Well-Terminating, Input-Driven Logic Programs

Jan-Georg Smaus

University of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom,
telephone xx44/1227/827553, fax 762811, j.g.smaus@ukc.ac.uk

Abstract. We identify a class of predicates for which termination does
not depend on left-to-right execution. All that is required is that deriva-
tions are input-driven, that is, in each derivation step, the input argu-
ments of the selected atom do not become instantiated. The method
of showing that a predicate is in that class is based on level mappings,
closely following the traditional approach for LD derivations. Many pred-
icates terminate under such weak assumptions. Knowing these predicates
can be a very useful part of a more comprehensive method of showing
termination, which would have to make more specific assumptions about
the selection rule.
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1 Introduction

Termination of logic programs has been widely studied for LD derivations, that
is derivations where the leftmost atom in a query is always selected [1,3,8-11,
13]. All of these works are based on the following idea: at the time when an atom
a in a query is selected, it is possible to pin down the size! of a. This size cannot
change via further instantiation. It is then shown that for the atoms introduced
in this derivation step, it is again possible to pin down their size when eventually
they are selected, and that these atoms are smaller than a.

This idea has also been applied to arbitrary derivations [6]. Since no restric-
tion is imposed on when an atom can be selected, it is required that in each query
in a derivation, the size of each atom is always bounded. Programs that fulfill this
requirement are called strongly terminating. The class of strongly terminating
programs is very limited.

For most programs, it is necessary for termination to require a certain degree
of instantiation of an atom before it can be selected. This can be achieved using
delay declarations [2,16-21]. The problem is that, depending on what kind of
delay declarations and selection rule are used, it is not possible to pin down the
size of the selected atom, since this size may depend on the resolution of other
atoms in the query that are not yet resolved. Nevertheless, [17,18] and to a
limited extent [16] are based on the idea described above, whereas [19-21] avoid
any explicit mention of “size” and instead try to reduce the problem to showing
termination for LD derivations.

! The technical meaning of “pinning down the size” differs among different methods.



Our approach falls between the two extremes of making no assumptions about
the selection rule on the one hand and making very specific assumptions on the
other. We believe that a reasonable minimal requirement for termination can be
formulated in terms of modes:

In each derivation step, the input arguments of the selected atom cannot
become instantiated.

In other words, an atom in a query can only be selected when it is sufficiently in-
stantiated so that the most general unifier with the clause head does not bind the
input arguments of the atom. We call derivations which meet this requirement
input-driven.

This paper is about identifying predicates for which all input-driven deriva-
tions are finite. Other works in this area have usually made specific assumptions
about the selection rule and the delay declarations, for example local selection
rules [17], delay declarations that test arguments for groundness or rigidness [16,
18], or the default left-to-right selection rule of most Prolog implementations [19—
21]. In contrast, we show how previous results about LD derivations can be gen-
eralised, the only assumption about the selection rule being that derivations are
input-driven. We closely follow [13].

We exploit that under certain conditions, it is enough to rely on a relative
decrease in the size of the selected atom, even though this size cannot be pinned
down.

Ezample 1.1. Consider the usual append program and the following input-driven
derivation, where the selected atom is underlined:

append([1],[], As), append(As, [],Bs) —

[
append([], [], As'), append([1|As'], [],Bs) —
append([], [], As’), aPPend(As [,Bs') =
append([], [],Bs’) —

When append([1|As'],[],Bs) is selected, it is not possible to pin down its size
in any meaningful way. In fact, nothing can be said about the length of the
derivation associated with append([1|As’],[],Bs) without knowing about other
atoms which might instantiate As’. However, the derivation could be infinite
only if the derivation associated with append([],[], As’) was infinite. Our method
is based on such a dependency between the atoms of a query.

Not surprisingly, the class of programs for which all input-driven derivations are
finite is quite limited, although it is obviously larger than the class of strongly
terminating programs. Realistically, a comprehensive method for proving termi-
nation would have to make stronger assumptions. However, within the framework
of such a method, it can be useful to know for which predicates termination can
already be ensured only assuming input-driven derivations. This is demonstrated
in [21], but apart from that, we believe that it has not been recognised previously.

Example 1.2. Consider the following program which permutes a list. Assume
that in both predicates, the first position is the only input position.



permute([1, [1).

permute(Y, [U | X1) :-
delete(Y, U, Z),
permute(Z, X).

delete([X1Z]1, X, Z).
delete([UIY], X, [UIZ]) :-
delete(Y, X, Z).

Then we have the following infinite input-driven derivation:

permute([1],W) —
delete([1],U’, Z'), permute(Z’,X') —
delete([],U’, 2"), permute([1]|2"],X") —
([
([

delete([],U’,Z"),delete([1|Z"],U",Z""), permute(Z"',X") —
delete([],U’,2"),delete(Z",U",Z""), permute([1|Z""],X") — ...

The rest of this paper is organised as follows. The next section fixes the notation.
Section 3 introduces well and nicely moded programs and Section 4 shows that
for these, it is sufficient to prove termination for one-atom queries. Section 5
then deals with how one-atom queries can be proven to terminate. Section 6
discusses the results and the related work.

2 Preliminaries

Our notation follows [1,13]. For the examples we use Prolog syntax. We recall
some important notions. The set of variables in a syntactic object o is denoted
as vars(o). The domain of a substitution 6 is denoted as dom(#). The restriction
of a substitution 6 to the variables occurring in a syntactical object o is denoted
as flo. A syntactic object is linear if every variable occurs in it at most once.

For a predicate p/n, a mode is an atom p(my,...,m,), where m; € {I, O}
for i € {1,...,n}. Positions with I are called input positions, and positions
with O are called output positions of p. We assume that a fixed mode is
associated with each predicate in a program. To simplify the notation, an atom
written as p(s, t) means: s is the vector of terms filling the input positions, and t
is the vector of terms filling the output positions. An atom p(s, t) is input-linear
if s is linear.

A query is a finite sequence of atoms. A derivation step for a program P is
a pair (@, 0); (R,0c0), where Q = Q1,p(s,t),Q2 and R = @1, B, Q> are queries;
6 is a substitution; p(v,u) <— B a renamed variant of a clause in P and o the
most general unifier of p(s,t)# and p(v,u). We call p(s, t)6 the selected atom
and Rfo the resolvent of Qf and h «+ B. A derivation step is input-driven if
dom(o) Nwars(sf) = .

A derivation ¢ for a program P is a sequence (Qo, 6o); (Q1,61);- .., where
each successive pair (Q;,0;); (Qi+1,0i+1) in £ is a derivation step. Alternatively,
we also say that £ is a derivation of RU {Qofy}. We often denote a derivation



as Qobo; Q101;. ... An LD derivation is a derivation where the selected atom is
always the leftmost atom in a query. An input-driven derivation is a derivation
consisting of input-driven derivation steps.

If Q,a,R; (Q,B,R)8 is a step in a derivation, then each atom in B is a
direct descendant of a, and 06 is a direct descendant of b for all b € @, R.
We say b is a descendant of a if (b, a) is in the reflexive, transitive closure of
the relation is a direct descendant. The descendants of a set of atoms are defined
in the obvious way. If, for a derivation ...Q;...;Q"; Q" ..., the selected atom in
Q'"; Q" is a descendant of an atom a in @, then Q'; Q" is an a-step.

3 Modes

In this section we introduce the notions of well moded and nicely moded pro-
grams. Well-modedness has been used before to show termination of LD deriva-
tions [13]. In the context of arbitrary input-driven derivations, it is also crucial
to require that programs are nicely moded.

Well-modedness has been introduced in [12] and widely used for verification
since. In Mercury it is even mandatory that programs are well moded, which is
one of the reasons for its remarkable performance [22].

Definition 3.1 (well moded). A query @ = p1(s1,t1),.-.,Pn(Sn, ty) is well
moded if for all i € {1,...,n}

vars(s;) C U vars(t;) (1)
j<i
The clause p(tg, sp+1) ¢ @ is well moded if (1) holds for all i € {1,...,n+1}.
A program is well moded if all of its clauses are well moded.

Another common concept for verification is the following.

Definition 3.2 (nicely moded). A query Q = pi(si,t1),...,pn(sn,ty) is

nicely moded if t1,...,t, is a linear vector of terms and for all i € {1,...,n}
vars(s;) N U vars(t;) = 0. (2)
ji

The clause C' = p(to, Sp+1) < @ is nicely moded if @ is nicely moded and
vars(tg) N U vars(t;) = 0. (3)
j=1

A program P is nicely moded if all of its clauses are nicely moded.

Note that other authors have denoted the clause head of C' as p(sg,tp41) or
p(so, to), which allows for a more compact definition [13]?, furthermore suggest-
ing that there is an analogy between (2) and (3) above [2]. We have chosen not

2 We refer to the definition of simply moded here, but this is very similar to nicely
moded.



to do this for two reasons. First, our notation is consistent with Def. 3.1. Sec-
ondly, the analogy is misleading. It would be more appropriate to see an analogy
between (3) and the requirement that t1,...,t, is a linear vector of terms than
between (3) and (2).

Ezample 3.1. The program in Ex. 1.2 is well and nicely moded. It is neither well
moded nor nicely moded in reverse mode, however it can easily be made well
and nicely moded by interchanging the two body atoms in the second clause.

The example shows that multiple modes of a predicate can be obtained by having
multiple (renamed) versions of a predicate. This is why it is often assumed that
each predicate has a fixed mode [2,13,19,22]. However, this usually implies
actual code duplication and is therefore a real loss of generality.

In this paper, assuming a fixed mode for each predicate is not a loss of
generality, but merely a notational convenience. We consider arbitrary input-
driven derivations. The textual position of an atom within a query is irrelevant
for its selection. Any result that holds for a well moded program also holds for a
program where the atoms in each clause body are permuted in an arbitrary way.
In this sense, we can assume that the program of Ex. 3.1 is well moded and nicely
moded in both modes. Whenever one considers specific selection rules where the
textual position is relevant, one has to treat multiple modes explicitly [21].

The following lemma states a persistence property of well-modedness [2,
Lemma 16]. It has been shown previously for LD derivations [5].

Lemma 3.1. Every resolvent of a well moded query () and a well moded clause
C, where vars(C) Nwvars(Q) = 0, is well moded.

For nicely-modedness, there is a similar persistence property. It has been shown
previously for LD resolvents [5] and arbitrary resolvents [2]. However in the lat-
ter case, it was required that the clause head is input-linear. For input-driven
derivations, this is not necessary. It is assumed that the selected atom is suffi-
ciently instantiated, so that a multiple occurrence of the same variable in the
input arguments of the clause head cannot cause any bindings to the query.

Lemma 3.2. Every resolvent of a nicely moded query @ and a nicely moded
clause C, where the derivation step is input-driven and vars(C) Nwvars(Q) = 0,
is nicely moded.

Proof. Let C = h < B. We want to use [2, Lemma 11]. Therefore we must
show that we can assume without loss of generality that h is input-linear. Let
C'" = h' + Eq, B be the clause obtained from C by repeatedly applying the
following transformation: If the input arguments of the clause head contain two
occurrences of a variable x, replace one occurrence with a fresh variable y and
add the equation x = y at the beginning of the clause body.

Then A’ is input-linear, and C’ is nicely moded, where the predicate = in Eq
is used in mode (I, I). Furthermore, if Q) = @1, a, Q2 and

<Q7 @>5 <Q17B7Q27 0>



is an input-driven derivation step using C, then there is an input-driven deriva-
tion
(Q,0);(Q1,Eq,B,Q2, 0');...;(Q1,B,Q2, 0)

using C’ and the clause “z = z.” (which is conceptually the definition of =).

By [2, Lemma 11], (Q1,Eq, B,Q2)¢" is nicely moded. Furthermore, since
(Q1,Eq,B,Q2, 0');...;(Q1,B,Q2, ) is input-driven, it follows that Eq¢f#’ is a
sequence of atoms of the form s = s. Therefore §' = 6 and (Q1, B, @2)6 is nicely
moded. O

For a nicely moded program and query, it is guaranteed that every input-driven
derivation step only instantiates other atoms in the query that occur to the right
of the selected atom.

Lemma 3.3. Let P be a nicely moded program, @ = Q1,p(s,t), Q2 a nicely
moded query, and (Q, 0); {(Q1,B,Q@2, o) an input-driven derivation step. Then
dom(o) Nvars(Qy) = 0.

Proof. Since the derivation step is input-driven, it follows that dom(o)|Q C
vars(t). Thus since @ is nicely moded, dom(o) Nvars(Q1) = 0. o

4 Controlled Coroutining

In this section we define well-terminating predicates, that is predicates for which
all one-atom queries have finite derivations. As in [13], we then show that ter-
mination for one-atom queries implies termination for arbitrary queries.

For LD derivations, this is almost obvious and only requires that programs
and queries are well moded [13, Lemma 4.2]. Given a derivation & for a query
ai, - .- ,ay,, the sub-derivations for each a; do not interleave, and therefore ¢ can
be regarded as a derivation for a; followed by a derivation for a; and so forth. The
following example illustrates that in the context of interleaving sub-derivations
(coroutining), this is much less obvious.

Ezample 4.1. Consider the usual append program

append ([],Y,Y).
append ([X|Xs],¥s, [XIZs]) :-
append (Xs,Ys,Zs) .

in mode append(I, I, O) and the query
append([],[], As), append([1]As], [], Bs), append(Bs, [|, As).

This query is well moded but not nicely moded. Then we have the following
infinite input-driven derivation:

append([], [}, As), append([t]As], l, Bs), append(Bs, ], As) -

append([],[], As), append(As, [|, Bs'), append([1|Bs'], [], As) —
append([], [], [1|As']), append([1|As], [], Bs'), append(Bs/, [, As') — ...

This well-known termination problem of programs with coroutining has been
identified as circular modes [19].



To avoid the problem, we require programs and queries to be nicely moded.

Definition 4.1 (well-terminating predicate/atom). Let P be a well and
nicely moded program. A predicate p in P is well-terminating if for each well
and nicely moded query p(s, t), all input-driven derivations of P U {p(s,t)} are
finite. An atom is well-terminating if its predicate is well-terminating.

The following lemma says that a well-terminating atom cannot proceed indefi-
nitely unless it is repeatedly fed by some other atom.

Lemma 4.1. Let P be a well and nicely moded program and F,b, H a well
and nicely moded query where b is a well-terminating atom. An input-driven
derivation of PU{F,b, H} can have infinitely many b-steps only if it has infinitely
many a-steps, for some a € F'.

Proof. In this proof, we call an a-step for some a € F an F-step, and likewise
for H. By Lemma 3.3, any H-step does not instantiate any descendant of b. Thus
the H-steps can be disregarded, and without loss of generality, we assume H is
empty. Let

= (Fb, 0);...5(Qo,00); (Q1,61) ...

be an input-driven derivation such that (Qo, 6o); (Q1,6:1) . .. contains no F-steps
(that is, £ contains only finitely many F-steps). Since by Lemma 3.3, no b-step
can instantiate any descendant of F', there exists an input-driven derivation

§a = (Fb, 0);...5(R,p);...;(Qo,00);(Q1,61) ...

such that (F\b, 0);...; (R, p) contains only F-steps and (R, p);...;{(Qo,80) con-
tains only b-steps (that is, the F-steps are moved forward using the Switching
Lemma [15]). Since R = R’, b for some R’, there exists an input-driven derivation

& = (b,p);..-; (Lo, 00); (11,61) - ..

obtained from (R, p);...;(Qo,60); (Q1,61) ... by removing the prefix R’ in each
query.

Let t1,...,t,, be the vector of output arguments of R'p and o a substitution
such that (t1,...,t)o is ground. Then by Def. 3.1, bpo is a well moded query.
By Lemma 3.3, no b-step instantiates ti,...,t,,. Therefore from &3 we can

construct an input-driven derivation
§a = (b, po);...;{Io,000); (11,010) ...

Since bpo is a well and nicely moded query and b is well-terminating, &, is finite.
Therefore &3, &, and finally £ are finite. O

The following lemma is a consequence and states that well-terminating atoms
on their own cannot produce an infinite derivation.

Lemma 4.2. Let P be a well and nicely moded program and @) a well and nicely
moded query. An input-driven derivation of PU{@} can be infinite only if there
are infinitely many steps where an atom is resolved that is not well-terminating.



Proof. Let Q = F,b, H where b is a well-terminating atom, and £ an infinite
derivation for (). We show that ¢ can have infinitely many b-steps only if ¢ has
infinitely many steps where an atom is resolved that is not well-terminating.
The proof is by induction on the length of F'. If F' is empty, the result follows
from Lemma 4.1. Now suppose F' contains at least one atom. By Lemma 4.1, ¢
can have infinitely many b-steps only if for some a € F, ¢ has infinitely many
a-steps. If a is not well-terminating, the result follows immediately. If a is well-
terminating, let F' = Fy,a, F». Since F} contains fewer atoms than F', the result
follows from the inductive hypothesis. O

Lemma 4.2 provides us with the formal justification for restricting our attention
to one-atom queries. However, it requires that programs and queries are nicely
moded. This is not necessary for LD derivations [13].

We now define well-terminating programs. The definition differs from the
corresponding one in [13] in that they consider only LD derivations.

Definition 4.2 (well-terminating program). Let P be a well and nicely
moded program and @ a well and nicely moded query. P is well-terminating
if all input-driven derivations of P U {Q} are finite.

The following is an obvious corollary of Lemma 4.2.

Corollary 4.3. A program P is well-terminating if and only if all its predicates
are well-terminating.

5 Showing Weak Termination

All of the mentioned approaches to termination [1,3,8-11,13] more or less ex-
plicitly rely on measuring the size of the input in a query. We agree with Etalle
et al. [13] that it is reasonable to make this dependency explicit. This gives rise
to the concept of moded level mapping [13], which is an instance of level mapping
first introduced in [6,7]. Bp denotes the set of ground atoms using predicates
occurring in P.

Definition 5.1 (moded level mapping). Let P be a program. |.| is a moded
level mapping if

1. it is a level mapping, that is a function |.| : Bp — I,
2. for any t and u, |p(s,t)| = |p(s, u)|.

For a € Bp, |a| is the level of a.

Thus the level of an atom only depends on the terms in the input positions.
The following concept, adopted from [1], is useful for proving termination for
a whole program incrementally, by proving it for one predicate at a time.

Definition 5.2 (depends on). Let p, ¢ be predicates in a program P. We say
that p refers to ¢ if there is a clause in P with p in its head and ¢ in its body,
and p depends on ¢ (written p 3 q) if (p, ¢) is in the reflexive, transitive closure
of refers to. We write p Jqif p Jgand g 2 p,and p~ ¢ if p Jq and ¢ I p.



Abusing notation, we shall also use the above symbols for atoms, where p(s,t) O
q(u,v) stands for p 3 ¢, and likewise for 1 and ~. Furthermore, we denote the
equivalence class of a predicate p with respect to ~ as [p]x.

The following definition provides us with a criterion to prove that a predicate
is well-terminating.

Definition 5.3 (well-acceptable). Let P be a program and |.| a moded level
mapping. A clause C = h < B is well-acceptable (with respect to |.|) if
for every substitution 8 such that C# is ground, and for every a in B such that
a = h, we have |hf| > |ab)|.

A set of clauses is well-acceptable with respect to |.| if each clause is
well-acceptable with respect to |.|.

Let us compare this concept to some similar concepts in the literature: recur-
rent [6], well-acceptable [13] and acceptable [4,11] programs.

Like [11,13] and unlike [4, 6], we require |h6| > |af| only for atoms a where
a =~ h. This is consistent with the idea that termination should be proven incre-
mentally: to show termination for a predicate p, it is assumed that all predicates
g with p O g have already been shown to terminate. Therefore we can restrict
our attention to the predicates ¢ where q¢ =~ p.

Like [6] and unlike [4,11,13], our definition does not involve models or com-
puted answer substitutions. Traditionally, the definition of acceptable programs
is based on a model M of the program, and for a clause h < ay,...,a,,
|[h8| > |a;f| is only required if M = (a1,...,a;—1)8. The reason is that for
LD derivations, a1, ...,a;—1 must be completely resolved before a; is selected.
By the correctness of LD resolution [15] and well-modedness [5], the accumulated
answer substitution 6, just before a; is selected, is such that (ay,...,a;-1)8 is
ground and M [ (a1,...,a;—1)0.

Such considerations count for little when derivations are merely required to
be input-driven. This is illustrated in Ex. 1.2. In the third line of the derivation,
permute([1|Z"],X') is selected, although there is no instance of delete([],U’, Z")
in the model of the program. This problem has been described by saying that
delete makes a speculative output binding [19]. Programs that do not make
speculative output bindings are considered in [20].

Theorem 5.1. Let P be a well and nicely moded program and p be a pred-
icate in P. Suppose all predicates ¢ with p 3 ¢ are well-terminating, and all
clauses defining predicates ¢ € [p|~ are well-acceptable. Then p, and hence every
predicate in [p], is well-terminating.

Proof. Suppose the set of clauses defining the predicates ¢ € [p]~ is well-accept-
able with respect to the moded level mapping |.|. For an atom a using a predicate
in [p]~, we define ||a|| = sup({|ab| | af is ground}), if the set {|ad]| | ab is ground}
is bounded. Otherwise ||a|| is undefined. Observe that

if ||a|| is defined for an atom a, then ||af|| < ||a|| for all 6. (%)



To measure the size of a query, we use the multiset containing the level of
each atom whose predicate is in [p|~. The multiset is formalised as a function
Size, which takes as arguments a query and a natural number.

Size(@)(n) = #{q(u,v) | g(u,v) is an atom in Q,q ~ p and [lg(u, v)|| = n}

Note that if a query contains several identical atoms, each occurrence must be
counted. We define Size(Q) < Size(R) if and only if there is a number [ such that
Size(Q)(1) < Size(R)(1) and Size(Q)(l') = Size(R)(l') for all I’ > [. Intuitively,
a decrease with respect to < is obtained when an atom in a query is replaced
with a finite number of smaller atoms. It is easy to see (Konig’s Lemma [14])
that all descending chains with respect to < are finite.

Let Qo = p(s,t) be a well and nicely moded query. Then s is ground and
thus ||Qo]| is defined. Let £ = Qo;@1; Q2 - .. be an input-driven derivation of
PU{Qo}.

Since all predicates ¢ with p 3 ¢ are well-terminating, it follows by Lemma 4.2
that there cannot be an infinite suffix of ¢ without any steps where an atom
q(u,v) such that ¢ = pis resolved. We show that for all ¢ > 0, if the selected atom
in Q;;Qiv1 is ¢(u,v) and ¢ = p, then Size(Q;+1) < Size(Q;), and otherwise
Size(Qi+1) < Size(Q;). This implies that £ is finite, and, as the choice of the
initial query Qo = p(s,t) was arbitrary, p is well-terminating.

Consider ¢ > 0 and let C' = ¢(vo, um+1) < q1(u1,v1), ..., ¢m(Wm, v, ) be the
clause, g(u, v) the selected atom and # the most general unifier used in @Q;; Q;+1.

If p 1 ¢, then p 1 g; for all j € {1,...,m} and hence by (x) it follows that
Size(Qi+1) < Size(Qy).

Now consider g = p. Since C is a well-acceptable clause, ||¢(vo, Upm+1)8]| >
llgj(uj,v;)0|| for all j with ¢; & p. This together with (x) implies Size(Qi11) <
Size(Q;). a

Example 5.1. We now give a few examples of well-terminating predicates. We
denote the term size of a term ¢, that is the number of function and constant
symbols that occur in ¢, as T'Size(t).

The clauses defining append([/, I, O) (Ex. 4.1) are well-acceptable, where
|append(sy, s2,t)| = T'Size(s1). Thus append([,I, O) is well-terminating. The
same holds for append(O, O, I), defining |append(t1,t2, s)| = T'Size(s).

The clauses defining delete(l, O, O) (Ex. 1.2) are well-acceptable, where
|delete(s,t1,t2)| = T'Size(s). Thus delete(l, O, O) is well-terminating. The
same holds for delete(O, I, I), defining |delete(t, s1,s2)| = T'Size(sz).

In a similar way, we can show that permute(O, I) is well-terminating. How-
ever, permute(], O) is not well-terminating.

Figure 1 shows a fragment from a program for the n-queens problem. The
mode is {nqueens(I, O), sequence(l, O), safe(l), permute(O,I), <(I,I),
is(0,1), safe_aux(l,I,I), nodiag(l,I,I), =\=(I,I)}. Again using as level
mapping the term size of one of the arguments, one can see that the clauses defin-
ing {no_diag, safe_aux, safe} are well-acceptable and thus these predicates are
well-terminating. This information is useful since this program relies on non-LD
derivations for its performance [21].
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nqueens (N,Sol) :- safe_aux([1,_,_).

sequence (N,Seq) , safe_aux([M|Ms],Dist,N) :-
safe(Sol), no_diag(N,M,Dist),
permute (Sol,Seq) . Dist2 is Dist+l,
safe_aux(Ms,Dist2,N).
safe([]).
safe([N|Ns]) :- no_diag(N,M,Dist) :-
safe_aux(Ns,1,N), Dist =\= N-M,
safe(Ns) . Dist =\= M-N.

Fig. 1. A program for n-queens

As a more complex example, consider the following program, whose mode is
{plus_one(I),minus_two(I),minus_one(I), }. This example uses the successor
notation for natural numbers.

plus_one(X) :- minus_two(s(X)).

minus_two(s(X)) :- minus_one(X).
minus_two (0) .

minus_one(s(X)) :- plus_one(X).
minus_one (0) .

We define
|[plus_one(s)| = 3 «* T'Size(s) + 4
[minus_two(s)| = 3 * T'Size(s)
|minus_one(s)| = 3 x T'Size(s) + 2
Then the program is well-acceptable and thus well-terminating.

We see that whenever in some argument position of a clause head, there is a
compound term of some recursive data structure, such as [X|Xs], and all recursive
calls in the body of the clause have a strict subterm of that term, such as Xs, in
the same position — then the clause is well-acceptable using as level mapping
the term size of that argument position. Since this situation occurs very often,
it can be expected that an average program contains many well-terminating
predicates. However, it is unlikely that in any real program, all predicates are
well-terminating.

The last example shows that more complex scenarios than the one described
above are possible, but we doubt that they would often occur in practice. There-
fore level mappings such as the one used in the example will rarely be needed.

Consider again Def. 5.3. Given a clause h < ay,...,a, and an atom a; = h,
we require |h6| > |a;0] for all grounding substitutions 6, rather than only for 6
such that (a1,...,a;-1)@ is in a certain model of the program. This is of course
a serious restriction. In Ex. 1.2, assuming mode permute(I, O), there can be no
moded level mapping such that |permute(Y,[U|X])f| > |permute(Z,X)6)| for all
6. It might be possible to relax Def. 5.3 to allow more programs, but the fact
remains that many predicates are not well-terminating.
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6 Discussion

We have identified the class of programs for which all input-driven derivations
are finite. An input-driven derivation is a derivation where in each step, the input
arguments of the selected atom are not instantiated. Predicates can be shown
to be in that class using the notions of level mapping and acceptable clause in a
very similar way to methods for LD derivations [8,11,13].

This paper closely follows [13]. There a statement is shown which is essentially
the converse of Thm. 5.1. It says that if a predicate is well-terminating, then
there is a level mapping such that the clauses defining the predicate are well-
acceptable. It would be interesting to show a similar result for arbitrary input-
driven derivations, but we believe that it must be difficult, since our definition
of acceptability is much more restrictive.

We have claimed that most other approaches to termination rely on the
idea that the size of an atom can be pinned down when the atom is selected.
Technically, this usually means that the atom is bounded with respect to some
level mapping [4,6,13,18]. This is different in [9, 11], where termination can be
shown for the query, say, append([X], [|, Zs) using as level mapping the term size
of the first argument, even though the term size of [X] is not bounded. However,
the method only works for LD derivations and relies on the fact that any future
instantiation of X cannot affect the derivation for append([X], [], Zs). Therefore it
is effectively possible to pin down the size of append([X],[], Zs).

In contrast, we show that under certain conditions, it is enough to rely on a
relative decrease in the size of the selected atom, even though this size cannot be
pinned down. More concretely, we use that an atom in a query cannot proceed
indefinitely unless it is repeatedly fed by some other atom occurring earlier in
the query. This implies that every derivation for the query terminates.

Bezem [6] has identified the class of strongly terminating programs, which are
programs that terminate under any selection rule. While it is shown that every
total recursive function can be computed by a strongly terminating program, this
does not change the fact that few existing programs are strongly terminating.
Transformations are proposed for three example programs to make them strongly
terminating, but the transformations are complicated and ad-hoc.

This paper is more abstract than the literature on programs with delay dec-
larations [2,16-21]. We are not concerned with the details of particular delay
constructs. Instead, we only assume what we see as the basic purpose of delay
declarations: ensuring that derivations are input-driven. Note that depending on
what kind of constructs are used, ensuring that derivations are input-driven is
actually quite subtle [21]. Nevertheless, delay declarations are clearly a powerful
instrument for this purpose.

On the whole, there seems to be a strong reluctance to give up the idea that
the size of an atom must be pinned down when the atom is selected. This is true
even for [6], where no assumptions at all are made about the selection rule. It
is also true for [17], where a local selection rule is assumed, that is a rule under
which only most recently introduced atoms can be resolved in each step. In [18], a
similar effect is achieved by bounding the depth of the computation introducing

12



auxiliary predicates. It is more difficult to assess [16] since the contribution
there is mainly to gemerate delay declarations automatically rather than prove
termination.® However in some cases, the delay declarations that are generated
require an argument of an atom to be a rigid list before that atom can be selected,
which is similar to [17, 18]. Such uses of delay declarations go far beyond ensuring
that derivations are input-driven.

We do not claim to present a comprehensive method for showing termina-
tion. In an average program, some predicates are well-terminating but some are
not. In general, one has to make stronger assumptions about the selection rule.
Nevertheless, it is useful to know which predicates are well-terminating, essen-
tially because it means that one has to make the stronger assumptions only
for the predicates that are not well-terminating. For example, requiring ground
or rigid arguments [16, 18] could be limited to atoms whose predicates are not
well-terminating.

In [21], well-terminating predicates are considered in a more concrete setting
than here and are called robust predicates. The default left-to-right selection
rule of most Prolog implementations is assumed. It is exploited that the textual
position of atoms using robust predicates in clause bodies is irrelevant for ter-
mination. The other atoms must be placed such that the atoms producing their
input occur earlier.
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