
Restructuring the BLAS Level 1 Routine for Computing the 
Modified Givens Transformation 

T i m  Hopkins  ( t rh@ukc.ac.uk)  

C o m p u t i n g  L a b o r a t o r y  
Univers i ty  of Ken t  

Can te rbury ,  CT2 7NF 

Kent ,  UK. 

November  19, 1997 

A b s t r a c t  

We look at how both logical restructuring and improvements available from successive 
versions of Fortran allow us to reduce the complexity (measured by a number of the com- 
monly used software metrics) of the Level 1 BLAS code used to compute the modified Givens 
transformation. With these reductions in complexity we claim that we have improved both 
the maintainabili ty and clarity of the code; in addition, we report a fix to a minor problem 
with the original code. The performance of two commercial Fortran restructuring tools is also 
reported. 

1 I n t r o d u c t i o n  

The Level 1 BLAS [LHKK79], originally published in Fortran 66 [ANS66], implemented a number 
of common vector operations and were designed to be used as building blocks for linear algebra 
software. Hopkins [Hop96] used knot counts [WHH79] and path counts [Nej88] to identify routines 
from the Level 1 BLAS which might benefit from code restructuring 

Two sets of routines, *NRM2, used to compute the Euclidean norm of a vector and *ROTMG, for 
computing the modified Givens transformation, were identified as having Extremely high metric 
values given their relatively low number of executable statements. The restructuring of the *NRM2 
routines, along with a dramatic decrease in the metric values, was reported by Hopkins [Hop96]; 
the *ROTMG routines are considered here. 

Following a brief description of the software metrics used to compare versions of the *ROTMG 
routines, we present a fiowgraph of the published code and look at how two Fortran code restruc- 
turing tools fared on this original source. We then compare the metric values obtained for the 
original and automatically restructured code with hand-coded Fortran 66 and Fortran 77 versions. 

Section 5 looks at how the metric values may be reduced further by using Fortran 90 and we 
show how the use of some of the new facilities available in Fortran 90 may be used to improve 
these routines further. 

Finally we look briefly at the testing of the new routine and report a fix to a minor problem 
in the original code. 

2 M o d i f i e d  G i v e n s  R o t a t i o n  M a t r i x  

The input values to *ROTMG, dl, d2, Xl and Yl, define a two-vector [al, a2] T in the partitioned form 
as 

a2 0 d~ Yl 
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The routines then determine the Modified Givens Rotation Matrix, H, tha t  t ransforms Yl and thus 
a2 to zero. Details of the computat ion may be found in Appendix A of [LHKK79]. 

The values of dl and d2 are scaled to ensure tha t  they are kept within the limits 

1 
< Idil _< 72 , i = 1,2; 

72 

where the value of 7 was originally chosen to be 4096 for portabil i ty reasons; see §5 for details of 
how this value may be computed using the new Fortran 90 environment enquiry functions. On 
output,  the values of dl, d2 and xl are changed to represent the effect of the t ransformation while 
yl,  which would be zeroed by the transformation,  is left unchanged. 

In the case where the input vector is already in the correct form, i.e., (c, O) T, no scaling of the 
values of dl and d2 takes place even if the input values are outside the limits given above. 

Lawson and Hanson [LH74] detail the use of a negative value of d2 to implement row removal in 
least squares procedures. The original code thus allows the value of d2 to be negative as suggested 
by equation (27.48) on page 230 of [LH74]. 

3 S o f t w a r e  M e t r i c s  

We use the following software metrics as indicators of how successful any restructuring we perform 
has been; a slightly more detailed description may be found in [Hop96]. 

. 

2. 

. 

Knot  count [WHH79]: a knot is defined to occur in a segment of code whenever the paths 
associated with transfers of control intersect. The higher the number  of knots in a piece of 
code the more difficult the code will be to read, understand and maintain. As an example,  
when coding in Fortran 66 the lack of a block IF construction meant  tha t  the equivalent 
code to implement a simple IF-THEN-ELSE construction required two GOT0 sta tements  and 
one knot. 

Pa th  count: this is based on the metric proposed by Nejmeh [Nej88] and provides a lower 
bound on the number  of distinct paths through a section of code. This measure gives an 
est imate of the amount  of effort required to thoroughly test the code. Nejmeh suggests a 
max imum value of 200 for any routine. 

Cyclomatic Complexity [McC76]: this was one of the first software metrics to be proposed 
and is calculated as one more than  the number of predicates in the code. I t  was originally 
proposed as a measure of testing effort although this has been questioned recently (see [She88] 
and [SI94] for details). This metric has been found to be largely unaffected by code restruc- 
turing and appears  to be more successful as a measure of the underlying complexity of the 
algorithm. A routine with a high cyclomatic complexity value is thus generally considered 
to be in need of modularization. Myers [Mye77] suggests the use of a complexity interval 
whose lower bound is the cyclomatic complexity and whose upper bound is one more than  
the total  number  of conditions. 

In addition to these three metrics we also consider the number of executable s ta tements  and 
the number  of explicit GOT0 statements in the routine. 

All the software metric values stated in this paper  were generated using QAFortran version 
6.0 [Pro92]. 

4 F o r t r a n  66 a nd  F o r t r a n  77 

For each of the 46 routines listed on the BLAS reference card [Uni92], Table 1 shows the number  
of executable lines of code Mong with the values of the three metrics defined above. Although con- 
taining more executable s tatements  than any of the other routines, the *ROTMG family of routines 
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stands out as far as both knot and path counts are concerned. The high knot count of 104 in a 
routine containing just 131 executable statements suggests that  the code is likely to be extremely 
difficult to understand and maintain. This fact is reinforced by Hanson and Krogh [HK87] where, 
in a paper detailing the translation of the Level BLAS into assembler, they state 

Here, the subprograms [SROTtlG and DROTMG] are provided in Fortran only, due to the 
complexity of their specification ...  

and by the control graph of the original code which is shown in Figure 1. 

Routine 
*ROTG 

*ROTMG 

*ROT 

*ROTM 

*SWAP 

*SCAL 

*COPY 

*AXPY 

*DOT 

*DOTU 
*DOTC 
*xDOT 

*NRM2 

*ASUM 

I*AMAX 

Exec Cyclomatic Knot Path  
Stat Interval Count Count 

22 5:6 2 16 
121 18:18 92 98304 

22 7:8 1 8 
84 13:15 17 144 
37 10:11 2 16 
22 8:9 2 8 
31 10:11 2 16 
29 11:12 2 16 
29 10:11 4 32 
22 7:8 1 8 
22 7:8 1 8 
23 7:8 3 16 
48 18:19 64 10240 
22 8:9 4 8 
22 8:9 3 8 

Table 1: Metric Values for BLAS 1 Routines 

The large number of possible paths through the routine, 196608, indicates tha t  it will be 
difficult to be confident that  the routine has been thoroughly tested. In addition the routine 
contains 34 explicit GOT0 statements and 27 target labels. 

Spag [Po193], a software tool designed to improve the structure of Fortran 66 code by rearrang- 
ing (and if necessary duplicating) statements and using Fortran 77 (or Fortran 90), produced some 
improvement in the metric values when applied to this original code. The knot count was reduced 
by more than a half and the path count was reduced by a factor of almost a hundred to 2304. 
Nag~struct [Num92], one of NAG's suite of Fortran 77 software tools, was unable to restructure 
the code due to multiple-entry loops being detected. However, it should be noted that ,  even with 
what appear to be big reductions in the metric values, the code produced by Spag is hardly any 
more comprehensible that  the original. 

Restructuring the code from scratch was far more successful. Even using Fortran 66 it was 
possible to reduce the knot count to 35 and the path count to 4096. This version used 22 explicit 
GOT0 statements and contained 12 target labels. The cyclomatic complexity came down from 19 
to 13 which is very unusual in any restructuring exercise; this would seem to imply that  there 
were unnecessarily repeated tests taking place in the original code. 

Both the commercial restructurers fared much bet ter  on this recoded Fortran 66 code, pro- 
ducing Fortran 77 versions with both knot and path counts reduced. The path count reported by 
QAFortran for the Spag restructuring is optimistically low. This is due to Spag restructuring a 
sequence of four WHILE statements (constructed with pairs of IF and GOT0 statements) into a set 
of nested labelled IF statements with GOT0s. Since the path count metric used by QAFortran is 
unaffected by GOT0 statements this has the effect of reducing the path count from 242 to 36. 

The large knot counts associated with the Spag and Nag_struct versions are due mainly to 
long jumps out of nested block IFs. This may be avoided with Fortran 77 by more careful 
structuring and, although the path count is somewhat higher, the knot count, the number of 
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Figure 1: Flowgraph of originally published code 



explicit GOT{] s tatements  and the number of labels are all reduced to four; all these are required 
for the construction of the four WHILE loops. 

Figure 2 shows the flowgraph for the hand-coded Fortran 77 version of the routine and clearly 
shows the improvement  in structure over the original. 

5 F o r t r a n 9 0  

Moving to Fortran 90 allowed us to replace the last four labels, knots and GOT0 s ta tements  by 
four D0 WHILE blocks. Another minor improvement to the code was the combination of a CASE 
s ta tement  and structure constructors to simplify the setting of the output  matr ix  before exit. In 
addition the new TYPE construction provided us with a cleaner version of the *PARAM argument.  

In the original Fortran 66 code this parameter  is a real array of length five. The  first element 
is used as a flag to indicate the type of 2 × 2 Givens Rotat ion Matr ix  tha t  is being returned in the 
other four elements. The rotat ion matr ix  is stored by columns. The original possibilities were 

unit matr ix  
rescaled 

A6 
A7 

*PARAM 

1 2 3 4 5 
- 2  1 0 0 1 
- 1  h n  h21 h n  h22 

0 1 h21 hi2 1 
1 h n  1 - 1  h22 

where A6 and A7 refer to the equations given in the Appendix to [LHKK79] and only the elements 
shown as hij are actually set by the routine. In the case of an error in the input data,  the returned 
matr ix  is classified as rescaled and all elements are set to zero. 

For the new Fortran 90 version of the code we defined the following type 

TYPE: : SpGivensRotation 
INTEGER : : MatrixType 
REAL(sp) :: Rotation(2,2) "" 

END TYPE S p G i v e n s R o t a t i o n  

and the integer parameter  values 

INTEGER, PARAMETER :: c l t s = l ,  s l t c = 0 ,  r e s c a l e d = - l ,  
u n i t _ m a t r i x = - 2 ,  e r r o r = 2  

which are the only names used to set the Matr ixType  component  of S p g i v e n s R o t a t i o n .  A new 
value of Matr ixType ,  e r r o r ,  was used to differentiate between a normally rescaled mat r ix  and 
an error condition. We also set all four values of the rotat ion matr ix  whatever type of rotat ion 
mat r ix  is generated. A similar definition is made for the double precision case. 

Since Fortran 77 users have been provided with generic intrinsic functions, Fortran 90 allows 
such functionality in user defined routines. Thus another improvement  we made was to produce 
a generic version of the routine, GROTMG. Basically this involves providing an interface to the two 
routines SROTMG and DROTMG with the system selecting the correct version based on the type of 
the actual  arguments.  

The  Fortran 90 version was also altered to provide a single point of exit from the routine. This 
allowed the CASE sta tement  to set all the possible settings of the S p G i v e n s R o t a t i o n  variable. The  
extra  cost here was an IF guard to the block of WHILE statements.  

Finally, we use the newly introduced environment enquiry functions to set the value of 7 and 
hence the values used to determine the range of values for which scaling will take place. The value 
used for 72 is 

MIN (HUGE (0. O_wp), i. O_wp/TINY (0. O_wp)) *0.25 
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Figure 2: Flowgraph of recoded Fortran 66 code 



n 

50 
100 
200 

Indy 4400 SC 
Nag f90 (2.2 260) 

S M Mf90 
0.1 0.1 0.1 
0.7 0.8 0.9 

10.0 9.9 10.7 

Sun Sparc LX 
Epc f90 (1.1.5.1) 
S M Mr90 
3.0 2.7 2.0 

19.1 17.2 11.5 
157.4 130.8 75.9 

Dec Alpha WS200 
Digital f90 (2.0-1) 
S M Mf90 

0.1 0.2 0.2 
0.3 0.3 0.4 
5.8 5.9 6.0 

Table 2: Comparison of standard Givens (S), Modified Givens (M) and the Fortran 90 generic 
version of the Modified Givens (Mf90) to triangularize a 2n x n matrix using double precision. All 
times are in seconds. 

where wp is the working precision of the floating point arithmetic. For IEEE standard floating- 
point arithmetic we obtain an exact representation for 7 of 262 (single precision) and 251° (double 
precision). These values mean that  scaling occurs far less frequently than with the original code 
whilst preserving numerical safety. 

A listing of part of the final Fortran 90 implementation is given in the appendix. 

6 T e s t i n g  

When restructuring any code it is imperative that  the new version produces the same results as 
the original, except, of course, where the original version was incorrect. We thus at tempted to 
generate an exhaustive set of test data  in order to be as confident as possible that  all of the new 
versions we produced performed exactly as the original code. Note that,  with the new settings for 
V, the Fortran 90 version will generate results which differ from those produced by the original 
Fortran 66 code. 

This exercise unearthed a minor error in the original code. For the input values xl ,  yl ¢ 0, 
dl = 0 and d2 > 0 the original code returned the 'solution' 

H =  - 1  
Yl 

This input data  effectively generates an input vect°r °f  the f°rm [ 0 ] whose correct transfOrma- r 

01 1 ] and take place dependent the size of d2. tion matrix is H = _ 0 rescaling may upon 
. l  

Using the profiling tool from the NAG suite of tools [Num92] on the rewritten Fortran 77 code 
we were able to check for statement coverage using our set of test data. It was found that  all 
statements were executed at least once with the exception of the GOT0 60 statement immediately 
before the statement labelled 30. In order to execute this statement the following two conditions 
need to hold simultaneously 

I(dl × xl) × xll > I(d2 x Yl) × Yll (1) 

and 

1 -  × (2) 

where the bracketing indicates the order in which the evaluations take place. It is obvious that  
condition (2) can be true only if d2 < 0, additionally it would appear that  we require some peculiar 
combination of rounding errors to allow both conditions to hold. Using IEEE arithmetic [IEE85] 
we have been unable to discover any set of input values which causes both conditions (1) and (2) 
to be true. 

Finally, we repeated the timing experiment, performed in [LHKK79], to compare the efficiency 
of the modified plane rotation, both in its original and Fortran 90 forms, with the standard 
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Code Version 
1. original 
2. Spag on 1. 
3. nag_struct on 1. 
4. hand coded 1. 
5. Spag on 4. 
6. nag_struct on 4. 
7. hand coded 4. 
8. Fortran 90 

Language Exec Knots Paths  Cyc. Int. G O T O ' s  Labels 
f66 131 104 196608 19:20 34 27 
f77 120 48 2304 17:18 20 11 
f77 Not restructured due to multiple-entry loop 
f66 103 35 4096 13:17 22 12 
f77 105 30 361 13:17 8 6 
f77 114 22 241 13:17 8 6 
f77 113 4 336 13:17 4 4 
f90 94 0 336 18:23 0 0 

Table 3: Summary  of code versions and associated metrics 

Givens transformation.  Both techniques were used to triangularize 2n × n matrices A = (a i j )  
where a i j  = ( i  + j - 1)-1. 

Table 2 gives a sample of the cpu times obtained for a number  of compiler /pla t form combi- 
nations. Given the accuracy of the timing routines there is, for this particular problem, little or 
nothing to choose between the two methods for the major i ty  of the compilers tested. This was 
especially the case when high optimization levels were selected. The Edinburgh Portable Com- 
pilers Fortran 90 compiler on the SUN Sparc LX did still show a gain from using the modified 
Givens method when full run t ime checking was switched on. The efficiency gains in this case are 
comparable to those reported in [LHKK79]. 

The effect of using the Fortran 90 generic version of the ROTgG routines was generally to increase 
the execution times very marginally. 

7 C o n c l u s i o n  

We have shown how the combination of the knot and path  count software metrics along with their 
number  of executable statements in a subroutine allowed old Fortran code, tha t  was difficult to 
understand and test  comprehensively, to be identified. Table 3 provides a summary  of the various 
versions of the routine generated along with the associated metric values. 

The hand-coded Fortran 66 version (code 4 in Table 3) was bet ter  s tructured than  the code 
produced by applying the Spag restructuring tool to the original code even though Spag's target  
language was Fortran 77. This is reflected by the lower knot count although it should be noted 
tha t  the pa th  count is actually larger for code 4. 

Applying both restructurers to the hand-crafted version did produce a dramat ic  reduction in 
both the pa th  count and the number  of explicit GOT0 statements used. The knot count remained 
high due mainly to a small number  of long jumps out of deeply nested IF statements.  This suggests 
tha t  code 4 was a logically clearer implementation of the algorithm than  the original code. 

In addition we would assert tha t  the reduction in the pa th  count can be t ranslated into a 
significant saving in the effort required to produce adequate test  da ta  for the code. 

The cyclomatic complexity interval values are interesting; it is very rare tha t  this value is 
reduced by code restructuring. Indeed Shepperd & Ince [SI94] state tha t  cyclomatic complexity 
is insensitive to the structure of the software. This implies tha t  some of the tests in the original 
code are either repeated or unnecessary. The higher interval associated with the Fortran 90 code 
includes the extra  test  needed to set the value of V and a small number  of repeated tests (within 
the CASE statement)  required to generate a consistent return strategy. 

In the case of 'dusty deck' Fortran 66 code, automatic  restructurers may be able to reduce both 
the knot and pa th  counts although the extent to which they are successful is very dependent on 
the way in which the original code was structured. It  is worth noting here that  the metrics do not 
always, in themselves, completely reflect improvements; applying Spag to the original code led to 
a significant reduction in the metric values although the resultant code was still as impenetrable.  

1 Optimistically low - see section 4 for details 
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An analysis of the knot and path counts for the 96 Level 2 and Level 3 BLAS ([DDHH88] 
and [DDDH90]) both developed in Fortran 77, reveals no knots and a maximum path count of 
6912 for a 140 line routine. These routines generally contain more executable statements than 
the Level 1 routines. However the path and knot counts indicate that they are likely to be easier 
to understand and test than several of the shorter BLAS Level 1 routines. This would suggest 
that using a combination of number of executable statements with path and knot counts may be 
helpful in identifying code that is likely to be difficult to understand and maintain. 
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A Fortran 90 Version of the  Res truc tured  Code  

MODULE modified_givens_rotation 

! .. Generic Interface Blocks .. 

INTERFACE grotmg 

MODULE PROCEDURE srotmg 

MODULE PROCEDURE drotmg 

END INTERFACE 

! .. 

! .. Intrinsic Functions .. 

INTRINSIC kind 

! .. 

! .. Parameters .. 

INTEGER, PARAMETER :: clts = I 

INTEGER, PARAMETER :: dp = kind(1.0D0) 

INTEGER, PARAMETER :: error = 2, rescaled = -1, sltc = 0 

INTEGER, PARAMETER :: sp = kind(1.0E0) 

INTEGER, PARAMETER :: unit_matrix = -2 
! • • 

! .. Derived Type Declarations .. 

TYPE :: spgivensrotation 

INTEGER :: matrixtype 

REAL (sp) :: rotation(2,2) 

END TYPE spgivensrotation 

TYPE :: dpgivensrotation 

INTEGER :: matrixtype 

REAL (dp) :: rotation(2,2) 

END TYPE dpgivensrotation 

CONTAINS 

SUBROUTINE srotmg(sdl,sd2,sxl,syl,sparam) 

.. Structure Arguments .. 

TYPE (spgivensrotation), INTENT (0UT) :: sparam 

.. Scalar Arguments .. 

REAL (sp), INTENT (INOUT) :: sdl, sd2, sxl 

REAL (sp), INTENT (IN) :: syl 
! 

! .. Local Scalars .. 

REAL (sp), SAVE :: gamsq, rgamsq 

REAL (sp) :: shll, shl2, sh21, sh22, spl, sp2, sql, sq2, stemp, su 

INTEGER :: sflag 
! • • 
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.. Intrinsic Functions .. 

INTKINSIC abs, huge, min, reshape, sqrt, tiny 

.. Parameters .. 

REAL (sp), PAKAMETEK :: one = 1.0_sp 

REAL (sp), PARAMETER :: quarter = 0.25_sp 

KEAL (sp), PARAMETEK :: zero = 0.0_sp 

! .. 

! .. Dependents .. 

KEAL (sp), SAVE :: gam = zero 

! .. 

t Set the value of gam, gamsq, rgamsq on first call to the 

! routine. These values are dependent on the underlying 

! floating-point arithmetic and should only be computed 

! once. 

IF (gam==zero) THEN 

gamsq = min(huge(one),one/tiny(one))*quarter 

gam = sqrt(gamsq) 

rgamsq = one/gamsq 

END IF 

NOTE: sd2 is allowed to be negative to allow for row removal 

in least squares problems 

Test for illegal input sdl<0 -- return H as zero matrix with sflag=-I 

Set matrix to zero for error exit 

IF (sdl<zero) THEN 

sdl = zero 

sd2 = zero 

sxl = zero 

sflag = error 

Special cases 

Input vector is of the required form (c,O) where c can be zero 

Set H = I 

ELSE IF (sd2==zero .OK. syl==zero) THEN 

sflag = unit_matrix 

! Input vector is of the form (0,c) -- just need to reverse elements 

! May need to scale d2 dependent values 

ELSE IF ((sdl==zero .0R. sxl==zero).AND, sd2>zero) THEN 

sflag = clts 

shl2 = one 

sh21 = -one 

shll = zero 

sh22 = zero 

! set new x value to old y value 

sxl = syl 

! swap d values 

su = sdl 

sdl = sd2 

s d 2  = s u  

! Compute required bits and pieces 

ELSE 

sp2 = sd2*syl 

spl = sdl*sxl 

sq2 = sp2*syl 
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sql = spl~sxl 

Dcl > Isl; type zero matrix (diagonal elements one) 

IF (abs(sql)>abs(sq2)) THEN 

sflag =sltc 

sh11 = one 

s h 2 2  = o n e  

s h 2 1  = - s y l / s x l  

s h 1 2  = s p 2 / s p 1  

s u  = o n e  - s h l 2 * s h 2 1  

If su has underflowed -- sparam has already been set -- exit 

IF (su<=zero) THEN 

sdl = zero 

sd2 = zero 

sxl = zero 

sflag = error 

ELSE 

sdl = sdl/su 

sd2 = sd2/su 

SXi = SXI~SU 

END IF 

ELSE 

! Isl >= Ici; type i matrix (antidiagonal case) 

IF (sq2<zero) THEN 

sdl = zero 

sd2 = zero 

sxl = zero 

sflag = error 

ELSE 

sflag = clts 

sh21 = -one 

sh12 = one 

shll = spl/sp2 

sh22 = sxl/syl 

! No possibility of underflow since sd2>0 if here 

su = one + shll~sh22 

stemp = sdl/su 

sdl = sd2/su 

sd2 = stemp 

sxl = syl~su 

END IF 

END IF 

END IF 

! Scaling may be necessary -- matrices now become type -1 

' Scale -- sdl 

IF (sflag/=error .AND. sflag/=unit_matrix) THEN 

DO WHILE (sdl<=rgamsq .AND. sdl/=zero) 

sflag = rescaled 

sdl = (sdl~gam)~gam 

sxl = sxl/gam 

shll = shll/gam 

shl2 = shl2/gam 
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END D0 

D0 WHILE (sdl>gamsq) 

sflag = rescaled 

sdl = (sdllgam)/gam 

sxl = sxl*gam 

shll = shll*gam 

sh12 = sh12*gam 

END DO 

! Scale -- sd2 

D0 WHILE (abs(sd2)<=rgamsq .AND. sd2/=zero) 

sflag = rescaled 

sd2 = (sd2*gam)*gam 

sh21 = sh21/gam 

sh22 : sh22/gam 

END DO 

D0 WHILE (abs(sd2)>gamsq) 

sflag = -one 

sd2 = (sd21gam)Igam 

sh21 = sh21*gam 

sh22 = sh22*gam 

END D0 

END IF 

! set sparam array and exit 

SELECT CASE (sflag) 

CASE (clts) .;" 

sparam = spgivensrotation(clts,reshape((/shll,-one,one,sh22/),(/2,2 

I))) 
CASE (sltc) 

sparam = spgivensrotation(sltc,reshape((lone,sh21,shl2,onel),(12,21) 
)) 

CASE (rescaled) 

sparam = spgivensrotation(rescaled,reshape((/shll,sh21,sh12,sh22/), 

(12,21))) 
CASE (unitmatrix) 

sparam = spgivensrotation(unit_matrix,reshape((/one,zero,one,zero/), 
( /2 ,2 / ) ) )  

CASE (error) 
sparam = spgivensrotation(error,reshape((/zero,zero,zero,zero/),(/2, 

2/)) )  

END SELECT 

END SUBROUTINE srotmg 

) Double precision subroutine code omitted 

END MODULE modifiedgivensrotation 
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