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Abstract 

The PI3K/AKT pathway is a key regulator of proliferation, growth and survival in mammalian 

cells and aberrations in the components of this pathway are often implicated in malignancy. 

In particular, mutations in this pathway are frequently responsible for the development of 

breast, prostate, and ovarian cancers. The high frequency of deregulation in this pathway 

means it represents a good therapeutic target, and there are now several AKT inhibitors in 

Phase II clinical trials for breast cancer, including the ATP-competitive AKT inhibitor 

AZD5363. Despite the initial success of many molecularly targeted drugs, acquired 

resistance is an emerging issue, and resistance mechanisms to AKT inhibitors are still 

relatively unknown. Research into resistance to CCT129254 (a precursor of AZD5363) in 

the A2780 ovarian cancer cell line has been previously undertaken (Akan, Jakubowski, 

Garrett; unpublished), revealing a reduction in 4EBP1 and increased phosphorylation of 

p70S6K. The aim of this project was therefore to develop breast cancer cell line models of 

acquired resistance to AZD5363, and investigate how these resistance mechanisms 

compare in the two different disease types. 

Breast cancer cell lines with mutations causing upregulation in the PI3K/AKT pathway were 

selected for analysis and characterised for their response to AZD5363. Resistant clones 

were generated through limiting dilution and chronic exposure to twice the GI50 of AZD5363. 

Characterisation of parental cell lines T47D, MCF-7, and ZR-75-1 showed IC50 values of 

0.92, 1.34, and 0.05 µM respectively for AZD5363. Sub-clones B9 and D2 were generated 

from ZR-75-1, with 7.3 and 5.8-fold resistance to AZD5363, respectively. However, there 

was no significant cross-resistance to other AKT inhibitors GDC0068 and MK2206, and 

Western blotting revealed no significant changes in PI3K/AKT signalling. Taken together, 

this suggests that the resistance mechanism is not proximal to AKT, and another pathway 

may be responsible for the resistant phenotype. Additionally, a new and innovative cell-

based ELISA was developed to investigate cellular signalling of GSK3β and S6RP as an 

alternative to Western blotting. 

In conclusion, characterisation of AKT inhibitor-sensitive breast cancer cell lines has led to 

generation of resistant cell line models for AZD5363. However, these novel findings 

showing a lack of AKT inhibitor cross-resistance and no significant changes in PI3K/AKT 

signalling in these models suggests the resistance mechanism is not proximal to AKT. 

Therefore, the novel resistance mechanisms observed in these breast cancer cell line 

models are not the same as that observed in the ovarian carcinoma model. Further 

investigation will be required to determine the pathway responsible for acquired resistance 

to AZD5363 in breast cancer cells. 
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1.0 Introduction 

1.1 An introduction to cancer 

The American Cancer Society defines cancer as a disease characterised by the spread and 

uncontrolled growth of abnormal cells. These abnormal cells then invade other tissues and 

organs, causing irreparable damage. Oncogenesis is a multi-step process caused by 

genomic changes; these include dominant gain-of-function mutations in oncogenes and 

loss-of-function mutations in tumour suppressor genes. These mutations can be attributed 

to external factors such as tobacco, viruses and radiation, or to internal factors such as 

hereditary mutations (Hanahan and Weinberg, 2000). 

Cancer represents a large disease burden and is responsible for 13% of deaths worldwide 

(Ferlay et al., 2015). The World Health Organisation (WHO) states that out of over 100 

different types of cancer lung, prostate, and colorectal cancers are the most common in 

males whilst breast, colorectal and lung cancers are most common in females. Additionally, 

current estimates expect there to be a 70% rise in new cancer cases in the next 20 years 

(Siegel et al., 2014). These figures represent a large public health risk, therefore there is 

currently an intense research effort worldwide. 

1.2 An overview of breast cancer 

Breast cancer is the most prevalent cancer worldwide, and the most common cancer in the 

United Kingdom. The average woman has a 1 in 8 risk of developing breast cancer in her 

lifetime, and there are an estimated 4.4 million women worldwide who have been diagnosed 

with breast cancer in the last 5 years (Parkin et al., 2005). Prevalence of this disease is 

high, and incidence rates are still increasing. Current estimates approximate that incidence 

rates have annually increased by 0.5% since 1990 (Maxwell Parkin et al., 2001). Therefore, 

breast cancer represents a significant disease burden worldwide. Despite this, prognosis is 

generally positive, with the average 10-year survival rate in the UK at 78%. However, 

developing countries remain behind at an average of 57%. In developed countries, these 

favourable prognoses are largely a result of early diagnosis through screening programmes, 

in addition to better understanding of the disease and improved treatment regimens.  

There are several different schemes used in order to fully classify breast cancers. These 

include: histological grading, stage, and receptor expression status. For example, grading 

in histopathology involves assigning a numerical grade from 1 to 3 according to the degree 

of abnormality of the tumour cells. Tumour cells that appear phenotypically similar to that of 

normal cells are classified as Grade 1 and are usually slow-growing and minimally invasive. 

On the other hand, Grade 3 tumours are poorly differentiated in that they no longer resemble 
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the original tissue, spread rapidly, and are associated with poor prognoses (Elston and Ellis, 

2002). Additionally, the most commonly used system to stage breast cancer is the tumour, 

node, and metastasis (TNM) staging system. This involves assigning a stage to each 

characteristic of the disease i.e. tumour size (T), presence of tumour spread to the lymph 

nodes (N) around the chest and neck, as well as evidence of metastasis (M) to other parts 

of the body. Each characteristic is assigned a number, with larger tumours, spread to lymph 

nodes, and metastasis all corresponding to higher numbers and a more advanced stage. 

For example, stage 0 is classified as a pre-cancerous condition such as ductal or lobular 

carcinoma in situ whereas stage 4 indicates metastatic disease (Veronesi et al., 2009). 

Finally, classification of breast cancers into subtypes according to their receptor expression 

is highly important when selecting treatments, as cells that overexpress a particular receptor 

can be targeted with specific drugs. Hormone-receptor positive tumours can overexpress 

oestrogen and/or progesterone receptors and grow in response to these hormones, making 

them susceptible to hormone therapies such as tamoxifen which prevents oestrogen 

binding to its receptor. Tumours overexpressing human epidermal growth factor receptor 2 

(HER2) can also be targeted with the monoclonal antibody trastuzumab to prevent tumour 

growth through growth factor signalling. On the other hand, 10-15% of breast cancers do 

not express oestrogen, progesterone, or HER2 receptors and are classified as the ‘triple 

negative’ subtype. Due to the lack of drug-sensitive targets in this subtype, it is associated 

with the worst prognostic outcomes (Dawood et al., 2010). 

Standard treatment for breast cancers caught early usually consist of breast-conserving 

surgery such as a lumpectomy, whereas more advanced disease may require total 

mastectomy. These procedures are usually followed by radiotherapy/chemotherapy to treat 

any undetected disease, which frequently occurs in local lymph nodes or any residual breast 

tissue (Ceilley et al., 2005). However, such conventional treatments are limited by high 

toxicity to both cancerous cells and normal tissue (with associated side effects), and 

acquired resistance. The elucidation of molecular agents responsible for driving the 

proliferation of many cancers has created many novel therapeutic targets, allowing the 

development of drugs against specific cellular signalling pathways. This is therefore thought 

to decrease harmful cytotoxic side effects and increase the efficacy of treatment. Genetic 

deregulation of components of the phosphoinositide-3-kinase/AKT pathway is frequently 

associated with breast cancer, and these abnormalities represent a significant target for 

development of novel therapeutic agents. AZD5363 is one such targeted drug which inhibits 

AKT, a common driver of malignancy (Samuels et al., 2004). 
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1.3 PI3K/AKT signalling 

Initially identified as a result of research into insulin receptor signalling in the 1980s, the 

PI3K/AKT pathway is highly conserved. It is responsible for regulating many fundamental 

processes such as cell proliferation, survival, and resistance to apoptosis (Hennessy et al., 

2005). It is a tightly regulated multi-step process activated by growth factor signalling and 

subsequent activation of receptor tyrosine kinases (RTKs). Features of this pathway such 

as potent driving of tumorigenesis and the ability to be activated through interactions 

between Ras and PI3K have led to the completion of the current model of this pathway. 

Growth factor receptors such as HER2 and EGFR act as the initial activation steps of the 

PI3K/AKT pathway. Ligand-mediated activation of RTKs by growth factors stimulates 

autophosphorylation of the RTK cytoplasmic domain, leading to activation of the catalytic 

subunit of PI3K known as p110α (encoded by the PIK3CA gene). RTKs can additionally 

activate PI3K indirectly through activation of Ras at the plasma membrane (figure 1.1). 

 

 

Figure 3.1. Simplified diagram of the PI3K/AKT pathway. Inappropriate activation of this 

pathway frequently leads to oncogenesis through deregulated cell-cycle progression, 

metabolism, and survival. Inhibition of AKT by AZD5363 is also shown. 
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Once PI3K has been activated, its primary role is to phosphorylate phosphoinositides in the 

inner leaflet of the plasma membrane, forming phosphatidylinositol-3,4,5-trisphosphate 

(PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). The resulting phosphoinositols 

recruit AKT to the plasma membrane by binding to the Pleckstrin homology domain (PH) of 

AKT with high affinity. However, the presence of both PIP2 and PIP3 is required for maximal 

activation (Nandini, Pradip and Brian, 2017). Once bound at the plasma membrane, AKT is 

activated through phosphorylation of residues Thr308 and Ser473 by phosphoinositide 

dependent kinase 1 (PDK1) and mammalian target of rapamycin complex 2 (mTORC2), 

respectively (Sarbassov et al., 2005; O’Reilly et al., 2006). Therefore, in the absence of 

growth factors, AKT is not recruited to the membrane due to a lack of formation of the 

second messenger PIP3 – and AKT remains inactive in the cytoplasm. Activation of AKT is 

also negatively regulated by the tumour suppressor phosphatase and tensin homolog 

(PTEN), through dephosphorylation of PIP3 into PIP2 (O’Neill, Niederst and Newton, 2013). 

AKT is the main signalling node of the PI3K/AKT pathway as it exerts a wide range of effects 

on the cell through phosphorylation of as many as 100 different substrates (Carracedo and 

Pandolfi, 2008). It is a member of the AGC family of kinases which includes other 

cytoplasmic serine/threonine kinases such as PKA, PKC, and PKG, whose activity is 

regulated by secondary messengers such as cyclic adenosine monophosphate (cAMP). In 

the case of AKT, formation of PIP3 in the plasma membrane serves as the second 

messenger. Additionally, there are three human isoforms of AKT known as AKT1, AKT2, 

and AKT3. Despite each isoform being encoded by a separate gene, these proteins all 

share a highly conserved structure featuring an N-terminal PH domain, a central kinase 

domain, and a C-terminal regulatory domain. Studies using knockdown models of each 

isoform have identified each as being differentially expressed in various tissues, leading to 

distinct physiological effects in vivo (Dummler and Hemmings, 2007). For example, AKT1 

is expressed ubiquitously whilst AKT2 is highly expressed in adipose, liver, and skeletal 

muscle tissues, and AKT3 is abundantly expressed in the brain (Yu, Littlewood and Bennett, 

2015). After phosphorylation and activation of AKT it is unclear how downregulation occurs, 

as an AKT-specific phosphatase has yet to be identified. However, exposing cells to 

phosphatase inhibitors results in increased the activity and phosphorylation of AKT, 

suggesting an as yet unknown alternative method of downregulation (Andjelkovic et al., 

1996). 

After activation AKT has many pleiotropic effects through phosphorylation of a wide range 

of substrates. These cellular functions include (but are not limited to): survival, proliferation, 

cell growth, glucose metabolism, and protein translation. 
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1.3.1. Survival 

Signalling downstream of AKT has an important role in apoptosis and cell survival. 

Apoptosis is a process of programmed cell death, in which a series of biochemical events 

lead to changes in morphology and cell death. Such changes include: DNA fragmentation, 

chromatin condensation, and cell shrinkage. However, apoptosis is a fundamental process 

for life; for example, it is fundamental during embryonic development for correct 

organisation of tissues. As a result, apoptosis is a tightly regulated process, and can be 

negatively regulated through PI3K/AKT signalling. AKT functions in a multifactorial anti-

apoptotic manner by directly phosphorylating several apoptotic components such as BAD, 

a member of the BCL2 family. Furthermore, AKT acts to phosphorylate and inactivate the 

pro-death protease caspase-9, as well as the Forkhead transcription factor FKHR to reduce 

transcription of pro-apoptotic proteins such as FAS ligand (Cardone, 1998). AKT can also 

indirectly regulate activity of the tumour suppressor p53 to prevent apoptosis through 

phosphorylating its negative regulator MDM2. This p53-binding protein can be 

phosphorylated by AKT resulting in efficient translocation to the nucleus where it labels p53 

for proteasomal degradation through intrinsic E3 ubiquitin ligase activity. 

1.3.2. Proliferation 

Furthermore, AKT plays a role in cellular proliferation through interactions with complexes 

that affect progress through the cell cycle. For example, components such as cyclin-

dependent kinases (CDKs) and CDK inhibitors (CKIs) are essential for regulation of cell-

cycle machinery. AKT functions to regulate the degradation of cyclin D1, which plays an 

important role in G1/S phase transition. AKT phosphorylates and thereby inactivates 

glycogen synthase kinase-3β (GSK3β), a potent cyclin D1 kinase, to block its kinase activity. 

When cyclin D1 is phosphorylated by GSK3β it is degraded by the proteasome – therefore 

when GSK3β is directly phosphorylated by AKT cyclin D1 is able to accumulate and 

stimulate G1/S phase transition (Diehl et al., 1998). 

1.3.3. Growth 

AKT has also been suggested to play an important role in synthesis of macromolecules and 

cell growth. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that 

regulates protein synthesis, and has become known as the main regulator of cell growth. 

mTOR functions by activating p70 S6 kinase (an enhancer of 5’ polypyrimidine mRNA 

translation) and inhibiting 4EBP1 (an mRNA translation repressor). Phosphorylation of 

eIF4E binding protein 1 (4EBP1) by mTORC1 prevents binding and subsequent inactivation 

of eIF4E by 4EBP1. Therefore, the unbound eIF4E is able to initiate cap-dependent 
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translation through the recruitment of 40S ribosomal subunits to the 5’ end of mRNA. This 

is important as mTOR is an important substrate downstream of AKT, allowing PI3K/AKT 

pathway signalling to influence cell growth (Nave et al., 1999). 

1.4. PI3K/AKT signalling in cancer 

As the signalling from these substrates are vital to survival during stressful conditions, 

PI3K/AKT activity is particularly important in the tumour microenvironment due to 

unfavourable low pH and hypoxic conditions (Datta, Brunet and Greenberg, 1999). In 

cancer, the PI3K/AKT pathway is frequently inappropriately activated through 

overexpression of activating receptors (i.e. EGFR, VEGFR), activating PIK3CA mutations, 

deleterious PTEN mutations, and hyperactivation/overexpression of AKT (Li et al., 2013). 

Activating mutations in this pathway may result in AKT being constitutively switched “ON”, 

and its effects on cell survival and protein synthesis can lead to oncogenesis. Such 

abnormalities in this pathway commonly occur in hormone receptor-positive breast cancers 

(Stemke-Hale et al., 2008). The most common mutation in AKT itself is an E17K substitution 

which leads to its constitutive activation. This particular point mutation accounts for 89% of 

the mutations in this gene (Davies et al., 2015). Similarly, tumour suppressors such as 

phosphatase and tensin homolog (PTEN) may also be inactivated and result in malignancy. 

This is because in the PI3K/AKT pathway, PTEN is a phosphatase responsible for 

dephosphorylating PIP3 to PIP2, thereby decreasing AKT activation. PTEN therefore acts 

as a negative regulator of AKT activation, responsible for maintaining homeostasis of the 

PI3K-Akt-mTOR signalling pathway. Additionally, inositol polyphosphate-4-phosphatase 

type II B (INPP4B) also has a role as a negative regulator as it catalyses hydrolysis of 

phosphates at position 4 of PIP3 and PIP2. The resulting products are therefore unable to 

bind to the PH domain of AKT also leading to reduced activation. Mutations in these 

phosphatases can result in AKT being constitutively active through the lack of a negative 

regulator, and inactivating mutations in these tumour suppressor genes are frequently found 

in breast cancer patients (Stambolic et al., 1998). Additionally, mutations resulting in 

hyperactivity/overexpression of AKT are thought to mediate resistance to radiotherapy and 

chemotherapy, and are also associated with poor prognosis (Cheng et al., 2005).  

Sources of inappropriate signalling of the PI3K/AKT pathway may include somatic activating 

mutations or overexpression of genes encoding key components of the pathway. For 

example, PI3K activity is precisely regulated either directly or indirectly by ligand binding to 

receptor tyrosine kinases (RTKs) such as human epidermal growth factor receptor 2 

(HER2). HER2 has the strongest kinase activity over all other family members, and is 

subsequently found overexpressed in 25-30% of all invasive breast and ovarian cancers, 
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with a generally poor prognosis (Moasser, 2007). Moreover, constitutive kinase activity of 

PI3K is found in 27% of breast cancers, resulting from mutations in a conserved area of the 

gene PIK3CA which encodes the catalytic subunit of PI3K known as p110α (Samuels et al., 

2004). Mutations in PIK3CA can also co-occur with mutations conferring PTEN loss, with 

an observed frequency of 8.7% in breast cancers (Saal et al., 2005). 

As a result of these aberrations which drive malignancy, PI3K pathway inhibitors 

(particularly those targeting AKT) are now widely regarded as a promising focus for 

molecularly targeted cancer therapies, especially for breast cancer (Liu et al., 2009; Zhang 

et al., 2016). In the future, the presence of these aberrations may be used for patient 

stratification to ensure patients receive the appropriate therapeutics specific to their 

particular disease. 

1.5. PI3K/AKT inhibition in breast cancer 

There are currently many novel small molecules in development to target components of 

the PI3K/AKT/mTOR pathway for the treatment of cancer. Many of these molecular targeted 

drug candidates have been discovered through fragment-based screening and structure-

based drug design. This process involves screening large numbers of low molecular weight 

compounds capable of binding to the target of interest with low affinity. Compounds are 

selected from this pool and optimised to bind with high affinity and selectivity, and the 

binding characteristics analysed through techniques such as NMR or X-ray crystallography 

(Kumar, Voet and Zhang, 2012).  

AZD5363 is a potent novel pyrrolopyrimidine derivative ATP-competitive AKT inhibitor 

discovered through this method (see figure 1.2). This compound has been shown to reduce 

cell proliferation in vitro through inhibition of AKT kinase activity (Zhang et al., 2016). 

Furthermore, it also inhibits growth of human tumour xenografts in breast cancer models, 

both as a monotherapy and when given in combination with drugs such as trastuzumab, 

paclitaxel and docetaxel. Isolated enzyme assays have demonstrated that AZD5363 is a 

pan-AKT inhibitor, capable of potently inhibiting human AKT isoforms AKT1, AKT2, and 

AKT3. Furthermore, when tested in an enzyme panel consisting of 75 kinases, significant 

activity (defined as >75% inhibition at 1 µM of the drug) was seen in 15 kinases – 14 of 

which were other members of the AGC kinase family (Addie et al., 2013). 
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The inhibition of AKT by compounds such as AZD5363 has many significant downstream 

effects.  For example, phosphorylation of FOXO3a is prevented, allowing it to translocate 

into the nucleus and initiate transcription of genes associated with apoptosis. AZD5363 has 

also shown to increase phosphorylation of AKT itself. This is consistent with findings from 

other studies of ATP-competitive AKT inhibitors, as the ATP binding site of the kinase is 

occupied although it is catalytically inactive (Okuzumi et al., 2009). This is thought to be due 

to conformational changes induced by occupation of the ATP binding pocket, preventing 

access of phosphatases to the phosphorylation sites. From a panel of 182 cell lines 41 were 

identified as sensitive to AZD5363, 25 of which were identified to be ‘highly sensitive’ with 

an GI50 of <1 μmol/L. Such cell proliferation assays revealed that cell lines with mutations 

in PIK3CA, PTEN, or HER2 amplification displayed the highest sensitivity (Davies et al., 

2012).  

AZD5363 is currently in Phase II clinical trials to assess antitumour activity in solid tumours 

bearing mutations in Akt1, PIK3CA, or PTEN (study NCT01226316). Data from a previous 

phase I study showed that AZD5363 was well tolerated in patients with solid tumours 

following both intermittent and continuous dosing schedules, although intermittent dosing 

was generally more tolerable. The most frequently observed adverse events included 

diarrhoea, hyperglycaemia, and nausea – however, preliminary evidence of antitumour 

effects were also observed (Tamura et al., 2016). Hyperglycaemia is a common side effect 

of inhibition of the PI3K/AKT/mTOR pathway due to its role in insulin function and glycogen 

synthesis – providing proof of principle for PI3K/AKT pathway inhibition (Crouthamel et al., 

Kinase IC50 (nM) 

AKT1 3 

p70S6K 6 

PKA 7 

AKT2 8 

AKT3 8 

ROCK2 60 

ROCK1 470 

Figure 1.2. Chemical structure of AZD5363, with potency and selectivity against AGC kinase family 
members, including AKT isoforms. Table adapted form Addie et al. 2013, chemical structure from Davies et al. 

2012. 
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2009). Maximum tolerated dose (MTD) observed in one Western study was 320 mg for a 

continuous schedule, and 480 mg for an intermittent schedule (4 days on, 3 days off). This 

study showed promising activity of AZD5363 as a single agent, leading to support in further 

combined studies (Banerji et al., 2015). Furthermore, pre-clinical studies have 

demonstrated a synergistic effect with the addition of AZD8931, an inhibitor of 

EGFR/HER2/HER3 signalling. This causes combined inhibition of the PI3K and ERK 

pathways, resulting in increased cell death in vitro and significant tumour regression in vivo. 

These findings also revealed that HER2-amplified cell lines were particularly sensitive to 

these synergistic effects (Crafter et al., 2015). Similarly, low PTEN expression is correlated 

with poor response to trastuzumab, leading to the possibility of using AKT inhibitors to treat 

this kind of disease (Nagata et al., 2004). 

Two other AKT inhibitors are also under evaluation in clinical trials; GDC0068 and MK-2206. 

GDC0068 (also known as ipatasertib) is another ATP-competitive inhibitor of all three AKT 

isoforms. It has been shown to be effective as a single agent in xenograft models with 

aberrations in the PI3K/AKT pathway(Lin et al., 2013), as well as inducing tumour 

regression when combined with docetaxel (Lin et al., 2013). MK-2206 is a highly potent and 

selective AKT inhibitor due to its allosteric mechanism of action. This small molecule binds 

to AKT in a pocket formed between the kinase domain and the PH domain, thereby 

maintaining the kinase in its inactive conformation. It has demonstrated synergy when 

paired with cytotoxic chemotherapies such as doxorubicin, erlotinib and lapatinib, 

suggesting a viable clinical use for this compound (Hirai et al., 2010). 

In addition to AKT inhibitors, the inhibitors of this pathway that are currently in the most 

advanced stages of development are inhibitors of PI3K. For example, idelalisib is a selective 

PI3Kδ inhibitor and the first to be approved by the US Food and Drug Administration (FDA) 

and European Medicines Agency (EMA) for treatment of haematological malignancies such 

as chronic lymphocytic leukaemia (Yang et al., 2015). There are also several inhibitors still 

in development such as buparlisib and alpelisib, which have already demonstrated 

reasonable efficacy in preclinical models (Maira et al., 2012; Fritsch et al., 2014). 

1.6. Resistance to cancer therapies 

Despite there being many benefits to the development of novel molecular targeted therapies 

such as AZD5363, a significant downside of their use is that many tumours readily become 

resistant to them. The therapeutic efficacy of these drugs is therefore reduced, as they are 

generally limited to use in patients with mutations in these specific targets and the effects 

are limited to the short term due to resistance (Spaans and Goss, 2014). For these reasons, 
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molecular targeted therapies are generally most effective when paired with at least one 

other targeted therapy, or with more traditional broad-spectrum cytotoxic chemotherapy 

drugs. Furthermore, resistance to these agents is manifested in two different ways: intrinsic 

and acquired resistance. Cancer cells that are intrinsically resistant to certain therapies 

have an innate characteristic at the time of diagnosis meaning they do not initially respond 

to the drug. On the other hand, most molecular targeted therapies are often rendered 

ineffective through acquired resistance, despite an initial response in the patient to the drug. 

There are many mechanisms that cause drug resistance – these include: drug efflux, 

modification of the drug target, activation of signals up- or downstream of the target, altered 

drug metabolism, and bypass of the drug target. The degree of heterogeneity within tumours 

has also become an increasingly important topic, as it has been proposed that acquired 

resistance may arise through positive selection of small populations of resistant cells 

present in the original tumour as a result of drug therapy (Swanton, 2012). 

1.6.1. Drug efflux 

Promotion of efflux of drugs from the cell through membrane transporter proteins has also 

been linked to resistance to common chemotherapeutic agents. Three members of the ATP-

binding cassette (ABC) family of membrane transporters have been extensively studied in 

the context of multi-drug resistance (MDR): multi-drug resistance protein 1 (MDR1), MDR-

associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). All three 

transporters promote the efflux of frequently used classes of chemotherapeutic agents such 

as taxanes, topoisomerase inhibitors, and antimetabolites. For example, MDR1 is 

abundantly expressed in excretory tissues such as the colon and small intestine, and has 

been found to cause both acquired and intrinsic resistance in tumours due to 

overexpression of the transporter and subsequent increase in efflux of chemotherapeutic 

agents (Thomas and Coley, 2003). 

1.6.2. Modification of drug targets 

Firstly, genes encoding specific drug targets can become mutated, leading to changes in 

the protein product. Kinases are often responsible for oncogenesis, and mutations in these 

enzymes can limit the ability of the drug to inhibit the kinase, otherwise known as a 

‘gatekeeper’ mutation. For example, approximately 50% of non-small cell lung cancer 

patients with activating epidermal growth factor receptor (EGFR) mutations treated with 

EGFR inhibitors (such as gefitinib and erlotinib) display a T790M mutation in EGFR. This 

gatekeeper mutation is responsible for acquired resistance to these agents, and can render 

these therapies ineffective within just one year of treatment (Yu et al., 2013). 
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1.6.3. Drug target bypass 

The process of oncogenic bypass is of particular importance due to its role in acquired 

resistance to new molecularly targeted drugs, particularly the well-known example of the 

mutant BRAF inhibitor vemurafenib. Oncogenic bypass occurs when other kinases distinct 

from the drug target can become activated (either through altered feedback pathways or 

selectivity of cells with appropriate genetic mutations) despite the drug still being effective 

in inhibiting the target kinase, creating a redundancy in the signalling pathway. Cancer 

patients (particularly those with melanoma) with an activating V600E mutation in BRAF 

have initially high response rates when treated with the BRAFV600E inhibitor vemurafenib – 

however, resistance can rapidly develop as a result of oncogenic bypass. Several 

mechanisms have been identified, including compensatory activation of other RAF isoforms 

and positive selection of subpopulations of tumour cells with mutations in other components 

of the pathway such as KRAS and NRAS (Nazarian et al., 2010a). Additionally, upregulation 

of the PI3K/AKT pathway through mutations was observed in 22% of cases with acquired 

resistance to vemurafenib (Shi et al., 2014). 
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1.6.4. Resistance to PI3K/AKT pathway inhibitors 

Despite this, there is still very little known about resistance to AKT inhibitors. One study has 

suggested that breast cancer cell lines with acquired resistance to the small-molecule 

allosteric AKT inhibitor MK-2206 have significantly elevated levels of Akt3. This is supported 

by evidence from siRNA knockdown of AKT3 which restores sensitivity to MK2206 in 

resistant cell lines, whereas knockdown of AKT1 or AKT2 has no effect on sensitivity 

(Stottrup, Tsang and Chin, 2016). However, further investigations into potential resistance 

mechanisms for these drugs remains an important issue in order to determine whether 

allosteric or ATP-competitive inhibition results in similar resistance mechanisms.  

It has also been reported that some cell lines have intrinsic resistance to AKT inhibition, 

such as the E17K mutation in the lipid-binding PH domain of AKT. This results in decreased 

sensitivity to allosteric inhibition relative to wild-type AKT (Carpten et al., 2007). 

Furthermore, investigation of the role of SGK1 in intrinsic resistance has also been carried 

out. SGK1 is a serine/threonine kinase which shares approximately 50% kinase domain 

homology with AKT, and is activated in a similar manner through phosphorylation by PDK1 

and mTORC2. SGK1 also has the ability to regulate many of the same substrates as AKT 

such as GSK3β and FOXO3a (Kobayashi and Cohen, 1999; Brunet et al., 2001), leading to 

Figure 4.3. Schematic diagram of three examples of drug resistance mechanisms. 

Many drug resistance mechanisms have been identified; this diagram shows three 

simplified resistance mechanisms as described in section 1.X.X to 1.X.X.  
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the hypothesis that SGK1 may override AKT activity in intrinsically resistant cell lines. 

Several breast cancer cell lines intrinsically resistant to inhibition by AZD5363 have been 

found to express high levels of SGK1, whereas AKT inhibitor-sensitive cell lines express 

low to undetectable SGK1 levels. Therefore, this suggests that SGK1 may be a driver of 

proliferation and survival in these resistant cells (Sommer et al., 2013). 

As more AKT inhibitors are being developed and entering preclinical and clinical studies, it 

is important to examine how acquired resistance mechanisms may arise in order to develop 

the most appropriate drug combinations for use in patients. Acquired resistance to novel 

molecular targeted drugs represents a significant barrier to the development of these drugs 

and their use in the clinic. Therefore, analysing resistance mechanisms to AKT inhibitors in 

breast cancer, a disease in which these drugs are currently being clinically evaluated, has 

the potential to affect therapeutic strategies to overcome this issue and directly impact 

patients. 

1.7. Project aims and objectives 

Overall, deregulation of the PI3K/AKT is a key driver of breast cancer and the development 

of inhibitors of this pathway such as AZD5363 is promising for the future of cancer therapy. 

However, acquired resistance is a major obstacle to the efficacy of these kinds of targeted 

drugs. Acquired resistance has already been generated in vitro to CCT129254 (a precursor 

of AZD5363(McHardy et al., 2010)) in ovarian cancer models. Therefore, the aim of this 

project was to develop AZD5363-resistant breast cancer models and test the hypothesis 

that we will see the same resistance mechanism in both the ovarian and breast cancer 

models. 

Objectives: 

1. Characterise breast cancer cell lines sensitive to the experimental AKT inhibitor 

AZD5363 

2. Generate AZD5363-resistant breast cancer cell line models 

3. Quantify resistance in these breast cancer models 

4. Investigate resistance mechanisms through examination of cross-resistance to 

other AKT inhibitors and changes in signalling 

5. Develop a high-throughput cell-based ELISA method of investigating PI3K/AKT 

pathway signalling as an alternative to Western blotting 
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2.0 Materials and Methods 

2.1. Cell lines and culture 

Human breast cancer cell lines MCF-7 (American Type Culture Collection [ATCC]) and 

T47D (Sigma Aldrich) were grown in Dulbecco's Modified Eagle's medium (DMEM; Sigma 

Aldrich) supplemented with 10% foetal bovine serum (FBS; Sigma Aldrich). ZR-75-1 (Sigma 

Aldrich) was grown in RPMI-1640 medium (Sigma Aldrich) supplemented with 10% FBS. 

Cell lines were incubated in a humidified incubator at 37°C and 5% CO2. Cells were grown 

in T75 tissue culture flasks (Sarstedt), and passaging was performed when cell lines were 

approximately 70% confluent. Cells were passaged for no longer than three months to 

minimise phenotypic changes. During passage, cells were washed with phosphate-buffered 

saline (PBS) and detached with trypsin-EDTA (Sigma Aldrich). Cell lines were resuspended 

in the appropriate media (as previous) and split at an appropriate ratio (e.g. 1:10) to ensure 

logarithmic phase growth for experimental procedures. 

2.2. Characterisation of cell line growth 

2.2.1. Cell seeding density assays 

Cells were seeded in seven 96-well plates at cell densities varying from 800 cells/well to 

12,800 cells/well in 200 μL of the appropriate culture media. After each 24-hour period, one 

plate was fixed with 70 μL 10% (w/v) trichloroacetic acid (TCA) and incubated at room 

temperature for 30 minutes, before being washed 5 times with distilled water and dried 

overnight at 37°C. 70 μL 0.4% Sulforhodamine B (SRB) in 1% acetic acid was added per 

well and incubated as above, then washed 5 times with 1% acetic acid. After drying 

overnight, plates were solubilised with 100 μL 10 mM Tris per well and placed on a shaker 

at 200 RPM for 10 minutes, and the OD read at 490 nm in a Victor X4 Multilabel Plate 

Reader (PerkinElmer Life Sciences).  

2.2.2. GI50 determination 

GI50 concentrations were determined by sulforhodamine B (SRB) growth assays. The GI50 

is defined as the concentration of drug required for half-maximal inhibition of cell growth. 

Cells were seeded in 96-well plates at the optimum seeding density for each cell line 

(section 2.1.X.). 40 μL of drug was added after 48 hrs incubation at concentrations from 10 

μM to 0.08 μM AZD5363. 96 hrs after addition of drug, plates were fixed and stained as 

above, and the OD read at 490nm. GI50 values were determined using GraphPad Prism 6 

(GraphPad Software Inc.). 
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2.2.3. Propidium iodide staining and flow cytometry 

T47D cells were exposed to either 0.1 μM or 0.4 μM AZD5363 for 48 hours in T75 tissue 

culture flasks. After 48 hours treatment, cells were trypsinised and centrifuged at 1200 RPM 

for 5 minutes. After aspiration of the supernatant, the pellet was resuspended in 5 mL PBS 

and centrifuged again as previous. The resulting pellet was suspended in 500 µL PBS and 

fixed in ice-cold 70% ethanol whilst vortexing. Fixed cells were centrifuged as previous, and 

resuspended in 1 mL 20 µg/mL propidium iodide and 50 µL 100 µg/mL RNase A. Cells were 

then incubated for 30 minutes in the dark at room temperature. Cells were analysed using 

a FACSJazz™ (BD Biosciences) flow cytometer, recording 20,000 events at excitation 

wavelength 488 nm and measurement of red fluorescence at 542 nm. 

2.3. Generation of AZD5363-resistant sub-clones 

Clonal populations of MCF-7 and T47D human breast cancer cell lines were obtained 

through limiting dilution of cells in a 96-well format at a concentration of 0.5 cells per well. 

After 7 days, AZD5363 was added at concentrations of 2 μM and 10 μM to MCF-7 and 

T47D, and 0.1 μM, 0.25 μM and 0.5 μM to ZR-75-1. Wells were monitored for the growth of 

clonal populations, and media with drug was replaced weekly. Once clones were approx. 

50% confluent, cells were washed with sterile PBS and detached with trypsin, then 

transferred to a larger culture volume. The expansion process involved transfer from the 

Figure 2.1 – Flow diagram describing protocol of generating AZD5363-resistant 

clones. Dotted lines indicate optional steps taken if cells form dense clumps (as with 

ZR-75-1), to prevent decreased growth due to contact inhibition.  
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96-well format to 24-well, then 6-well, until there were enough cells present for culture in 

T25 flasks. 

2.4. Cell-based ELISA 

Cell lines were seeded in 96-well plates at a density of 16,000 cells per well, and allowed 

to attach overnight. Cells were then treated with concentrations of AZD5353 ranging from 

X μM to X μM and incubated for 1 hr at 37°C. Media was removed from all wells, and 100 

μL fixing solution (3% paraformaldehyde, 0.25% glutaraldehyde, 0.25% Triton X100) was 

added per well before incubating for 30 min at 37°C. Plates were washed 1x with water/0.1% 

Tween20, and blocked in 5% milk/tris-buffered saline with 1% Tween® 20 (TBST). Plates 

were washed as above and incubated overnight at 4°C with 100 μL primary antibody 

(phospho- or total GSK3β/S6RP)  diluted 1:250 in 5% milk/TBST. Plates were washed 3x 

as above, before being incubated for 1 hr at 37°C in 100 μL of secondary antibody per well, 

diluted 1:1000 in 5% milk/TBST. Plates were washed 3x as above. 200 μL o-

phenylenediamine dihydrochloride (OPD) horseradish peroxidase (HRP) substrate (Sigma 

Life Science) was then added per well, and placed on a shaker for 15 minutes to allow an 

orange product to develop. The reaction was then stopped with the addition of 50 μL 25% 

sulphuric acid. Optical density (OD) was determined using a Victor X4 Multilabel Plate 

Reader (PerkinElmer Life Sciences) at a wavelength of 490 nm. 

2.5. Cell lysis and Western blotting 

2.5.1. Cell lysis 

Cell lines were plated in 10 cm dishes and allowed to adhere for 24-48 hours. T47D and 

MCF-7 were seeded at 1x105 cells/mL, and both parental ZR-75-1 and resistant sub-clones 

were seeded at 2x105 cells/mL. When plates were 60-70% confluent, media was aspirated 

from the dishes and washed twice with ice-cold PBS. 100 μL ice-cold lysis buffer (50 mM 

HEPES pH 7.4, 250 mM NaCl, 0.1% Nonidet-P40, 1 mM DTT, 1 mM EDTA, 1 mM NAF, 10 

mM β-glycerophosphate, 0.1 mM sodium orthovanadate, and Complete™ protease inhibitor 

cocktail [Roche, Switzerland]) was added to plates before being scraped. Lysates were 

transferred to ice-cold microcentrifuge tubes and incubated for 30 minutes. Lysates were 

centrifuged at 14,000 RPM for 10 minutes at 4°C to remove any insoluble material, and 

supernatants transferred to new microcentrifuge tubes. Tubes were kept on ice for 

immediate use, or snap-frozen in dry ice and stored at -80°C. 

2.5.2. BCA protein determination assay 

Bovine serum albumin (BSA) standards were made at 0.1 mg/mL – 1.0 mg/mL to generate 

a standard curve. Lysates were diluted 1:20 in dd H20, and 10 µL of BSA standard and 
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lysate were plated in triplicate in a 96-well plate. 200 µL of copper sulphate/bicinchoninic 

acid (BCA) solution (diluted 1:50) were added to each well and placed on a plate shaker for 

1 minute. Plates were then incubated at 37ºC for 1 hr, and read using a Victor X4 plate 

reader (Perkin Elmer) at 560 nm. 

2.5.3. SDS-PAGE and Western blotting 

Protein concentration of lysates were determined using the bicinchoninic acid (BCA) assay, 

and lysate concentrations were normalised in lysis buffer and 5X sample buffer. Samples 

were denatured by boiling at 95ºC for 5 minutes, prior to loading on a 12% polyacrylamide 

gel for resolution at 150V for 60-90 minutes. Wet transfer was performed on a PVDF 

(polyvinylidene difluoride) membrane (Millipore) using a Mini Trans-Blot® cell apparatus 

(Bio-Rad) for 90 minutes at 100V. Correct protein transfer was examined through Ponceau 

S staining. The PVDF membrane was then blocked in 5% milk in TBST for one hour at room 

temperature, then incubated on a shaker overnight in primary antibody (see table 1 for 

antibodies used) and 5% milk/TBST at 4ºC. Membranes were washed 2x for 10 minutes in 

TBST, then incubated in secondary antibody in 5% milk/TBST for one hour at room 

temperature. Membranes were washed again 4x for 5 minutes in TBST, then developed in 

ECL Western blotting substrate (Pierce) using a G:BOX Chemi XX6 (SynGene). 

Membranes were first probed using phospho-specific antibodies, then stripped and re-

probed using total antibodies. 

 

Primary antibody Supplier Catalogue number Species Dilution

AKT Cell signalling 4691 Rabbit 1:1000

AKT pS473 Cell signalling 4060 Rabbit 1:1000

GSK3β Cell signalling 9832 Mouse 1:1000

GSK3β pS9 Cell signalling 5558 Rabbit 1:1000

4EBP1 Cell signalling 9644 Rabbit 1:4000

4EBP1 pT37/T46 Cell signalling 2855 Rabbit 1:1000

ERK 1/2 Cell signalling 4695 Rabbit 1:1000

ERK1/2 pT202/Y204 Cell signalling 4370 Rabbit 1:1000

p70 S6K Cell signalling 9202 Rabbit 1:1000

p70 S6K pT389 Cell signalling 9205 Rabbit 1:500

S6RP Cell signalling 2217 Rabbit 1:4000

S6RP pS235/236 Cell signalling 2211 Rabbit 1:1000

Tubulin alpha 1B Bio-Rad VPA00172 Rabbit 1:1000

Secondary antibody Supplier Catalogue number Species Dilution

Anti-mouse HRP conjugate Bio-Rad 170-6516 Goat 1:10,000

Anti-rabbit HRP conjugate Bio-Rad 170-6515 Goat 1:10,000

Table 1. List of antibodies used for Western blot and ELISA analysis  
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3.0 Results 

3.1. Characterisation of parental cell lines 

3.1.1. Cell growth characteristics 

Three human breast cancer cell lines were selected for this project; T47D, MCF-7 and ZR-

75-1. These have been previously validated as sensitive to treatment with AZD5363, 

classified as having an GI50 < 3 µmol/L. (B. Davies et al., 2012). There is significant 

correlation between sensitivity to AZD5363 and the presence of activating mutations in 

PIK3CA or mutations resulting in loss of PTEN; additionally, cell lines positive for 

overexpression of HER2 and/or ER are consistently sensitive to the drug. Therefore, the 

cell lines selected for analysis reflect these properties, and are summarised in table 2. In 

addition to having activating mutations in PIK3CA, T47D and MCF-7 have also have 

increased PIK3CA gene copy number, with over four copies per cell. 

 

 

Light microscopy images were obtained to examine the morphology of the parental cell 

lines, as seen in figure X. For example, ZR-75-1 cells are semi-adherent and attach only 

very lightly to the culture vessel. Additionally, it is not abnormal for this cell line to not form 

a confluent monolayer, readily forming large piled clusters of cells growing in many layers. 

On the other hand, T47D and MCF-7 form smooth monolayers with tight cohesive structures 

and strong cell-cell adhesions (Figure 3.1). 

 

 

Cell line Disease type PI3K/AKT pathway aberration Receptor 
expression status 

MCF-7 Breast 
adenocarcinoma 

PIK3CA E545K (exon 9) 
substitution in helical domain; 
high GCN 1 

ER+ PR+ HER2- 

T47D Ductal carcinoma PIK3CA H1047R (exon 20) 
substitution in kinase domain; 
high GCN 1,2 

ER+ PR+ HER2- 

ZR-75-1 Ductal carcinoma PTEN L108R substitution and 
weak expression 3 

ER+ PR+ HER2+ 

Table 2. Human cancer cell lines used and associated PI3K/AKT pathway 

aberrations. Receptor expression status indicates the presence or absence of oestrogen 

receptor (ER), progesterone receptor (PR), and human epidermal growth factor (HER2) 

expression. 

1 G. Wu et al. 2005, 2 L.H. Saal et al. 2005, 3 B. Weigelt et al. 2011 
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Figure 3.1. Brightfield microscopy images of breast cancer cell lines in culture. 

Images of T47D, MCF-7, and ZR-75-1 at x40 magnification (A, C & E) and x100 

magnification (B, D & F). Images taken using Olympus CKX53 microscope. 
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Sulforhodamine B (SRB) assays were to be carried out to determine the half-maximal 

growth inhibitory concentration (GI50) of AZD5363 in these cell lines. However, in order to 

undertake this, seeding density assays were performed. This was to determine the optimal 

concentration of cells to be seeded per well in a 96-well format to ensure logarithmic phase 

growth for the duration of the 96-hour SRB assay, taking into account the doubling times of 

individual cell lines. This ensures that any changes in cell viability are due to the action of 

the drug, and not due to growth arrest from over-confluent cells undergoing contact 

inhibition. To carry out these seeding density assays, seven 96-well plates were seeded for 

each cell line at five different cell densities. One plate was fixed every 24 hours, and stained 

with SRB, a purple dye that binds to negatively charged amino acids. When excess SRB 

was washed out and the bound dye solubilised in tris, the intensity of the staining can be 

monitored colourimetrically in the plate reader to obtain a measure of cell viability. The 

subsequent growth curves were examined, the seeding densities that permitted log phase 

growth between 48 and 144 hours (the duration of the assay) were selected. Therefore, 

densities of 6,400 cells per well were selected for cell lines MCF-7 and T47D, and 12,800 

cells per well for ZR-75-1 (fig X).  
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3.1.2. GI50 determinations for T47D, MCF-7 and ZR-75-1 cell lines 

Using the selected seeding densities, SRB assays were performed to determine the GI50 of 

AZD5363 for each cell line. Cells were seeded at their optimum density for the 96-hour 

assay, and were treated with a range of concentrations of AZD5363 48 hours after seeding. 

96 hours post-treatment, plates were fixed and stained to generate cell viability curves 

(Figure 3.2). A summary of the GI50 values generated can be found in table X. This reveals 

that MCF-7 is the least sensitive to AZD5363, with a GI50 of 1.34 µM. This is followed by 

T47D with a GI50 of 0.92 µM, with ZR-75-1 the most sensitive at 0.05 µM. This pattern of 

sensitivity between these three cell lines seen here is notable as it follows the same trend 

as seen in previous preclinical studies (B.R. Davies, 2012).  
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Figure 3.3. Cell viability curves of breast cancer cell lines treated with AZD5363, 

determined by SRB assay as a percentage of untreated controls. Growth curves 

were obtained for cell lines (A) T47D, (B) MCF-7 and (C) ZR-75-1. A summary of GI50 

values can be found in figure X.X. Data are representative of n = 3 independent 

experiments. Data points represent mean ± standard deviation. 
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Cell line 
AZD5363 
GI50 ± SD (μM) 

T47D 0.92 ± 0.39 

MCF-7 1.34 ± 0.22 

ZR-75-1 0.05 ± 0.01 

Figure 3.4. Summary of GI
50

 values for AZD5363 in human breast cancer cell lines 

T47D, MCF-7 and ZR-75-1. Bars in graph A and values in table B represent mean ± 
standard deviation. 

A 

B 

C e ll lin e

G
I 5

0
 (

µ
M

)

T
4
7
D

M
C

F
-7

Z
R

-7
5

0 .0

0 .5

1 .0

1 .5

2 .0



34 
 

Despite these data fitting trends in the literature, it can be seen from figure 3.3 that T47D 

did not have the same response as MCF-7 and ZR-75-1 after AZD5363 treatment. This is 

because both MCF-7 and ZR-75-1 reached close to 0% viability when treated with high 

concentrations of the drug. In contrast, cell viability for T47D remains at approximately 50% 

despite treatment with up to 50 µM AZD5363. This effect was examined further to determine 

if these drug concentrations do indeed kill 50% of the cells, or if instead the growth of these 

cells was arrested after addition of the drug, as this would give the impression that 50% had 

survived relative to the untreated cells. To achieve this, a modified SRB assay was 

performed to analyse the effect of drug treatment on T47D over time. Five 96-well plates 

were seeded, four were treated with AZD5363 after 48 hours and one untreated plate was 

fixed to give ‘zero hours’ of treatment. These plates were analysed by SRB assay and 

plotted in figure 3.5. These data show that treatment of T47D with AZD5363 from 0.013 µM 

to 0.37 µM slows doubling time in a dose-dependent manner. The equation used to 

calculate doubling time is shown below, and a summary of T47D doubling times when 

exposed to various concentrations of AZD5363 can be found in figure 3.5.  

  

𝐷𝑜𝑢𝑏𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =  
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ log (2)

log(𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) − log(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)
 

 

However, when treated with more than 0.37 µM cell growth is arrested, with concentrations 

up to 50 µM all yielding the same effect on cell growth. This is because the absorbance of 

cells at the end of the 96-hour period treated with 50 µM is not significantly higher than that 

of the untreated cells at the start of the assay. Taken together, this suggests that AZD5363 

has more of an cytostatic effect on T47D, whilst treatment of MCF-7 and ZR-75-1 with this 

drug has more of a cytotoxic effect on these cells. 
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AZD5363 concentration 

(µM) 
Doubling time (hours) 

0.013 26.79 

0.040 28.64 

0.123 44.16 

0.370 59.31 

1.100 83.10 

3.300 89.74 

10.00 80.49 

50.00 89.48 

Figure 3.5. Investigation of growth of T47D cells when treated with a range of 

concentrations of AZD5363 over time. SRB assay plates were fixed every 24 hours after drug 

exposure to analyse the response of T47D to AZD5363 over the period of the 96-hour SRB assay. 

UT = untreated control. Data are representative of n = 2 independent experiments, and data 

points represent mean ± standard deviation. 
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The induction of growth arrest was further investigated through propidium iodide staining 

and flow cytometry to determine the phase of the cell cycle in which growth arrest occurs. 

T47D cells were treated with approximately 1x and 4x the GI50 of AZD5363 (0.1 µM and 0.4 

µM) for 48 hours, then fixed and stained with propidium iodide (PI). This allows 

determination of the percentage of cells in each stage of the cell cycle as PI is a nucleic 

acid stain, and intensity of fluorescence detected by the flow cytometer is proportional to 

the DNA content of each cell. Therefore, cells in G2/M phase with 4N DNA will fluoresce 

twice as brightly as those in G0/G1 phase with 2N DNA. The resulting histogram for 

untreated T47D cells shown in figure 3.6.A is similar to previously reported profiles (Kampa 

et al., 2004). However, the profiles of T47D cells treated with either 0.1 µM or 0.4 µM in 

figures 3.6.B and 3.6.C respectively are not significantly different from that of the untreated. 

This suggests that cell cycle arrest has not been induced at a specific cell cycle transition. 

However, due to dose-dependent decreases in cell growth previously seen in figure 3.5 this 

may suggest that cell growth is arrested in all phases. This therefore requires further 

investigation. 
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Populations Events % of 

total 

All events 20,000 100% 

G0/G1 11,625 58.13% 

S-phase 
  

G2/M 5134 25.67% 

Populations Events % of 

total 

All events 20,000 100% 

G0/G1 12,087 60.44% 

S-phase 
  

G2/M 5115 25.58% 

Populations Events % of 

total 

All events 20,000 100% 

G0/G1 12,872 64.36% 

S-phase 
  

G2/M 4985 24.90% 
Figure 3.6. Cell cycle analysis of T47D treated with AZD5363. Cells were either 

untreated (A) or exposed to either 0.1 µM (B) or 0.4 µM (C) for 48 hours. Cells were then 

fixed and stained with propidium iodide and their fluorescence detected by flow cytometry. 

Results are representative of n=1 independent experiment. Y axis represents percentage 

of 20,000 recorded events, X axis represents fluorescence intensity at 542 nm. 

A 

B 

C 
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3.1.3. Baseline signalling of parental cell lines 

Western blotting was carried out to investigate PI3K/AKT signalling in the parental T47D, 

MCF-7 and ZR-75-1 cell lines. Phosphorylated and total AKT levels were investigated, 

along with selected proteins downstream of AKT on the pathway such as GSK3β (which is 

directly phosphorylated by AKT), 4EBP1, S6K, and S6RP. ERK was included as an 

indicator of MAPK pathway signalling (see Figure 1.1). 

Lysates of untreated cells were used for analysis of basal signalling. Across the three cell 

lines, the levels of both total AKT (t-AKT) and AKT phosphorylated at serine 473 (pS473 

AKT) remain consistent. Total GSK3β is also consistent, however phosphorylation appears 

to be higher in T47D and ZR-75-1 compared to MCF-7. For 4EBP1, levels of 

phosphorylation were low in T47D and MCF-7 relative to ZR-75-1 which was notably higher. 

Additionally, MCF-7 appears to have much higher levels of S6RP compared to T47D and 

ZR-75-1. Although not a member of the PI3K/AKT pathway, ERK signalling was 

investigated to the abundance in cross-talk between these pathways. This revealed that 

there was little phosphorylated ERK present in ZR-75-1, whereas levels of total and 

phosphorylated ERK remain consistent across T47D and MCF-7. Tubulin was included as 

a loading control, and levels are consistent across all three cell lines as the same protein 

concentration was loaded for all samples. 
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Figure 3.7. Western blotting of parental cell lines to assess baseline signalling. 

Western blotting protocol was used as described in section X.X. to investigate presence 

of various components of the PI3K/AKT pathway. Blots were probed using phospho-

specific antibodies, then stripped and re-probed for the total signal. Tubulin was used as 

a loading control. Results are representative of n=2 independent experiments.  
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3.2. Generation and characterisation of AZD5363-resistant clones 

Resistant clones were generated as in materials and methods section X.X. Parental cells 

underwent limiting dilution to be plated at 0.5 cells per well in a 96-well format. This was to 

reduce the probability of not obtaining clonal populations by preventing plating more than 

one cell per well. After incubation for one week to allow for adherence and several cell 

divisions, AZD5363 was added at concentrations of 2x, 4x and 10x the GI50. Fresh media 

and drug was added weekly to ensure adequate supply of nutrients and continual exposure 

to the drug. After several weeks of culturing clonal populations of cells in 96-well plates, 

cells reached 50% confluency and were trypsinised and transferred to 24-well plates. This 

process was repeated for transfer into 6-well plates and T25 tissue culture flasks as the cell 

populations grew, as described in figure 2.1. Two clones from the ZR-75-1 cell line that had 

been cultured in 2x the GI50 (0.1 µM AZD5363) were successfully expanded into tissue 

culture flasks as seen in figure 3.8. The two ZR-75-1 clones were named B9 and D2 for 

their location in the 96-well format. Small populations cultured in 4x and 10x eventually 

underwent growth arrest and were therefore not taken forward. Additionally, T47D and 

MCF-7 cells also did not continue to grow in any AZD5363 concentration once transferred 

to 24-well plates, and were also not taken forward. 

 

 

Figure 2.1. Flow diagram describing protocol of generating AZD5363-resistant 

clones. Dotted lines indicate optional steps taken if cells form dense clumps (as with 

ZR-75-1), to prevent decreased growth due to contact inhibition.  
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3.2.1. Determination of resistance factor in sub-clones 

The ZR-75-1 sub-clones B9 and D2 were then investigated by SRB assay to determine the 

GI50 of AZD5363 in these newly-generated cells. The GI50 values obtained were then used 

to quantify the level of observed resistance. The ratio of resistant to parental GI50 was 

calculated to give the resistance factor i.e. the fold-resistance relative to the parental.  

 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑅𝐹) =  
𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝐺𝐼50

𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙 𝐺𝐼50
 

The growth curves obtained are shown in figure 3.9. The shift of growth curves to the right 

shows resistance was generated; clones B9 and D2 were shown to have resistance factors 

of 7.3 and 5.8-fold, respectively. 
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3.2.2. Determination of AKT inhibitor cross-resistance in sub-clones 

To investigate cross-resistance to other AKT inhibitors AZD5363-resistant sub-clones were 

treated with two other experimental AKT inhibitors, GDC0068 and MK-2206, which are 

currently under evaluation in clinical trials. GDC0068 shares the same mechanism of action 

as AZD5363 in that they are both ATP-competitive, whilst MK-2206 functions allosterically. 

Sensitivity was investigated via SRB assay, and cells were treated with a range of 

concentrations of each drug. Dose-response curves were generated (Figure 3.10) for 

parental ZR-75-1 as well as clones B9 and D2, with both GDC0068 and MK-2206.  

These assays revealed that parental ZR-75-1 is also sensitive to inhibition by both 

GDC0068 and MK-2206. GDC0068 had a GI50 in the parental of 0.114 µM, whereas these 

cells were notably more sensitive to inhibition by MK-2206 with a GI50 of 0.011 µM. 

Interestingly, the AZD5363-resistant sub-clones showed no significant cross-resistance to 

either GDC0068 or MK-2206 (figure 3.11). 
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Figure 3.10. SRB assays of resistant clones treated with A) MK-2206 and B) GDC0068. 

Resistant clones B9 and D2 were treated with different concentrations of GDC0068 and MK-2206 

to generate dose-response curves and GI50 values (summarised in table). Data are representative 

of n = 3 independent experiments, and data points represent mean ± SD. Table gives IC50 values 

represented as mean ± SD, and resistance factor (RF) as the ratio of resistant GI50 to parental 

GI50. 
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Figure 3.11. GI
50

 values for AKT inhibitors in the ZR-75-1 parental and resistant clones B9 

and D2. Summary graph (A) and table (B) of GI
50

 values for AKT inhibitors tested and resistance 

factor obtained. Data represent n = 3 independent experiments. Student’s t-test * p <0.05. 

  



46 
 

3.2.3. Baseline signalling in resistant sub-clones 

As AZD5363 acts to inhibit AKT, the main signalling node of the PI3K/AKT pathway, it was 

therefore important to examine the markers of AKT pathway signalling in the resistant sub-

clones. Figure 3.12 shows analysis of AKT pathway components by Western blot in the 

parental line and resistant sub-clones with no drug treatment i.e. baseline signalling. 

Notably, this shows that there was no significant difference in PI3K/AKT signalling between 

the parental ZR-75-1 and sub-clones B9 and D2. For example, both AKT and GSK3β 

signalling remains consistent across the three cell types. Additionally, S6RP signalling 

downstream of mTORC1 is maintained from the parental to the sub-clones as levels of 

phosphorylated and total S6RP also remains consistent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Western blotting of untreated parental ZR-75-1 cell lines and AZD5363-

resistant sub-clones B9 and D2 to assess baseline signalling. Western blotting 

protocol was used to investigate PI3K/AKT pathway signalling. Blots were probed using 

phospho-specific antibodies as shown above, then stripped and re-probed for the total 

signal. Tubulin was used as a loading control. Par = parental ZR-75-1. Results are 

representative of n=2 independent experiments.  
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3.2.4. Response of resistant sub-clones to AZD5363 

PI3K/AKT signalling of the resistant sub-clones versus the parental ZR-75-1 cell line in 

response to AZD5363 exposure was initially investigated through Western blotting. Cells 

were either untreated or treated with 50 nM or 150 nM of AZD5363 (1x and 3x parental GI50, 

respectively) for four hours before being lysed and separated via SDS-PAGE and 

subsequently transferred to a polyvinylidene fluoride (PVDF) membrane and probed with 

antibodies specific to the selected targets. 

Results of this dose-response blot in Figure 3.13 show increased AKT serine 473 

phosphorylation upon AZD5363 – a well described phenomenon in response to ATP-

competitive inhibitors, caused by hyperphosphorylation of the protein as a result of 

conformational changes induced by occupation of the ATP binding pocket (Chan et al., 

2011). However, there is no significant change in the phosphorylation of GSK3β (a direct 

substrate of AKT) for sub-clones B9 and D2 or in the parental.  Phosphorylation of 4EBP1 

decreased with increasing drug concentration in both ZR-75-1 parental and B9, whereas 

phospho-4EBP1 levels in D2 remained low throughout. Decreased phospho-4EBP1 signal 

was also associated with shifting down of total 4EBP1 bands due to the lack of phosphate 

groups and the subsequent decrease in molecular weight. Furthermore, there was no 

significant difference in phosphorylation of S6K in the parental or the sub-clones in response 

to treatment with AZD5363. 
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3.1.5. Optimisation of cell-based ELISA 

The possibility of using a cell-based ELISA as an alternative to Western blotting 

investigated. This technique can be likened to immunohistochemistry (IHC) in a 96-well 

format with respect to analysis of proteins in tissues, but generating quantitative data 

instead of visualisation. This therefore allows for statistical analysis, in contrast to the 

qualitative data generated from Western blots and IHC staining. The baseline signalling of 

the untreated parental ZR-75-1 cell line was first investigated for its GSK3β (Figure 3.14) 

and S6RP (Figure 3.15) signalling. This was to establish assays for targets directly 

downstream of both mTOR and AKT, respectively. Antibodies for both total and 

phosphorylated proteins were used to assess the activation one step down the pathway 

(GSK3β) as well as further downstream (S6RP). Furthermore, two different ELISA 

substrates were investigated; a time-resolved fluorometric Europium substrate and a 

colourimetric o-phenylenediamine dihydrochloride (OPD) substrate to detect horseradish 

peroxidase (HRP). Similar assays have been developed for targets such as retinoblastoma 

protein (pRb) but this is a novel method for detection of S6RP phosphorylation (Barrie et 

al., 2003). A matrix of various concentrations of primary and secondary antibodies was used 

in order to determine the optimal antibody concentrations for each assay.  

The Europium chelate immunoassay resulted in significantly higher signal-to-noise ratios in 

comparison to the OPD substrate. For example, a 1:250 pGSK3β antibody dilution yields a 

signal-to-noise ratio of 6.3 for the Europium chelate and 1.8 for OPD. This is thought to be 

because the Europium chelate assay uses time-resolved fluorescence, whereby there is a 

relatively long fluorescence decay time and large Stokes’ shift (difference in excitation and 

emission wavelengths). This therefore reduces the influence of any background 

autoflourescence.  

From these optimisation assays, the Europium chelate substrate was selected for further 

use due to the increased signal-to-noise ratio. Additionally, the primary antibody 

concentrations selected (for both total and phospho-specific antibodies) were 1:1000 for 

S6RP and 1:250 for GSK3β. A concentration of 1:3333 (as recommended by the 

manufacturer) was selected for the anti-rabbit Europium chelate secondary antibody. 
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  Signal-to-noise 
ratio 

Primary 
antibody 
concentration 

Secondary 
antibody 
concentration 

Phospho Total 

1:250 1:3333 6.3 3.9 

1:1000 3.6 2.1 

1:250 1:10,000 8.6 4.4 

1:1000 5.1 2.1 

  
Signal-to-noise 
ratio 

Primary 
antibody 
concentration 

Secondary 
antibody 
concentration 

Phospho Total 

1:250 
1:1000 

1.8 0.7 

1:1000 1.7 0.6 

1:250 
1:2000 

1.7 0.7 

1:1000 2.4 0.5 

Figure 3.14. Optimisation of GSK3β cell-based ELISA using Europium and OPD 

substrates. Untreated parental ZR-75-1 cells were analysed for their total and phosphorylated 

GSK3β signalling through A) Europium chelate and B) OPD substrate assays. Summaries of 

signal-to-noise ratios can be found in C) Various concentrations of primary and secondary 

antibodies were investigated as a matrix to determine optimal concentrations. X axes shows 

concentrations of primary antibody/secondary antibody. Data are representative of n=2 

independent experiments, and bars represent mean ± SD. 
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3.3.6. Investigation of PI3K/AKT pathway signalling of resistant sub-

clones by cell-based ELISA 

After assay optimisation, cell-based ELISAs were carried out on parental ZR-75-1 and sub-

clones B9 and D2. Cells were treated with a range of concentrations of AZD5363 to assess 

the effect on levels of total and phosphorylated S6RP, and to determine if there are any 

observable differences in the signals in response to AZD5363 treatment.  

Results of cell-based ELISAs probing for S6RP are shown in figure 3.16. These data show 

a clear decrease in phosphorylation of S6RP in a dose-dependent manner upon treatment 

with AZD5363. When treated at the highest drug concentration (5 µM) levels of 

phosphorylated S6RP are not notably higher than the background signal. In addition, levels 

of total S6RP remain relatively consistent throughout the dosing schedule in the parental 

as well as the two sub-clones. However, the response of the two sub-clones is very similar 

to that of the parental cell line, as phosphorylation of S6RP decreases at the highest drug 

concentrations instead of being maintained. 
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Figure 3.16. Cell-based ELISA of parental ZR-75-1 and sub-clones B9 and D2. Cells were 

plated in a 96-well format and treated with 0.01 µM to 5 µM AZD5363 for 1 hr.  Total and 

phosphorylated S6RP levels were determined using time-resolved fluorescence from europium-

labelled antibodies. UT = untreated control. Data are representative of n=2 independent 

experiments, and bars represent mean ± SD. 
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4.0 Discussion 

4.1. Introduction 

In this research project, the aims were to develop breast cancer sub-clones resistant to the 

experimental AKT inhibitor AZD5363 and investigate the cellular mechanisms that cause 

resistance. AZD5363-resistant ovarian carcinoma cell line models have already been 

established in vitro in our laboratory (Akan, Jakubowski, Garrett; unpublished). Therefore, 

our aim was to determine whether the resistance mechanisms are the same in breast 

cancer; another disease type in which this inhibitor is being clinically evaluated. Despite 

there being several AKT inhibitors in clinical trials, little has been done to investigate the 

potential mechanisms of resistance that may emerge in vivo. This study therefore aims to 

determine the resistance mechanisms to AZD5363 in order to inform potential drug 

combinations in an effort to limit the acquisition of resistance. 

4.2. Characterisation of sensitive breast cancer cell lines 

From initial preclinical studies into AZD5363 treatment of human cancer cell lines, those 

derived from breast cancers were seen to be the most sensitive. For example, in one study 

64% of breast cancer cell lines were found to be inhibited with a GI50 less than 1 µmol/L and 

were therefore deemed to be sensitive. On the other hand, cell lines derived from other 

tissue types such as endometrial, gastric, and prostate cancers showed response rates of 

just 24% to 33%, and bladder cancer cell lines were deemed to be resistant (GI50 more than 

3 µM). There additionally was an apparent correlation between breast cancer cell lines 

carrying PI3K/AKT pathway aberrations (such as activating PIK3CA mutations or loss of 

PTEN activity) and AZD5363 sensitivity, as 76% of highly sensitive cell lines carried at least 

one of these defects (Davies et al., 2012). 

The three breast cancer cell lines initially used in this project (T47D, MCF-7 and ZR-75-1) 

have all been classified as sensitive to AZD5363; particularly T47D and ZR-75-1, which 

were both determined to have GI50 concentrations of less than 1 µM and were therefore 

deemed highly sensitive. In this project, the three selected cell lines were found to have 

AZD5363 GI50 concentrations of 0.92 µM, 1.34 µM and 0.05 µM for T47D, MCF-7 and ZR-

75-1 respectively. GI50 concentrations were determined by 96-hour sulforhodamine B (SRB) 

assay, and these values concur with previous characterisation studies which found the ZR-

75-1 cell line was most sensitive to AZD5363 treatment, followed by T47D and MCF-7 (Li 

et al., 2013). Additionally, the presence of PI3K/AKT pathway aberrations and hormone 

receptor (HR) expression in these cell lines also correlates to sensitivity to AKT inhibition. 

For example, mutations in PIK3CA, the catalytic subunit of PI3K, appear in both T47D and 

MCF-7. An E545K substitution in the PI3K helical domain appears in T47D, whilst MCF-7 
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carries an H1047R substitution in the kinase domain. Conversely, ZR-75-1 expresses wild-

type PIK3CA but does have an L108R substitution mutation in phosphatase and tensin 

homolog (PTEN) leading to weak expression of this protein (Weigelt, Warne and Downward, 

2011). Although HER2 is not amplified in this cell line, it has been found to express 

intermediate levels of this receptor (Ithimakin et al., 2013) – as HER2 expression correlates 

to high levels of sensitivity to AZD5363, this may also contribute to the highly sensitive 

nature of this cell line. Furthermore, all three selected cell lines have been found to be 

positive for both oestrogen receptor and progesterone receptor expression. T47D and MCF-

7 are therefore of the luminal A subgroup, characterised by oestrogen and progesterone 

receptor expression with a concurrent lack of HER2 expression. 

Upon GI50 determination assays, it became apparent that T47D did not respond in the same 

way to AZD5363 as MCF-7 and ZR-75-1. This is because in these cell viability assays, 

viability did not reach 0% even at the very highest doses of AZD5363. This finding was 

explored further, as we wanted to know if this was due to induction of cell growth arrest. To 

achieve this multiple identical SRB plates were produced with one to be fixed every 24 

hours, to obtain viability data at multiple timepoints and determine at what point this arrest 

occurs. This experiment revealed that treatment of T47D with AZD5363 concentrations 

≥0.37 µM induced growth arrest, regardless of the concentration. Similarly, concentrations 

<0.37 µM slowed growth in a dose-dependent manner, although growth does not stop 

completely. Propidium iodide (PI) staining and flow cytometry was performed with T47D 

cells treated with AZD5363 to determine the growth phase in which cytostatic arrest occurs. 

PI binds to nucleic acids and fluorescence is detected by the flow cytometer; the intensity 

of the fluorescence is proportional to the nucleic acid content. For example, cells in G2/M 

phase with 4N DNA will have twice the fluorescence intensity compared to those in G0/G1 

phase with 2N DNA. However, there was no significant difference in the percentage of cells 

in each phase in the treated cells relative to the untreated, despite there being a clear 

cytostatic effect as seen in figure 3.5. Therefore, it is not likely that growth is being arrested 

at a single cell cycle checkpoint; if this was the case, there would be a clear accumulation 

of cells in one population on the histogram. Instead, we hypothesise that T47D cells are 

arrested in all phases of growth when treated with high concentrations of AZD5363. To 

investigate this, 5-bromo-2’-deoxyuridine (BrdU) incorporation assays could be used to 

determine if cell proliferation and flux through the cell cycle are still taking place. This assay 

measures incorporation of BrdU, a synthetic nucleoside analogue of thymidine, into the 

DNA. Levels of BrdU can then be detected through fluorescently labelled anti-BrdU 

antibodies by flow cytometry, to measure DNA synthesis and cell proliferation (Walton et 

al., 2010). If cells have arrested in all phases, incorporation of BrdU should not occur as 
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DNA synthesis will not take place. Additionally, to ascertain whether AZD5363 behaves in 

a more pro-apoptotic manner in MCF-7 and ZR-75-1, Western blots could be carried out to 

detect levels of apoptotic markers such as cleaved caspase-3 and cleaved PARP. However, 

these different cellular responses to the drug are consistent with preclinical xenograft 

studies, in that for some cell lines treatment is only sufficient to cause growth inhibition while 

in others it can cause tumour regression (Davies et al., 2012). 

4.3. Generation of resistant cell lines 

The development and characterisation of drug-resistant cancer cell lines is an important 

step towards identifying the specific resistance mechanisms acquired by patients in the 

clinic. There is some scepticism over the use of cell line models to investigate resistance 

mechanisms; however, are some cases were in vitro models have been successful in 

predicting acquired resistance in the clinic. For example, three B-RAF (V600E)-positive 

melanoma sub-lines were developed with acquired resistance to the selective B-RAF 

(V600E) inhibitor vemurafenib. Investigation of vemurafenib-resistant patient-derived 

tumours validated findings from resistant sub-lines generated in vitro; this showed that 

increased expression of platelet-derived growth factor receptor beta (PDGFRBβ) is a 

dominant feature of vemurafenib resistance (Nazarian et al., 2010). Therefore, if similar 

models can be established for resistance to other drugs such as AZD5363 then this will be 

of great clinical benefit when predicting resistance mechanisms. 

Laboratory methods used in the development of drug-resistant cell lines are frequently 

overlooked in publications in this field. It is also not uncommon to encounter difficulties in 

developing cell lines with stable resistance in vitro. However, there are several options 

available in choosing strategies to develop resistance - for example, AZD5363-resistant 

A2780 ovarian carcinoma cell line was developed through a dose-escalation method. Cells 

were grown in the presence of 1x the GI50 concentration of CCT129254 (a precursor of 

AZD5363) until they reached 70% confluency; these were then passaged and grown in an 

increased inhibitor concentration. This process was repeated over a six-month period until 

A2780 cells with acquired resistance to CCT129254/AZD5363 were growing in a final 

concentration of 20x the GI50. These cell line models were developed with 5-fold resistance 

to CCT129254 (D. Akan, PhD thesis 2015). 

Pulsed-selection can be used to more closely mimic the conditions patients would 

experience during treatment with the aim of being more clinically relevant. In these clinically 

relevant models, the drug doses are usually consistent with what is given to patients in the 

hospital setting, and cells can be treated in pulses to mimic specific drug regimens. For 

example, one study developed H69 small-cell lung cancer cells resistant to cisplatin and 
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oxaliplatin using drug concentrations between the IC10 and IC40. Additionally, these were 

administered in pulses either over two hours or four days in order to reproduce the 

pharmacokinetics and clearance of these similar platinum-based drugs. This study was 

successful in generating ‘regrowth resistance’ in this cell line, in which the initial period of 

growth arrest upon drug treatment had reduced after multiple pulses (Stordal, Davey and 

Davey, 2006). 

Continuous selection and dose-escalation may also be used to generate resistance, 

producing cell lines being cultured in relatively high drug concentrations that have been 

gradually increased over time. The resulting sub-lines often have high levels of resistance, 

and also exhibit a more stable resistance phenotype than sub-lines generated by other 

methods. Furthermore, these highly resistant cells are more convenient in understanding 

resistance mechanisms as the molecular changes are often far more pronounced. However, 

a balance must be sought as very high levels of resistance may be less clinically relevant. 

One study generated resistance to lapatinib in the inflammatory breast cancer cell line 

SUM149. This was achieved through chronic exposure of cells to 0.25 µM of a laboratory 

grade lapatinib analogue (GW583340). After increases in cell death and decreased cell 

growth, small colonies were cultured until confluence and drug concentration gradually 

increased to 7.5 µM over a period of 3 months. Dosage of the resistant SUM190 cells with 

20 µM lapatinib for 24 hours resulted in only 10-20% increase in cell death, as determined 

by Annexin/PI staining. This is in comparison to approximately 70-80% cell death and 

decrease in proliferation in the parental cell line (Aird et al., 2010). 

Culturing cancer cell lines in the presence or absence of antibiotics is also another 

methodologically important choice when developing resistant cell lines. This is because 

cancer patients are not routinely given antibiotics continually throughout their treatment. 

Therefore, cells that are continuously cultured in antibiotics may not develop clinically 

relevant resistance mechanisms (McDermott et al., 2014), and were subsequently not used 

in routine cell culture in this project. 

The methods employed in this project to develop AZD5363-resistant cells were clonal 

selection combined with chronic exposure to high drug concentration. Cells from breast 

cancer lines T47D, MCF-7 and ZR-75-1 underwent limiting dilution and were plated in a 96-

well format at a concentration of 0.5 cells per well. Alternatively, cells could have been 

diluted to 1 cell per well – however, plating at 0.5 cells per well decreases the probability of 

seeding more than one cell in a well and therefore not obtaining a clonal population. After 

one week of incubation, wells were observed for presence of cell growth, and those 

containing distinct single colonies of cells were selected for drug treatment. Plates of each 
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cell line were treated with either 2x, 4x or 10x the GI50 concentration of AZD5363 in that 

individual cell line. Fresh media and drug was then replaced weekly to ensure nutrient 

availability for growth, and to ensure cells were chronically exposed to the drug due to 

breakdown of the molecules over time. However, this process continued over many weeks 

as cell growth rate was extremely slow. Although this method initially yielded several clonal 

populations from each cell line, just two were successful in expansion to T25 culture flasks 

– clones B9 and D2, both from the ZR-75-1 cell line. Interestingly, MCF-7 and T47D cells 

did not successfully yield resistant sub-clones. The reasoning for this is currently unknown, 

although it may be due to the relative insensitivity of these cell lines to AZD5363. For 

example, as MCF-7 has initially a higher GI50 for AZD5363 (1.34 µM) compared to ZR-75-

1 (0.05 µM), this would require MCF-7 cells to grow in a much higher drug concentration 

which could possibly bring about off-target effects. 

One hypothesis for the slow growth rates observed in this method is that cell growth is lack 

of paracrine inter-cellular signalling due to low cell numbers. Cells of some lines may be 

less able to grow independently of each other as they are highly reliant on secretion of 

growth factors by other cells in the population. For example, epidermal growth factor (EGF) 

can be expressed by cancer cells in culture, ultimately leading to increased cell proliferation, 

survival, and invasion. This means that survival and proliferation of these cells is linked to 

availability and secretion of soluble growth factors into the culture medium, and depending 

on the cell line growth may be impaired when there are only a few cells present in the 

population. Therefore, when growing clonal populations from single cells, we may be 

negatively selecting those cells which are less able to grow in the absence of paracrine 

factors from nearby cells. To overcome this, it is possible to use conditioned media to 

improve cell growth after limiting dilution. Conditioned media involves collecting media from 

cells that have been cultured for 24-48 hours, centrifuging and filtering to limit cross-

contamination of cells, and mixing with fresh culture media before addition to the chosen 

cells. This is usually mixed in a 1:1 ratio to retain the secretory factors in the conditioned 

media, whilst replacing any depleted nutrients such as glucose and glutamate.  

Alternatively, cloning rings can be utilised to generate clonal populations. One study used 

cloning rings to generate clonal subpopulations of a multi-drug resistant (MDR) squamous 

lung cancer cell line DLKP-A. This involved seeding cells in a 35 mm culture dish at a 

concentration of 50 cells per dish, feeding with conditioned media and monitoring growth 

until individual populations reached approximately 50 cells each. Once this size had been 

reached, cloning rings were placed around each population to create individual chambers 

from which cells could be trypsinised and seeded into a 96-well plate (Heenan et al., 1997). 

This method utilised both the benefits of conditioned media and having a larger number of 



59 
 

cells present to allow for paracrine signalling loops. Taken together, these alternative 

methods described may lead to improved success rates in generating resistant clones. 

4.4. Characterisation of resistant sub-clones 

4.4.1. Determining fold-resistance to AZD5363 

After expansion of clonal cell populations into tissue culture flasks, sensitivity to AZD5363 

was investigated by SRB assay. The GI50 values for the newly generated clones were 

compared against that of the parental to calculate their resistance factor. Resistance factors 

greater than two-fold are usually considered the threshold for classifying a sub-line as 

resistant. There statistically significant resistance factors for ZR-75-1 clones B9 and D2 of 

7.6 and 5.8-fold, respectively. Therefore, resistance to AZD5363 has successfully been 

generated in vitro in this breast cancer cell line. 

4.4.2. Resistant sub-clones do not exhibit cross-resistance to other AKT 

inhibitors 

Resistant sub-clones were also screened by SRB assay for any cross-resistance to other 

AKT inhibitors currently in phase II clinical trials, GDC0068 and MK2206 (clinicaltrials.gov 

identifiers NCT02301988, NCT01294306). GDC0068 (ipatasertib) is an orally available 

potent ATP-competitive pan-AKT inhibitor with relatively high selectivity for AKT, inhibiting 

only 3 out of 230 kinases by more than 70% at 1 µM. It has successfully caused growth 

stasis and tumour regression as a single agent in mouse xenograft models of tumours with 

enhanced PI3K/AKT signalling (i.e. activating PIK3CA and PTEN-null mutations) as well as 

increasing the anti-tumour activity of drugs such as docetaxel (Lin et al., 2013). Similarly, 

MK2206 is an orally active allosteric AKT inhibitor, thereby having high selectivity for AKT 

and high potency against AKT1 and AKT2 isoforms (Hirai et al., 2010). Despite both 

additional experimental AKT inhibitors potently inhibiting AKT, there was no significant 

cross-resistance observed between GDC0068 or MK2206 in the AZD5363-resistant clones 

B9 or D2. These findings are of note as they contrast with the resistance profile of the 

A2780-5363R ovarian carcinoma sub-line, which does exhibit cross-resistance to inhibition 

by GDC0068 and MK2206 (D. Akan, PhD thesis 2015). These preliminary findings suggest 

that the resistance mechanism(s) in the breast cancer sub-clones differ from that of the 

ovarian sub-line as they do not share cross-resistance to AKT inhibition by other agents. 

Furthermore, this lack of cross-resistance in sub-clones B9 and D2 suggests that the 

resistance mechanism is not proximal to AKT, and instead another pathway may be 

responsible for resistance. 
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4.4.3. PI3K/AKT signalling is not significantly altered in resistant sub-

clones 

To further investigate the hypothesis that the resistance mechanism of the AZD5363-

resistant ZR-75-1 sub-clones is not proximal to AKT, Western blots were carried out to 

probe for components of the key signalling pathways. Firstly, signalling was investigated in 

untreated parental, B9 and D2 cells (Figure 3.12). However, baseline levels of many signals 

were consistent between the parental ZR-75-1 and the resistant sub-clones. 

Phosphorylated Ser473-AKT remains consistently low across ZR-75-1 parental and sub-

clones B9 and D2 at a basal level. Phosphorylated GSK3β (a direct downstream substrate 

of AKT) levels were also maintained between the parental and resistant cells. Levels of 

phosphorylated and total ERK were investigated as, although not a member of the 

PI3K/AKT pathway, we were interested to see if MAPK pathway signalling had increased 

as a resistance mechanism. However, this was not the case as both total and p-ERK 

remained unchanged in the parental across sub-clones B9 and D2. Additionally, S6RP 

levels in the resistant cells were also consistent with those of the parental. This is again in 

contrast to A2780-5363R which shows elevated phosphorylation of S6RP relative to the 

parental. Furthermore, 4EBP1 levels are not reduced in B9 or D2, differing again from 

A2780-5363R. 

Additionally, a dose-response Western blot with two concentrations of AZD5363 was 

performed to investigate the effect of drug treatment on PI3K/AKT signalling. ZR-75-1 

parental cells as well as sub-clones B9 and D2 were either untreated or exposed to 1x or 

3x the GI50 of AZD5363 for the parental cell line (50 and 150 nM, respectively) for four hours 

(Figure 3.15). The results of this Western blot revealed that phosphorylation of AKT is 

increased in the treated cells relative to the untreated. This is a well-documented 

phenomenon after treatment with AKT-competitive AKT inhibitors. This “paradoxical” 

hyperphosphorylation was initially thought to occur through homeostatic negative feedback 

loops; however, subsequent studies have described that occupation of the ATP-binding 

pocket by similar drugs causes a conformational change in AKT. This change prevents 

access of phosphatases to the phosphorylated residue Tyr308 in the AKT activation loop, 

preventing its dephosphorylation and thereby maintaining the kinase in a 

hyperphosphorylated but catalytically inactive state (Chan et al., 2011). Therefore, this 

effect is restricted to ATP-competitive AKT inhibitors only – this has not been reported to 

occur with allosteric inhibitors such as MK2206. Furthermore, other signals remained 

relatively consistent with those seen in baseline signalling. For example, levels of both total 

and p-ERK remain consistent across the different cell samples and AZD5363 

concentrations. 
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4.5. Development of cell-based ELISA 

Despite Western blotting being the ‘gold standard’ for investigating protein expression levels 

for many years, it is still a relatively labour-intensive process which requires previous 

experience of the technique to yield consistent results. Indeed, protocols are long and 

contain many steps, increasing the chances of human error affecting the results. Therefore, 

during this project the possibility of using a cell-based ELISA as a novel high-throughput 

alternative to Western blotting was explored. Two different labelled antibodies were used 

for detection; o-phenylenediamine dihydrochloride (OPD) HRP substrate and europium 

labels. This cell-based ELISA protocol involves seeding of cells in a 96-well format and 

subsequent fixation and permeabilisation. Fixed cells are blocked in 5% milk to prevent non-

specific interactions upon the later addition of primary antibody specific to the target of 

interest. In these experiments, levels of phosphorylated and total GSK3β and S6K were to 

be investigated. However, the optimal concentrations of primary and secondary antibodies 

needed to be determined in order to produce signals with a high signal-to-noise ratio. This 

was carried out by using a matrix of primary and secondary antibody concentrations for 

each method. After carrying out these assays, the OPD substrate method was not taken 

forward for further experiments as the signal-to-noise ratios were very low. The europium 

chelate had a very high signal-to-noise ratio due to a large Stokes’ shift and as well as 

having a long time period between excitation and emission wavelengths. Ultimately, primary 

antibody concentrations of 1:1000 and 1:250 were selected for S6RP and GSK3β 

respectively, and a secondary antibody concentration of 1:3333, as these provided the 

optimal signal-to-noise ratios. 

Cells were incubated overnight in primary antibody at 4°C before washing and further 

incubation in either A) horseradish peroxidase (HRP) conjugated or B) europium labelled 

secondary antibody, for one hour. The OPD substrate is converted into a coloured product 

by HRP, and therefore the results are interpreted colourimetrically, as colour intensity is 

proportional to the amount of protein present. With the europium-labelled antibodies, a low-

pH enhancement solution is added causing dissociation of the Eu3+ and formation of a highly 

fluorescent chelate within a protective micelle. Colour or fluorescence can then be 

determined using a plate reader, with the values generated proportional to the amount of 

target protein present. Indeed, this method allows for the recording of quantitative, 

numerical data as opposed to qualitative data as generated by Western blots. Although 

Western blotting bands can be quantified using densitometry, there are many variables to 

take into account when doing this and so results are not always reliable. This cell-based 

ELISA therefore provides a method for high-throughput analysis and relatively fast 

generation of quantitative data for statistical analysis. 
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After optimisation of this method was completed, cell-based ELISAs were performed on the 

parental ZR-75-1 cell line in addition to sub-clones B9 and D2. These cells were treated 

with a range of concentrations of AZD5363 for one hour, then the assay was performed as 

previously described. The results of this assay revealed that S6RP phosphorylation 

decreased in a dose-dependent manner. At the highest AZD5363 concentration (5 µM) 

levels of S6RP phosphorylation was the same as the background signal, showing this assay 

has a high degree of sensitivity. Additionally, levels of total S6RP remained relatively 

consistent under each condition. In terms of comparing signalling between parental ZR-75-

1 and the resistant sub-clones, there was not a notable change in phosphorylation of S6RP 

in response to AKT inhibition between the three cell types. This finding therefore contributes 

to the hypothesis that the resistance mechanism is not proximal to AKT in these sub-clones, 

as we would expect to see maintenance of S6RP phosphorylation in these cells if that was 

the case. 

Overall, this shows that the cell-based ELISA is likely to be sensitive enough to detect 

decreases in phosphorylation in response to AKT inhibition; however, it would be beneficial 

to carry out identical Western blots for a more accurate and direct comparison of the two 

methods. 

4.6. Clinical implications 

Acquired resistance to AKT inhibitors in the clinic has not yet been reported. However, as 

these inhibitors advance through clinical trials and new experimental drugs are developed 

resistance may still emerge, as seen with other small molecule inhibitors such as 

vemurafenib (Nazarian et al., 2010a; Kulkarni et al., 2017). 

In the few clinical trials that have reported results, AZD5363 has resulted in some partial 

responses in patients with tumours that have mutations in either AKT1 or PIK3CA 

(clinicaltrials.gov identifier NCT01226316). Taken together with results from preclinical 

studies suggesting monotherapy treatment may lead to some tumour growth inhibition, it is 

likely that AZD5363 will be more suitable for clinical use when given in combination. This is 

because combination of AZD5363 with docetaxel, lapatinib, and trastuzumab has been 

shown to increase their antitumour activity in breast cancer xenografts relative to 

monotherapy (Davies et al., 2012). Indeed, there are several clinical trials ongoing to 

determine the effects of AZD5363 when given in combination with paclitaxel or olaparib 

(clinicaltrials.gov identifiers NCT01625286, NCT02451956, NCT02208375). Furthermore, 

AZD5363 has potential for use in patients with acquired cisplatin resistance as increased 

PI3K/AKT pathway activity has been shown to mediate resistance (Fraser, Bai and Tsang, 
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2008). Use in combination with other drugs is also likely to hinder resistance development 

as multiple pathways will be targeted concurrently. 

Although the resistance mechanism in sub-clones B9 and D2 is still unknown, if further 

experiments were carried out and the mechanism(s) elucidated, this has the potential to 

inform possible drug combinations. For example, if a particular kinase is upregulated 

leading to resistance and there is an inhibitor available for this protein, the two inhibitors 

could be administered together to limit acquired resistance. 

4.7. Proposed resistance mechanism 

The main findings from investigation of the resistant clones are that there is a lack of cross-

resistance to other AKT inhibitors GDC0068 and MK2206, and that there is not a significant 

change in the signalling of the PI3K/AKT pathway. This suggests that the resistance 

mechanism is not proximal to AKT, and there is another pathway responsible for the 

resistant phenotype. If this same mechanism of acquired resistance to AZD5363 arises in 

patients with PI3K/AKT pathway mutations, it may be possible to administer GDC0068 or 

MK2206 and have the patient still respond to inhibition, due to the lack of AKT inhibitor 

cross-resistance. We suggest that this may be due to another target of AZD5363; namely 

PKA. This is because AZD5363 inhibits PKA with an IC50 of 6 nM and is therefore 

comparable to the potency of AKT2 and AKT3 inhibition. This would account for lack of 

changes in PI3K/AKT pathway signalling, as it instead could be signals proximal to PKA 

that have been upregulated. This also concurs with cross-resistance data, as AZD5363 is 

the only inhibitor of the three that potently inhibits PKA. GDC0068 is >100-fold more 

selective for AKT than for PKA, with an IC50 of 3.1 µM for PKA (Blake et al., 2012), whereas 

MK2206 has no inhibitory activity against PKA and 250 other kinases (Hirai et al., 2010). 

4.8. Future experiments 

To investigate whether PKA activity is responsible for resistance, we can carry out Western 

blotting in the ZR-75-1 parental cells and resistant sub-clones. For example, antibodies 

specific for the total and phosphorylated forms of PKA as well as its downstream substrates 

such as CREB can be used to assess the abundance and activation of these proteins. If 

the resistance mechanism is proximal to this pathway, then activation of these proteins will 

be maintained when treated with AZD5363. Additionally, further SRB assays can be carried 

out with inhibitors of other pathways to check for cross-resistance. For example, an inhibitor 

of PKA such as PKI 14-22 amide, a cell-permeable peptide potent and specific for PKA (Ki 

36 nM) could be used. 
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Next-generation sequencing techniques such as exome sequencing can also be used to 

identify mutations that are likely to affect protein function, and may possible candidates for 

driving resistance. Transcriptomics such as RNA sequencing can also be used to measure 

gene expression of these candidates to determine if there are differences in expression 

between ZR-75-1 parental cells and the resistant sub-clones. If differences are identified, 

then these targets can be further investigated by Western blotting to determine their role in 

resistance. 

As previously mentioned, measurement of DNA synthesis through detection of BrdU 

incorporation in T47D cells would help to further investigate the cytostatic effect that 

AZD5363 is having on these cells. This technique would determine whether T47D cells are 

arresting in all cell cycle phases upon AZD5363 treatment. 

4.9. Conclusions 

To conclude, we have developed two AZD5363-resistant sub-clones of the breast cancer 

cell line ZR-75-1, named B9 and D2. These exhibit a 7.6 and 5.8-fold resistance to 

AZD5363, respectively. However, in contrast to the A2780-5363R ovarian carcinoma sub-

line, there is no significant cross-resistance to AKT inhibitors GDC0068 or MK2206. 

Furthermore, there are no significant changes in signalling of the PI3K/AKT pathway were 

observed in the resistant clones. Taken together, although the exact resistance mechanism 

is as yet unknown, our data suggests that the resistance mechanism is not proximal to AKT. 

We suggest that resistance may be due to changes in PKA signalling as PKA is inhibited 

by AZD5363 but not GDC0068 or MK2206, thus providing a possible explanation for the 

lack of AKT inhibitor cross-resistance. Ultimately, this is an issue which warrants further 

investigation. 
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