State� = State [f�g, and let CLP(P) = fh :-
; g j h :-C �
; g 2 Pg.The following de�nition details how the operational semanti
s for the assertion language is realisedin terms of proje
tion, renaming and a test for in
lusion.De�nition 4.1 Given a
onstraint logi
 program P over a semi-
ylindri

onstraint system C withassertions over �(}#(C)),)P� State� State� is the least relation su
h that:

s = hp(~x); g;
i)P 8<: � if p(~x0) :-C 0 �
0; g0 2 P^ �~x0~x (9~x(
)) 62 C 0hg0; g;

 d~x;~x0

0i else if p(~x0) :-
0; g0 �s CLP(P)Re
all that p(~x0) :-
0; g0 �s CLP(P) ensures that the
lause p(~x0) :-
0; g0 does not share any variableswith s. The operational semanti
s of P is then de�ned in terms of)?P as A�;C(P) = [f[p(~x) :-
℄� jhp(~x); 1i)?P h�;
ig℄�. The relationship between two operational semanti
s is stated in the following(trivial) result.Proposition 4.1 A�;C(P) v OC(CLP(P))Assertions are often used as interfa
e between behaviour that is amenable to formalisation, forexample as an operational semanti
s, and behaviour that is less tra
table, for example, the semanti
sof a builtin [33℄. More to the point, it is not always possible to infer the behaviour of a builtin16

from its de�nition, partly be
ause builtins are often
ompli
ated and partly be
ause builtins areoften expressed in a language su
h as C. Our work requires assertions for ea
h builtin in order tospe
ify: its
alling
onvention (for example, whi
h arguments are required to be ground) and itssu

ess behaviour (for example, whi
h arguments are grounded).
5 Ba
kward �xpoint semanti
s for
onstraint logi
 programs withassertionsLet P be a
onstraint logi
 program over the semi-
ylindri

onstraint system C with assertionsover �(}#(C)). One natural and interesting question is whether the error state � is rea
hable (or
onversely not rea
hable) in P from an initial state hp(~x);
i. For a given
onstraint logi
 program Pwith assertions, the ba
kward �xpoint semanti
s presented in this se
tion infers a (possibly empty)set of
 2 C for whi
h hp(~x);
i 6)?P �. The semanti
s formalises the informal ba
kward analysissket
hed in se
tion 2.For generality, the semanti
s is parameterised by C and �. The
orre
tness argument requires� to be a semi-morphism between h}#(C);�;[;\; C; ;;9; di and h�(}#(C));�;�0;\; C; �(;);90; d0i.Additionally, �(}#(C)) must be a
Ha, that is, it must possess a pseudo-
omplement !0. Toexplain, how pseudo-
omplement aids ba
kward analysis
onsider the problem of inferring
 2 Cfor whi
h hg;
i 6)?P � where g = p1(~x1); : : : ; pn(~xn). Suppose fi 2 �(}#(C)) des
ribes the su

esspattern for pi(~xi), that is, if hpi(~xi); 1i !?P h�;
i then
 2 fi. Moreover, suppose di 2 �(}#(C))approximates the initial
all pattern for pi(~xi), that is, if
 2 di then hpi(~xi);
i 6)?P �. Observethat hpn�1(~xn�1); pn(~xn);
i 6)?P � if
 2 dn�1 \ e and e \ (dn�1 \ fn�1) � dn. This follows sin
ehpn�1(~xn�1);
i 6)?P � be
ause
 2 dn�1 \ e � dn�1. Moreover, if hpn�1(~xn�1); pn(~xn);
i)?Phpn(~xn);
0i then
0 2 (dn�1 \ e) \ fn�1 � dn and thus hpn(~xn);
0i 6)?P �. Putting e = �(;)ensures e \ (dn�1 \ fn�1) � dn and thereby a
hieves
orre
tness. However, for pre
ision, dn�1 \ eshould be maximised. Sin
e �(}#(C)) is a
Ha, this redu
es to assigning e = �0fe0 2 �(}#(C)) je0 \ (dn�1 \ fn�1) � dng = (dn�1 \ fn�1)!0 dn. In general, without pseudo-
omplement, there isno unique best e that maximises pre
ision (see example 5.1). The
onstru
tion is generalised forg = p1(~x1); : : : ; pn(~xn), by putting en = C and ei = di \ ((di \ fi) !0 ei+1) = di \ (fi !0 ei+1) for1 � i < n. Then hg;
i 6)?P � if
 2 e1 as required. This iterated appli
ation of !0 to propagaterequirements right-to-left is the very essen
e of the ba
kward analysis.Example 5.1 Returning to examples 3.2{3.5, let �EPos(C) = gf�(�) j � 2 mgu(E) ^ E 2Cg,
EPos(f) = [fC 2 }#(Eqn) j �EPos(C) j= fg and �EPos =
EPos Æ �EPos. Note thatC1 \ C2 =
EPos(f1 ^ f2) and C1 �0 C2 =
EPos(f1 g f2) where Ci =
EPos(fi). By de�n-ing 90 and d0 in an analogous way to example 3.5, a semi-morphism �EPos is
onstru
ted be-tween h}#(Eqn);�;[;\; Eqn; ;;9; di and h�EPos(}#(Eqn));�;�0;\; Eqn; �EPos(;);90; d0i. Re
allthat �EPos(}#(Eqn)) is not a
Ha. Now
onsider the problem of inferring an initial
 for hpn�1(~xn�1); pn(~xn);
iwithin �EPos(}#(Eqn)). In parti
ular let dn�1 =
EPos(1), fn�1 =
EPos(x, y) and dn =
EPos(x ^ y). Then ej \ (dn�1 \ fn�1) � dn for e1 =
EPos(x) and e2 =
EPos(y) but (e1 �0e2) \ (dn�1 \ fn�1) =
EPos((x g y) ^ 1 ^ (x , y)) =
EPos(x , y) 6�
EPos(x ^ y) = dn. Thusthere is no unique e maximising pre
ision.Example 5.2 Identity �id = �x:x is the trivial semi-morphism between h}#(C);�;[;\; C; ;;9; diand h}#(C);�;[;\; C; ;;9; di where the pseudo-
omplement is given by C1 !0 C2 = f
 2 C j8
0 �
 :
0 2 C1)
0 2 C2g [4℄.

17

Example 5.3 Re
all that �Pos is a semi-morphism between h}#(Eqn);�;[;\; Eqn; ;;9; di andh�Pos(}#(Eqn));�;�0;\; Eqn; �Pos(;);90; d0i. Although �0 6= [, �Pos(}#(Eqn)) is a sub-
Ha of}#(Eqn) with respe
t to \ and !0 [35℄. Moreover, pseudo-
omplement (intuitionisti
 impli
ation)!0
oin
ides with
lassi
 impli
ation) in the sense that C1 !0 C2 =
Pos(f1) f2) whereCi =
Pos(fi). This follows sin
e V j= f2 j= (:f1) _ f2 and thus f1) f2 2 Pos. Moreover,f1 ^ f j= f2 i� j= (f1 ^ f)) f2 i� j= f) (:f1)_ f2 i� f j= (:f1)_ f2. Hen
e C1 !0 C2 = �0fC 2�Pos(}#(Eqn)) j C1 \ C � C2g =
Pos(f1) f2). Thus !0 is �nitely
omputable for �Pos. Finallynote that : and _ are de�ned on Bool rather than Pos sin
e :f 62 Pos i� f 2 Pos.Example 5.4 Now
onsider the problem of inferring an initial
 for hpn�1(~xn�1); pn(~xn);
i within�Pos(}#(Eqn)). Analogous to example 5.1, let dn�1 =
Pos(1), fn�1 =
Pos(x, y) and dn =
Pos(x^y). Then ej \ (dn�1\fn�1) � dn for e1 =
Pos(x) and e2 =
Pos(y) and (e1�0 e2)\ (dn�1\fn�1) =
Pos((x _ y) ^ 1 ^ (x , y)) =
Pos(x ^ y) = dn. Thus there is a unique e maximisingpre
ision.Sin
e h�(}#(C));�;�0;\; C; �(;);90; d0i is a
ylindri

onstraint system, it follows that e � 90x(e)for all e 2 �(}#(C)). A
onsequen
e of e � 90x(e) is that proje
tion approximates from above. Ap-proximation from above, however, is not entirely appropriate for ba
kward analysis. In parti
ular,observe that if hg;
i 6)?P � for all
 2 e, then it does not ne
essarily follow that hg;
i 6)?P � forall
 2 90x(e). What is required is a dual notion of proje
tion, say denoted 80, that approximatesfrom below. Then hg;
i 6)?P � for all
 2 80x(e). Although 80 is an abstra
t operator, the
on
eptis de�ned for an arbitrary
ylindri

onstraint system for generality.De�nition 5.1 If hC;�;�;
; 1; 0;9; di is a
ylindri

onstraint system and x 2 V then 8x : C ! Cis a monotoni
 operator su
h that: 9x(8x(
))�
 and
� 8x(9x(
)) for all
 2 C.Re
all that 9x is monotoni
 and thus � is the lower adjoint of
 and
 is the upper adjoint of �.More exa
tly, it follows that 8x
an be automati
ally
onstru
ted from 9x by 8x(
) = �f
0 2 C j9x(
0)�
g. Observe that this ensures that 8x is the most pre
ise proje
tion operator from below.For su

in
tness, de�ne 8fx1;:::;xng(
) = 8x1(: : : (8xn(
))) and 8X(
) = 8FV (
)nX(
).Example 5.5 For �id, let 80x(C) = #(f
 2 C j 9x(
) =
g).Example 5.6 For �Pos, let 80x(C) =
Pos(f 0) if f 0 2 Pos otherwise 80x(C) =
Pos(0) where C =
Pos(f) and f 0 = f [x 7! 0℄^f [x 7! 1℄. Observe that 9x(f)[x 7! 0℄^9x(f)[x 7! 1℄ = 9x(f) and hen
eC � 90x(C) = 80x(90x(C)) as required. Moreover, if 80x(C) =
Pos(0) then 90x(80x(C)) =
Pos(0) � C.Otherwise 9x(f [x 7! 0℄ ^ f [x 7! 1℄) = f [x 7! 0℄ ^ f [x 7! 1℄ j= f . Thus 90x(80x(C)) � C as required.Finally, note that 80x is �nitely
omputable for �Pos. For example if Ci =
Pos(fi), f1 = (x (y),f2 = (x ^ y) and f3 = (x _ y), then 80x(Ci) =
Pos(f 0i) where f 01 = 0, f 02 = 0 and f 03 = y.Ba
kward analysis
an now be formalised as follows.De�nition 5.2 Given a
onstraint logi
 program P over a semi-
ylindri

onstraint system C withassertions over �(}#(C)), the operator D�;CP : Int
od(�) ! Int
od(�) is de�ned by:
D�;CP (D) =[

8>>>>>><>>>>>>:E
������������
8 [p(~x) :- e℄� 2 E :8 p(~x) :-C �
; p1(~x1); : : : ; pn(~xn) 2 P :9 f[pi(~xi) :- fi℄�gni=1 � F :9 f[pi(~xi) :- di℄�gni=1 � D :en+1 = C ^ ei = di \ (fi !0 ei+1) ^e � 80~x(e0) ^ e0 = C \ (�(#(
))!0 e1)

9>>>>>>=>>>>>>;
18

where [F ℄� = F
od(�)(�(#(CLP(P)))).Sin
e D is parameterised by � and C it
an interpreted as a ba
kward analysis framework. Drequires F , the su

ess patterns of the program obtained by dis
arding the assertions, to be pre-
omputed. D
onsiders ea
h
lause in the program in turn and
al
ulates those states whi
h ensurethat the
lause (and those it
alls) will not violate an assertion. An abstra
tion whi
h
hara
terisesthese states is
al
ulated by propagating requirements, represented as abstra
tions, right-to-leftby repeated appli
ation of pseudo-
omplement. Proje
tion from below then
omputes those stateswhi
h, when restri
ted to the head variables, still ensure that no error arises in the
lause (andthose it
alls). Repeated appli
ation of D yields a de
reasing sequen
e of interpretations.The operator D�;CP lifts to Int
od(�)= � by D�;CP ([D℄�) = [D�;CP (D)℄�. Sin
eh
od(�);v;t;ui is a
omplete latti
e, D�;CP will possess a gfp if D�;CP is monotoni
. The existen
eof gfp(D�;CP) is guaranteed by the following result sin
e
o-
ontinuity implies monotoni
ity.Proposition 5.1 D�;CP : Int
od(�)=� ! Int
od(�)=� is
o-
ontinuous.Sin
e gfp(D�;CP) exists, a ba
kward �xpoint semanti
s
an be de�nedD�;C(P) = gfp(D�;CP) and
omputed by lower Kleene iteration. To establish a
onne
tion betweenD�;C(P) and the operational semanti
s of P , it is useful to annotate the goals of a state withtheir depth in the
omputation tree. To formalise this idea)P is lifted to the annotated statesConf� = Conf [f�g where Conf = Goal � C � N ? to obtain the transition system VP .De�nition 5.3 Given a
onstraint logi
 program with assertions P over a semi-
ylindri

onstraintsystem C, VP� Conf � Conf� is the least relation su
h that:
hp(~x); g;
;n � hiVP � � if hp(~x); g;
i)P �hg0; g;
0; (n + 1)jg0j � hi if hp(~x); g;
i)P hg0; g;
0iThe sequen
e (n+ 1)jg0j denotes jg0j
on
atenations of n+ 1. The following result relates the depthof the goals of the annotated states to the iterates obtained by lower Kleene iteration. Informally,it says that if a
onstrained atom p(~x) :- e o

urs in the interpretation obtained by applying Dk times, and e
hara
terises an initial state (in a
ertain sense), and the depth of the goals in aderivation starting at the initial state does not ex
eed k, then the derivation will not violate anassertion. The main safety theorem
ows out of this result.Lemma 5.1 Let hp(~y);
00; 1i = s1 V?P sn VP �, si = hgi;
i;hii and (D�;CP)k(>) = [Dk℄�.If max(fmax(hi) j 1 � i � ng) � k and [p(~y) :- e℄� 2 Dk then 9~y(
00) 62 9~y(e).Theorem 5.1 If D�;C(P) = [D℄�, [p(~y) :- e℄� 2 D and
 2 9~y(e) then hp(~y);
i 6)?P �.

6 Experimental evaluationIn order to evaluate the usefulness of the analysis framework presented in se
tion 5, a ba
kward Posanalyser has been
onstru
ted for inferring
alling modes. The �xpoint
omponent of the analyseris
oded in SICStus Prolog 3.8.3. The domain operations are
oded in C and are essentially thebinary de
ision diagram (BDD) routines written by Armstrong and S
ha
hte [1℄. The analysertakes, as input, a program written in a de
larative subset of ISO Prolog. It outputs a mode forea
h program predi
ate. The safety result of theorem 5.1 ensures that if a
all to a predi
ate is at19

builtin required mode su

ess modet1 == t2, t1 n== t2, t1 �< t2,t1 �> t2, t1 �=< t2, t1 �>= t2,t1 n= t2, !,
ompound(t1), display(t1),listing, listing(t1), nl, nonvar(t1),print(t1), portray
lause(t1), read(t1),repeat, true, var(t1), write(t1),writeq(t1)

true true

atom(t1), atomi
(t1),
ompare(t1; t2; t3),
oat(t1),ground(t1), integer(t1), number(t1) true f1
length(t1; t2) true f2statisti
s(t1; t2) true g1abort, fail, false true falsekeysort(t1; t2), sort(t1; t2) f1 g2tab(t1), put(t1) f1 f1t1 is t2 f2 g1t1 =:= t2, t1 =n= t2, t1 < t2, t1 > t2,t1 =< t2, t1 >= t2 g1 g1arg(t1, t2, t3) g1 g3name(t1; t2) g4 g1t1 =.. t2 g4 g2fun
tor(t1; t2; t3) g5 g6Table 1: Abstra
ting builtins where fi = ^var(ti), g1 = f1 ^ f2, g2 = f1 , f2, g3 = f1 ^ (f2) f3),g4 = f1 _ f2, g5 = f1 _ (f2 ^ f3) and g6 = f2 ^ f3.
least as instantiated as the inferred mode, then the
all will not violate an instantiation requirement.Modes are expressed as grounding dependen
ies [1℄.The implementation follows the framework de�ned in se
tion 5 very
losely. The analyser wasstraightforward to implement as it is essentially two bottom-up �xpoint
omputations: one for Fand the other for D. The only subtlety is in handling the builtins. For ea
h builtin, it is ne
essaryto sele
t a grounding dependen
y that is suÆ
ient for avoiding an instantiation error. This is anlower approximation (the required mode of table 1). It is also ne
essary to spe
ify behaviour onsu

ess. This is an upper-approximation (the su

ess mode of table 1). The lower approximationsare the assertions that are added to Prolog program to obtain a
onstraint logi
 program withassertions.Interestingly, the su

ess mode does not always entail the required mode. Univ (=..) illustratesthis. A suÆ
ient but not ne
essary
ondition for univ not to error is that either the �rst or se
ondargument is ground. This
annot be weakened in Pos (but
ould be weakened in a type dependen
ydomain [7℄ that expressed rigid lists). The su

ess mode is that the �rst argument is ground i� these
ond argument is ground (whi
h does not entail the required mode). Note too that keysort andsort error if their �rst argument is free. A suÆ
ient mode for expressing this requirement is thatthe �rst argument is ground. Again, this requirement
annot be weakened in Pos.The analyser has been applied to some standard Prolog ben
hmarks whi
h
an be found athttp://www.oakland.edu/~l2lu/ben
hmarks-BG.zip. The results of the analysis, that is, the
allingmodes for the predi
ates in the smaller ben
hmarks, are given in table 2. The results, though

20

surprising in some
ases (see sort of permSort and insert of treesort for example) have been veri�edby hand and appear to be optimal for Pos. The analysis, of
ourse,
an be applied to larger programs(though it be
omes very diÆ
ult to verify the results by hand) and table 3 demonstrates that theanalysis s
ales smoothly to medium-s
ale programs at least. The table lists the larger ben
hmarks(whi
h possibly in
lude some unrea
hable
ode) in terms of in
reasing size measured by the totalnumber of atoms in the sour
e. The abs
olumn re
ords the time in millise
onds required to read,parse and normalise the sour
e into the ground program representation used by the analyser; lfp isthe time needed to
ompute the �xpoint
hara
terising the su

ess modes; gfp is the time neededto
ompute the
alling modes; and �nally sum is the total analysis time. This in
ludes the (usuallynegligible) overhead of annotating the sour
e with the modes required by builtins. Timings wereperformed on a Dell GX200 1GHz PC with 128 MB memory running Windows 2000. The timingssuggest that the analysis is pra
ti
al at least for medium-s
ale programs (though the running timefor BDDs
an be sensitive to the parti
ular dependen
ies that arise). Moreover, with a state-of-the-art GER fa
torised BDD pa
kage [2℄ the analysis would be faster. Interestingly, the time to
ompute the lfp often dominates the whole analysis. BDD widening will be required to analysevery large appli
ations but this is a study within itself [23℄.
7 Related workOur work was motivated by the re
ent revival of interest in logi
 programming with assertions[6, 32℄. For example, [33℄ argues that it is useful to trap an unexpe
ted
all to a predi
ate withan assertion otherwise a program may error at a point that is far from the sour
e of the problem.Moreover, [32℄ observe that predi
ates are normally written with an expe
tation on the initial
alling pattern, and hen
e provide an entry assertion to make the, moding say, of the top-levelqueries expli
it. Our work shows how entry assertions
an be automati
ally synthesised whi
hensure that instantiation errors do not o

ur while exe
uting the program.The most
losely related work
on
erns the demand analysis of

p [11, 15℄. A demand analysisfor the

p language Janus [34℄ is proposed in [11℄ whi
h determines whether or not a predi
ateis uni-modal. A predi
ate is uni-modal i� the argument tuple for ea
h
lause share the sameminimal pattern of instantiation ne
essary for redu
tion. The demand analysis of a predi
ate simplytraverses the head and guard of ea
h
lause to determine the extent to whi
h arguments have tobe instantiated. Body atoms need not be
onsidered so the analysis does not involve a �xpoint
omputation. A related paper [12℄ presents a goal-dependent (forward) analysis that dete
ts those

p predi
ates whi
h
an be s
heduled left-to-right without deadlo
k. If assertions are used toapproximate syn
hronisation, then the analysis des
ribed in this paper
an be re-interpreted as aba
kward suspension analysis of

p under left-to-right s
heduling.When reasoning about module intera
tion it
an be advantageous to reverse the traditionaldedu
tive approa
h to abstra
t interpretation that is based on the abstra
t unfolding of abstra
tgoals. In parti
ular [18℄ shows how abdu
tion and abstra
tion
an be
ombined to
ompute thoseproperties that one module must satisfy to ensure that its
omposition with another ful�ls
ertainrequirements. Abdu
tive analysis
an, for example, determine how an optimisation in one moduledepends on a predi
ate de�ned in another module. Abdu
tive analysis is related to the ba
kwardanalysis presented in this paper sin
e abdu
tion is the inverse image of a forward semanti
s whereaspseudo-
omplement is the inverse image of
onjun
tion { the basi

omputational step in forward(and ba
kward) semanti
s.The termination inferen
e engine of [17℄ de
omposes the
TI analyser of [29℄ into two
om-ponents: a termination
he
ker [8℄ and the ba
kward analysis des
ribed in this paper. First, the

21

ben
hmark predi
ate modebubblesort sort(x1; x2) x1ordered(x1) x1append(x1; x2; x3) truednf go truednf(x1; x2) truenorm(x1; x2) trueliteral(x1) trueheapify greater(x1; x2) x1 ^ x2adjust(x1; x2; x3; x4) 0� (x1 ^ x4) _(x1 ^ x2 ^ x3) _(:x2 ^ :x3 ^ x4)
1Aheapify(x1; x2) x1permSort sele
t(x1; x2; x3) trueordered(x1) x1permutation(x1; x2) truesort(x1; x2) x1 _ x2queens noatta
k(x1; x2; x3) x1 ^ x2 ^ x3safe(x1) x1delete(x1; x2; x3) trueperm(x1; x2) truequeens(x1; x2) x1 _ x2qui
ksort append(x1; x2; x3) trueqsort(x1; x2) x1partition(x1; x2; x3; x4) x2 ^ (x1 _ (x3 ^ x4))treeorder member(x1; x2) truesele
t(x1; x2; x3) truesplit(x1; x2; x3; x4) truesplit(x1; : : : ; x7) truevisits2tree(x1; x2; x3) truev2t(x1; x2; x3) truetreesort tree to list aux(x1; x2; x3) truetree to list(x1; x2) truelist to tree(x1; x2) x1insert list(x1; x2; x3) x1 ^ x2insert(x1; x2; x3) x1 ^ (x2 _ x3)treesort(x1; x2) x1Table 2: Pre
ision of the Mode Analysis (small ben
hmarks)

22

�le size abs lfpgfpsum �le size abs lfp gfp sumastar 100 10 10 0 20 ti
ta
toe 258 20 10 10 40�t 104 20 0 10 30 jons2 261 20 10 0 30knight 105 10 0 0 10 kalah 269 30 10 20 60browse wam

 106 10 0 0 10 draw 289 70 91 40 201
al wam

 108 10 10 0 20
s r 311 40 20 10 70life 110 10 10 10 30 redu
er 320 40 30 0 70
rypt wam

 113 10 0 0 10 sdda 336 20 21 0 41
ry mult 118 10 10 10 30 bryant 349 30 120 21 171browse 125 10 10 0 20 ga 363 50 30 20 100bid 128 10 10 0 20 neural 378 30 10 0 40disj r 148 30 0 10 40 press 381 30 20 0 50
onsultant 151 20 0 10 30 peep 414 50 20 10 80n
DP 156 10 10 0 20 nbody 421 40 20 20 80tsp 162 30 20 10 60 eliza 432 50 20 0 70elex s
anner 165 20 10 0 30 read 434 40 20 10 70robot 165 10 10 0 20simple analyzer 512 90 701 20 811sorts 172 0 10 10 20 ann 547 50 30 10 90
s2 175 30 10 10 50 di�simpsv 681 61 100 0 161s

 175 10141 0 151 ar
h1 692 50 40 10 100bp0-6 201 20 10 0 30 asm 800 60 40 30 130bnet 205 20 20 0 40 poker 962 81 70 10 161jons 222 40 0 10 50 pentomino 981 50 40 80 170mathlib 226 10 10 0 20
hat 1037 411142210822915intervals 230 20 10 10 40 sim v5-2 1308 80 70 0 150barnes hut 240 40 30 40 110 semigroup 2328 180 90 60 350Table 3: Speed of the Mode Analysis (medium-s
ale ben
hmarks)

23

termination inferen
e engine
omputes a set of binary
lauses whi
h des
ribe possible loops in theprogram with size relations. Se
ond, a Boolean fun
tion is inferred for ea
h predi
ate that de-s
ribes moding
onditions suÆ
ient for ea
h loop to only be exe
uted a �nite number of times.Third, the ba
kward analysis des
ribed in this paper is applied to infer initial modes by
al
ulatinga greatest �xpoint whi
h guarantee that the moding
onditions hold and thereby assure termina-tion. Interestingly, the
TI analyser involves a �-
al
ulus solver to
ompute the greatest �xpointof an equivalent (though more
omplex) system of equations. This seems to suggest that greatest�xpoints are important in ba
kward analysis.Cousot and Cousot [10℄ explain how a ba
kward
olle
ting semanti
s
an be deployed to pre
isely
hara
terise states that arise in �nite SLD-derivations. First, they present a forward
olle
tingsemanti
s that re
ords the des
endant states that arise from a set of initial states. Se
ond, theypresent a dual (ba
kward)
olle
ting semanti
s that re
ords those states whi
h o

ur as as
endantstates of the �nal states. By
ombining both semanti
s, they
hara
terise the set of des
endantstates of the initial states whi
h are also as
endant states of the �nal states of the transition system.This use of ba
kward analysis is primarily as a devi
e to improve the pre
ision of a
lassi
 goal-dependent analysis. Our work is more radi
al in the sense that it shows how a bottom-up analysisperformed in a ba
kward fashion,
an be used to
hara
terise initial queries. Moreover it is usedfor lower approximation rather than upper approximation.Mazur, Janssens and Bruynooghe [28℄ present a kind of ad ho
 ba
kward analysis to derivereuse
onditions from a goal-independent reuse analysis for Mer
ury [36℄. The analysis propagatesreuse information from a point where a stru
ture is de
omposed in a
lause to the point wherethe
lause is invoked in its parent
lause. This is similar in spirit to how demand is passed froma
allee to a
aller in the ba
kward analysis des
ribed in this paper. However, the reuse analysisdoes not propagate information right-to-left a
ross a
lause using pseudo-
omplement, and so oneinteresting topi
 for future work will to be relate these two analyses. Another matter for futurework, will be to investigate the extent to whi
h our ba
kward mode analysis
an be re
onstru
tedby inverting abstra
t fun
tions [24℄.
8 Con
lusionWe have shown how abstra
t interpretation, and spe
i�
ally a ba
kward analysis,
an infer modingproperties whi
h if satis�ed by the initial query,
ome with the guarantee that the program andquery
annot generate instantiation errors. Ba
kward analysis has other appli
ations in terminationinferen
e and also in inferring queries for whi
h the builtins
alled from within the program behavepredi
tably in the presen
e of rational trees. The analysis is
omposed of two bottom-up �xpoint
al
ulations, a lfp and a gfp, both of whi
h are straightforward to implement. The lfp
hara
terisessu

ess patterns. The gfp, uses these su

ess patterns to infer safe initial
alling patterns. It prop-agates moding requirements right-to-left, against the
ontrol-
ow, using the pseudo-
omplementoperator. This operator �ts with ba
kward analysis sin
e it enables moding requirements to beminimised (maximally weakened) in right-to-left propagation. This operator, however, requiresthat the
omputational domain be
losed under Heyting
ompletion (or equivalently
ondense).This requirement seems reasonable be
ause disjun
tive dependen
ies o

ur frequently in right-to-left propagation and therefore signi�
ant pre
ision would be lost if the requirement were relaxed.Experimental evaluation has demonstrated that the analysis is pra
ti
al in the sense that it
aninfer
alling modes for medium-s
aled programs. Finally, our work adds weight to the belief that
ondensing is an important property in the analysis of logi
 programs.

24

A
knowledgementsWe thank Mauri
e Bruynooghe, Mike Codish, Samir Genaim, Roberto Gia
obazzi, Ja
ob Howe,Fred Mesnard, Germ�an Puebla and Fran
es
a S
ozzari for helpful dis
ussions. We would also liketo thank the anonymous referees for their
omments and Peter S
ha
hte for his BDD analyser.We also thank Roberto Bagnara for the use of some of the China ben
hmarks. This work wassupported, in part, by EPSRC grant GR/MO8769.
Referen
es[1℄ T. Armstrong, K. Marriott, P. S
ha
hte, and H. S�ndergaard. Two Classes of Boolean Fun
-tions for Dependen
y Analysis. S
ien
e of Computer Programming, 31(1):3{45, 1998.[2℄ R. Bagnara and P. S
ha
hte. Fa
torizing Equivalent Variable Pairs in ROBDD-Based Imple-mentations of Pos. In International Conferen
e on Algebrai
 Methodology and Software Te
h-nology, volume 1548 of Le
ture Notes in Computer S
ien
e, pages 471{485. Springer-Verlag,1999.[3℄ R. Bagnara, E. Za�anella, R. Gori, and P. M. Hill. Boolean Fun
tions for Finite-Tree De-penden
ies. In International Conferen
e on Logi
 for Programming, Arti�
ial Intelligen
e andReasoning, volume 2250 of Le
ture Notes in Arti�
ial Intelligen
e, pages 575{589. Springer-Verlag, 2001.[4℄ G. Birkho�. Latti
e Theory. AMS Press, 1967.[5℄ A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-Semanti
s Approa
h: Theory andAppli
ations. The Journal of Logi
 Programming, 19/20:149{197, 1994.[6℄ J. Boye, W. Drabent, and J. Ma luszy�nski. De
larative Diagnosis of Constraint Programs: anAssertion-based Approa
h. In Pro
eedings of the Third International Workshop on AutomatedDebugging, pages 123{141. University of Link�oping Press, 1997.[7℄ M. Codish and V. Lagoon. Type Dependen
ies for Logi
 Programs using ACI-uni�
ation.Theoreti
al Computer S
ien
e, 238:131{159, 2000.[8℄ M. Codish and C. Tabo
h. A Semanti
 Basis for the Termination Analysis of Logi
 Programs.The Journal of Logi
 Programming, 41(1):103{123, 1999.[9℄ P. Cousot and R. Cousot. Indu
tive Prin
iples for Proving Invarian
e Properties of Programs.In Tools and Notions for Program Constru
tion, pages 75{119. Cambridge University Press,1982.[10℄ P. Cousot and R. Cousot. Abstra
t Interpretation and Appli
ation to Logi
 Programs. TheJournal of Logi
 Programming, 13(2{3):103{179, 1992.[11℄ S. Debray. QD-Janus: a Sequential Implementation of Janus in Prolog. Software Pra
ti
e andExperien
e, 23(12):1337{1360, 1993.[12℄ S. Debray, D. Gudeman, and P. Bigot. Dete
tion and Optimization of Suspension-free Logi
Programs. The Journal of Logi
 Programming, 29(1{3):171{194, 1992.[13℄ W. Drabent and J. Ma luszy�nski. Indu
tive Assertion Method for Logi
 Programs. Theoreti
alComputer S
ien
e, 59(1):133{155, 1988. 25

[14℄ P. Dyber. Inverse Image Analysis Generalises Stri
tness Analysis. Information and Computa-tion, 90(2):194{216, 1991.[15℄ M. Falas
hi, P. Hi
ks, and W. Winsborough. Demand Transformation Analysis for Con
urrentConstraint Programs. The Journal of Logi
 Programming, 41(3):185{215, 2000.[16℄ G. Fil�e and F. Ranzato. Improving Abstra
t Interpretations by Systemati
 Lifting to thePowerset. In International Logi
 Programming Symposium, pages 655{669. MIT Press, 1994.[17℄ S. Genaim and M. Codish. Inferring Termination Conditions for Logi
 Programs using Ba
k-wards Analysis. In International Conferen
e on Logi
 for Programming, Arti�
ial Intelli-gen
e and Reasoning, volume 2250 of Le
ture Notes in Arti�
ial Intelligen
e, pages 681{690.Springer-Verlag, 2001.[18℄ R. Gia
obazzi. Abdu
tive Analysis of Modular Logi
 Programs. Journal of Logi
 and Com-putation, 8(4):457{484, 1998.[19℄ R. Gia
obazzi, S. Debray, and G. Levi. Generalized Semanti
s and Abstra
t Interpretation forConstraint Logi
 Programs. The Journal of Logi
 Programming, 25(3):191{248, 1995.[20℄ R. Gia
obazzi, F. Ranzato, and F. S
ozzari. Building Complete Abstra
t Interpretations in aLinear Logi
-based Setting. In Stati
 Analysis Symposium, volume 1503 of Le
ture Notes inComputer S
ien
e, pages 215{229. Springer-Verlag, 1998.[21℄ R. Gia
obazzi and F. S
ozzari. A Logi
al Model for Relational Abstra
t Domains. ACMTransa
tions on Programming Languages and Systems, 20(5):1067{1109, 1998.[22℄ C. Hall and D. Wise. Generating Fun
tion Versions with Rational Stri
tness Patterns. S
ien
eof Computer Programming, 12:39{74, 1989.[23℄ A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial Groundness Analysisfor Logi
 Programs. The Journal of Logi
 Programming, 45(1{3):143{156, 2000.[24℄ R. J. M. Hughes and J. Laun
hbury. Reversing Abstra
t Interpretations. S
ien
e of ComputerProgramming, 22:307{326, 1994.[25℄ J. Ja�ar and M. J. Maher. Constraint Logi
 Programming: A Survey. The Journal of Logi
Programming, 19/20:503{581, 1994.[26℄ A. Langen. Advan
ed Te
hniques for Approximating Variable Aliasing in Logi
 Programs.PhD thesis, Computer S
ien
e Department, Los Angeles, California 90089-0782, 1991.[27℄ K. Marriott and H. S�ndergaard. Pre
ise and EÆ
ient Groundness Analysis for Logi
 Pro-grams. ACM Letters on Programming Languages and Systems, 2(4):181{196, 1993.[28℄ N. Mazur, G. Janssens, and M. Bruynooghe. A Module Based Analysis for Memory Reusein Mer
ury. In Computational Logi
, volume 1861 of Le
ture Notes in Arti�
ial Intelligen
e,pages 1255{1269, 2000.[29℄ F. Mesnard. Inferring Left-terminating Classes of Queries for Constraint Logi
 Programs.In Joint International Conferen
e and Symposium on Logi
 Programming, pages 7{21. MITPress, 1996.
26

[30℄ F. Mesnard and U. Neumerkel. Applying Stati
 Analysis Te
hniques for Inferring TerminationConditions of Logi
 Programs. In Stati
 Analysis Symposium, volume 2126 of Le
ture Notesin Computer S
ien
e, pages 93{110. Springer-Verlag, 2001.[31℄ A. My
roft. Abstra
t Interpretation and Optimising Transformations for Appli
ative Programs.PhD thesis, University of Edinburgh, 1981.[32℄ G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logi
Programs. In Analysis and Visualization Tools for Constraint Programming, volume 1870 ofLe
ture Notes in Computer S
ien
e, pages 23{61. Springer-Verlag, 2000.[33℄ G. Puebla, F. Bueno, and M. Hermenegildo. A Generi
 Prepro
essor for Program Validationand Debugging. In Analysis and Visualization Tools for Constraint Programming, volume1870 of Le
ture Notes in Computer S
ien
e, pages 63{107. Springer-Verlag, 2000.[34℄ V. Saraswat, K. Kahn, and J. Levy. Janus: a Step Towards Distributed Constraint Pro-gramming. In North Ameri
an Conferen
e on Logi
 Programming, pages 431{446. MIT Press,1990.[35℄ F. S
ozzari. Logi
al Optimality of Groundness Analysis. Theoreti
al Computer S
ien
e, toappear.[36℄ Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury, an eÆ
ientpurely de
larative logi
 programming language. The Journal of Logi
 Programming, 29(1{3):17{64, 1996.[37℄ D. van Dalen. Logi
 and Stru
ture. Springer, 1997.[38℄ P. Wadler and R. J. M Hughes. Proje
tions for Stri
tness Analysis. In Fun
tional Programmingand Computer Ar
hite
ture, volume 274 of Le
ture Notes in Computer S
ien
e, pages 385{407.Springer-Verlag, 1987.

27

A Proof appendixProof A.1 (Proof for proposition 3.1) Proof by indu
tion. Let I0 = ;, I 00 = ;, Ik+1 =FCP (Ik) and I 0k+1 = F}#(C)#(P) (I 0k). To show #(Ik) v I 0k sin
e then it follows that #(lfp(FCP)) =#(tk2N Ik) v tk2N #(Ik) v tk2N I 0k = lfp(F}#(C)#(P)). The base
ase is trivial so suppose #(Ik) v I 0k.Let [p(~x) :-
0℄� 2 Ik+1. Then there exists p(~x) :-
; p1(~x1); : : : ; pn(~xn) 2 P andf[pi(~xi) :-
i℄�gni=1 � Ik su
h that
0 =

ni=19~xi(
i). Observe that #(
0) �#(
) \ \ni=1#(9~xi(
i))� #(
) \ \ni=19~xi(#(
i)). But by the indu
tive hypothesis, there exist f[pi(~xi) :-
0i℄�gni=1 � I 0ksu
h that #(
i) �
0i. Hen
e [p(~x) :-
00℄� 2 I 0k+1 su
h that #(
0) �
00 so that Ik+1 v I 0k+1 and theresult follows.Proof A.2 (Proof for theorem 3.3) The proof ta
ti
 is analogous to that used for proposi-tion 3.1.Proof A.3 (Proof for
orollary 3.1) Let C be a semi-
ylindri

onstraint system and � 2 u
o(}#(C))be a semi-morphism. By proposition 3.1 it follows that #(FC(P)) v F}#(C)(#(P)) and hen
e�(#(FC(P))) v �(F}#(C)(#(P))) and by theorem 3.3 �(F}#(C)(#(P))) v F
od(�)(�(#(P))) and so theresult follows.Proof A.4 (Proof for proposition 5.1) Let Dn+1 v Dn for all n 2 N . Put En = [fDl j l � ngand E = \fEn j n 2 N g. Sin
e Dn+1 v Dn observe that En � Dn for all n 2 N and hen
eD�;CP (uf[Dn℄� j n 2 N g) = D�;CP (uf[En℄� j n 2 N g) = D�;CP ([E℄�) = [D�;CP (E)℄� = [\fD�;CP (En) jn 2 N g℄� = uf[D�;CP (En)℄� j n 2 N g = ufD�;CP ([En℄�) j n 2 N g = ufD�;CP ([Dn℄�) j n 2 N g.Proof A.5 (Proof for lemma 5.1) Proof by (double) indu
tion. Let hp(~y);
00; 1i = s1 V?Psn VP �, si = hgi;
i;hii and suppose (D�;CP)k(>) = [Dk℄�. The outer indu
tion is on k.base
ase: Suppose max(fmax(hi) j 1 � i � ng) � 1 and [p(~y) :- e℄� 2 D1. Thus s1 VP � so thats1)P � and hen
e there exists p(~x0) :-C 0 �
0; g0 2 P su
h that �~x0~y (9~y(
00)) 62 C 0. Then[p(~x0) :- e0℄� 2 D1 where 9~z(d~z;~y
 e) = 9~z(d~z;~x0
 e0) and var(~z) \ (var(~y) [FV (e)[var(~x0) [FV (e0)) = ;. Observe that e0 � 8~x0(C 0) and thus �~x0~y (9~y(e)) = 9~x0(e0) � 9~x0(8~x0(C 0)) =8~x0(C 0) � C 0. Hen
e �~x0~y (9~y(
00)) 62 �~x0~y (9~y(e)) so that 9~y(
00) 62 9~y(e) as required.indu
tive
ase: Suppose k = max(fmax(hi) j 1 � i � ng) > 1 and [p(~y) :- e℄� 2 Dk. Suppose, forthe sake of a
ontradi
tion, that 9~y(
00) 2 9~y(e). Sin
e k > 1 there exists w = p(~x) :-C �
; p1(~x1); : : : ; pl(~xl) 2 P , ' 2 Ren su
h that '(CLP(w)) = p(~x0) :-
0; p1(~x01); : : : ; pl(~x0l) �s1CLP(P) and s2 = hp1(~x01); : : : ; pl(~x0l);
01; 2li and
01 =
00
 d~y;~x0

0. Suppose hp1(~x01);
01i)?Ph�;
02i, . . . , hpm(~x0m);
0mi)?P �. Without loss of generality assume FV (CLP(w))\FV (
0i) =; for all i 2 [1;m℄. Let ~v = ~x � ~x1 � � � ~xl and ~v0 = ~x0 � ~x01 � � � ~x0l. Let g0i 2 C su
h thathpi(~x0i); 1i !?P h�; g0ii and
0i+1 =
0i
 g0i for all i 2 [1;m). For all i 2 [1;m), put gi = �~xi~x0i (g0i).Put
1 = �~v~v0(
01) and for all i 2 [2;m℄, put
i = �~xi~x0i (
0i). Then
i+1 =
i
 gi for all i 2 [1;m).Let OC(P) = [F ℄�. By proposition 4.1, [pi(~xi) :- gi℄� = [pi(~x0i) :- g0i℄� 2 F for all i 2 [1;m). Bytheorem 3.2, OC(P) = FC(P) and by
orollary 3.1, �(#(FC(P))) v F
od(�)(�(#(P))). Thus fori 2 [1;m) there exists [pi(~xi) :- fi℄� 2 F su
h that �(#(gi)) � fi. Put fi = 0 for all i 2 [m; l℄to ensure [pi(~xi) :- fi℄� 2 F for all i 2 [m; l℄. Let [pi(~xi) :- di℄� 2 Dk for all i 2 [1; l℄. Finallyput en+1 = C, ei = di \ (fi !0 ei+1) for all i 2 [1; l℄ and e0 = C \ (�(#(
))!0 e1). The innerindu
tion is on i and is used to show �(#(
i)) � ei for all i 2 [1;m℄.28

base
ase: Now
1 = �~v~v0(
01) � �~x~y (9~y(
00)) 2 C. Thus �(#(
1)) � C. Furthermore,
1 =�~v~v0(
01) � �~v~v0(
0) =
. Thus �(#(
1)) � �(#(
)). Moreover,
1 � �~x~y (9~y(
00)) 2 �~x~y (9~y(e)) �8~x(e0) � e0. Thus �(#(
1)) � e0. However, e0 = C \ (�(#(
)) !0 e1). Thus �(#(
1)) �C\(�(#(
))!0 e1) and �(#(
1)) � �(#(
1))\C\(�(#(
))!0 e1) = �(#(
1))\(�(#(
))!0 e1)= �(#(
1)) \ �(#(
)) \ (�(#(
))!0 e1) = �(#(
1)) \ �(#(
)) \ e1 = �(#(
1)) \ e1. Therefore�(#(
1)) � e1 as required.indu
tive
ase: Suppose �(#(
i)) � '(ei). Now �(#(
i+1)) = �(#(
i
 gi))� �(#(
i)) \ �(#(gi)) � ei \ �(#(gi)) � ei \ �(#(gi)) � ei \ fi � (fi !0 ei+1) \ fi = ei+1.Therefore �(#(
i+1)) � ei+1 as required.Thus �(#(
m)) � em � dm so that
m 2 dm. Let d0m = �~x0m~xm (9~xm(dm)) and observe that[pm(~x0m) :- d0m℄� = [pm(~xm) :- dm℄� 2 Dk. Put
00m = �~x0m~xm (9~xm(
m)) so that
0m �
00m 2 d0m.By the indu
tive hypothesis hpm(~x0m);
0mi 6)?P � whi
h is a
ontradi
tion and hen
e 9~y(
00) 629~y(e) as required.The result follows.Proof A.6 (Proof for theorem 5.1) Let D�;C(P) = [D℄�, [p(~y) :- e℄� 2 D and
00 2 9~y(e). Thus9~y(
00) 2 9~y(9~y(e)) = 9~y(e). Suppose, for the sake of a
ontradi
tion, that hp(~y);
00; 1i = s1 V?Psn VP � where si = hgi;
i;hii. Let k = max(fmax(hi) j 1 � i � ng). Suppose (D�;CP)k(>) = [Dk℄�.Sin
e D v Dk and by lemma 5.1 there exists [p(~y) :- e0℄� 2 Dk su
h that 9~y(
00) 62 9~y(e0). Sin
e9~y(e) � 9~y(e0) it follows that 9~y(
00) 62 9~y(e) whi
h is a
ontradi
tion. The result follows.

29

