
Well-Terminating, Input-Driven Logi
 ProgramsJan{Georg SmausUniversity of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom,telephone xx44/1227/827553, fax 762811, j.g.smaus�uk
.a
.ukAbstra
t. We identify a
lass of predi
ates for whi
h termination doesnot depend on left-to-right exe
ution. All that is required is that deriva-tions are input-driven, that is, in ea
h derivation step, the input argu-ments of the sele
ted atom do not be
ome instantiated. The methodof showing that a predi
ate is in that
lass is based on level mappings,
losely following the traditional approa
h for LD derivations. Many pred-i
ates terminate under su
h weak assumptions. Knowing these predi
ates
an be a very useful part of a more
omprehensive method of showingtermination, whi
h would have to make more spe
i�
 assumptions aboutthe sele
tion rule.Keywords: Logi
 programming, termination, modes, sele
tion rules.1 Introdu
tionTermination of logi
 programs has been widely studied for LD derivations, thatis derivations where the leftmost atom in a query is always sele
ted [1, 3, 8{11,13℄. All of these works are based on the following idea: at the time when an atoma in a query is sele
ted, it is possible to pin down the size1 of a. This size
annot
hange via further instantiation. It is then shown that for the atoms introdu
edin this derivation step, it is again possible to pin down their size when eventuallythey are sele
ted, and that these atoms are smaller than a.This idea has also been applied to arbitrary derivations [6℄. Sin
e no restri
-tion is imposed on when an atom
an be sele
ted, it is required that in ea
h queryin a derivation, the size of ea
h atom is always bounded. Programs that ful�ll thisrequirement are
alled strongly terminating. The
lass of strongly terminatingprograms is very limited.For most programs, it is ne
essary for termination to require a
ertain degreeof instantiation of an atom before it
an be sele
ted. This
an be a
hieved usingdelay de
larations [2, 16{21℄. The problem is that, depending on what kind ofdelay de
larations and sele
tion rule are used, it is not possible to pin down thesize of the sele
ted atom, sin
e this size may depend on the resolution of otheratoms in the query that are not yet resolved. Nevertheless, [17, 18℄ and to alimited extent [16℄ are based on the idea des
ribed above, whereas [19{21℄ avoidany expli
it mention of \size" and instead try to redu
e the problem to showingtermination for LD derivations.1 The te
hni
al meaning of \pinning down the size" di�ers among di�erent methods.

Our approa
h falls between the two extremes of making no assumptions aboutthe sele
tion rule on the one hand and making very spe
i�
 assumptions on theother. We believe that a reasonable minimal requirement for termination
an beformulated in terms of modes:In ea
h derivation step, the input arguments of the sele
ted atom
annotbe
ome instantiated.In other words, an atom in a query
an only be sele
ted when it is suÆ
iently in-stantiated so that the most general uni�er with the
lause head does not bind theinput arguments of the atom. We
all derivations whi
h meet this requirementinput-driven.This paper is about identifying predi
ates for whi
h all input-driven deriva-tions are �nite. Other works in this area have usually made spe
i�
 assumptionsabout the sele
tion rule and the delay de
larations, for example lo
al sele
tionrules [17℄, delay de
larations that test arguments for groundness or rigidness [16,18℄, or the default left-to-right sele
tion rule of most Prolog implementations [19{21℄. In
ontrast, we show how previous results about LD derivations
an be gen-eralised, the only assumption about the sele
tion rule being that derivations areinput-driven. We
losely follow [13℄.We exploit that under
ertain
onditions, it is enough to rely on a relativede
rease in the size of the sele
ted atom, even though this size
annot be pinneddown.Example 1.1. Consider the usual append program and the following input-drivenderivation, where the sele
ted atom is underlined:append([1℄; [℄; As); append(As; [℄; Bs)!append([℄; [℄; As0); append([1jAs0℄; [℄; Bs)!append([℄; [℄; As0); append(As0; [℄; Bs0)!append([℄; [℄; Bs0)! 2:When append([1jAs0℄; [℄; Bs) is sele
ted, it is not possible to pin down its sizein any meaningful way. In fa
t, nothing
an be said about the length of thederivation asso
iated with append([1jAs0℄; [℄; Bs) without knowing about otheratoms whi
h might instantiate As0. However, the derivation
ould be in�niteonly if the derivation asso
iated with append([℄; [℄; As0) was in�nite. Our methodis based on su
h a dependen
y between the atoms of a query.Not surprisingly, the
lass of programs for whi
h all input-driven derivations are�nite is quite limited, although it is obviously larger than the
lass of stronglyterminating programs. Realisti
ally, a
omprehensive method for proving termi-nation would have to make stronger assumptions. However, within the frameworkof su
h a method, it
an be useful to know for whi
h predi
ates termination
analready be ensured only assuming input-driven derivations. This is demonstratedin [21℄, but apart from that, we believe that it has not been re
ognised previously.Example 1.2. Consider the following program whi
h permutes a list. Assumethat in both predi
ates, the �rst position is the only input position.2

permute([℄, [℄).permute(Y, [U | X℄) :-delete(Y, U, Z),permute(Z, X).delete([X|Z℄, X, Z).delete([U|Y℄, X, [U|Z℄) :-delete(Y, X, Z).Then we have the following in�nite input-driven derivation:permute([1℄; W)!delete([1℄; U0; Z0); permute(Z0; X0)!delete([℄; U0; Z00); permute([1jZ00℄; X0)!delete([℄; U0; Z00); delete([1jZ00℄; U00; Z000); permute(Z000; X00)!delete([℄; U0; Z00); delete(Z00; U00; Z0000); permute([1jZ0000℄; X00)! : : :The rest of this paper is organised as follows. The next se
tion �xes the notation.Se
tion 3 introdu
es well and ni
ely moded programs and Se
tion 4 shows thatfor these, it is suÆ
ient to prove termination for one-atom queries. Se
tion 5then deals with how one-atom queries
an be proven to terminate. Se
tion 6dis
usses the results and the related work.2 PreliminariesOur notation follows [1, 13℄. For the examples we use Prolog syntax. We re
allsome important notions. The set of variables in a synta
ti
 obje
t o is denotedas vars(o). The domain of a substitution � is denoted as dom(�). The restri
tionof a substitution � to the variables o

urring in a synta
ti
al obje
t o is denotedas �jo. A synta
ti
 obje
t is linear if every variable o

urs in it at most on
e.For a predi
ate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2 fI ;Ogfor i 2 f1; : : : ; ng. Positions with I are
alled input positions, and positionswith O are
alled output positions of p. We assume that a �xed mode isasso
iated with ea
h predi
ate in a program. To simplify the notation, an atomwritten as p(s; t) means: s is the ve
tor of terms �lling the input positions, and tis the ve
tor of terms �lling the output positions. An atom p(s; t) is input-linearif s is linear.A query is a �nite sequen
e of atoms. A derivation step for a program P isa pair hQ; �i; hR; ��i, where Q = Q1; p(s; t); Q2 and R = Q1; B;Q2 are queries;� is a substitution; p(v;u) B a renamed variant of a
lause in P and � themost general uni�er of p(s; t)� and p(v;u). We
all p(s; t)� the sele
ted atomand R�� the resolvent of Q� and h B. A derivation step is input-driven ifdom(�) \ vars(s�) = ;.A derivation � for a program P is a sequen
e hQ0; �0i; hQ1; �1i; : : :, whereea
h su

essive pair hQi; �ii; hQi+1; �i+1i in � is a derivation step. Alternatively,we also say that � is a derivation of R [fQ0�0g. We often denote a derivation3

as Q0�0;Q1�1; : : :. An LD derivation is a derivation where the sele
ted atom isalways the leftmost atom in a query. An input-driven derivation is a derivation
onsisting of input-driven derivation steps.If Q; a;R; (Q;B;R)� is a step in a derivation, then ea
h atom in B� is adire
t des
endant of a, and b� is a dire
t des
endant of b for all b 2 Q;R.We say b is a des
endant of a if (b; a) is in the re
exive, transitive
losure ofthe relation is a dire
t des
endant. The des
endants of a set of atoms are de�nedin the obvious way. If, for a derivation : : : Q; : : : ;Q0;Q00 : : :, the sele
ted atom inQ0;Q00 is a des
endant of an atom a in Q, then Q0;Q00 is an a-step.3 ModesIn this se
tion we introdu
e the notions of well moded and ni
ely moded pro-grams. Well-modedness has been used before to show termination of LD deriva-tions [13℄. In the
ontext of arbitrary input-driven derivations, it is also
ru
ialto require that programs are ni
ely moded.Well-modedness has been introdu
ed in [12℄ and widely used for veri�
ationsin
e. In Mer
ury it is even mandatory that programs are well moded, whi
h isone of the reasons for its remarkable performan
e [22℄.De�nition 3.1 (well moded). A query Q = p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 f1; : : : ; ngvars(si) � [j<i vars(tj) (1)The
lause p(t0; sn+1) Q is well moded if (1) holds for all i 2 f1; : : : ; n+1g.A program is well moded if all of its
lauses are well moded.Another
ommon
on
ept for veri�
ation is the following.De�nition 3.2 (ni
ely moded). A query Q = p1(s1; t1); : : : ; pn(sn; tn) isni
ely moded if t1; : : : ; tn is a linear ve
tor of terms and for all i 2 f1; : : : ; ngvars(si) \[j�i vars(tj) = ;: (2)The
lause C = p(t0; sn+1) Q is ni
ely moded if Q is ni
ely moded andvars(t0) \ n[j=1 vars(tj) = ;: (3)A program P is ni
ely moded if all of its
lauses are ni
ely moded.Note that other authors have denoted the
lause head of C as p(s0; tn+1) orp(s0; t0), whi
h allows for a more
ompa
t de�nition [13℄2, furthermore suggest-ing that there is an analogy between (2) and (3) above [2℄. We have
hosen not2 We refer to the de�nition of simply moded here, but this is very similar to ni
elymoded. 4

to do this for two reasons. First, our notation is
onsistent with Def. 3.1. Se
-ondly, the analogy is misleading. It would be more appropriate to see an analogybetween (3) and the requirement that t1; : : : ; tn is a linear ve
tor of terms thanbetween (3) and (2).Example 3.1. The program in Ex. 1.2 is well and ni
ely moded. It is neither wellmoded nor ni
ely moded in reverse mode, however it
an easily be made welland ni
ely moded by inter
hanging the two body atoms in the se
ond
lause.The example shows that multiple modes of a predi
ate
an be obtained by havingmultiple (renamed) versions of a predi
ate. This is why it is often assumed thatea
h predi
ate has a �xed mode [2, 13, 19, 22℄. However, this usually impliesa
tual
ode dupli
ation and is therefore a real loss of generality.In this paper, assuming a �xed mode for ea
h predi
ate is not a loss ofgenerality, but merely a notational
onvenien
e. We
onsider arbitrary input-driven derivations. The textual position of an atom within a query is irrelevantfor its sele
tion. Any result that holds for a well moded program also holds for aprogram where the atoms in ea
h
lause body are permuted in an arbitrary way.In this sense, we
an assume that the program of Ex. 3.1 is well moded and ni
elymoded in both modes. Whenever one
onsiders spe
i�
 sele
tion rules where thetextual position is relevant, one has to treat multiple modes expli
itly [21℄.The following lemma states a persisten
e property of well-modedness [2,Lemma 16℄. It has been shown previously for LD derivations [5℄.Lemma 3.1. Every resolvent of a well moded query Q and a well moded
lauseC, where vars(C) \ vars(Q) = ;, is well moded.For ni
ely-modedness, there is a similar persisten
e property. It has been shownpreviously for LD resolvents [5℄ and arbitrary resolvents [2℄. However in the lat-ter
ase, it was required that the
lause head is input-linear. For input-drivenderivations, this is not ne
essary. It is assumed that the sele
ted atom is suÆ-
iently instantiated, so that a multiple o

urren
e of the same variable in theinput arguments of the
lause head
annot
ause any bindings to the query.Lemma 3.2. Every resolvent of a ni
ely moded query Q and a ni
ely moded
lause C, where the derivation step is input-driven and vars(C) \ vars(Q) = ;,is ni
ely moded.Proof. Let C = h B. We want to use [2, Lemma 11℄. Therefore we mustshow that we
an assume without loss of generality that h is input-linear. LetC 0 = h0 Eq;B be the
lause obtained from C by repeatedly applying thefollowing transformation: If the input arguments of the
lause head
ontain twoo

urren
es of a variable x, repla
e one o

urren
e with a fresh variable y andadd the equation x = y at the beginning of the
lause body.Then h0 is input-linear, and C 0 is ni
ely moded, where the predi
ate = in Eqis used in mode (I ; I). Furthermore, if Q = Q1; a;Q2 andhQ; ;i; hQ1;B;Q2; �i5

is an input-driven derivation step using C, then there is an input-driven deriva-tion hQ; ;i; hQ1;Eq;B;Q2; �0i; : : : ; hQ1;B;Q2; �iusing C 0 and the
lause \z = z:" (whi
h is
on
eptually the de�nition of =).By [2, Lemma 11℄, (Q1; Eq;B;Q2)�0 is ni
ely moded. Furthermore, sin
ehQ1;Eq;B;Q2; �0i; : : : ; hQ1;B;Q2; �i is input-driven, it follows that Eq�0 is asequen
e of atoms of the form s = s. Therefore �0 = � and (Q1; B;Q2)� is ni
elymoded. utFor a ni
ely moded program and query, it is guaranteed that every input-drivenderivation step only instantiates other atoms in the query that o

ur to the rightof the sele
ted atom.Lemma 3.3. Let P be a ni
ely moded program, Q = Q1; p(s; t); Q2 a ni
elymoded query, and hQ; ;i; hQ1;B;Q2; �i an input-driven derivation step. Thendom(�) \ vars(Q1) = ;.Proof. Sin
e the derivation step is input-driven, it follows that dom(�)jQ �vars(t). Thus sin
e Q is ni
ely moded, dom(�) \ vars(Q1) = ;. ut4 Controlled CoroutiningIn this se
tion we de�ne well-terminating predi
ates, that is predi
ates for whi
hall one-atom queries have �nite derivations. As in [13℄, we then show that ter-mination for one-atom queries implies termination for arbitrary queries.For LD derivations, this is almost obvious and only requires that programsand queries are well moded [13, Lemma 4.2℄. Given a derivation � for a querya1; : : : ; an, the sub-derivations for ea
h ai do not interleave, and therefore �
anbe regarded as a derivation for a1 followed by a derivation for a2 and so forth. Thefollowing example illustrates that in the
ontext of interleaving sub-derivations(
oroutining), this is mu
h less obvious.Example 4.1. Consider the usual append programappend([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).in mode append(I ; I ;O) and the queryappend([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As):This query is well moded but not ni
ely moded. Then we have the followingin�nite input-driven derivation:append([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As)!append([℄; [℄; As); append(As; [℄; Bs0); append([1jBs0℄; [℄; As)!append([℄; [℄; [1jAs0℄); append([1jAs0℄; [℄; Bs0); append(Bs0; [℄; As0)! : : :This well-known termination problem of programs with
oroutining has beenidenti�ed as
ir
ular modes [19℄. 6

To avoid the problem, we require programs and queries to be ni
ely moded.De�nition 4.1 (well-terminating predi
ate/atom). Let P be a well andni
ely moded program. A predi
ate p in P is well-terminating if for ea
h welland ni
ely moded query p(s; t), all input-driven derivations of P [fp(s; t)g are�nite. An atom is well-terminating if its predi
ate is well-terminating.The following lemma says that a well-terminating atom
annot pro
eed inde�-nitely unless it is repeatedly fed by some other atom.Lemma 4.1. Let P be a well and ni
ely moded program and F; b;H a welland ni
ely moded query where b is a well-terminating atom. An input-drivenderivation of P[fF; b;Hg
an have in�nitely many b-steps only if it has in�nitelymany a-steps, for some a 2 F .Proof. In this proof, we
all an a-step for some a 2 F an F -step, and likewisefor H . By Lemma 3.3, any H-step does not instantiate any des
endant of b. Thusthe H-steps
an be disregarded, and without loss of generality, we assume H isempty. Let � = hF;b; ;i; : : : ; hQ0; �0i; hQ1; �1i : : :be an input-driven derivation su
h that hQ0; �0i; hQ1; �1i : : :
ontains no F -steps(that is, �
ontains only �nitely many F -steps). Sin
e by Lemma 3.3, no b-step
an instantiate any des
endant of F , there exists an input-driven derivation�2 = hF;b; ;i; : : : ; hR; �i; : : : ; hQ0; �0i; hQ1; �1i : : :su
h that hF;b; ;i; : : : ; hR; �i
ontains only F -steps and hR; �i; : : : ; hQ0; �0i
on-tains only b-steps (that is, the F -steps are moved forward using the Swit
hingLemma [15℄). Sin
e R = R0; b for some R0, there exists an input-driven derivation�3 = hb; �i; : : : ; hI0; �0i; hI1; �1i : : :obtained from hR; �i; : : : ; hQ0; �0i; hQ1; �1i : : : by removing the pre�x R0 in ea
hquery.Let t1; : : : ; tm be the ve
tor of output arguments of R0� and � a substitutionsu
h that (t1; : : : ; tm)� is ground. Then by Def. 3.1, b�� is a well moded query.By Lemma 3.3, no b-step instantiates t1; : : : ; tm. Therefore from �3 we
an
onstru
t an input-driven derivation�4 = hb; ��i; : : : ; hI0; �0�i; hI1; �1�i : : :Sin
e b�� is a well and ni
ely moded query and b is well-terminating, �4 is �nite.Therefore �3, �2, and �nally � are �nite. utThe following lemma is a
onsequen
e and states that well-terminating atomson their own
annot produ
e an in�nite derivation.Lemma 4.2. Let P be a well and ni
ely moded program and Q a well and ni
elymoded query. An input-driven derivation of P [fQg
an be in�nite only if thereare in�nitely many steps where an atom is resolved that is not well-terminating.7

Proof. Let Q = F; b;H where b is a well-terminating atom, and � an in�nitederivation for Q. We show that �
an have in�nitely many b-steps only if � hasin�nitely many steps where an atom is resolved that is not well-terminating.The proof is by indu
tion on the length of F . If F is empty, the result followsfrom Lemma 4.1. Now suppose F
ontains at least one atom. By Lemma 4.1, �
an have in�nitely many b-steps only if for some a 2 F , � has in�nitely manya-steps. If a is not well-terminating, the result follows immediately. If a is well-terminating, let F = F1; a; F2. Sin
e F1
ontains fewer atoms than F , the resultfollows from the indu
tive hypothesis. utLemma 4.2 provides us with the formal justi�
ation for restri
ting our attentionto one-atom queries. However, it requires that programs and queries are ni
elymoded. This is not ne
essary for LD derivations [13℄.We now de�ne well-terminating programs. The de�nition di�ers from the
orresponding one in [13℄ in that they
onsider only LD derivations.De�nition 4.2 (well-terminating program). Let P be a well and ni
elymoded program and Q a well and ni
ely moded query. P is well-terminatingif all input-driven derivations of P [fQg are �nite.The following is an obvious
orollary of Lemma 4.2.Corollary 4.3. A program P is well{terminating if and only if all its predi
atesare well-terminating.5 Showing Weak TerminationAll of the mentioned approa
hes to termination [1, 3, 8{11, 13℄ more or less ex-pli
itly rely on measuring the size of the input in a query. We agree with Etalleet al. [13℄ that it is reasonable to make this dependen
y expli
it. This gives riseto the
on
ept of moded level mapping [13℄, whi
h is an instan
e of level mapping�rst introdu
ed in [6, 7℄. BP denotes the set of ground atoms using predi
ateso

urring in P .De�nition 5.1 (moded level mapping). Let P be a program. j:j is amodedlevel mapping if1. it is a level mapping, that is a fun
tion j:j : BP ! IN,2. for any t and u, jp(s; t)j = jp(s;u)j.For a 2 BP , jaj is the level of a.Thus the level of an atom only depends on the terms in the input positions.The following
on
ept, adopted from [1℄, is useful for proving termination fora whole program in
rementally, by proving it for one predi
ate at a time.De�nition 5.2 (depends on). Let p; q be predi
ates in a program P . We saythat p refers to q if there is a
lause in P with p in its head and q in its body,and p depends on q (written p w q) if (p; q) is in the re
exive, transitive
losureof refers to. We write p = q if p w q and q 6w p, and p � q if p w q and q w p.8

Abusing notation, we shall also use the above symbols for atoms, where p(s; t) wq(u;v) stands for p w q, and likewise for = and �. Furthermore, we denote theequivalen
e
lass of a predi
ate p with respe
t to � as [p℄�.The following de�nition provides us with a
riterion to prove that a predi
ateis well-terminating.De�nition 5.3 (well-a

eptable). Let P be a program and j:j a moded levelmapping. A
lause C = h B is well-a

eptable (with respe
t to j:j) iffor every substitution � su
h that C� is ground, and for every a in B su
h thata � h, we have jh�j > ja�j.A set of
lauses is well-a

eptable with respe
t to j:j if ea
h
lause iswell-a

eptable with respe
t to j:j.Let us
ompare this
on
ept to some similar
on
epts in the literature: re
ur-rent [6℄, well-a

eptable [13℄ and a

eptable [4, 11℄ programs.Like [11, 13℄ and unlike [4, 6℄, we require jh�j > ja�j only for atoms a wherea � h. This is
onsistent with the idea that termination should be proven in
re-mentally: to show termination for a predi
ate p, it is assumed that all predi
atesq with p = q have already been shown to terminate. Therefore we
an restri
tour attention to the predi
ates q where q � p.Like [6℄ and unlike [4, 11, 13℄, our de�nition does not involve models or
om-puted answer substitutions. Traditionally, the de�nition of a

eptable programsis based on a model M of the program, and for a
lause h a1; : : : ; an,jh�j > jai�j is only required if M j= (a1; : : : ; ai�1)�. The reason is that forLD derivations, a1; : : : ; ai�1 must be
ompletely resolved before ai is sele
ted.By the
orre
tness of LD resolution [15℄ and well-modedness [5℄, the a

umulatedanswer substitution �, just before ai is sele
ted, is su
h that (a1; : : : ; ai�1)� isground and M j= (a1; : : : ; ai�1)�.Su
h
onsiderations
ount for little when derivations are merely required tobe input-driven. This is illustrated in Ex. 1.2. In the third line of the derivation,permute([1jZ00℄; X0) is sele
ted, although there is no instan
e of delete([℄; U0; Z00)in the model of the program. This problem has been des
ribed by saying thatdelete makes a spe
ulative output binding [19℄. Programs that do not makespe
ulative output bindings are
onsidered in [20℄.Theorem 5.1. Let P be a well and ni
ely moded program and p be a pred-i
ate in P . Suppose all predi
ates q with p = q are well-terminating, and all
lauses de�ning predi
ates q 2 [p℄� are well-a

eptable. Then p, and hen
e everypredi
ate in [p℄�, is well-terminating.Proof. Suppose the set of
lauses de�ning the predi
ates q 2 [p℄� is well-a

ept-able with respe
t to the moded level mapping j:j. For an atom a using a predi
atein [p℄�, we de�ne jjajj = sup(fja�j j a� is groundg), if the set fja�j j a� is groundgis bounded. Otherwise jjajj is unde�ned. Observe thatif jjajj is de�ned for an atom a, then jja�jj � jjajj for all �. (�)9

To measure the size of a query, we use the multiset
ontaining the level ofea
h atom whose predi
ate is in [p℄�. The multiset is formalised as a fun
tionSize, whi
h takes as arguments a query and a natural number.Size(Q)(n) = #fq(u;v) j q(u;v) is an atom in Q; q � p and jjq(u;v)jj = ngNote that if a query
ontains several identi
al atoms, ea
h o

urren
e must be
ounted. We de�ne Size(Q) < Size(R) if and only if there is a number l su
h thatSize(Q)(l) < Size(R)(l) and Size(Q)(l0) = Size(R)(l0) for all l0 > l. Intuitively,a de
rease with respe
t to < is obtained when an atom in a query is repla
edwith a �nite number of smaller atoms. It is easy to see (K�onig's Lemma [14℄)that all des
ending
hains with respe
t to < are �nite.Let Q0 = p(s; t) be a well and ni
ely moded query. Then s is ground andthus jjQ0jj is de�ned. Let � = Q0;Q1;Q2 : : : be an input-driven derivation ofP [fQ0g.Sin
e all predi
ates q with p = q are well-terminating, it follows by Lemma 4.2that there
annot be an in�nite suÆx of � without any steps where an atomq(u;v) su
h that q � p is resolved. We show that for all i � 0, if the sele
ted atomin Qi;Qi+1 is q(u;v) and q � p, then Size(Qi+1) < Size(Qi), and otherwiseSize(Qi+1) � Size(Qi). This implies that � is �nite, and, as the
hoi
e of theinitial query Q0 = p(s; t) was arbitrary, p is well-terminating.Consider i � 0 and let C = q(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) be the
lause, q(u;v) the sele
ted atom and � the most general uni�er used in Qi;Qi+1.If p = q, then p = qj for all j 2 f1; : : : ;mg and hen
e by (�) it follows thatSize(Qi+1) � Size(Qi).Now
onsider q � p. Sin
e C is a well-a

eptable
lause, jjq(v0;um+1)�jj >jjqj(uj ;vj)�jj for all j with qj � p. This together with (�) implies Size(Qi+1) <Size(Qi). utExample 5.1. We now give a few examples of well-terminating predi
ates. Wedenote the term size of a term t, that is the number of fun
tion and
onstantsymbols that o

ur in t, as TSize(t).The
lauses de�ning append(I ; I ;O) (Ex. 4.1) are well-a

eptable, wherejappend(s1; s2; t)j = TSize(s1). Thus append(I ; I ;O) is well-terminating. Thesame holds for append(O ;O ; I), de�ning jappend(t1; t2; s)j = TSize(s).The
lauses de�ning delete(I ;O ;O) (Ex. 1.2) are well-a

eptable, wherejdelete(s; t1; t2)j = TSize(s). Thus delete(I ;O ;O) is well-terminating. Thesame holds for delete(O ; I ; I), de�ning jdelete(t; s1; s2)j = TSize(s2).In a similar way, we
an show that permute(O ; I) is well-terminating. How-ever, permute(I ;O) is not well-terminating.Figure 1 shows a fragment from a program for the n-queens problem. Themode is fnqueens(I ;O); sequen
e(I ;O); safe(I); permute(O ; I); <(I ; I);is(O ; I); safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g. Again using as levelmapping the term size of one of the arguments, one
an see that the
lauses de�n-ing fno diag; safe aux; safeg are well-a

eptable and thus these predi
ates arewell-terminating. This information is useful sin
e this program relies on non-LDderivations for its performan
e [21℄. 10

nqueens(N,Sol) :-sequen
e(N,Seq),safe(Sol),permute(Sol,Seq).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).
safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.Fig. 1. A program for n-queensAs a more
omplex example,
onsider the following program, whose mode isfplus one(I); minus two(I); minus one(I); g. This example uses the su

essornotation for natural numbers.plus_one(X) :- minus_two(s(X)).minus_two(s(X)) :- minus_one(X).minus_two(0).minus_one(s(X)) :- plus_one(X).minus_one(0).We de�ne jplus one(s)j = 3 � TSize(s) + 4jminus two(s)j = 3 � TSize(s)jminus one(s)j = 3 � TSize(s) + 2Then the program is well-a

eptable and thus well-terminating.We see that whenever in some argument position of a
lause head, there is a
ompound term of some re
ursive data stru
ture, su
h as [XjXs℄, and all re
ursive
alls in the body of the
lause have a stri
t subterm of that term, su
h as Xs, inthe same position | then the
lause is well-a

eptable using as level mappingthe term size of that argument position. Sin
e this situation o

urs very often,it
an be expe
ted that an average program
ontains many well-terminatingpredi
ates. However, it is unlikely that in any real program, all predi
ates arewell-terminating.The last example shows that more
omplex s
enarios than the one des
ribedabove are possible, but we doubt that they would often o

ur in pra
ti
e. There-fore level mappings su
h as the one used in the example will rarely be needed.Consider again Def. 5.3. Given a
lause h a1; : : : ; an and an atom ai � h,we require jh�j > jai�j for all grounding substitutions �, rather than only for �su
h that (a1; : : : ; ai�1)� is in a
ertain model of the program. This is of
oursea serious restri
tion. In Ex. 1.2, assuming mode permute(I ;O), there
an be nomoded level mapping su
h that jpermute(Y; [UjX℄)�j > jpermute(Z; X)�j for all�. It might be possible to relax Def. 5.3 to allow more programs, but the fa
tremains that many predi
ates are not well-terminating.11

6 Dis
ussionWe have identi�ed the
lass of programs for whi
h all input-driven derivationsare �nite. An input-driven derivation is a derivation where in ea
h step, the inputarguments of the sele
ted atom are not instantiated. Predi
ates
an be shownto be in that
lass using the notions of level mapping and a

eptable
lause in avery similar way to methods for LD derivations [8, 11, 13℄.This paper
losely follows [13℄. There a statement is shown whi
h is essentiallythe
onverse of Thm. 5.1. It says that if a predi
ate is well-terminating, thenthere is a level mapping su
h that the
lauses de�ning the predi
ate are well-a

eptable. It would be interesting to show a similar result for arbitrary input-driven derivations, but we believe that it must be diÆ
ult, sin
e our de�nitionof a

eptability is mu
h more restri
tive.We have
laimed that most other approa
hes to termination rely on theidea that the size of an atom
an be pinned down when the atom is sele
ted.Te
hni
ally, this usually means that the atom is bounded with respe
t to somelevel mapping [4, 6, 13, 18℄. This is di�erent in [9, 11℄, where termination
an beshown for the query, say, append([X℄; [℄; Zs) using as level mapping the term sizeof the �rst argument, even though the term size of [X℄ is not bounded. However,the method only works for LD derivations and relies on the fa
t that any futureinstantiation of X
annot a�e
t the derivation for append([X℄; [℄; Zs). Therefore itis e�e
tively possible to pin down the size of append([X℄; [℄; Zs).In
ontrast, we show that under
ertain
onditions, it is enough to rely on arelative de
rease in the size of the sele
ted atom, even though this size
annot bepinned down. More
on
retely, we use that an atom in a query
annot pro
eedinde�nitely unless it is repeatedly fed by some other atom o

urring earlier inthe query. This implies that every derivation for the query terminates.Bezem [6℄ has identi�ed the
lass of strongly terminating programs, whi
h areprograms that terminate under any sele
tion rule. While it is shown that everytotal re
ursive fun
tion
an be
omputed by a strongly terminating program, thisdoes not
hange the fa
t that few existing programs are strongly terminating.Transformations are proposed for three example programs to make them stronglyterminating, but the transformations are
ompli
ated and ad-ho
.This paper is more abstra
t than the literature on programs with delay de
-larations [2, 16{21℄. We are not
on
erned with the details of parti
ular delay
onstru
ts. Instead, we only assume what we see as the basi
 purpose of delayde
larations: ensuring that derivations are input-driven. Note that depending onwhat kind of
onstru
ts are used, ensuring that derivations are input-driven isa
tually quite subtle [21℄. Nevertheless, delay de
larations are
learly a powerfulinstrument for this purpose.On the whole, there seems to be a strong relu
tan
e to give up the idea thatthe size of an atom must be pinned down when the atom is sele
ted. This is trueeven for [6℄, where no assumptions at all are made about the sele
tion rule. Itis also true for [17℄, where a lo
al sele
tion rule is assumed, that is a rule underwhi
h only most re
ently introdu
ed atoms
an be resolved in ea
h step. In [18℄, asimilar e�e
t is a
hieved by bounding the depth of the
omputation introdu
ing12

auxiliary predi
ates. It is more diÆ
ult to assess [16℄ sin
e the
ontributionthere is mainly to generate delay de
larations automati
ally rather than provetermination.3 However in some
ases, the delay de
larations that are generatedrequire an argument of an atom to be a rigid list before that atom
an be sele
ted,whi
h is similar to [17, 18℄. Su
h uses of delay de
larations go far beyond ensuringthat derivations are input-driven.We do not
laim to present a
omprehensive method for showing termina-tion. In an average program, some predi
ates are well-terminating but some arenot. In general, one has to make stronger assumptions about the sele
tion rule.Nevertheless, it is useful to know whi
h predi
ates are well-terminating, essen-tially be
ause it means that one has to make the stronger assumptions onlyfor the predi
ates that are not well-terminating. For example, requiring groundor rigid arguments [16, 18℄
ould be limited to atoms whose predi
ates are notwell-terminating.In [21℄, well-terminating predi
ates are
onsidered in a more
on
rete settingthan here and are
alled robust predi
ates. The default left-to-right sele
tionrule of most Prolog implementations is assumed. It is exploited that the textualposition of atoms using robust predi
ates in
lause bodies is irrelevant for ter-mination. The other atoms must be pla
ed su
h that the atoms produ
ing theirinput o

ur earlier.A
knowledgementsThe author would like to thank Floren
e Benoy for proofreading this paper. Thiswork was funded by EPSRC Grant No. GR/K79635.Referen
es1. K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.2. K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
larations. InPro
eedings of AMAST'95, LNCS, Berlin, 1995. Springer-Verlag. Invited Le
ture.3. K. R. Apt and D. Pedres
hi. Studies in Pure Prolog: Termination. In J. W.Lloyd, editor, Pro
eedings of the Symposium in Computational Logi
, LNCS, pages150{176. Springer-Verlag, 1990.4. K. R. Apt and D. Pedres
hi. Modular termination proofs for logi
 and pure Prologprograms. In G. Levi, editor, Advan
es in Logi
 Programming Theory, pages 183{229. Oxford Unversity Press, 1994.5. K. R. Apt and A. Pellegrini. On the o

ur-
he
k free Prolog programs. ACMToplas, 16(3):687{726, 1994.6. M. Bezem. Strong termination of logi
 programs. Journal of Logi
 Programming,15(1 & 2):79{97, 1993.7. L. Cavedon. Continuity,
onsisten
y and
ompleteness properties for logi
 pro-grams. In G. Levi and M. Martelli, editors, Pro
eedings of the 6th InternationalConferen
e on Logi
 Programming, pages 571{584. MIT Press, 1989.3 For the reader familiar with [16℄, it is not said how it is shown that programs aresafe. 13

8. D. De S
hreye and S. De
orte. Termination of logi
 programs: the never-endingstory. Journal of Logi
 Programming, 19/20:199{260, 1994.9. D. De S
hreye, K. Vers
haetse, and M. Bruynooghe. A framework for analysing thetermination of de�nite logi
 programs with respe
t to
all patterns. In Pro
eedingsof FGCS, pages 481{488. ICOT Tokyo, 1992.10. S. De
orte and D. De S
hreye. Automati
 inferen
e of norms: a missing linkin automati
 termination analysis. In D. Miller, editor, Pro
eedings of the 10thInternational Logi
 Programming Symposium, pages 420{436. MIT Press, 1993.11. S. De
orte and D. De S
hreye. Termination analysis: Some pra
ti
al properties ofthe norm and level mapping spa
e. In J. Ja�ar, editor, Pro
eedings of the 15th JointInternational Conferen
e and Symposium on Logi
 Programming, pages 235{249.MIT Press, 1998.12. P. Dembinski and J. Ma luszy�nski. AND-parallelism with intelligent ba
ktra
k-ing for annotated logi
 programs. In Pro
eedings of the 2nd International Logi
Programming Symposium, pages 29{38. MIT Press, 1985.13. S. Etalle, A. Bossi, and N. Co

o. Well-terminating programs. Journal of Logi
Programming, 1998. A

epted for publi
ation.14. M. Fitting. First-order Logi
 and Automated Theorem Proving. Springer-Verlag,1996.15. J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, 1987.16. S. L�uttringhaus-Kappel. Control generation for logi
 programs. In D. S. Warren,editor, Pro
eedings of the 10th International Conferen
e on Logi
 Programming,pages 478{495. MIT Press, 1993.17. E. Mar
hiori and F. Teusink. Proving termination of logi
 programs with delayde
larations. In J. W. Lloyd, editor, Pro
eedings of the 12th International Logi
Programming Symposium, pages 447{461. MIT Press, 1995.18. J. C. Martin and A. M. King. Generating eÆ
ient, terminating logi
 programs.In M. Bidoit and M. Dau
het, editors, Pro
eedings of TAPSOFT'97, LNCS, pages273{284. Springer-Verlag, 1997.19. L. Naish. Coroutining and the
onstru
tion of terminating logi
 programs. Te
h-ni
al Report 92/5, University of Melbourne, 1992.20. J.-G. Smaus, P. M. Hill, and A. M. King. Preventing instantiation errors andloops for logi
 programs with several modes using blo
k de
larations. In PierreFlener, editor, Pre-pro
eedings of the 8th International Workshop on Logi
 ProgramSynthesis and Transformation, number UMCS-98-6-1, pages 72{29. University ofMan
hester, 1998. Extended abstra
t.21. J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi
 programs withblo
k de
larations running in several modes. In C. Palamadessi, editor, Pro
eed-ings of the 10th Symposium on Programming Language Implementations and Logi
Programming, LNCS. Springer-Verlag, 1998.22. Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury,an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
 Pro-gramming, November 1996.
14

