
Restructuring the BLAS Level 1 Routine for Computing the
Modified Givens Transformation

T i m Hopkins (t rh@ukc.ac.uk)

C o m p u t i n g L a b o r a t o r y
Univers i ty of Ken t

Can te rbury , CT2 7NF

Kent , UK.

November 19, 1997

A b s t r a c t

We look at how both logical restructuring and improvements available from successive
versions of Fortran allow us to reduce the complexity (measured by a number of the com-
monly used software metrics) of the Level 1 BLAS code used to compute the modified Givens
transformation. With these reductions in complexity we claim that we have improved both
the maintainabili ty and clarity of the code; in addition, we report a fix to a minor problem
with the original code. The performance of two commercial Fortran restructuring tools is also
reported.

1 I n t r o d u c t i o n

The Level 1 BLAS [LHKK79], originally published in Fortran 66 [ANS66], implemented a number
of common vector operations and were designed to be used as building blocks for linear algebra
software. Hopkins [Hop96] used knot counts [WHH79] and path counts [Nej88] to identify routines
from the Level 1 BLAS which might benefit from code restructuring

Two sets of routines, *NRM2, used to compute the Euclidean norm of a vector and *ROTMG, for
computing the modified Givens transformation, were identified as having Extremely high metric
values given their relatively low number of executable statements. The restructuring of the *NRM2
routines, along with a dramatic decrease in the metric values, was reported by Hopkins [Hop96];
the *ROTMG routines are considered here.

Following a brief description of the software metrics used to compare versions of the *ROTMG
routines, we present a fiowgraph of the published code and look at how two Fortran code restruc-
turing tools fared on this original source. We then compare the metric values obtained for the
original and automatically restructured code with hand-coded Fortran 66 and Fortran 77 versions.

Section 5 looks at how the metric values may be reduced further by using Fortran 90 and we
show how the use of some of the new facilities available in Fortran 90 may be used to improve
these routines further.

Finally we look briefly at the testing of the new routine and report a fix to a minor problem
in the original code.

2 M o d i f i e d G i v e n s R o t a t i o n M a t r i x

The input values to *ROTMG, dl, d2, Xl and Yl, define a two-vector [al, a2] T in the partitioned form
as

a2 0 d~ Yl

2

The routines then determine the Modified Givens Rotation Matrix, H, tha t t ransforms Yl and thus
a2 to zero. Details of the computat ion may be found in Appendix A of [LHKK79].

The values of dl and d2 are scaled to ensure tha t they are kept within the limits

1
< Idil _< 72 , i = 1,2;

72

where the value of 7 was originally chosen to be 4096 for portabil i ty reasons; see §5 for details of
how this value may be computed using the new Fortran 90 environment enquiry functions. On
output, the values of dl, d2 and xl are changed to represent the effect of the t ransformation while
yl, which would be zeroed by the transformation, is left unchanged.

In the case where the input vector is already in the correct form, i.e., (c, O) T, no scaling of the
values of dl and d2 takes place even if the input values are outside the limits given above.

Lawson and Hanson [LH74] detail the use of a negative value of d2 to implement row removal in
least squares procedures. The original code thus allows the value of d2 to be negative as suggested
by equation (27.48) on page 230 of [LH74].

3 S o f t w a r e M e t r i c s

We use the following software metrics as indicators of how successful any restructuring we perform
has been; a slightly more detailed description may be found in [Hop96].

.

2.

.

Knot count [WHH79]: a knot is defined to occur in a segment of code whenever the paths
associated with transfers of control intersect. The higher the number of knots in a piece of
code the more difficult the code will be to read, understand and maintain. As an example,
when coding in Fortran 66 the lack of a block IF construction meant tha t the equivalent
code to implement a simple IF-THEN-ELSE construction required two GOT0 sta tements and
one knot.

Pa th count: this is based on the metric proposed by Nejmeh [Nej88] and provides a lower
bound on the number of distinct paths through a section of code. This measure gives an
est imate of the amount of effort required to thoroughly test the code. Nejmeh suggests a
max imum value of 200 for any routine.

Cyclomatic Complexity [McC76]: this was one of the first software metrics to be proposed
and is calculated as one more than the number of predicates in the code. I t was originally
proposed as a measure of testing effort although this has been questioned recently (see [She88]
and [SI94] for details). This metric has been found to be largely unaffected by code restruc-
turing and appears to be more successful as a measure of the underlying complexity of the
algorithm. A routine with a high cyclomatic complexity value is thus generally considered
to be in need of modularization. Myers [Mye77] suggests the use of a complexity interval
whose lower bound is the cyclomatic complexity and whose upper bound is one more than
the total number of conditions.

In addition to these three metrics we also consider the number of executable s ta tements and
the number of explicit GOT0 statements in the routine.

All the software metric values stated in this paper were generated using QAFortran version
6.0 [Pro92].

4 F o r t r a n 66 a nd F o r t r a n 77

For each of the 46 routines listed on the BLAS reference card [Uni92], Table 1 shows the number
of executable lines of code Mong with the values of the three metrics defined above. Although con-
taining more executable s tatements than any of the other routines, the *ROTMG family of routines

3

stands out as far as both knot and path counts are concerned. The high knot count of 104 in a
routine containing just 131 executable statements suggests that the code is likely to be extremely
difficult to understand and maintain. This fact is reinforced by Hanson and Krogh [HK87] where,
in a paper detailing the translation of the Level BLAS into assembler, they state

Here, the subprograms [SROTtlG and DROTMG] are provided in Fortran only, due to the
complexity of their specification ...

and by the control graph of the original code which is shown in Figure 1.

Routine
*ROTG

*ROTMG

*ROT

*ROTM

*SWAP

*SCAL

*COPY

*AXPY

*DOT

*DOTU
*DOTC
*xDOT

*NRM2

*ASUM

I*AMAX

Exec Cyclomatic Knot Path
Stat Interval Count Count

22 5:6 2 16
121 18:18 92 98304

22 7:8 1 8
84 13:15 17 144
37 10:11 2 16
22 8:9 2 8
31 10:11 2 16
29 11:12 2 16
29 10:11 4 32
22 7:8 1 8
22 7:8 1 8
23 7:8 3 16
48 18:19 64 10240
22 8:9 4 8
22 8:9 3 8

Table 1: Metric Values for BLAS 1 Routines

The large number of possible paths through the routine, 196608, indicates tha t it will be
difficult to be confident that the routine has been thoroughly tested. In addition the routine
contains 34 explicit GOT0 statements and 27 target labels.

Spag [Po193], a software tool designed to improve the structure of Fortran 66 code by rearrang-
ing (and if necessary duplicating) statements and using Fortran 77 (or Fortran 90), produced some
improvement in the metric values when applied to this original code. The knot count was reduced
by more than a half and the path count was reduced by a factor of almost a hundred to 2304.
Nag~struct [Num92], one of NAG's suite of Fortran 77 software tools, was unable to restructure
the code due to multiple-entry loops being detected. However, it should be noted that , even with
what appear to be big reductions in the metric values, the code produced by Spag is hardly any
more comprehensible that the original.

Restructuring the code from scratch was far more successful. Even using Fortran 66 it was
possible to reduce the knot count to 35 and the path count to 4096. This version used 22 explicit
GOT0 statements and contained 12 target labels. The cyclomatic complexity came down from 19
to 13 which is very unusual in any restructuring exercise; this would seem to imply that there
were unnecessarily repeated tests taking place in the original code.

Both the commercial restructurers fared much bet ter on this recoded Fortran 66 code, pro-
ducing Fortran 77 versions with both knot and path counts reduced. The path count reported by
QAFortran for the Spag restructuring is optimistically low. This is due to Spag restructuring a
sequence of four WHILE statements (constructed with pairs of IF and GOT0 statements) into a set
of nested labelled IF statements with GOT0s. Since the path count metric used by QAFortran is
unaffected by GOT0 statements this has the effect of reducing the path count from 242 to 36.

The large knot counts associated with the Spag and Nag_struct versions are due mainly to
long jumps out of nested block IFs. This may be avoided with Fortran 77 by more careful
structuring and, although the path count is somewhat higher, the knot count, the number of

4

1 0 ~ ~ 7 -- 8

z

3O

s ~ ~

Figure 1: Flowgraph of originally published code

explicit GOT{] s tatements and the number of labels are all reduced to four; all these are required
for the construction of the four WHILE loops.

Figure 2 shows the flowgraph for the hand-coded Fortran 77 version of the routine and clearly
shows the improvement in structure over the original.

5 F o r t r a n 9 0

Moving to Fortran 90 allowed us to replace the last four labels, knots and GOT0 s ta tements by
four D0 WHILE blocks. Another minor improvement to the code was the combination of a CASE
s ta tement and structure constructors to simplify the setting of the output matr ix before exit. In
addition the new TYPE construction provided us with a cleaner version of the *PARAM argument.

In the original Fortran 66 code this parameter is a real array of length five. The first element
is used as a flag to indicate the type of 2 × 2 Givens Rotat ion Matr ix tha t is being returned in the
other four elements. The rotat ion matr ix is stored by columns. The original possibilities were

unit matr ix
rescaled

A6
A7

*PARAM

1 2 3 4 5
- 2 1 0 0 1
- 1 h n h21 h n h22

0 1 h21 hi2 1
1 h n 1 - 1 h22

where A6 and A7 refer to the equations given in the Appendix to [LHKK79] and only the elements
shown as hij are actually set by the routine. In the case of an error in the input data, the returned
matr ix is classified as rescaled and all elements are set to zero.

For the new Fortran 90 version of the code we defined the following type

TYPE: : SpGivensRotation
INTEGER : : MatrixType
REAL(sp) :: Rotation(2,2) ""

END TYPE S p G i v e n s R o t a t i o n

and the integer parameter values

INTEGER, PARAMETER :: c l t s = l , s l t c = 0 , r e s c a l e d = - l ,
u n i t _ m a t r i x = - 2 , e r r o r = 2

which are the only names used to set the Matr ixType component of S p g i v e n s R o t a t i o n . A new
value of Matr ixType , e r r o r , was used to differentiate between a normally rescaled mat r ix and
an error condition. We also set all four values of the rotat ion matr ix whatever type of rotat ion
mat r ix is generated. A similar definition is made for the double precision case.

Since Fortran 77 users have been provided with generic intrinsic functions, Fortran 90 allows
such functionality in user defined routines. Thus another improvement we made was to produce
a generic version of the routine, GROTMG. Basically this involves providing an interface to the two
routines SROTMG and DROTMG with the system selecting the correct version based on the type of
the actual arguments.

The Fortran 90 version was also altered to provide a single point of exit from the routine. This
allowed the CASE sta tement to set all the possible settings of the S p G i v e n s R o t a t i o n variable. The
extra cost here was an IF guard to the block of WHILE statements.

Finally, we use the newly introduced environment enquiry functions to set the value of 7 and
hence the values used to determine the range of values for which scaling will take place. The value
used for 72 is

MIN (HUGE (0. O_wp), i. O_wp/TINY (0. O_wp)) *0.25

6

~f

Figure 2: Flowgraph of recoded Fortran 66 code

n

50
100
200

Indy 4400 SC
Nag f90 (2.2 260)

S M Mf90
0.1 0.1 0.1
0.7 0.8 0.9

10.0 9.9 10.7

Sun Sparc LX
Epc f90 (1.1.5.1)
S M Mr90
3.0 2.7 2.0

19.1 17.2 11.5
157.4 130.8 75.9

Dec Alpha WS200
Digital f90 (2.0-1)
S M Mf90

0.1 0.2 0.2
0.3 0.3 0.4
5.8 5.9 6.0

Table 2: Comparison of standard Givens (S), Modified Givens (M) and the Fortran 90 generic
version of the Modified Givens (Mf90) to triangularize a 2n x n matrix using double precision. All
times are in seconds.

where wp is the working precision of the floating point arithmetic. For IEEE standard floating-
point arithmetic we obtain an exact representation for 7 of 262 (single precision) and 251° (double
precision). These values mean that scaling occurs far less frequently than with the original code
whilst preserving numerical safety.

A listing of part of the final Fortran 90 implementation is given in the appendix.

6 T e s t i n g

When restructuring any code it is imperative that the new version produces the same results as
the original, except, of course, where the original version was incorrect. We thus at tempted to
generate an exhaustive set of test data in order to be as confident as possible that all of the new
versions we produced performed exactly as the original code. Note that, with the new settings for
V, the Fortran 90 version will generate results which differ from those produced by the original
Fortran 66 code.

This exercise unearthed a minor error in the original code. For the input values xl , yl ¢ 0,
dl = 0 and d2 > 0 the original code returned the 'solution'

H = - 1
Yl

This input data effectively generates an input vect°r °f the f°rm [0] whose correct transfOrma- r

01 1] and take place dependent the size of d2. tion matrix is H = _ 0 rescaling may upon
. l

Using the profiling tool from the NAG suite of tools [Num92] on the rewritten Fortran 77 code
we were able to check for statement coverage using our set of test data. It was found that all
statements were executed at least once with the exception of the GOT0 60 statement immediately
before the statement labelled 30. In order to execute this statement the following two conditions
need to hold simultaneously

I(dl × xl) × xll > I(d2 x Yl) × Yll (1)

and

1 - × (2)

where the bracketing indicates the order in which the evaluations take place. It is obvious that
condition (2) can be true only if d2 < 0, additionally it would appear that we require some peculiar
combination of rounding errors to allow both conditions to hold. Using IEEE arithmetic [IEE85]
we have been unable to discover any set of input values which causes both conditions (1) and (2)
to be true.

Finally, we repeated the timing experiment, performed in [LHKK79], to compare the efficiency
of the modified plane rotation, both in its original and Fortran 90 forms, with the standard

8

Code Version
1. original
2. Spag on 1.
3. nag_struct on 1.
4. hand coded 1.
5. Spag on 4.
6. nag_struct on 4.
7. hand coded 4.
8. Fortran 90

Language Exec Knots Paths Cyc. Int. G O T O ' s Labels
f66 131 104 196608 19:20 34 27
f77 120 48 2304 17:18 20 11
f77 Not restructured due to multiple-entry loop
f66 103 35 4096 13:17 22 12
f77 105 30 361 13:17 8 6
f77 114 22 241 13:17 8 6
f77 113 4 336 13:17 4 4
f90 94 0 336 18:23 0 0

Table 3: Summary of code versions and associated metrics

Givens transformation. Both techniques were used to triangularize 2n × n matrices A = (a i j)
where a i j = (i + j - 1)-1.

Table 2 gives a sample of the cpu times obtained for a number of compiler /pla t form combi-
nations. Given the accuracy of the timing routines there is, for this particular problem, little or
nothing to choose between the two methods for the major i ty of the compilers tested. This was
especially the case when high optimization levels were selected. The Edinburgh Portable Com-
pilers Fortran 90 compiler on the SUN Sparc LX did still show a gain from using the modified
Givens method when full run t ime checking was switched on. The efficiency gains in this case are
comparable to those reported in [LHKK79].

The effect of using the Fortran 90 generic version of the ROTgG routines was generally to increase
the execution times very marginally.

7 C o n c l u s i o n

We have shown how the combination of the knot and path count software metrics along with their
number of executable statements in a subroutine allowed old Fortran code, tha t was difficult to
understand and test comprehensively, to be identified. Table 3 provides a summary of the various
versions of the routine generated along with the associated metric values.

The hand-coded Fortran 66 version (code 4 in Table 3) was bet ter s tructured than the code
produced by applying the Spag restructuring tool to the original code even though Spag's target
language was Fortran 77. This is reflected by the lower knot count although it should be noted
tha t the pa th count is actually larger for code 4.

Applying both restructurers to the hand-crafted version did produce a dramat ic reduction in
both the pa th count and the number of explicit GOT0 statements used. The knot count remained
high due mainly to a small number of long jumps out of deeply nested IF statements. This suggests
tha t code 4 was a logically clearer implementation of the algorithm than the original code.

In addition we would assert tha t the reduction in the pa th count can be t ranslated into a
significant saving in the effort required to produce adequate test da ta for the code.

The cyclomatic complexity interval values are interesting; it is very rare tha t this value is
reduced by code restructuring. Indeed Shepperd & Ince [SI94] state tha t cyclomatic complexity
is insensitive to the structure of the software. This implies tha t some of the tests in the original
code are either repeated or unnecessary. The higher interval associated with the Fortran 90 code
includes the extra test needed to set the value of V and a small number of repeated tests (within
the CASE statement) required to generate a consistent return strategy.

In the case of 'dusty deck' Fortran 66 code, automatic restructurers may be able to reduce both
the knot and pa th counts although the extent to which they are successful is very dependent on
the way in which the original code was structured. It is worth noting here that the metrics do not
always, in themselves, completely reflect improvements; applying Spag to the original code led to
a significant reduction in the metric values although the resultant code was still as impenetrable.

1 Optimistically low - see section 4 for details

9

An analysis of the knot and path counts for the 96 Level 2 and Level 3 BLAS ([DDHH88]
and [DDDH90]) both developed in Fortran 77, reveals no knots and a maximum path count of
6912 for a 140 line routine. These routines generally contain more executable statements than
the Level 1 routines. However the path and knot counts indicate that they are likely to be easier
to understand and test than several of the shorter BLAS Level 1 routines. This would suggest
that using a combination of number of executable statements with path and knot counts may be
helpful in identifying code that is likely to be difficult to understand and maintain.

8 Acknowledgements

Thanks to Richard Hanson who kindly read a draft of this paper in super quick time and made
some very useful comments. In particular, the use of the machine enquiry functions to set GAMSQ
was his idea.

References

[ANS66]

[DDDH90]

ANSI. Programming Language Fortran X3.9-1966. American National Standards
Institute, New York, 1966.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679: A set
of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):18-28,
March 1990.

[DDHH88]

[HK87]

[Hop96]

[IEE85]

[LH74]

[LHKK79]

[McC76]

[Mye77]

[NejS8]

[Num92]

[Po193]

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm 656: An
extended set of basic linear algebra subprograms: Model implementation and test
programs. ACM Trans. Math. Soflw., 14(1):18-32, March 1988.

R. J. Hanson and F. T. Krogh. Translation of Algorithm 539: PC-BLAS basic lin-
ear algebra subprograms for Fortran usage with the INTEL8087 80287 numeric data
processor. A CM Transactions on Mathematical Software, 13(3):311-317, September
1987.

T.R. Hopkins. Restructuring software: A case study. Software-Practice and Experi-
ence, 26(8):967-982, August 1996.

IEEE. IEEE standard for binary floating-point arithmetic. Institute of Electrical and
Electronic Engineers, New York, ANSI/IEEE standard 754-1985 edition, 1985.

C. L. Lawson and R. J. Hanson. Solving least squares problems. Series in automatic
computation. Prentice-Hall, Englewood Cliffs, N.J., 1974.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Softw., 5:308-323, 1979.

T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4) :308-320, 1976.

G. J. Myers. An extension to the cyclomatic measure of program complexity. Sigplan
Notices, 12(10):61-64, 1977.

B. A. Nejmeh. NPATH: A measure of execution path complexity and its applications.
Commun. ACM, 31(2):188-200, 1988.

Numerical Algorithms Group Ltd., Oxford, UK. NAGWare f77 Tools, second edition,
September 1992.

Polyhedron Software, Oxford, UK. plusFORT, Revision B edition, 1993.

l0

[Pro92]

[She88]

[SI94]

[Uni92]

[WHH79]

Programming Research Ltd, Hersham, Surrey• QA Fortran 6.0, 1992.

M. Shepperd. A critique of cyclomatic complexity as a software metric. Software
Engineering Journal, 3:30-36, March 1988.

M. Shepperd and D. C. Ince. A critique of three metrics• J. Systems Software, 26:197-
210, 1994.

University of Tennessee, Tennessee, US. Basic Linear Algebra Subroutines: A Quick
Reference Guide, June 1992.

M. R. Woodward, M. A. Hennell, and D. Hedley. A measure to control flow complexity
in program text. IEEE Transactions on Software Engineering, SE-5(1):45-50, 1979.

A Fortran 90 Version of the Res truc tured Code

MODULE modified_givens_rotation

! .. Generic Interface Blocks ..

INTERFACE grotmg

MODULE PROCEDURE srotmg

MODULE PROCEDURE drotmg

END INTERFACE

! ..

! .. Intrinsic Functions ..

INTRINSIC kind

! ..

! .. Parameters ..

INTEGER, PARAMETER :: clts = I

INTEGER, PARAMETER :: dp = kind(1.0D0)

INTEGER, PARAMETER :: error = 2, rescaled = -1, sltc = 0

INTEGER, PARAMETER :: sp = kind(1.0E0)

INTEGER, PARAMETER :: unit_matrix = -2
! • •

! .. Derived Type Declarations ..

TYPE :: spgivensrotation

INTEGER :: matrixtype

REAL (sp) :: rotation(2,2)

END TYPE spgivensrotation

TYPE :: dpgivensrotation

INTEGER :: matrixtype

REAL (dp) :: rotation(2,2)

END TYPE dpgivensrotation

CONTAINS

SUBROUTINE srotmg(sdl,sd2,sxl,syl,sparam)

.. Structure Arguments ..

TYPE (spgivensrotation), INTENT (0UT) :: sparam

.. Scalar Arguments ..

REAL (sp), INTENT (INOUT) :: sdl, sd2, sxl

REAL (sp), INTENT (IN) :: syl
!

! .. Local Scalars ..

REAL (sp), SAVE :: gamsq, rgamsq

REAL (sp) :: shll, shl2, sh21, sh22, spl, sp2, sql, sq2, stemp, su

INTEGER :: sflag
! • •

II

.. Intrinsic Functions ..

INTKINSIC abs, huge, min, reshape, sqrt, tiny

.. Parameters ..

REAL (sp), PAKAMETEK :: one = 1.0_sp

REAL (sp), PARAMETER :: quarter = 0.25_sp

KEAL (sp), PARAMETEK :: zero = 0.0_sp

! ..

! .. Dependents ..

KEAL (sp), SAVE :: gam = zero

! ..

t Set the value of gam, gamsq, rgamsq on first call to the

! routine. These values are dependent on the underlying

! floating-point arithmetic and should only be computed

! once.

IF (gam==zero) THEN

gamsq = min(huge(one),one/tiny(one))*quarter

gam = sqrt(gamsq)

rgamsq = one/gamsq

END IF

NOTE: sd2 is allowed to be negative to allow for row removal

in least squares problems

Test for illegal input sdl<0 -- return H as zero matrix with sflag=-I

Set matrix to zero for error exit

IF (sdl<zero) THEN

sdl = zero

sd2 = zero

sxl = zero

sflag = error

Special cases

Input vector is of the required form (c,O) where c can be zero

Set H = I

ELSE IF (sd2==zero .OK. syl==zero) THEN

sflag = unit_matrix

! Input vector is of the form (0,c) -- just need to reverse elements

! May need to scale d2 dependent values

ELSE IF ((sdl==zero .0R. sxl==zero).AND, sd2>zero) THEN

sflag = clts

shl2 = one

sh21 = -one

shll = zero

sh22 = zero

! set new x value to old y value

sxl = syl

! swap d values

su = sdl

sdl = sd2

s d 2 = s u

! Compute required bits and pieces

ELSE

sp2 = sd2*syl

spl = sdl*sxl

sq2 = sp2*syl

12

sql = spl~sxl

Dcl > Isl; type zero matrix (diagonal elements one)

IF (abs(sql)>abs(sq2)) THEN

sflag =sltc

sh11 = one

s h 2 2 = o n e

s h 2 1 = - s y l / s x l

s h 1 2 = s p 2 / s p 1

s u = o n e - s h l 2 * s h 2 1

If su has underflowed -- sparam has already been set -- exit

IF (su<=zero) THEN

sdl = zero

sd2 = zero

sxl = zero

sflag = error

ELSE

sdl = sdl/su

sd2 = sd2/su

SXi = SXI~SU

END IF

ELSE

! Isl >= Ici; type i matrix (antidiagonal case)

IF (sq2<zero) THEN

sdl = zero

sd2 = zero

sxl = zero

sflag = error

ELSE

sflag = clts

sh21 = -one

sh12 = one

shll = spl/sp2

sh22 = sxl/syl

! No possibility of underflow since sd2>0 if here

su = one + shll~sh22

stemp = sdl/su

sdl = sd2/su

sd2 = stemp

sxl = syl~su

END IF

END IF

END IF

! Scaling may be necessary -- matrices now become type -1

' Scale -- sdl

IF (sflag/=error .AND. sflag/=unit_matrix) THEN

DO WHILE (sdl<=rgamsq .AND. sdl/=zero)

sflag = rescaled

sdl = (sdl~gam)~gam

sxl = sxl/gam

shll = shll/gam

shl2 = shl2/gam

13

END D0

D0 WHILE (sdl>gamsq)

sflag = rescaled

sdl = (sdllgam)/gam

sxl = sxl*gam

shll = shll*gam

sh12 = sh12*gam

END DO

! Scale -- sd2

D0 WHILE (abs(sd2)<=rgamsq .AND. sd2/=zero)

sflag = rescaled

sd2 = (sd2*gam)*gam

sh21 = sh21/gam

sh22 : sh22/gam

END DO

D0 WHILE (abs(sd2)>gamsq)

sflag = -one

sd2 = (sd21gam)Igam

sh21 = sh21*gam

sh22 = sh22*gam

END D0

END IF

! set sparam array and exit

SELECT CASE (sflag)

CASE (clts) .;"

sparam = spgivensrotation(clts,reshape((/shll,-one,one,sh22/),(/2,2

I)))
CASE (sltc)

sparam = spgivensrotation(sltc,reshape((lone,sh21,shl2,onel),(12,21)
))

CASE (rescaled)

sparam = spgivensrotation(rescaled,reshape((/shll,sh21,sh12,sh22/),

(12,21)))
CASE (unitmatrix)

sparam = spgivensrotation(unit_matrix,reshape((/one,zero,one,zero/),
(/2 ,2 /)))

CASE (error)
sparam = spgivensrotation(error,reshape((/zero,zero,zero,zero/),(/2,

2/)))

END SELECT

END SUBROUTINE srotmg

) Double precision subroutine code omitted

END MODULE modifiedgivensrotation

14

