
CFTP { A Caching FTP ServerMark Russell and Tim HopkinsComputing LaboratoryUniversity of KentCanterbury, CT2 7NFKent, UKAugust 5, 1998AbstractBy analyzing the log �les generated by the UK National Web Cache andby a number of origin FTP sites we provide evidence that an FTP proxy cachewith knowledge of local (national) mirror sites could signi�cantly reduce theamount of data that needs to be transferred across already overused networks.We then describe the design and implementation of CFTP, a caching FTPserver, and report on its usage over the �rst 10 months of its deployment.Finally we discuss a number of ways in which the software could be furtherenhanced to improve both its e�ciency and its usability.KEYWORDS: mirroring, caching, log summation, usage statistics, objectoriented.1 IntroductionInternational bandwidth is an expensive and scarce resource which is often wastedby ine�cient patterns of use. Economic constraints mean that the academic com-munity, at least, cannot continue to increase capacity in order to satisfy an evergrowing demand for data transfer.Of the three dominant protocols used on the network, HTTP [4], FTP [9] andNNTP [7], the �rst two o�er scope for saving bandwidth because they are usedprimarily for read-only access to relatively static bodies of information. One wayof achieving this is to keep local copies of resources as they are requested and touse this local data rather than re-requesting the original from the remote site. Thisapproach is already being used by existing systems, including numerous FTP mirrorsites (for example, HENSA Unix at the University of Kent [1]) and various Webcaching systems (for example, the Netscape proxy [3] and the Squid cache [10]). Theapproach reported in this paper is to combine FTP caching with FTP mirroring.In section 2 we discuss the analysis of a large quantity of log data collected froma number of sources, and draw some conclusions regarding both the way in whichinternational bandwidth is being utilized by the academic community and whatopportunities exist for reducing the number of times the same data is requestedfrom the origin site. We would expect that the conclusions we have drawn wouldbe applicable to a much wider user community and that the approach that we havetaken would o�er similar improvements to any site which is close to capacity in itsuse of available international bandwidth.The design and implementation of a caching FTP server are discussed in section 3and preliminary results from the �rst 10 months of its use are presented in section 4.Finally in section 5 we consider a number of ways in which the existing softwarecould be improved in both e�ciency and usability.1

http FTP other TotalDate Requests %Total Requests %Total Requests %Total Requests1st {7th 1103838 96.1% 23692 2.1% 21553 1.9% 11490838th {14th 1207191 95.4% 33037 2.6% 25599 2.0% 126582715th {21st 1405571 95.8% 33794 2.3% 28558 1.9% 146792322nd{28th 1336244 95.6% 36675 2.6% 24831 1.8% 1397750Total 5052844 95.7% 127198 2.4% 100541 1.9% 5280583Table 1: Requests to cache server by protocol2 Statistics GatheringWe wished to obtain data on the existing use of international bandwidth, for ex-ample, how much use was being made of existing caching and mirroring facilities,how many sites were bypassing UK caches, and how the load was distributed acrossthe origin FTP servers. We �rst turned to the access logs maintained by the UKAcademic National Web Cache which at the time was located at HENSA Unix.This service allowed user requests for Web pages to be directed to a number ofcache machines situated at a central site. If a requested page had been asked forrecently by another user the page retrieved earlier was returned. Otherwise thepage was obtained from the origin site and forwarded to the requestor; a copy wasalso kept at the cache for possible future use. The cache machines had access to adedicated line to the United States in order to speed up requests to the origin site.Many users request FTP URLs from their browser so this information providedthe closest thing we had to a global picture of FTP access patterns within the UKacademic community.This data has some biases, as it only covers users and sites that have con�guredtheir browsers to use the national cache and, for that subset of .ac.uk sites, itonly covered browser initiated FTP tra�c. However we believe that it is probablyrepresentative of the whole community and almost certainly representable of thepart of the community that could be persuaded to use a new FTP caching facility.Probably the most serious possible bias was that the data only covered FTPtra�c initiated via a Web browser: the worry being that this tra�c would di�erfrom that initiated by plain FTP clients. Analysis of the HENSA Unix FTP logspoints to a growing fraction of accesses via Web browsers (i.e., using HTML ratherthan FTP). For accesses by .ac.uk sites during 1997, 36% of the requests and 30%of the data shipped from HENSA Unix were via HTML.The conclusion we drew from this was that users �nd it more convenient to usetheir Web browsers to explore FTP sites than to utilize the traditional text basedFTP interfaces.Tables 1 and 2 show the breakdown, by weeks, in tra�c by requests and theamount of data shipped respectively for one of the six National Web Cache hostsduring the four week period Monday 1st to Sunday 28th May 1995 inclusive. Theresults are grouped by the protocol speci�ed in the URL and the column labelledother covers URL types such as gopher, Wais, �le, etc. The �gures given are forsuccessful requests only.Not surprisingly for a Web cache, 95% of the successful requests use HTTP andonly 2.4% use FTP. However, the proportion by volume of the data was around13% and indicated that FTP items are, on average, around �ve times larger thanHTML documents.A breakdown of the FTP tra�c by origin site showed that although a mere seven2

http FTP other TotalDate Data(MB) %Total Data(MB) %Total Data(MB) %Total Data(MB)1st {7th 13645 86.3% 1749 11.1% 412 2.6% 158088th {14th 15539 84.3% 2425 13.2% 468 2.5% 1843415th {21st 17384 85.0% 2548 12.5% 519 2.5% 2045122nd{28th 16225 83.0% 2830 14.5% 494 2.5% 19550Total 62795 84.6% 9553 12.9% 1895 2.6% 74244Table 2: Requests to cache server by protocol#Sites %Sites %Requests %Data4 0.1 40.0 41.87 0.2 46.2 50.516 0.5 54.4 56.531 1.0 61.8 62.660 2.0 70.0 69.0148 5.0 80.1 78.7294 10.0 86.9 85.61464 50.0 97.9 98.22926 100.0 100.0 100.0Table 3: Distribution of requests by sitesites accounted for just over 50% of the volume requested there was a very largetail to the distribution with the last 1464 sites accounting for only 2%. Details ofthe distribution are given in Table 3.We then looked in more detail at the distribution of requests at some of thesesites as we wished to ascertain whether requests were spread evenly over the �lestore,or were concentrated on a few heavily used �les and directories. Table 4 shows, fora selection of servers, the total number of requests to the server and the amountof data shipped, followed by the number of distinct documents requested. The lastthree columns show the proportion of the total data shipped by the site accountedfor by the most popular (in terms of of volume of data accounted for by requestsfor a document) 10, 20 and 100 documents. The sample includes both heavily andlightly used sites.Table 4 shows very clearly that the load tends to concentrate on a few heavilyused documents. For example, on ftp.netcom.com, just 20 documents accounted fora quarter of all the data shipped. This data suggests strongly that caching will bemore e�ective than mirroring and, indeed, that mirroring some of these sites wouldresult in much wasted bandwidth due to fetching items that will never be accessed.In addition we attempted to produce a more complete picture of FTP accesspatterns by obtaining data on accesses by the UK academic community to a numberof overseas FTP sites. We obtained long term data from two large US FTP servers,ftp.uu.net and sunsite.unc.edu, and snapshot summaries from 30 others.Table 5 provides an overall summary of the long term data and Table 6 showshow much of the tra�c was generated by the UK mirror sites at HENSA andImperial College. Together the mirror sites accounted for 53% of the data shippedto hosts under .ac.uk from sunsite.unc.edu and 90% of that from ftp.uu.net.An analysis of the most popular 10, 20, 100 and 1000 documents is given inTable 7. For direct transfers, i.e., those not going to a mirror, the top 10 of the3

Total Data due to top N docsHost Requests data (Mb) Docs 10 20 100ftp.netcom.com 21400 859.6 1143 16% 25% 65%ftp.sunet.se 16691 1368.6 4668 16% 21% 38%ftp.tu-muenchen.de 9195 1217.6 697 20% 31% 74%ftp.univ-lille1.fr 2333 237.1 906 32% 38% 59%ftp.tcp.com 792 29.6 231 52% 65% 94%mirrors.aol.com 578 8.4 408 60% 76% 92%ftp.best.com 321 14.9 135 46% 63% 100%ftp.borland.com 199 8.8 161 71% 81% 99%louie.udel.edu 136 0.8 22 93% 100% 100%solaria.mit.edu 114 4.7 39 74% 91% 100%gatekeeper.dec.com 102 10.4 45 94% 99% 100%Table 4: Distribution of document requestsSite Start End Requests Data (MB)ftp.uu.net 12 Aug 1995 16 Feb 1996 129503 10162sunsite.unc.edu 3 Nov 1995 15 Oct 1996 247272 34030Table 5: FTP long term log data7000+ documents retrieved from ftp.uu.net accounted for 30% of the data shipped.The access �gures for the mirror sites are surprising: just 10 documents account foralmost half the data transferred. We had supposed that the mirror sites would haveshown a far more even access pattern given that they are normally retrieving anydocuments that have changed. A closer look at what was being retrieved revealedthat nine of the ten �les were index �les!The problem here is that the origin FTP servers generate new index �les, often inseveral formats, usually on a daily basis. Even when compressed these �les may beseveral megabytes in size. Since users rarely request index �les they should probablynot be mirrored, although this kind of selective �ltering is additional administrativework for the mirror sites.Finally, Table 8 shows summary information of the 22 sites from which weobtained snapshot data and which had more than 10 requests/day from ac.uk sites.As can be seen from the table there was a wide range of usage levels (1Mb to1Gb per day) and a wide range of time periods (2 to 295 days). We were dependenton what logs each server administrator had available and we have assumed thatthe access patterns did not change radically over the period covered. The Cachedcolumn in Table 8 records the percentage of requests that came via a Web proxysunsite.unc.edu ftp.uu.netHost Requests Data (MB) Requests Data (MB)hensa.ac.uk 40610 16% 9224 27% 99873 77% 8437 83%ic.ac.uk 61745 24% 9128 26% 15691 12% 743 7%Others 144917 60% 15678 47% 13939 11% 982 10%Table 6: Mirrored vs non-mirrored data4

Total %Data due to top N docsHost Requests Data (MB) Docs 10 20 100 1000uunet direct 14147 1004 7037 30% 41% 62% 92%uunet to mirrors 115356 9158 25955 47% 54% 63% 79%sunsite direct 101000 16344 27066 5% 7% 19% 61%sunsite to mirrors 146272 17686 45656 8% 11% 22% 57%Table 7: Document access patternsserver. This was calculated by totaling the requests from the HENSA Unix proxyserver hosts.The table shows that there is still much scope for improved caching and mirroringof FTP servers as, for most of the servers providing data, 90% or more of the tra�cwas via direct connections.We were thus able to draw the following conclusions1. Tra�c is spread across a large number of FTP servers. Although a large per-centage of the tra�c is concentrated on a small number of servers, a signi�cantfraction of the load is spread across a large number of small to medium servers(see Table 3).2. Tra�c to each server tends to be concentrated on a very small number of �les,frequently with the top 20 most popular �les accounting for 30% or more ofthe data shipped (see Table 4).3. For some large sites, much of the load from the .ac.uk domain is handledby mirrors although there is still a signi�cant amount of direct access (seeTable 6).4. Mirrors can waste bandwidth by repeatedly pulling index �les although suchtransfers are usually performed during the overnight slack period on thetransatlantic connection (see Table 7).5. There is scope for improved caching and/or mirroring as many small to mediumsites are still getting a large proportion of their tra�c from direct client con-nections.3 Overview of Design and Implementation3.1 Design ConstraintsFrom the above analysis it seemed clear that some form of caching FTP server(CFTP) would be e�ective. The FTP tra�c was distributed across far more serversthan could be practically mirrored and a cache would automatically duplicate theFTP resources as necessary. However we also wanted to take advantage of the largeamount of material that was already being mirrored by sites in the UK; it was thusclear that the optimal solution would combine caching and mirroring.Because of user reluctance at installing new software and the di�culty of dis-tributing new clients we wanted to use existing client software; this meant usingeither traditional FTP clients or Web browsers as the interface. We thus knew fromthe outset that multiple interfaces to the system would be necessary, which meantthat the underlying functionality had to be available as a library of software, usableby several di�erent server applications. 5

1995 Requests Data (MB)Host From To Days per day per day Cachedarchive.uwp.edu 11 Nov 16 Nov 5.5 409 32.66 5.6%cdt.luth.se 8 Nov 9 Nov 1.9 3282 1035.79 4.9%cs.ruu.nl 31 Oct 17 Nov 16.6 256 13.23 9.9%dsi.unimi.it 11 Jul 18 Nov 130.0 15 2.79 5.3%garbo.uwasa.� 15 Nov 17 Nov 2.0 431 55.72 13.5%granite.mv.net 31 Oct 15 Nov 15.0 15 1.09 4.0%i�.uio.no 8 Sep 16 Nov 69.7 62 10.05 6.5%inf.tu-dresden.de 30 Aug 19 Nov 81.8 43 11.23 12.1%info2.rus.uni-stuttgart.de 9 Nov 19 Nov 9.3 1046 68.53 18.4%lysator.liu.se 29 Oct 16 Nov 17.9 2042 49.25 17.1%math.uni-hamburg.de 1 Jan 16 Nov 295.7 20 3.43 9.6%mathworks.com 2 Oct 1 Nov 29.7 179 9.77 27.9%nvg.unit.no 15 Nov 18 Nov 2.1 790 44.63 14.3%oak.oakland.edu 7 Nov 16 Nov 9.1 71 7.80 6.2%papa.indstate.edu 1 Oct 16 Nov 46.7 31 3.95 10.2%pascal.zedat.fu-berlin.de 30 Apr 19 Nov 202.2 69 11.69 7.7%povray.org 1 Nov 24 Nov 23.1 248 52.75 6.1%rhrk.uni-kl.de 1 Nov 17 Nov 16.5 95 9.44 7.6%sdi.slu.se 4 Nov 11 Nov 7.0 2691 416.21 6.9%team17.com 7 Sep 16 Nov 70.2 17 10.78 9.3%utexas.edu 25 Oct 16 Nov 22.1 12 2.81 4.0%voa.gov 5 Nov 16 Nov 12.0 47 7.77 0.0%Table 8: Log summary dataAnother force driving the design was the need to support various di�erent meth-ods of fetching resources. A given object might be fetched from an origin FTPserver, from local �lestore, from a mirror server or from a previously cached copy.We might also, later on, want to handle protocols other than FTP. This argued forsplitting the various sources into well-separated modules, with a common interfaceto the core system.Finally, the system needed to be highly con�gurable. We wanted to be ableto experiment with, for example, various di�erent ways of combining caching andmirroring, without embedding these decisions in the code. We therefore aimed tomove as many policy decisions as possible out of code and into con�guration �les.3.2 Major DecisionsThe major design decision was that the core of the system should be structuredas a virtual �lestore tree. The virtual tree is initially empty, and is populated bymounting \�lesystems" on paths. This process is similar to the way �lesystems aremounted on a typical UNIX system. A con�guration �le speci�es what to mountwhere, and thus determines the layout of the tree that the client sees.Although our virtual tree is analogous to a UNIX �lestore tree, there is animportant di�erence. All the path resolution and handling of mount points is withina single process. Since there are no system calls involved in crossing mount pointboundaries, this means that mount points are cheap, which is important becausewe compose them to build up combinations of functionality. Each \�lesystem"type implements a single abstraction, such as caching, FTP access or local �lestoreaccess. 6

The motivation for this approach was to partition the functionality into sepa-rate and isolated modules, and to insulate the client software completely from theunderlying �le access code. Although there were a number of problems along theway this approach has worked out well in practice.We decided to implement our own FTP client software, rather than, say, drivingan existing FTP client by sending commands down a pipe. We felt that having aseparate FTP client process would cause problems with error handling, and that wewould end up writing almost as much code to drive a separate process as to drivethe FTP protocol directly. In practice implementing the FTP server and clientprotocol drivers was a small fraction of the overall work.Some things were not anticipated in the original design, and only emerged asthe result of implementation experience. For example, we initially had the serverprocesses making direct connections to origin FTP servers, and only later discoveredthe need for a separate FTP manager process.3.3 Implementation Language and ToolsApart from a few administrative shell and perl scripts, the system is implementedin C++. This was a natural choice of language, and the system is inherently objectoriented. For example, the notion of the various �lesystem types, each being adi�erent implementation of a common interface, has an obvious implementation asa C++ abstract class with derived classes for each �lesystem.To ensure maximum portability of the resultant software the code was written,as far as possible, to comply with relevant standards: POSIX.1 [6] for local operatingsystem services, RFCs for the HTTP [4] and FTP [9] protocol, and the draft C++standard for the language itself.The decision to explicitly restrict the code to use only POSIX.1 OS facilitiesproved to be a good one. In particular it dealt with the problem of namespacepollution by header �les. POSIX mandates that headers do not introduce extrasymbols if the macro POSIX SOURCE is de�ned, and all the code is compiled in thismode. This eliminates a whole class of trivial but irritating problems caused bydi�erences between header �les under various versions of UNIX.It was not possible to stay completely within the POSIX standard. For exam-ple, non-POSIX facilities were needed to handle symbolic links, fractional times,�le truncation and some non-standard signals. But access to these facilities wasisolated in a single (and small) NonPosix class, which alone was compiled withoutPOSIX SOURCE de�ned.In fact, and contrary to our previous experience with C, the language itselfwas more of a portability problem than OS facilities. Although C++ has been inwidespread use for well over a decade, the language is still evolving. The forthcomingstandard will make signi�cant changes to the language, and the various compilerswere tracking the standard at di�erent rates. This meant that language featureshad di�erent levels of portability, varying from universally implemented (most ofthe core of the language), through patchy availability (namespaces, exceptions) toalmost non-existence (member templates, run time type identi�cation).Our strategy was to stay as close as possible to the draft standard. Our maincompiler was the vendor's IRIX C++ compiler (based on the Edison Design Groupfront end). We also built the system using the Sun C++ compiler. Unfortunatelywe could not use g++ from the Free Software Foundation because it did not haveadequate support for templates.Workarounds were possible for some things in the standard that were not im-plemented by our compilers. A simple example was the new builtin bool type. Wesimply mapped this to int in a header �le, and used it throughout the code. Ob-viously we did not get the additional type checking, but when this feature becomes7

available the code will be ready. Similarly, we used macros for the new casting syn-tax de�ned in the standard (static cast, dynamic cast etc). These all mappedto the old-style cast, but by using the new syntax to document which kind of castwas intended will allow an easy move to the new casts when they are supported.The draft standard includes extensive additions to the standard library andwe used standard library features where possible. Fortunately implementations ofmany of the major new features of the library are publically available. This code iscurrently part of the source of the system, but as versions of the standard librarybecome available we will migrate to them.The major standard C++ facility not currently supported by our compilers wasexception handling. This was hard to work around, as the system involves extensiveerror handling. We used a textual message based error reporting scheme instead,although the code was designed in an exception-safe style. Functions were designedso that all resource cleanup is dealt with by destructors, thus ensuring that a returncan be performed at any point without leaking resources.Despite the problems of portability, C++ has been an e�ective language in whichto both design and implement. The strong static type checking meant that codethat compiled was likely to work �rst time, and that problems caused by changeswere caught at compile time rather than run time.Structuring the system into relatively independent objects had major bene�ts,notable among them being
exibility in the way objects were composed to form thesystem. For example, FTP connections were originally handled directly, and onlylater were moved into an FTP manager process. This change was easy because thecode was encapsulated into an FtpConnection object, which did not know or careabout its surrounding context.Another key bene�t was the support for implementing small concrete types. Forexample, �lesystem paths are widely used in the system. These are represented asa Path class, rather then being passed around as strings. Code that uses paths isthus written in terms of logical operations on Path objects rather than using stringmanipulation; this makes a surprising di�erence to the readability of the code.3.4 Implementation HistoryOur implementation strategy throughout the project was to build a series of workingsystems, each one adding to the functionality of the previous. This meant that wehad a working (if minimal) system quite early on which gave us con�dence thatthe design was workable. Although we did have to make some design changes aswe proceeded, the object-oriented approach meant that this work consisted mainlyof changing the relationship between objects rather than rewriting large sections ofcode.Here is very brief list of the versions of the system that we implemented:1. The virtual �lestore, with support for local (POSIX) �lesystems only, andaccessed via the command line on the local host.2. Access to FTP servers via the virtual �lestore.3. An FTP server, giving access to the virtual �lestore via standard FTP clientprograms. At this point it was possible to connect to the system with an FTPclient, and access external FTP servers, but only ones that were explicitlymentioned in the CFTP con�guration �le.4. Support for \mounting" FTP servers on demand, thus allowing clients toaccess FTP servers of their own choosing.8

5. Support for caching �les and directory listings. At this point we had a func-tional caching FTP server, which we put into service.6. A Web-based interface to the virtual tree. This turned out to be much morework than expected, mainly because of the one-shot nature of Web clientrequests which con
icts with our need to hold on to expensive resources likeopen connections to FTP servers.7. A Web proxy interface to the virtual tree, which allowed people to con�guretheir browsers to use CFTP automatically for all FTP URLs.4 Analysis of New System4.1 DeploymentThe �rst application that was ready for deployment was the FTP server (stage5 in the Implementation History above), but by this time this was ready it wasclear that the restrictions imposed by the FTP protocol would make the systemunnecessarily unfriendly to users. In particular it o�ered no easy way of checkingwhether a directory listing was stale, or of refreshing a listing. Experience with theneed for the reload button in Web browsers convinced us that this would be a realproblem for users.The initial announcement of the availability of the Web interface to the UKacademic community generated an initial burst of interest but, despite positivereaction from individual users to the interface, usage levels were disappointing.We then used the Web interface for access to the HENSA Unix FTP archive.HENSA Unix has a set of introductory web pages, with links o� to various partsof the archive. The majority of these links were FTP URLs which, when selected,resulted in the standard browser FTP page display. We changed these links to usethe caching FTP Web interface. For this use no caching was actually done { wejust arranged in the con�guration �le to export local �lestore on the FTP server.We found that usage of the interface increased dramatically after this change.As we had suspected, users liked the interface when it was convenient to get to, butwere not prepared to visit the server just to access a �le via FTP. The conclusionwas that we had to make it easier for users to access the service.These considerations were the motivation for developing the proxy server in-terface, which makes it much simpler to use the caching FTP server. Following aone-time con�guration of the browser, all FTP URLs are handled using the server.The main problem that we now faced was that most users do not con�guretheir own browsers: site administrators set up default arrangements for using proxyservers. Usually a site cache is used, which in turn may link to a national cache.The key to large-scale use of the service appeared to be to arrange for these cachesto use our proxy for FTP requests. We thus arranged for the Squid site cache atthe University of Kent to use Cftp for FTP URLs.Eventually we would like to see the CFTP proxy server linked up to the nationalWeb caches, although we will �rst need to gain some experience with how the systembehaves under heavy load. It may be necessary to distribute the service over severalhosts.4.2 Usage StatisticsThe initial usage of the service was disappointing, we think due to the lack of aconvenient way to use the service. Links to Cftp were put on the HENSA Unix frontWeb page at the beginning of June and, at the end of September, the University9

Figure 1: Files at HENSA Unix sent via Cftp
Figure 2: Files at other FTP sites sent via Cftpof Kent's site Web cache was connected. This unfortunately had to be disabled inthe new year as the version of Squid running on the cache was upgraded and newversion was found to be incompatible with Cftp.Figures 1 and 2 show the amount of data being shipped per week by Cftp actingas an interface to HENSA and as an ftp cache. The latter requests are those that aresaving bandwidth, since they would otherwise have gone to the origin FTP server.The data volume levels for non-HENSA sites are in line with the requests per day,but those for HENSA �les show more variation. The reasons for this are unclear,although the most likely factor, given the current usage levels, is that a few userspulling large �les are making a substantial di�erence to the week's totals.4.3 Hit ratesTable 9 shows a breakdown of requests by the way they were handled. The methodsaredirect User explicitly requested HENSA Unix.ftp Cache miss: user asked for a non-HENSA item, and we had to visit the originserver to fetch it.cache Cache hit: as above, but we used a previously cached copy of the item.mirror Another form of cache hit: user asked for a non-HENSA item, but we foundan up-to-date copy of the item mirrored at HENSA Unix.Roughly 62% of the usage so far has been for access HENSA Unix, but theproportion of non-HENSA accesses rose with the introduction of the link to theUniversity of Kent's site cache. This trend has reversed since it was disconnected.Accesses to HENSA Unix via Cftp do not save international bandwidth, as they aremerely accessing an existing resource via a new interface. Thus, we now consider10

Method Requests Data(MB)direct 621544 62% 95514 61%ftp 198630 20% 38999 25%cache 170557 17% 19364 12%mirror 10830 1% 3484 2%All 1001561 100% 157363 100%Table 9: Cftp accesses by method: May 8th 1997 - Mar 1 1998Method Requests Data(MB)ftp 198630 52% 38999 63%cache 170557 45% 19364 31%mirror 10830 3% 3484 6%All 380017 100% 61849 100%Table 10: Non-HENSA accesses by method: May 8th 1997 - Mar 1 1998the breakdown of requests excluding HENSA Unix. Table 10 shows the same dataas Table 9 but excludes HENSA accesses.As the tables show, the hit rate is running at about 46% by request, and 36% byvolume of data. It is not clear why these rates are di�erent, although it is presum-ably due to di�erences in access patterns for �les and directories (the request countsinclude directory listings, whereas the data volume only counts �le downloads).The directory/�le split shows up in the mirror statistics. Cftp will only usemirrored items to satisfy �le requests; directory requests go via the cache or directto the origin server. Mirrored �les account for a quarter of the cache hits by volume,but there is plainly scope for more work in this area. We should for example takeadvantage of UK mirror sites other than just HENSA Unix.Bandwidth savings are currently running at a few hundred megabytes per weekand this represents savings of less than 1% of the total FTP tra�c. This is obviouslynot enough to have a signi�cant e�ect on international bandwidth, but with thesystem in place, we will now shift our e�orts towards increasing usage levels for thefuture.5 Future ExtensionsThe system is currently installed and running at HENSA Unix, but there is stillmuch scope for improving it.5.1 Extended support for mirroringCurrently CFTP knows about FTP resources mirrored at HENSA Unix, but thereare many other mirror sites in the UK. Users must currently explicitly choose touse these sites rather than going direct to the origin servers. As our data analysisshowed, many users fail to use local mirror sites.There is obvious scope for gathering mirroring information in machine readableform so that CFTP and other systems can use it to make mirroring more transpar-ent. Work in this area has started with the UK project to catalogue mirror sites [2].At HENSA Unix we intend to use this information to integrate more mirror siteswith CFTP. 11

This is an area where the site maintainers could help. Many FTP sites have �lesgiving users information about their nearest mirror site. It would not take muchto maintain a version of this in a format that a program could parse. With thisin place, CFTP could automatically locate mirror sites without being con�gured inadvance.There is also scope for closer integration of mirroring and caching at HENSAUnix. The mirror software [8] gathers directory listings to decide what needs up-dating, but at present these are discarded after use. It would be useful to save theselistings so that CFTP could use them, thus avoiding the need to contact the originserver.5.2 Improved Web InterfaceThere is scope for improvement of the CFTP Web interface. As it appears that theoverall look of a Web page is so important to users, we are considering a number ofcosmetic changes to the interface. In addition, there is scope for improvements to itsfunctionality especially in the interface to composite �les like tar �les. Currently,only tar �les are decoded; other formats, in particular zip �les, should also behandled. In addition, displaying the contents of these �les as a directory tree ratherthan a list would be a worthwhile improvement.The interface for downloading multiple �les is currently rather rudimentary, andcould certainly be improved. As it stands now, the user selects a group of �les thenclicks the Download button, whereupon he/she is presented with a tar �le containingthe selected �les. It would be better to present the selected list as a fresh Web page,with buttons o�ering a selection of �le formats (tar, zip, compressed or not). Thepage could also be used to re�ne the selection of which �les to download.We are also considering the production of a squid-like interface in order to makethe system more consistent with the National Web Cache.Finally the use of Java [5] should be investigated. This has the potential to makethe Web interface much more interactive than vanilla CGI allows. It also o�ers thepossibility of retaining per-user state in a much more convenient way. But there arepitfalls as well; not all users (or sites) are prepared to enable Java in their browsers,and the security restrictions in Java may get in the way of providing a capableinterface.5.3 Support for ICPCurrently there is no support in CFTP for ICP [11], as used by the squid cache.CFTP still interoperates with squid, because ICP support is not mandatory, but inthe current form squid caches cannot detect failure of the CFTP cache. All thatSquid can check is that the CFTP server host is responding to pings, so if the hostis running but the CFTP server is not, the user can see long delays and timeouts.ICP support should not be hard to add, as the protocol is quite simple.5.4 Distributed cachesThe current CFTP system runs on a single host. While this copes with the currentload, it obviously has scaling problems. There is nothing in the current systemto prevent running it on several hosts, probably with a DNS based load sharingscheme, although this would lead to the cache contents being duplicated. It would,thus, be useful to add co-operative caching, whereby each server would have someknowledge about what �les are in its peer servers' caches.A currently used alternative to DNS based load sharing is for each cache tohandle part of the URL space. There is support in the Web browsers for this, in12

that a browser can download a script which maps URLs to proxy servers. Theproblem with this is that the partitioning must be done manually by the proxyserver administrators, and it is very di�cult to set up and maintain a balanced loadsharing scheme.These considerations make the idea of automatic load balancing attractive. Thiswould work at the server end by some form of negotiation over the ownership partsof the URL space. There would need to be a private protocol between peer servers tosupport messages like \I am now handling all URLs below ftp.foo.com { forwardany such requests to me". Designing such a protocol would obviously be signi�cantwork. We would also need to implement load measuring on each server, so thateach server could determine whether it should take on or shed load.6 ConclusionsAn analysis of the log data obtained from a number of sources has shown that thereis scope for improving the e�ectiveness of the caching and mirroring of FTP servers.CFTP, the caching FTP server, described in this paper is a step towards this inthat it may be con�gured to have a knowledge of local (national) mirrors as wellas its own cache of FTP objects. This means that users bene�t from local mirrorseven though they may be unaware that the data they are requesting is availablelocally.Initial trials of the software appear to support the log analysis and users havebeen positive in their reactions both to the caching software and the new Webinterface to the FTP �le tree.The software is now installed as the Web interface to the HENSA Unix FTParchive and has been successfully connected to the University of Kent's local Webcache. A number of improvements to the software and its interface have beenidenti�ed.We believe that the server is capable of coping with the load generated by theNational Web Cache and that it can o�er a signi�cant saving in both internationalbandwidth and the time taken to retrieve data.7 AcknowledgementsThis work was funded under the UKERNA project \E�cient Use of InternationalBandwidth for Information Access", managed by Dr. John Kwan.We would like to acknowledge the help given by the busy FTP site administratorswho agreed to run our log analysis scripts. We are particularly grateful to David CLawrence (at ftp.uu.net) and Nash Foster (at sunsite.unc.edu) for helping us withraw data from their logs over many months.References[1] M.L. Bowman, T.R. Hopkins, and N.G. Smith. HENSA Unix: serving the UK.Axis, 2(2):6{11, 1995.[2] Manchester Computing. Registry of FTP mirror sites on JANET.http://www.ftpregistry.mcc.ac.uk/.[3] Netscape Communications Corporation. Netscape proxy server.http://home.netscape.com/comprod/server central/product/proxy/.13

[4] R. Fielding, U. C. Irvine, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transfer protocol | HTTP/1.1. Technical Report RFC2068, http://www.hensa.ac.uk/ftp/mirrors/uunet/.vol/2/inet/rfc/rfc2068.Z,January 1997.[5] M. Grand. JAVA Language Reference. O'Reilly, Sebastapol, California, 1997.[6] IEEE/ANSI. Information Technology|Portable Operating System Interface(POSIX)|Part 1: System Application: Program Interface (API) [C Lan-guage], Std 1003.1 edition, 1996.[7] B. Kantor and P. Lapsley. A proposed standard for thestream-based transmission of news. Technical Report RFC 977,http://www.hensa.ac.uk/ftp/mirrors/uunet/.vol/2/inet/rfc/rfc977.Z, Febru-ary 1986.[8] L. McLoughlin. mirror.pl. ftp://src.doc.ic.ac.uk/computing/archiving/mirror/mirror.tar.gz.[9] J. Postel and J. Reynolds. File transfer protocol. Technical Report RFC 959,http://www.hensa.ac.uk/ftp/mirrors/uunet/.vol/2/inet/rfc/rfc959.Z, October1985.[10] D Wessels. Squid internet object cache. http://squid.nlanr.net/Squid/, 1998.[11] D. Wessels and K. Cla�y. Internet cache proto-col (ICP), version 2. Technical Report RFC 2186,http://www.hensa.ac.uk/ftp/mirrors/uunet/.vol/2/inet/rfc/rfc2186.Z,September 1997.VitaeMark Russell graduated in Computer Science at the University of Kent in 1985.He worked on the Kent Software Tools project, developing a �le browser, theups debugger and a portable windowing library. He joined the Systems Groupat Kent in 1989, where he spent his time defending Unix systems againsthordes of students.From 1995 to 1997 Mark worked on the UKERNA project "E�cient Useof International Bandwidth for Information Access". He now supports theHENSA service at the University of Kent.Tim Hopkins is a Reader in Numerical Computing at the University of Kent,UK. He obtained a Ph. D. from the University of Liverpool in 1977 andhas been Algorithms Editor for ACM Transactions on Mathematical Softwaresince 1994.He has managed the UK National Academic Unix Software Archive since 1989and was involved in the setting up of the original UK National Academic WebCache.His research interests also include software quality and testing, parallel nu-merical computing and simulations.
14

