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1 Introduction

Oil price is a key-variable in macroeconomic projections a¤ecting in�ation and economic

activity. Clearly, the predictability of the price of oil is of great interest to policymakers,

central banks, CEOs and international investors. Strategic and investment decisions of

airline, automobile and energy companies are based on scenarios built on forecasts of the

future path of oil price. Even homeowners have in mind some kind of expectations about

the future price of oil when deciding about energy-saving investments. Moreover, en-

ergy and especially crude oil futures have become widespread investment vehicles among

traditional and alternative asset managers, mainly due to their equity-like return, their

in�ation-hedging properties and their role for risk diversi�cation.

The recent surge in oil prices (and other commodities as well) between 2003-2008 has

sparked a public debate on the determinants of the price of crude oil. Fundamental-

based explanations of oil price movements are attributed to oil supply shocks, oil demand

shocks driven by global economic activity, and oil-speci�c demand shocks. Oil supply

shocks stem from reduced oil production of oil-exporting regions, while an oil demand

shock is mainly caused by unexpected world economic activity. Finally, an oil-speci�c

demand shock may be triggered by either changing expectations of oil fundamentals or

�nancial speculation. It seems that the literature has reached a consensus on the drivers

of the oil price boom until mid-2008. Speci�cally, Hamilton (2009 a,b), Kilian, (2009),

Kilian and Hicks (2009), Juvenal and Petrella (2012) and Kilian and Murphy (2013)

�nd that the recent oil price rise is mainly attributed to strong oil demand confronting

stagnating global oil production. With respect to the oil-speci�c demand shock, this

can be decomposed into an oil-speci�c shock which captures changes in oil demand not

related to economic activity, and a destabilising �nancial shock. Lombardi and Van

Robays (2011) attempt such a decomposition and model the destabilising �nancial shock

as a shock that creates a perturbation in the futures market due to increased demand

for futures contracts that moves the futures price away from its e¢ cient level. Such

�nancial shocks may emerge due to the increasing �nancialisation of oil futures markets

measured by the sharp rise in speculative open interest and speculative market shares (see

among others Mayer, 2010; Irwin and Sanders, 2011; Tang and Xiong, 2011; CFTC, 2011

Fattouh et al. 2013). However, it is not clear whether the way market participants act

is due to lack of a fundamental basis in supply and demand or whether it represents the

mechanism by which market fundamentals are incorporated in competitively determined

prices. Kilian and Murphy (2013) and Kilian and Lee (2013) argue that �nancialisation

in oil futures markets should be modelled as part of the endogenous propagation of shocks

to fundamentals rather than an exogenous intervention.

Speculative behaviour, however, can cause oil price changes that generate bubbles. In
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the case of rational bubbles, these are generated by endogenous responses to the funda-

mentals that drive asset prices (Branch and Evans, 2011). The literature mainly focuses

on speculative bubbles in the stock market, while the evidence for the oil market is quite

scanty. We mention three related studies which explicitly test for speculative bubbles in

the oil price by making use of the recently proposed Supremum Augmented Dickey Fuller

(SADF) approach (proposed by Phillips et al., 2011). Speci�cally, Gilbert (2010) and

Homm and Breitung (2012) cannot detect speculative bubbles in oil prices consistently.

By contrast, Phillips and Yu (2011) succeed in detecting explosive behaviour in monthly

oil prices normalised by US inventories between March and July 2008. Applying the dura-

tion dependence test, Went et al. (2012) provide further evidence in favour of speculative

bubbles in the oil price. Einloth (2009) also attributes part of the oil price movements in

recent years to speculation. More recently, Lammerding et al. (2013) draw on the rela-

tionship between oil prices and oil dividends and establish a state-space framework from

which they extract the bubble component as an unobservable variable. They additionally

assume the bubble to evolve over time as a two-state Markov-switching process with two

distinct regimes; namely one in which the bubble evolves over time as a stable process

and one in which the bubble exhibits explosive dynamics. The authors follow a Bayesian

approach, implementing a fully-�edged Markov-Chain-Monte-Carlo (MCMC) estimation

framework and �nd convincing evidence of two distinct bubble episodes in the oil market.

In this study, we employ and develop models of speculative behaviour in the oil

market building on the existence of a bubble. A word of caution is in order here. We

should note that our models do not allow us to attribute the source of a bubble to speci�c

characteristics of the oil market and as such we can not infer whether a bubble is based on

fundemental or non-fundamental factors. In any event, we do not attempt to discriminate

between the two hypotheses. We follow Pindyck (1993) and infer the fundamental value

of crude oil from the current and expected discounted convenience yield that accrues

from holding inventories based on a non-arbitrage condition between oil spot and futures

price. Any deviation of current values from fundamental values is termed �bubble�and

may summarise a variety of shocks as outlined before. The bubble component can be in

one of two or three regimes giving rise to our two- and three-state Regime-Switching (RS)

models along the lines of the models developed by Van Norden and Schaller (1993, VNS

hereafter) and Brooks and Katsaris (2005, BK hereafter). The authors link speculative

behaviour in asset returns to RS models. Speci�cally, VNS show that a two-regime

speculative behaviour model, in which the bubble is allowed to switch between a survival

and a collapse state has signi�cant explanatory power for stock returns. BK incorporate

a third regime in the VNS model to allow for the bubble growing at a steady rate of

return bridging the gap between VNS and Evans (1991) who allow for the bubble to
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switch between the dormant and the explosive state. Recently, Shi and Arora (2012, SA

hereafter) extended the VNS and BK models to oil prices and found a reasonably good

�t of the data along with evidence of a speculative bubble over the late-2008/early-2009

period.

The aforementioned studies focus on the in-sample ability of RS models to capture the

dynamics in the price of the asset under scrutiny, ignoring the out-of-sample predictive

power of the models. This is the goal of our analysis. To be more speci�c, we augment

both the VNS and BK models by adding a variety of variables that serve as predictors of

the future dynamics in the oil price and investigate the forecasting performance of these

speci�cations. Following BK and SA, we employ the abnormal futures trading volume as

a signal of market expectations governing both the mean and the probability equation

of the surviving regime. This variable can be thought of as a destabilising �nancial

shock in the context of Lombardi and Van Robays (2011). In a similar manner, we

incorporate the variables proposed by Kilian and Murphy (2013) which are linked to oil

supply shocks, oil demand shocks and oil-speci�c (speculative) demand shocks. Widening

the information set (see also Juvenal and Petrella, 2012), we also employ macroeconomic

and �nancial variables which act complementarily to measures of economic activity and

�nancial conditions.

The forecasting performance of our models is evaluated in both statistical and eco-

nomic terms. Economic evaluation is desirable since the oil market and the commodities

markets have attracted the interest of large �nancial institutions, hedge funds and in-

vestment funds in general. Commodities are included in investment portfolios in order

to diversify risk (Gorton and Rouwenhorst 2006). To anticipate our key results, the RS

models appear to generate more accurate forecasts of the oil price, in both statistical and

economic evaluation terms, relative to the Random Walk (RW) benchmark. Speci�cally,

the RS models considered in this study outperform the RW model and the improvement

in the accuracy of the oil price forecasts is statistically signi�cant in all cases. Moreover,

their superiority over the RW model is even stronger in economic evaluation terms. Fi-

nally, many of the predictors examined in this study appear to improve the forecasting

accuracy of the RS models.

In the literature there are many studies that focus on oil forecasts but, to the best of

our knowledge, none of them employs the class of RS models considered in our study. For

example, Knetsch (2007) generates forecasts of the price of oil by means of a convenience

yield forecasting model. His approach leads to more accurate forecasts of oil prices com-

pared to direct forecasts from futures prices of the commodity but fails to beat the RW

model (based on the root mean squared error criterion). Similarly, Alquist and Kilian

(2010) provide evidence that forecasts from oil futures prices tend to be less accurate than
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forecasts from the RW model. Wu and McCallum (2005) argue that the accuracy of oil

price forecasts can be improved by taking into account the relationship between current

spot and futures prices instead of considering only the raw futures price. Baumeister and

Kilian (2012) organise a forecasting exercise in real-time terms and provide evidence sup-

porting the ability of Vector AutoRegressive (VAR) models to generate reliable forecasts

of the real price of oil, while Baumeister and Kilian (2013) examine the predictability of

the oil price from a central banker�s point of view. Finally, Alquist et al. (2011) provide

a stimulating review on the predictability of oil price.

The remainder of this paper is organised as follows. Section 2 introduces the Regime-

Switching models used in this study, describes our approach to construct fundamental

values and outlines the rationale behind the choice of predictors included in our models.

Section 3 describes the dataset and reports the empirical �ndings of the study. Finally,

Section 4 concludes.

2 Economic modelling and econometric speci�cation

In this section, we initially provide a brief description of the three-state RS model of

BK, which we augment with various predictors for the price of oil. The selection of these

predictors is based on the existing literature on the determinants of oil price. We also

describe two restricted versions of the three-regime model which we consider in our study

and apply an arbitrage relation to calculate the convenience yield that allows us to obtain

fundamental values.

2.1 Speculative behaviour and regime-switching models

Consider a simple asset pricing model where risk-neutral investors choose between holding

an asset that yields (1 + r) and a risky asset, in our case oil. The investors��rst order

conditions imply that the price of the asset, Pt is given as follows:

Pt =
1

1 + r
(Et(Pt+1 +Dt)

where Dt is some payo¤ in the form of dividends (stock market), convenience yield (oil

and commodity markets), etc. One possible solution of the above equation de�nes the

fundamental value of the asset, P ft , as follows:

P ft =

1X
k=0

(1 + r)�k+1Et(Dt+k)
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All other prices are said to be bubbly and the bubble component, (Bt); is de�ned as1

Bt = Pt � P ft

We assume that the expected size of the bubble in the next period can be generated

from one of three regimes: a deterministic (dormant) regime (D), a surviving explosive

regime (S) and a collapsing explosive regime (C) giving rise to a three regime model of

speculative behaviour. As BK suggest, while several variables may prove signi�cant in

classifying the behaviour of the asset of interest, the relative size of the bubble is expected

to play a predominant role.

If the bubble is in regime D, investors believe that it will continue to grow at a constant

rate (1 + rf ) :

Et(Bt+1 j Wt+1 = D) = (1 + rf )Bt (1)

where Bt is the size of the bubble (the di¤erence between the actual and fundamental

values) at time t, rf is a constant discount rate and Wt (or Statet) is an unobserved

variable that determines the regime. In this regime, the probability of collapse is negligible

and investors do not demand an excess return for this. The probability of being in regime

D in time t + 1 is denoted by �t and depends on the relative size of the bubble (bt) and

other observed variables at time t. Even when the bubble is in the dormant regime,

investors attach some probability in the bubble entering the explosive state by either

surviving or collapsing. The probability of the explosive state is given by 1 � �t and in
this explosive state the probabilities of the two underlying regimes (Survive or Collapse)

are denoted by qt and (1� qt), respectively. In other words, the probability of being in

each state is as follows:

Pr(Statet+1 = D) = �t

Pr(Statet+1 = S) = (1� �t)qt
Pr(Statet+1 = C) = (1� �t)(1� qt)

In the collapsing regime, the expected size of the bubble is given by

Et(Bt+1 j Wt+1 = C) = g(bt)Pt (2)

where g(bt) is a continuous and everywhere di¤erentiable function such that g(0) = 0 and

0 � @g(bt)=@bt � 1 + rf , bt is the relative size of the bubble (bt = Bt=Pt) and Pt is the
1The fundamental component, and consequently the bubble component, is calculated by means of

the present value model of rational commodity pricing put forward by Pindyck (1993). Please refer to
Subsection 2.2 for details on the calculation of the bubble.
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actual asset price at time t:2 Finally, the expected value of the bubble in the surviving

regime is given by:3

Et(Bt+1 j Wt+1 = S) =
(1 + rf )

qt
Bt �

(1� qt)
qt

g(bt)Pt (3)

After some manipulation, the expected values in equations (1)-(3) can be written in

terms of expected gross total returns of the next period, Rt+1 as follows:

Et(Rt+1 j Wt+1 = D) = (1 + rf ) (4)

Et(Rt+1 j Wt+1 = C) = (1 + rf )(1� bt) + g(bt) (5)

Et(Rt+1 j Wt+1 = S) = (1 + rf ) +
(1� qt)
qt

[(1 + rf )bt � g(bt)] (6)

where Rt+1 = (Pt+1 + Dt+1)=Pt: Equations (4)-(6) suggest that in the dormant regime

investors expect a gross return equal to the required rate of return on the bubble-free

asset, while in the surviving and collapsing regimes the gross return is a function of both

the required rate of return and the relative size of the bubble.

We now turn to modelling the probabilities �t and qt which as already mentioned are

negative functions of the bubble and speci�cally the absolute value of the bubble, jbtj,
since we allow for both negative and positive deviations. In order to model the probability

of being in the dormant regime in the next time period, we follow BK and include the

absolute value of the spread, (st) de�ned as the average 12-month actual returns minus the

absolute value of the average 12-month returns of the estimated fundamental values. The

intuition behind this speci�cation is quite clear. When investors observe large spreads,

i.e. larger average returns than average fundamental returns, they tend to believe that

the bubble has entered the explosive state and the probability of being in the dormant

state falls. In order to ensure that the estimated probability is bounded between 0 and

1, we adopt a Probit speci�cation. Under this setting, the probability of being in the

dormant regime in the next time period is given by:

Pr(Statet+1 = D) = �t = �(��0 + ��1 jbtj+ ��2st) (7)

where � is the cumulative density function of the standard normal distribution.

The basic assumption of the speculative bubble models is that the arrival of news may

fuel a bubble collapse, which is often viewed as a random occasion that causes investors

to liquidate their position at a certain point in time. Although investors observe the

2Please note that the function g(bt) is for theoretical illustration and is not imposed on the data.
3Equation (3) is derived from equations (1) and (2) employing the probabilities of the two underlying

regimes (Survive or Collapse), denoted by qt and (1� qt).
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built-up of the bubble and expect the bubble to collapse, they cannot precisely estimate

the time of the collapse. BK propose that abnormally high trading volume is a signal

of changing market expectations about the future of a speculative bubble. We enrich

the BK speci�cation with a set of observable/macroeconomic variables, which we assume

that investors monitor and which act as a signal of changing economic conditions and

as a result changing market expectations that help them �nd the optimal exit-time from

the market. Our set of signalling indicators comprises of variables typically employed in

oil price determination.4 Under this setting, we model the probability of survival as a

function of both the bubble size and one of the indicators (zt) as follows:

qt = �(�q0 + �q1 jbtj+ �q2zt) (8)

The model described in equations (4) - (8) is highly nonlinear and in order to linearise

it we take the �rst order Taylor Series expansion of (4)-(6) around an arbitrary b0 and z0.

The resulting linear regime switching model is given by the following set of equations:

BK � extended (9)

Rd;t+1 = �d0 + "d;t+1; where "d;t+1 � N(0; �2d)
Rs;t+1 = �s0 + �s1bt + �s2zt + "s;t+1; where "s;t+1 � N(0; �2s)

Rc;t+1 = �c0 + �c1bt + "c;t+1; where "c;t+1 � N(0; �2c)
Pr(Statet+1 = D) = �t = �(��0 + ��1 jbtj+ ��2st)

qt = �(�q0 + �q1 jbtj+ �q2zt)

The BK-extended model is estimated by maximising the associated likelihood func-

tion, given by the following formula:

Y
t

[f�tg'
�
Rt+1 � �d0

�d

�
��1d ] + f1� �tg fqtg'

�
Rt+1 � �s0 � �s1bt � �s2zt

�s

�
��1s +

(10)

+ f1� �tg f1� qtg'
�
Rt+1 � �c0 � �c1bt

�c

�
��1c ]

where ' is the standard normal probability density function (pdf).

Obviously, when the signal indicator variable coincides with abnormal trading volume,

the BK-extended speci�cation coincides with the BK model. Furthermore, if we set the

probability of being in the dormant regime equal to zero and exclude all explanatory

4Additional information about the variables-predictors we use in our analysis is provided in Subsection
2.3.
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variables (other than bt) from the speci�cation, our model reduces to the original VNS

model, which serves as the natural benchmark in our analysis and is outlined by the

following set of equations.

V NS (11)

Rs;t+1 = �s0 + �s1bt + "s;t+1; where "s;t+1 � N(0; �2s)
Rc;t+1 = �c0 + �c1bt + "c;t+1; where "c;t+1 � N(0; �2c)

Pr(Statet+1 = S) = qt = �(�q0 + �q1 jbtj)

To gauge the in�uence/signi�cance of the candidate indicator variables, we also aug-

ment the VNS model by adding the signal variable zt in both the mean equation for the

survival regime and the probability of survive, qt; as follows:

V NS � extended (12)

Rs;t+1 = �s0 + �s1bt + �s2zt + "s;t+1; where "s;t+1 � N(0; �2s)
Rc;t+1 = �c0 + �c1bt + "c;t+1; where "c;t+1 � N(0; �2c)
Pr(Statet+1 = S) = qt = �(�q0 + �q1 jbtj+ �q2zt)

As previously, VNS and VNS-extended models are estimated by the associated likeli-

hood functions.

2.2 Bubble calculation

The fundamental value of the oil price is de�ned as the sum of the current and expected

convenience yield that accrues from holding inventories in the same way that the dividend

yield is employed to estimate the fundamental value in the stock market. Following

Pindyck (1993), SA and Lammerding et al. (2013), we use the futures prices in order to

measure the convenience yield of actively traded storable commodities. More in detail,

let Yt;1 denote the current monthly convenience yield, rt the risk-free interest rate, Pt the

spot price of oil and Ft+1 the futures price. Then, the convenience yield is calculated by

the following non-arbitrage condition

Yt;1 = (1 + rt)Pt � Ft+1

which simply states that in equilibrium the futures price must equal the spot price (ad-

justed for opportunity costs) and the bene�ts of holding the commodity. Once we obtain

the convenience yield, we follow Campbell and Shiller (1987) in order to calculate the

fundamental value and the bubble size by employing the convenience yield instead of
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the dividend yield. Speci�cally, the Campbell and Shiller model allows for predictable

variation in expected convenience yields and is based on a simple present value model of

stock prices. If the present value model of oil spot prices

Pt = Et

1X
i=0

(
1

1 + r
)iYt;i

were true, then a linear function of current prices and convenience yields would be the op-

timal linear forecast of future convenience yields. This linear function, namely the spread

(St), is de�ned as the di¤erence between price and a multiple of current convenience yield

and can be estimated through a VAR representation for the change in convenience yields

and the spread itself. More in detail, the spread (St) and the implied bubble measure

(bt) are given by the following formulas

St = P
�
t �

1 + r

r
Dt =

1 + r

r

1X
i=0

(
1

1 + r
)iEt(�Dt+i)

bt = 1�
St + ((1 + r)=r) �Dt�1

Pt

We set the discount rate equal to

r =
1

Pt=Dt � 1

to ensure that the spread has a zero mean over the whole sample.

2.3 Choice of indicator variables

In this section, we outline the rationale behind the choice of the signal/indicator variables

employed in the extended BK and VNS models. As already mentioned, BK employ

the abnormal futures trading volume as a signal of market expectations governing both

the mean and the probability equation of the surviving regime. This variable can be

thought of as a destabilising �nancial shock in the context of Lombardi and Van Robays

(2011). Drawing from the structural vector autoregressive model of the global market

for crude oil proposed by Kilian and Murphy (2013), we also employ variables linked to

demand and supply shocks in the oil market. Since these models produce empirically

plausible estimates of the impact of demand and supply shocks on the real price of oil,

they may also have value for forecasting the real price of oil. The variables in this

model include the percent change in global crude oil production, a measure of global real

activity and the change in global above-ground crude oil inventories. Global crude oil

production serves as the �ow supply shock and global real activity, which is the dry cargo
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shipping rate index developed by Kilian (2009), serves as the �ow demand shock and

represents unexpected �uctuations in the global business cycle. Finally, the speculative

demand shock, which is a shock to the demand for oil inventories arising from forward-

looking behaviour of market participants is proxied by crude oil inventories. Widening

the information set, we also employ macroeconomic and �nancial variables which act

complementarily to measures of economic activity and �nancial conditions. First of all,

following Juvenal and Petrella (2012), we consider an alternative measure of economic

activity proxied by US industrial production. Admittedly, this variable is just a weak

substitute for global economic activity, however the �rst factor the authors extract from a

large dataset of 151 variables of the G7 countries loads primarily on industrial production.

More importantly, this measure of economic activity is found to summarise aggregate

business cycle conditions, while the proxy proposed by Kilian (2009) is more forward

looking measure summarising aggregate demand and loading heavily on US personal

consumption. The remaining variables we employ are mainly US variables and mainly

contributing to the �rst factor with the exception of the US monetary base (M1) that is

linked to the second factor. Anzuini et al. (2010) highlight that expansionary monetary

policy may have fuelled oil price increases, but also report that it appears to exert its

impact through expectations of higher in�ation and growth rather than on the �ow of

global liquidity into oil futures markets. By no means is this list of variables exhaustive.

For a detailed list of variables determining oil prices, the reader is referred to Alquist et

al. (2011) and Juvenal and Petrella (2012).

3 Empirical �ndings

3.1 Data

Our dataset consists of monthly observations from January 1985 to December 2010. Pt
and Ft+1 are the prices of the nearest-month and the next-to-nearest month West Texas

Intermediate (WTI) futures contract taken from the US Energy Information Adminis-

tration, respectively. The risk free interest rate is the 3-month Treasury Bill rate and

the US Consumer Price Index (CPI) is employed to de�ate Pt and Yt;1 (both taken from

the Federal Reserve Economic Data, FRED). The futures trading volume data is based

on nearest-month futures contracts of WTI (DataStream International)5. Following SA,

abnormal trading volume is calculated as the percentage deviation of last months�volume

from the 6-month moving average. Our measure of �uctuations in global real activity is

the dry cargo shipping rate index developed in Kilian (2009). This real activity index is

5The data necessary for the calculation of the bubble along with the abnormal trading volume were
kindly provided by Professor Shuping Shi.
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a business cycle index, designed to capture shifts in the global use of industrial commodi-

ties, and stationary by construction.6 Data on global crude oil production are available

in the Monthly Energy Review of the Energy Information Administration (EIA). These

data include lease condensates, but exclude natural gas plant liquids and are expressed

in percent changes. Given the lack of data on crude oil inventories for other countries,

we follow Hamilton (2009a) and Kilian and Murphy (2013) in using the data for total

U.S. crude oil inventories provided by the EIA, scaled by the ratio of OECD petroleum

stocks over U.S. petroleum stocks, also obtained from the EIA. We express the resulting

proxy for global crude oil inventories in percent changes. Finally, the US macroeco-

nomic/�nancial indicator variables are sourced from the FRED database. Speci�cally,

we employ the long-term (DGS10) and short-term interest rate (GS3M), the growth rate

in industrial production (INDPRO), the CPI (CPIAUCSL) and PPI (PPIACO) in�ation

rate, the growth in M1 money stock (M1) and the unemployment rate (UNRATE).

Figure 1 presents the price of oil together with the calculated deviations from funda-

mental values. We observe signi�cant negative deviations in the late �80s and late �90s.

On the other hand, there seems to be a noteworthy positive bubble in the last two years

of our sample.

[FIGURE 1 AROUND HERE]

3.2 Forecasting - Statistical evaluation

We focus on one-period ahead forecasts and organise the forecast exercise in real-time

terms, i.e. we obtain a forecast for period t + 1 using all available information up to

period t. All models and the deviations from fundamentals are re-estimated recursively

and the �rst estimation sample ends in December 2002, leaving the last 8 years of our

sample (about one third of the available observations) for the out-of-sample evaluation

period.

Table 1 reports the ratio of the Mean Squared Forecast Error (MSFE) of each one

of the RS models over the MSFE of the RW model.7 A ratio below unity indicates the

superiority of our RS model over the RW model. In all cases, the RS models outperform

the benchmark and the MSFE ratios are usually well below unity. In the case of the simple

VNS model that does not contain any explanatory variables (other than the deviations

from fundamentals), the MSFE ratio equals 0.929. When we enrich the speci�cation

of the RS model with one of the twelve predictors considered in our analysis (VNS-

6The index is available from Lutz Kilian�s website: http://www-
personal.umich.edu/~lkilian/paperlinks.html

7We consider both the RW model with and without a drift. The former produces more accurate
forecast than the latter. We choose to compare our RS models with the optimal RW model (i.e. the one
that includes a drift).
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extended model), the MSFE ratios range from 0.89 (CPI in�ation rate) to 0.98 (world

oil production) depending on the predictor. Substantial improvements in the forecasting

performance of the RS models are observed when we allow for a third regime in our

speci�cation (BK-extended model). In this case, the MSFE ratios are usually around 0.9

with a minimum value of 0.856 when we use the industrial production as a predictor.

Among the twelve variables considered in our analysis, the growth rate of industrial

production and the in�ation rate seem to be the optimal predictors (in the context of

our RS models) for the price of oil. Comparing the relative forecasting accuracy of the

VNS-extended and the BK-extended models, we observe that, in general, the three-state

RS models produce lower MSFEs than the two-state ones.

[TABLE 1 AROUND HERE]

Turning to the statistical signi�cance of the predictive power of our models and given

that we are interested in comparing the forecasting performance of nested models, we

apply the methodology developed by Clark and West (2006, 2007). Speci�cally, let RRW;t
and RRS;t denote the forecasts for Rt obtained from the RW and RS model respectively.

Given a sequence of P forecasts, we �rst calculate:

ft = (Rt �RRW;t)2 � (Rt �RRS;t)2 + (RRW;t �RRS;t)2; t = 1; 2; :::; P

The test statistic of Clark and West is given by the standard t�statistic of the regression
of ft on a constant. Clark and West (2006, 2007) recommend using 1.282 and 1.645 for

a 0.10 and 0.05 test, respectively. We should note that this is a one-sided test. Clark

and West show that under the null hypothesis of equal MSFE, the unrestricted model

(the RS model in our case) should generate larger MSFE than the restricted one (RW in

our case). The intuition behind this argument is that since under the null hypothesis the

additional parameters of the unrestricted model do not help predictions, in �nite samples

this model loses e¢ ciency due to the estimation of these parameters that introduces noise

into the forecasts. This in�ates the MSFE of the model. Therefore, even if the restricted

model generates smaller MSFE than the unrestricted one, we should not consider this as

prima facie evidence of superiority of the former over the latter.

The �ndings are presented in Table 1 where the asterisks next to the calculated MSFE

ratio denote rejection of the null hypothesis at the relevant con�dence level. The results

clearly suggest that the superiority of the RS model relative to the RW model is always

statistically signi�cant. We go one step further and examine whether the inclusion of

a predictor, zt, in our RS models improves the accuracy of forecasts by comparing the

predictive power of VNS-extended and BK-extended relative to that of the simple VNS
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model that contains no predictors. Entries in bold in Table 1 indicate cases where the

extended RS model generates forecasts that are statistically more accurate compared to

those from the simple VNS model. Both the VNS-extended model and the BK-extended

model outperform the simple VNS model in �ve out of twelve cases. Among the predictors

under scrutiny, the CPI and PPI in�ation rates achieve the best forecasting performance

of the RS models considered in this study.

3.3 Economic evaluation

We also perform an economic evaluation of the forecasts of our RS models based on (i)

the utility-based approach initiated by West et al. (1993) and (ii) the manipulation-

proof performance measure proposed by Goetzmann et al. (2007). We brie�y describe

the two approaches. Consider a US investor who dynamically rebalances her portfolio

every month. Her portfolio choice problem is how to allocate wealth between a risk-free

asset yielding interest rate it,8 and the risky future contract on the price of oil. In a

mean-variance framework and given a speci�c Relative Risk Aversion (RRA) coe¢ cient,


, that controls the investor�s appetite for risk (Campbell and Viceira, 2002), she chooses

the optimal weight on the risky asset in a standard maximisation problem resulting in a

portfolio return over the out-of-sample period equal to, say, rp;t+1. Then, over the forecast

evaluation period the investor with initial wealth of Wo = 1$ realises an average utility

of

U =
1

P

P�1X
t=0

(rp;t+1 �



2
(rt+1�rt+1)

2) (13)

A risk-averse investor will be willing to pay a performance fee, denoted by �, for switching

from the portfolio constructed based on RW forecasts to a portfolio based on our proposed

RS forecasts if the latter are superior to the former. In our set-up the performance fee is

calculated as the di¤erence between the realised utilities as follows:

1

P

P�1X
t=0

(rRSp;t+1 � ��



2
(rt+1�rt+1)

2) =
1

P

P�1X
t=0

(rRWp;t+1 �



2
(rt+1�rt+1)

2) =) (14)

� = U
RS � URW

Positive values of � suggest superior predictive ability of the RS model against the RW

benchmark.

On the other hand, the manipulation-proof performance measure, M(Rp); can be in-

terpreted as a portfolio�s premium return after adjusting for risk and it remedies potential

caveats associated with the popular Sharpe ratio such as the e¤ect of non-normality, the

8We employ the 1-month US Certi�cate of Deposit (CD1M, FRED).
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underestimation of the performance of dynamic strategies and the choice of utility func-

tion. The di¤erence, �, between the M(Rp)s of competing models is employed to assess

the most valuable model. This measure is de�ned as

M(Rp) =
1

1� 
 ln
(
1

P

P�1X
t=0

�
1 + rp;t+1

it

�1�
)
(15)

� = M(Rp)
RS �M(Rp)RW

Table 2 reports both economic evaluation measures in monthly percentage points. We

do not allow short-selling and we consider two di¤erent values for the RRA coe¢ cient

(
 = 3 and 
 = 7). In general, both measures produce qualitatively similar results. We

always observe signi�cant gains in economic terms for the investor who is willing to switch

from the benchmark RW model to one of the RS models. For example, when 
 = 3, the

utility gain � equals 0.42% for the simple VNS model, while the average utility gains

for the VNS-extended and the BK-extended models are 0.71% and 0.69%, respectively.

We observe the highest utility gain in the case of the three-sate model that includes the

industrial production as a predictor. In this case, � equals 1.57% which corresponds to

a 18.84% gain in annual terms. Contrary to our �ndings for the statistical evaluation

of our forecasts, the VNS-extended model seems to generate slightly higher utility gains

relative to the BK-extended model. It is also interesting to note that models with low

MSFE ratios do not necessarily generate higher gains in economic terms. For example, in

the case of the three-state model that includes the world oil production, the MSFE ratio

relative to the RW model is as low as 0.896, while both economic evaluation measures

are pretty low (
 = 3). In general, as the RRA coe¢ cient increases, utility gains of the

RS models relative to the RW model become more pronounced.

[TABLE 2 AROUND HERE]

Finally, we repeat the economic evaluation procedure replacing RW with VNS. In

other words, we compare VNS-extended and BK-extended with the VNS model. In this

way, we investigate whether the inclusion of a predictor in the RS speci�cation produces

any bene�ts in economic terms. These �ndings are reported in Table 3. In the majority

of cases, we observe positive values of � and �, reaching 1.15% and 1.20%, respectively,

in the case of the BK-extended model that includes the growth rate of the industrial

production as a predictor (
 = 3). In general, the bene�ts from VNS-extended are higher

compared to those from BK-extended.

[TABLE 3 AROUND HERE]

15



4 Conclusions

We develop two- and three-state Regime-Switching (RS) models and test their forecasting

ability for oil prices. Taking advantage of the deviations we periodically observe between

the market price of oil and its fundamental value, our models relate the expected gross

return in the oil price to deviations from fundamentals and an additional explanatory

variable. Speci�cally, we compare the predictive power (in both statistical and economic

evaluation terms) of twelve alternative macroeconomic/indicator variables assuming a

forecast horizon of one month. Our �ndings indicate substantial bene�ts, in terms of

forecasting accuracy, when RS models are employed relative to the Random Walk (RW)

benchmark, especially in economic evaluation terms. Moreover, the RS models enriched

with one of the predictors proposed in this study often outperform simple RS models that

contain no predictors (other than deviations from fundamentals).

Our �ndings reveal that speculative behaviour models can be used to generate reliable

out-of-sample forecasts for the price of oil. The analysis opens routes for future research

to other commodities, such as gold and wheat. It would also be very interesting to

investigate whether combination of forecasts from various models can lead to additional

accuracy gains.

16



References
[1]Alquist, R., Kilian, L., 2010. What do we learn from the price of crude oil futures?,
Journal of Applied Econometrics, 25, 539-573.

[2]Alquist, R., Kilian, L., Vigfusson, R.J., 2011. Forecasting the price of oil, forthcoming
in: G. Elliott and A. Timmermann (eds.), Handbook of Economic Forecasting, 2,
Amsterdam: North-Holland.

[3]Anzuini, A., Lombardi, M.J., Pagano, P., 2010. The impact of monetary policy shocks
on commodity prices, ECB Working Paper 1232.

[4]Baumeister, C., Kilian, L., 2012. Real-time forecasts of the real price of oil, Journal
of Business and Economic Statistics, 30(2), 326-336.

[5]Baumeister, C., Kilian, L., 2013. What central bankers need to know about forecasting
oil prices, Bank of Canada, Working Paper 2013-15.

[6]Branch, W.A., Evans, G.W., 2011. Learning about risk and return: a simple model
of bubbles and crashes, American Economic Journal: Macroeconomics 3, 159-191.

[7]Brooks, C., Katsaris, A., 2005. A three-regime model of speculative behaviour: Mod-
elling the evolution of the S&P 500 composite index, The Economic Journal, 115,
767�797.

[8]Campbell, J.Y., Shiller, R.J., 1987. Cointegration and tests of present value models,
The Journal of Political Economy 95, 1062�1088.

[9]Campbell, J.Y., Viceira, L., 2002. Strategic asset allocation, Oxford: Oxford Univer-
sity Press.

[10]Clark, T.E., West, K.D., 2006. Using out-of-sample mean squared prediction errors
to test the martingale di¤erence hypothesis, Journal of Econometrics, 135, 155-186.

[11]Clark, T.E., West, K.D., 2007. Approximately normal tests for equal predictive accu-
racy in nested models, Journal of Econometrics, 138 (1), 291�311.

[12]CFTC, 2011. CFTC commitments of traders, US commodity futures trading commis-
sion, Washington, DC.

[13]Einloth, J.T., 2009. Speculation and recent volatility in the price of oil, Social Science
Research Network (SSRN) Working Paper.

[14]Evans, G.W., 1991. Pitfalls in testing for explosive bubbles in asset prices, American
Economic Review, 81, 922-930.

[15]Fattouh, B., Kilian, L., Mahadeva, L., 2013. The role of speculation in oil markets:
What have we learned so far?, Energy Journal, 34 (3), forthcoming.

[16]Gilbert, C.L., 2010. Speculative in�uences on commodity futures prices 2006�2008,
United Nations Conference on Trade and Development (UNCTAD) Discussion Paper
No. 197.

17



[17]Goetzmann, W., Ingersoll, J., Spiegel, M., Welch, I., 2007. Portfolio performance ma-
nipulation and manipulation-proof performance measures, Review of Financial Stud-
ies, 20, 1503-1546.

[18]Gorton, G., Rouwenhorst, K.G, 2006. Facts and fantasies about commodity futures,
Financial Analysts Journal, 62(02), 47�68.

[19]Hamilton, J.D., 2009a. Causes and consequences of the oil shock of 2007�2008, Brook-
ings Papers on Economic Activity, 215-259.

[20]Hamilton, J.D., 2009b. Understanding crude oil prices, Energy Journal, 30 (2), 179�
206.

[21]Homm, U., Breitung, J., 2012. Testing for speculative bubbles in stock markets: A
comparison of alternative methods. Journal of Financial Economics, 10 (1), 198�231.

[22]Irwin, S.H., Sanders, D.R., 2011. Index funds, �nancialization and commodity futures
markets, Applied Economic Perspectives and Policy, 33, 1-31.

[23]Juvenal, L., Petrella, I., 2012. Speculation in the oil markets, Working Paper 2011-
027E (revised June 2012), Federal Reserve Bank of St. Louis, Working Paper Series.

[24]Kilian, L., 2009. Not all oil price shocks are alike: disentangling demand and supply
shocks in the crude oil market, American Economic Review, 99 (3), 1053�1069.

[25]Kilian, L., Hicks, B., 2009. Did unexpectedly strong economic growth cause the oil
price shock of 2003�2008?, Journal of Forecasting, forthcoming.

[26]Kilian, L., Lee, T.K., 2013. Quantifying the speculative component in the real price
of oil: The role of global oil inventories, Journal of International Money and Finance,
forthcoming.

[27]Kilian, L., Murphy, D., 2013. The role of inventories and speculative trading in the
global market for crude oil, Journal of Applied Econometrics, forthcoming.

[28]Knetsch, T.A., 2007. Forecasting the price of oil via convenience yield predictions,
Journal of Forecasting, 26, 527-549.

[29]Lammerding, M., Stephan, P, Trede, M., Wil�ing, B., 2013. Speculative bubbles in
recent oil price dynamics: Evidence from a Bayesian Markov-switching state-space
approach, Energy Economics, 36, 491-502.

[30]Lombardi, M.J., Van Robays, I., 2011. Do �nancial investors destabilize the oil price?,
Working Paper Series No. 1346. European Central Bank, Frankfurt/Main.

[31]Mayer, J, 2010. The �nancialization of commodity markets and commodity price
volatility, In Dullien, S., Kotte, D.J., Marquez, A. Priewe, J. (Eds.) The Financial
and Economics Crisis of 2008-2009 and Developing Countries. UNCTAD, New York
and Geneva.

18



[32]Pindyck, R.S., 1993. The present value model of rational commodity pricing, The
Economic Journal, 103, 511-530.

[33]Phillips, P.C.B., Yu, J., 2011. Dating the timeline of �nancial bubbles during the
subprime crisis, Quantitative Economics, 2 (3), 455�491.

[34]Phillips, P.C.B., Wu, Y., Yu, J., 2011. Explosive behavior in the 1990s Nasdaq: When
did exuberance escalate asset values?, International Economic Review, 52, 201-226.

[35]Shi, S., Arora, V., 2012. An application of models of speculative behaviour to oil
prices, Economics Letters 115, 469�472.

[36]Tang, K., Xiong, W., 2011, Index investment and �nancialization of commodities,
Financial Analysts Journal 68 (6), 54-74

[37]van Norden S., Schaller, H., 1993. The predictability of stock market regime: Evidence
from the Toronto stock exchange, Review of Economics and Statistics 75, 3, 505�510.

[38]Went, P., Jirasakuldech, B., Emekter, R., 2012. Rational speculative bubbles and
commodities markets: Application of duration dependence test, Applied Financial
Economics, 22 (7), 581�596.

[39]West, K., Edison, H., Cho, D., 1993. A utility-based comparison of some models of
exchange rate volatility, Journal of International Economics, 35, 23-46.

[40]Wu, T., McCallum, A., 2005. Do Oil Futures Prices Help Predict Future Oil Prices?,
Federal Reserve Bank of San Francisco Economic Letter, 2005-38.

19



­0.8

­0.4

0.0

0.4

0.8

1.2

0

40

80

120

160

86 88 90 92 94 96 98 00 02 04 06 08 10

Deviations from fundamentals
Oil price

Figure 1. Deviations from fundamentals (left axis) and the price of oil (right axis)
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Table 1. Mean Squared Forecast Errors (MSFEs) Ratios and Statistical Evaluation
VNS = 0.929**

VNS-extended BK-extended
Global real activity index 0.968** 0.912**
Global real activity (% change) 0.909** 0.930**
Inventories (% change) 0.960** 0.990*
World oil production 0.980** 0.896**
Volume 0.914** 0.950*
Long-term interest rate 0.961** 0.908**
Industrial production 0.920** 0.856**
CPI in�ation rate 0.890** 0.918**
M1 0.976** 0.907**
PPI in�ation rate 0.951** 0.877**
Short-term interest rate 0.956** 0.939**
Unemployment rate 0.930** 0.908**

Notes: The table reports the ratio of the Mean Squared Forecast Error (MSFE) of
the Regime-Switching (RS) model over the MSFE of the Random Walk (RW) model.
(**) and (*) denote the superiority in statistical terms of the RS model relative to the
RW model at a 5% and 10% con�dence level respectively. Entries in bold indicate the
superiority in statistical terms of the corresponding model relative to the VNS model at
a 10% con�dence level.
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Table 2. Economic Evaluation (relative to the Random Walk model)

 = 3 
 = 7

� � � �
VNS 0.42 0.58 0.92 1.68
VNS-extended
Global real activity index 0.80 0.97 1.09 1.80
Global real activity (% change) 0.56 0.73 0.99 1.73
Inventories (% change) 0.58 0.74 0.92 1.64
World oil production 0.75 0.92 1.04 1.79
Volume 0.70 0.87 1.07 1.79
Long-term interest rate 0.34 0.53 0.79 1.54
Industrial production 0.67 0.84 0.99 1.71
CPI in�ation rate 1.22 1.45 1.23 2.03
M1 0.80 0.97 1.06 1.78
PPI in�ation rate 1.01 1.18 1.09 1.83
Short-term interest rate 0.63 0.81 0.96 1.69
Unemployment rate 0.41 0.59 0.87 1.63
BK-extended
Global real activity index 0.70 0.82 0.68 1.04
Global real activity (% change) 0.41 0.52 0.92 1.54
Inventories (% change) 0.70 0.87 0.59 0.98
World oil production 0.33 0.34 0.89 1.43
Volume 0.23 0.36 0.80 1.49
Long-term interest rate 0.89 1.07 1.42 2.23
Industrial production 1.57 1.78 1.90 2.68
CPI in�ation rate 0.84 0.95 1.13 1.78
M1 0.56 0.65 0.83 1.28
PPI in�ation rate 0.92 1.09 1.38 2.14
Short-term interest rate 0.77 0.89 0.66 1.18
Unemployment rate 0.32 0.33 0.74 1.35

Notes: 
 stands for the Relative Risk Aversion coe¢ cient. Entries correspond to
the value of � and � when we compare the Regime-Switching (RS) model relative to the
Random Walk (RW) model. The performance fee, �, is the fraction of the wealth which
when subtracted from the RS proposed portfolio returns equates the average utilities
of the competing model (i.e. the RS and the RW models). If our proposed RS model
does not contain any economic value, the performance fee is negative (� � 0), while
positive values of the performance fee suggest superior predictive ability against the RW
benchmark. � is the di¤erence between the manipulation-proof performance measure of
competing models (RS and RW). Both � and � and are reported in percentage points
on a monthly basis.
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Table 3. Economic Evaluation (relative to the VNS model)

 = 3 
 = 7

� � � �
VNS-extended
Global real activity index 0.37 0.39 0.17 0.12
Global real activity (% change) 0.14 0.15 0.07 0.05
Inventories (% change) 0.16 0.16 -0.01 -0.03
World oil production 0.33 0.33 0.12 0.11
Volume 0.28 0.29 0.14 0.11
Long-term interest rate -0.08 -0.05 -0.14 -0.14
Industrial production 0.25 0.25 0.06 0.03
CPI in�ation rate 0.80 0.86 0.31 0.35
M1 0.37 0.39 0.13 0.11
PPI in�ation rate 0.59 0.60 0.17 0.16
Short-term interest rate 0.21 0.22 0.04 0.02
Unemployment rate -0.01 0.00 -0.05 -0.05
BK-extended
Global real activity index 0.28 0.24 -0.25 -0.64
Global real activity (% change) -0.01 -0.07 0.00 -0.14
Inventories (% change) 0.28 0.29 -0.33 -0.69
World oil production -0.09 -0.25 -0.03 -0.25
Volume -0.19 -0.22 -0.12 -0.18
Long-term interest rate 0.47 0.49 0.50 0.55
Industrial production 1.15 1.20 0.98 1.01
CPI in�ation rate 0.42 0.36 0.21 0.10
M1 0.14 0.06 -0.10 -0.39
PPI in�ation rate 0.50 0.50 0.45 0.47
Short-term interest rate 0.35 0.31 -0.26 -0.50
Unemployment rate -0.11 -0.25 -0.18 -0.33

Notes: 
 stands for the Relative Risk Aversion coe¢ cient. Entries correspond to
the value of � and � when we compare either the VNS-extended or the BK-extended
model relative to the simple VNS model. The performance fee, �, is the fraction of
the wealth which when subtracted from the extended RS proposed portfolio returns
equates the average utilities of the competing model (i.e. the extended RS and the
simple VNS models). If the extended RS model does not contain any economic value, the
performance fee is negative (� � 0), while positive values of the performance fee suggest
superior predictive ability against the VNS benchmark. � is the di¤erence between the
manipulation-proof performance measure of competing models (extended RS and VNS).
Both � and � and are reported in percentage points on a monthly basis.
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