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We study the Fermi-surface topological transition of the pocket-opening type in a two-dimensional Fermi
liquid. We find that the paramagnetic fluctuations in an interacting Fermi liquid typically drive the transition first
order at zero temperature. We first gain insight from a calculation using second-order perturbation theory in the
self-energy. This is valid for weak interaction and far from instabilities. We then extend the results to stronger
interaction, using the self-consistent fluctuation approximation. Experimental signatures are given in light of our
results.
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I. INTRODUCTION

Fermi-surface reconstruction has been a subject of fun-
damental interest in the theory of metals for a long time.
In noninteracting models, the Lifshitz transition [1] is a
well-known example of a Fermi-surface topological transition
(FSTT), where the Fermi surface (FS) changes its topology
when some external parameter (for example, pressure) is
varied. Such FSTTs may change the number of FSs (for
example, in a pocket-opening transition) or the nature of a
single FS (for example, in a neck-closing transition) [1,2]. An
important characteristic of these transitions, however, is that
they occur without symmetry breaking.

Rather than considering an external agent, one may further
ask if such FS deformations can occur as a function of some
interaction strength. In this case, one may have symmetry-
breaking transitions (Pomeranchuk instabilities [3,4]), as
well as non-symmetry-breaking deformations, which were
predicted in early works [5,6]. It has since been understood that
Pomeranchuk and interaction-driven topological transitions
can be put on the same footing [7]. It is then natural to look for a
unified theory of the noninteracting Lifshitz FSTTs tuned by an
external agent and the FS distortions induced by interactions.

The interest regarding FSTTs in solids has surged re-
cently, with a plethora of both theoretical [4,7–15] and
experimental [16,17] works in contexts ranging from nematic
phases in cold atoms [8,9] to antiferromagnetic fluctuations in
cuprates [15]. In this work, we address the general effects of
paramagnetic (PM) fluctuations on a FSTT, specifically asking
what the order of the transition is and what the experimental
signatures are. The answers to these questions are crucial for
the understanding of a number of materials. This study is
partially motivated by the layered material NaxCoO2, which
is known both to contain strong PM fluctuations and to have a
band structure that admits a FSTT as a function of doping [17].
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188300, Russia; S.Slizovskiy@lboro.ac.uk
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The fundamental physical feature of the problem is a
noninteracting dispersion relation which leads to a large (and,
for simplicity, circular) FS in two dimensions (2D) with the
chemical potential close to the energy dispersion relation at
the center of the band (i.e. μ ≈ 0), as shown in Fig. 1, so that
in the noninteracting case, a small FS (pocket) may appear as
a function of doping. In the following, we will calculate the
effect of short-range interactions on this FSTT. We seek to
characterize this transition and show its signatures in various
physical quantities. Therefore, this paper is organized as
follows. We present the model, followed by the second-order
perturbation theory, in order to illustrate the equations and
the strategy; then we focus on the region of paramagnetic
fluctuations. Finally, we discuss experimental consequences
and conclusions.

II. MODEL

The system we consider is a Fermi liquid (FL) with short-
range interactions (Hubbard type for simplicity). The Hamil-
tonian becomes H = ∑

σ=↑,↓
∫

d2k/(2π )2[ε(k)c†k,σ ck,σ +
Un↑(k)n↓(−k)], where ε(k) is a model-dependent bare dis-
persion relation, c†k,σ and ck,σ are the creation and annihilation

operators in momentum space, and nσ (q) = ∫
d2k

(2π)2 c
†
k+q,σ ck,σ

is the density of electrons with spin σ =↑ , ↓. As is typical in
field theories in 2D, we assume an essential cutoff momentum
for the interaction � [18]. This cutoff can be physically related
to any of the usual ultraviolet cutoffs in solid-state models, such
as the inverse lattice constant of a lattice model or the inverse
screening length of a more realistic short-range potential.

Our results depend only on the behavior of ε(k) close to the
two FSs. Therefore, the dispersion close to the center of the FS
can be approximated in dimensionless units by ε2(k) = − k2

2 ,
while for the large circular FS the dispersion, including the
curvature term, is ε1(k) = vF1(|k| − 1) + (k−1)2

2m1
(we use units

where kF1 = 1 at μ = 0 and m2 = 1). Without interactions, the
pocket appears continuously by changing the doping (chemical
potential μ); the magnitude of its Fermi vector is denoted by
kF2. With interactions, however, there is competition between
the kinetic energy Ekin ∼ k2

F2 and the interaction contribution
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FIG. 1. Schematic representation of the bare dispersion.

to the self-energy; this competition is crucial in determining
whether one may add a particle to the small FS or not.

III. SECOND-ORDER PERTURBATION THEORY

It is instructive to first study the self-energy to second
order in perturbation theory (SOPT) far from any symmetry-
breaking instabilities and for very weak interaction. We use the
developed insight to concentrate on the region of paramagnons
near a ferromagnetic (FM) instability, which is the central part
of this work.

To first order in perturbation theory, we obtain the Hartree
self-energy �(kF ,� = 0) = Un/2 (the Fock term is zero),
which can be absorbed in μ. Thus, the first nontrivial order is
therefore the SOPT:

�(kF ,ω = 0) = U 2
∫

d2qdω′

(2π )3
G(kF + q,iω′)χ0(−q,−iω′),

(1)

where χ0 is the susceptibility of free fermions (frequencies ω

are measured with respect to the chemical potential).
Assuming the onset of a small FS, χ0 contains contributions

from both the large and small FSs. It turns out, however, that
the important physics we want to reveal occurs at the small
FS, so we initially ignore the large FS and concentrate only
on the pocket. The contribution to the susceptibility from the
small FS and for q � kF2 reads

χ0(q,iω) ≈ k2
F2

π
(
q2 + 4ω2

q2

) , (2)

which leads, with logarithmic accuracy, to

�(kF2,iω = 0) ≈ U 2

8π2
k2
F2 ln

�

kF2
+ const. (3)

This strong logarithmic dependence on kF2 is crucial in the
determination of the size of the pocket. Technically, the
divergence comes from the integration in Eq. (1) over
the region kF2 < q < � where the Green’s function can be
approximated as G(�kF2 + �q,ω) ≈ G(�q,ω) = 1/(iω + q2/2).
We emphasize the momentum region q � kF2 as this region
gives the divergence in self-energy. However, we stress that
the approximations make no qualitative difference to the final

result, and all plots are obtained via numerical integration with
the full q dependence.

For a given chemical potential μ (we assume the smooth
Hartree term is already absorbed) this is given by the solution
of the energy balance equation,

μ = ε(kF2) + �(kF2,ω = 0) = k2
F2

2

(
U 2

4π2
ln

�

kF2
− 1

)
. (4)

Consider μ > 0, so that the noninteracting model has all small-
momentum states filled and there is no pocket. In the presence
of interactions, however, the effective energy of the fermions
bends up in the vicinity of kF2, with a corresponding maximum

μmax = U 2

16π2 �
2e

− 8π2

U2 −1 reached when kF2 = �e
− 4π2

U2 − 1
2 . In

addition to the trivial solution without a pocket, there are
then two nontrivial solutions of Eq. (7) for kF2 in the interval
μ ∈ [0,μmax], as seen in Fig. 2(a). Solving for kF2 yields

k
(1);(2)
F2 (μ) = 4π

√
μ

U

√√√√−W0;−1

(
− 16π2μe

8π2

U2

�2U 2

) , (5)

where Wi(z) is the product logarithm function [19].
Which of the three solutions for kF2 is stable is determined

by the grand canonical potential �, which we find by
integrating d� = −n dμ, starting from the point kF2 = 0
where the phases merge. The result is plotted in Fig. 2(b):
the trivial phase with μ < μcrit is unstable, and a first-order
phase transition to the solution with a larger pocket occurs
(indicated by arrow). This happens because at small kF2 the
logarithm in the U 2 term outweighs the free kinetic term. From
the expression for � it follows that the position of μcrit equally
divides the shaded area, a case of Maxwell construction.

Although the above picture of FS reconstruction as a
function of interaction U as in Refs. [5,6] is intuitively
appealing, in a typical experimental situation one rarely has
any strong control over U . We therefore imagine returning to
the Lifshitz setup, where some external parameter is varied,
extending these original ideas to nonzero interaction. With
the concrete example of NaxCoO2 in mind, we examine
what happens as a function of doping. To make this picture
consistent, however, we must first reinstate the large FS.

It may be intuitively expected that the self-energy of the
large FS has no essential dependence on the size of the pocket;
however, to check this we evaluate this contribution,

�(kF1,ω = 0) ≈ U 2

8π2
k2
F2

1 − vF1m1

m1v
2
F1

, (6)

which has no logarithmic enhancement. At the level of SOPT,
the main role of the large FS is therefore to act as a particle
reservoir, with the electron density given by Luttinger’s
theorem: n = 1

2π
(k2

F1 − k2
F2).

We assume that all the nondivergent terms containing
k2
F2 are effectively included in � and the small self-energy

contributions to the large FS are already included in the
bare dispersion parameters. We also assume that the effective
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(a) (b)

FIG. 2. (Color online) (a) Pocket size kF2(μ) and (b) electron density n(μ) for the parameters U = 4 (effective Ueff = 6.3), vF1 = 2,
m1 = 1, � = 1 (other parameters give qualitatively similar results). For these values the FSTT happens at μ = 0.0023, and electron density
jumps by roughly 1%. The dashed arrow indicates the phase transition, which happens when the two shaded domains have equal area, reflecting
a Maxwell construction.

chemical potential μ already includes the Hartree term, as
this can play no role at constant density. Then, the chemical
balance equation reads

μ = ε(kF2) + �(kF2,ω = 0) = vF1(kF1 − 1). (7)

This equation has the solution kF1 = μ/vF1 + 1, while kF2

in given in Eq. (5) and the discussion above. However, one
may now view the pocket-opening transition as a function of
density (parameterized by μ). Without interactions, the pocket
smoothly appears for μ < 0. In the presence of interactions,
however, the point of a noninteracting FSTT (kF2 = 0, μ = 0)
is unstable, and when μ is slightly above zero, there is a
first-order phase transition to the branch with larger kF2. We
see, however, from Eq. (5) that for small U , the jump of kF2

at the phase transition is exponentially small. We also note
that the two phases have a different electron density which

decreases abruptly by k2
F2 min
2π

at the FSTT. This implies that if
we continuously vary the doping, there is an interval of electron
densities where no stable homogeneous phase exists; there
would be phase coexistence (phase separation). The physics
of such a state is governed by long-range interactions that are
not included in the present model. In this situation, we also
cannot exclude the possibility of a charge-density-wave phase
with broken translational symmetry.

To summarize so far, interactions drive the pocket-
opening/pocket-closing first-order FSTT in SOPT, with an
exponentially small jump of kF2 for small U . Going to higher
orders in U in general, where a small FS in 2D may have
further nonanalyticities due to other fluctuations (see, e.g.,
Refs. [20,21]), is beyond the scope of the this study. However,
by concentrating on the region of large PM fluctuations, we
will now show that this jump is enhanced for larger U .

IV. MODERATE U

By increasing the strength of the interaction, approaching
but remaining below the Stoner instability, we enter the
regime of paramagnons. The summation of ladder and ring
diagrams [22] gives the “effective paramagnon” interaction:

V (q,iω) = χ0(q,iω)

1 − U 2χ2
0 (q,iω)

+ Uχ2
0 (q,iω)

1 − Uχ0(q,iω)
. (8)

The self-energy in the paramagnon approximation in the low-
temperature limit then reads

�(k,i�n)

= U 2
∫ ∞

−∞
dω

∫
d2q

(2π )3
G(k + q,i�n + iω)V (q,iω). (9)

Further diagrams giving the vertex corrections turn out to
cancel those of the quasiparticle weight Z [23,24].

As before, we express the bare susceptibility as a sum of two
Lindhard functions that come from the two FSs. Evaluating
numerically integral (9) for the real part of the self-energy at
the small FS, we find that it can be well fitted by the function

�(kF2) ≈ U 2
eff

8π2

[
k2
F2

(
ln

�

kF2
+ a1

)
+ b1

vF1
k2
F2 + c1

]
. (10)

Here, a1 slowly increases with U and is close to zero for
large U , and b1 ≈ −0.8. The first two terms come from the
contribution of the susceptibility from the small FS, while
the b1 term comes from the large FS susceptibility. Aside
from the small analytic corrections, a1,b1, the overall form
of the self-energy is identical to Eq. (3), with an effective
interaction strength Ueff . For small U , Ueff = U , but when U

approaches the Stoner instability UStoner = 2π/(1 + 1/vF1),
the effective interaction strength greatly increases. This is
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(a)

(c) (d)

(b)

FIG. 3. (a) Ueff/U as a function of U , defined by Eq. (10).
(b) Temperature dependence of �(kF2) for fixed kF2. (c) Effective
mass at both FSs as a function of U (kF2 = 0.2) and as a function of
kF2 for U = 4 in the inset (solid and dashed lines indicate small and
large FSs, respectively). (d) Jump in T -linear coefficient in cv due to
FSTT for vF1 = 2.

plotted in Fig. 3(a) and can be understood to be the effect of the
enhancement of the susceptibility due to PM fluctuations. The
large FS now plays a role beyond that of a reservoir: it drives
the system closer to the Stoner instability, thus enhancing the
PM fluctuations and, consequently, Ueff . The physics of the
first-order Lifshitz transition described previously by SOPT is
still valid, with the simple replacement of U → Ueff .

It is worth mentioning that while a similar effect of
the interactions driving the FSTT first-order has previously
been discussed for neck-opening/neck-closing transitions in
Refs. [4,8,9], the physical processes in the present case are
quite different. In the former, the logarithmic divergence of the
single-particle density of states (van Hove singularity) led to a
first-order transition that technically originated from the Fock
term. In the present study, the large paramagnetic fluctuations
lead to the effect.

V. PROPERTIES

Having shown that the FSTT transition is driven first order
by interactions, we now turn to the physical consequences
of this calculation. We begin by addressing the question, is
the system with the small FS (and large self-energy) a good
FL? To answer this question, we consider the frequency and
momentum dependence of the retarded self-energy, which
reads [25]

Im�R(k,ω) ≈ U 2
∫

d2q

(2π )2
[θ (ε(q)) − θ (ε(q) − ω)]

×ImV R(q − k,ε(q) − ω), (11)

where ε(q) takes the relevant form of the bare dispersion
near each of the two FSs. In SOPT, for the small FS and
small momentum transfer (forward scattering) ImV R(q,ω) =
ImχR

0 (q,ω), and it behaves as

ImχR
0 (q,ω) = − 1

2πm

ω√
(kF2q)2 − ω2

θ (kF2q − |ω|). (12)

The computation reveals a logarithmic term coming from the
region of forward scattering. A similar one comes from
the backscattering region q ≈ 2kF2. Therefore, when only
the small FS is considered, with logarithmic accuracy [25],

Im�R(kF2,ω) ≈ U 2

8π3k2
F2

ω2 ln
k2
F2

|ω| . (13)

In the region of paramagnetic fluctuations, the imaginary part
of the self-energy behaves as in SOPT with U replaced by Ueff ,
while the real part reads

Re�R(kF2,ω > 0) =
{

(1 − Z−1)ω, ω � k2
F2

const, ω � k2
F2

(14)

The coefficients are (−Z−1 + 1) ≈ − 1
8π2 U

2V (0,0), with V

given by Eq. (8).
These results show that in the case of small U , where the

pocket is exponentially small, the pocket is, formally, a good
Fermi liquid with large quasiparticle weight Z. In addition, Z

dictates an evolution from a good Fermi liquid at small U to a
bad Fermi liquid close to Stoner instability. For example, for
U = 4, vF1 = 2 (as used in Fig. 2), we obtain Z−1 = 16.5.
When U increases, the effective mass

m∗ ≡ kF /|v∗
F |, (15)

v∗
F = ZkF

(
vF + ∂

∂k
Re�(k,0)

)
, (16)

diverges as a power law close to the Stoner transition. This
can be clearly seen in measurements of the heat capacity,
as discussed below, while the small Z in this case leads to
an almost smooth spectral function. This makes the pocket
almost invisible in angle-resolved photoemission spectroscopy
experiments.

The effect of temperature T is summarized in Fig. 3(b),
where it is evident that the self-energy �2 is affected by T , and
as T is increased, we expect a termination of the first-order
jump at a second-order critical end point Tc, in a manner
analogous to that found in neck-opening/neck-closing Lifshitz
transitions [9]. A full discussion of this physics and an accurate
estimate of Tc for realistic parameters will be given elsewhere.

The heat capacity at low temperatures can be computed
using the FL formula, which for 2D is

cv = π2

3
N∗(0)k2

BT = πT

3
(m∗

1 + m∗
2), (17)

where N∗(0) = kF /(π |v∗
F |) is the density of states at the

Fermi level. For the noninteracting system when the pocket is
continuously open, Eq. (17) leads to a jump in the coefficient of
the term proportional to T in cv at the FSTT. Also, cv depends
only on the pocket’s appearance and not on its size, which
is indicative of the 2D nature of the pocket. In the presence

165110-4



EFFECT OF PARAMAGNETIC FLUCTUATIONS ON A . . . PHYSICAL REVIEW B 90, 165110 (2014)

of interactions, the PM fluctuations make m∗ of the pocket
dependent on pocket’s size for small kF2. This dependence
weakens for larger kF2 [as seen in Fig. 3(c)], making
the doping dependence of cv remarkably similar to that in
the 2D noninteracting case but with the magnitude of the
jump at the FSTT dependent on the interaction strength U ,
as seen in Fig. 3(d). In three dimensions, however, a first-order
FSTT would have a more obvious experimental signature; a
discussion of the three-dimensional FL is given in Ref. [26].

However, for a real layered material such as NaxCoO2,
which has a nonzero interlayer hopping, the situation is
different. In this case, the noninteracting Lifshitz transition
does not show a jump in cv as the pocket smoothly opens;
instead, it exhibits a square-root singularity as a function of
doping (or particle number) [2]. On the other hand, as long as
the minimum k2

F2 at the transition is larger than the interplane
hopping, the theory developed above remains unchanged. The
predicted jump in cv was seen experimentally [17]. Thus, we
believe that the present work provides the essential physics
behind the FSTT in NaxCoO2.

Naturally, cv diverges at the FM (Stoner) transition due to
the divergence of m∗ for both FSs, as shown in Fig. 3(c). As U

increases further, beyond the Stoner instability, the FSTT and
the transition to a FM occur together; in this case the FSTT is
driven to first order [13] by the magnetic transition.

VI. CONCLUSIONS

Summarizing, we have studied the effect of the interac-
tions in a topological Fermi-surface deformation (Lifshitz
transition) without any symmetry breaking. We found that
interactions drive a pocket-opening FSTT first-order in a 2D
FL in the region of PM fluctuations. We have presented a
robust Maxwell construction for the first-order phase transition
between the possible phases of different electron densities. The
phases on both sides of the transition remain paramagnetic
Fermi liquids, with topologically different FSs and with
strongly renormalized parameters. The first-order nature of
the transition leads us to think about the possibility of phase
separation in the mixed-phase region, the study of which is
beyond the scope of the present work. Here, we stress that
the continuous Lifshitz transition in the noninteracting case is
expected to become first order in the presence of interactions.
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