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THE FINITE UNIPOTENT GROUPS CONSISTING OF
BIREFLECTIONS

KATHERINE HORAN AND PETER FLEISCHMANN

ABSTRACT. Let k be a field of characteristic p and V' a finite dimensional k-vector
space. An element g € GL(V) is called a bireflection if it centralizes a subspace of
codimension less than or equal to 2. It is known by a result of Kemper, that if for
a finite p-group G' < GL(V) the ring of invariants Sym(V*)¢ is Cohen-Macaulay, G
is generated by bireflections. Although the converse is false in general, it holds in
special cases e.g. for particular families of groups consisting of bireflections. In this
paper we give, for p > 2, a classification of all finite unipotent subgroups of GL(V)
consisting of bireflections. Our description of the groups is given explicitly in terms
useful for exploring the corresponding rings of invariants. This further analysis will
be the topic of a forthcoming paper.

0. INTRODUCTION

Let k be a field and V be a finite dimensional k-vector space. An element 1 # g € GL(V) is
called a pseudo-reflection if it centralizes a hyperplane and g is called a transvection if it is a
unipotent pseudo-reflection. Generalizing this notion, g is called a bireflection if it centralizes
a subspace of codimension less or equal to 2. A finite subgroup G < GL(V) will be called a
(pseudo)-reflection group, if it is generated by pseudo-reflections and will be called a bireflection
group if it is generated by bireflections.

Pseudo-reflection groups arise prominently in the invariant theory of finite groups: let G <
GL(V) be a finite linear group and S := Sym(V*) the symmetric algebra over the dual space.
Then, due to a classical result of Serre, the ring of invariants R := Sym(V*)% can only be
a polynomial ring if G is generated by pseudo-reflections. The converse is also true if the
characteristic of k does not divide the group order |G|, which for characteristic zero is an
earlier result by Chevalley and Shephard-Todd and for char(k) > 0 is again due to Serre.
Similarly, a result of Gordeev, Kac and Watanabe ([6]) says that if S¢ is a complete intersection
ring, then G is a bireflection group. The following theorem by Kemper is even stronger, if one
restricts to finite unipotent groups:

Theorem 0.1. [7, 3.7 Let 0 < p = char(k) and G < GL(V) be a finite p-group such that S¢
is a Cohen—Macaulay ring, then G is generated by bireflections.

The converses do not hold for any of the above results, in particular it is an open question for
which finite unipotent bireflection groups the ring S is indeed Cohen-Macaulay. Intuitively
one can expect that further restrictions on the groups may imply such a converse for special
families of bireflection groups. In [8, 8.2] Smith looks at the modular groups consisting entirely
of reflections.

Proposition 0.2. [8, 8.2.18] Let k be a field of characteristic p # 0, G < GL(V) such that
every non identity element of G is a reflection. Then either VC has dimension n—1 or (V*)¢
has dimenston n — 1.
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Using this it can be shown that all groups consisting of reflections have polynomial rings of
invariants. Similarly, there is a class of unipotent groups consisting of bireflections, where the
invariant ring is always Cohen-Macaulay:

Theorem 0.3. [2, 3.9.1] Let G < GL(V), dimy(V) = n then:
(1) if dimg(VE) =n — 1, then k[V]% is a polynomial ring.
(2) if dimg(VY) = n — 2, then k[V]Y is Cohen—Macaulay.

On the other hand, there are examples of groups consisting of bireflections which do not
have a Cohen—Macaulay invariant ring (see [3], where p = 2 and the group in question is an
example of what will be called a “two-row group” below).

A classification of all irreducible bireflection groups has been given by Guralnick and Saxl
([5]). However, in the modular case and in the light of Kemper’s theorem we are particularly
interested in (reducible) unipotent bireflection groups.

Motivated by the above problems in modular invariant theory, this paper considers all finite
unipotent subgroups G < GL(V') which entirely consist of bireflections, i.e. such that g is a
bireflection for all elements g € G. We shall call such a group a pure bireflection group. We
now define certain classes of groups with this property.

Definition 0.4. Let B := {v1, -+ ,v,_1,vs} be an ordered basis of V and let G < GL(V) be a
finite unipotent subgroup. Then:
(1) If dim(VE) > n — 2 then G is called a two—column group on V. If V& =

1
(v3,+ -+ ,Un), then for every g € G, Mp(g) is of the form I 1 0
* % 0 1
(2) If dimg([G,V]) < 2 then G s called a two—row group on V. If [G,V] = (vp_1,vp),
1
. 0 1 0
then for every g € G, Mg(g) is of the form A
* o+ % 1

(3) If there exists U C V such that dimy(U) = n — 1 and [G,U] < kv for some v € U%,
then G is called a hook group on V with hyperplane U and line L := kv. If L =

kv, <U = (va,--+ ,v,), then for every g € G, Mg(g) is of the form 0

¥ X ¥ =
* O =

1
* 1

Comparing with the unipotent groups consisting of reflections (see Proposition 0.2) we might
expect these to be the only types of unipotent pure bireflection group. There are however
two exceptional types, which we will briefly describe now and discuss later in more detail:
Exceptional groups of type 1 are formally introduced in Definition 6.1 as subgroups of
GL(V) with dimg V' > 5. It is shown in section 5 that they are isomorphic to subgroups of
Us, the group of upper unitriangular matrices in SL3(k) (see Proposition 5.5). Exceptional
groups of type 2 are introduced in Definition 2.4. They are elementary abelian, isomorphic
to subgroups of (k,+)? acting on V of dimension n > 6 as described in Definition 6.1 and
Proposition 6.3.

Now we can describe the main result of this paper, namely the classification of finite unipo-
tent pure bireflection groups in characteristic p > 2:

Theorem 0.5 (Main Theorem). Let p = char(k) > 2 and let G < GL(V) be a p-group
consisting of bireflections. Then one of the following holds:

(1) G is a two-row group.

(2) G is a two—column group.

(3) G is a hook group.
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(4) G is an exceptional group of type one.
(5) G is an exceptional group of type two.

Proof. This will be proved at the end of section 2, after the proof of 2.14. O

The paper is organized as follows: In section 1 we define our notation and establish elemen-
tary properties and formulae for transvections and bireflections, which will be used throughout
the paper. Section 2 analyzes pure bireflection groups generated by two (or three) elements.
It is here where the exceptional cases mentioned above first appear. The end of section 2 also
contains the proof of theorem 0.5. Sections 3 and 4 describe the structure of the “standard”
unipotent pure bireflection groups, i.e. the two-row, two-column and hook-groups. Similarly
Sections 5 and 6 give a detailed analysis of the structure of exceptional groups. Notice that for
applications in invariant theory an explicit description of the linear groups, beyond the purely
group theoretic structure is essential. Section 7 analyzes maximal pure unipotent bireflection
groups over finite fields. These results are useful for the analysis of corresponding rings of
invariants, which is the topic of a forthcoming paper.

1. BASIC DEFINITIONS AND FORMULAE

Let V be a finite dimensional k-vector space. We start with a definition linking subspaces
of V with subspaces of the dual space V*. Note that G < GL(V) acts naturally on V* by the
rule g(A\) = Ao g~! for A € V*.

Definition 1.1. Let V' be a vector space, U CV. We define
Ut ={AeV* | Xu)=0 for alluc U}.

For g € GL(V), we write 64 € Endi (V) for the map which takes v € V to (g — 1)(v). For
a unipotent element g € GL(V) the index of g, ind(g), is the nilpotence-index of dy, that
is ¢ € N such that 65 = 0, 051 # 0. The index of a group G < GL(V) is defined to be
ind(G) := max{ind(g)|lg € G}. For G < GL(V), v € V or V* we define the stabilizer (or
isotropy) subgroup of v to be G, :={g € G | g(v) = v}.
The next lemma will be used many times to move between groups and their dual represen-

tations. The proof is straightforward linear algebra and therefore omitted.
Lemma 1.2. For G < GL(V) the following hold:

(1) [G, V¥t =VE and [G,V]+ = (V¥)C.

(2) dimg (|G, V*]) = dimg (V) — dimg (V) = codim(VY).

(3) V€ < [G,V] if and only if (V*)¢ < [G,V*].

(4) the canonical map V- — V/VS induces an isomorphism [G,V]/|G,V]¢ = [G,V/VE].
Definition 1.3. For u € V and v € ut = (ku)* we set t] € GL(V) to be the transvection
mapping s €'V to s + vy(s)u.

From now on k denotes a field of characteristic p > 0. We start by proving some general
results for transvections which are the reflections of order p in a field of characteristic p (for
related results see also [4, Lemma 1.3]):

Lemma 1.4. Foruj,us €V, 11 € uf, Yo € u%

p? ifp=2 and u; & ker(7z)
p  otherwise

1) If ug € ker(yy1) then [t 22| =

Ul “u2

2) If uy € ker(v2), then t71 72 = tZthll where uy = 7} (uz)

U1 U2

4) If uy € ker(vz) then t71 132 = 71472,

Uy "u1

If us € ker(y1) then ¢33t =t

Ul U2 u1tusz”

(1)
(2)
(3) |t3 22| is a power of p if and only if either v1(u2) =0 or y2(u1) =0
(4)
(5)
(6) t;r =t forallcek

5
6
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Proof. 1.: Let t = ¢)*t)2. For p # 2 we will show that if ug € ker(;) then for a € N, w € V::

Ul ‘ug”
t*(w) = w + ay (w)ug + avye(w)ug + @”yl (w)y2(u1)uz. We do this by induction- it is clear
for a = 1, and then:

(a—1)(a—2)

2
w ~+ ay1(w)ug + aya(w)us + @’yl (w)y2(u1)uz, so [t| = p. If p =2 we can see that t?(w) =

w + 1 (w)y2(ur)uz, so either t2 = 1 or ¢ is a transvection with order 2, so (#?)? = t* = 1 and
t has order p2.
2.: Let w € V so:

t"(w) =t Hw) = t(w + (a — D)y (w)ug + (a — 1)yo(w)ug + y1(w)y2(uy )ug) =

tartis (w) =t (w + 2 (w)uz) = w + 1 (w)ur + v2(w)uz + Y2 (w)y1(u2)ur =

(w4 y1(w)uy) + vo(w)(ug + v1(ug)uq) = tZZtgll, where v}, is as given above.
3.: We can see using the first two parts that if vi(u2) = 0 or y2(u1) = 0, then [t7172] is
a power of p. Let t = t71¢)2, if |t| is power of p, then [t,V]" # {0}. If up € ku; then we
already know that v1(u2) = y2(u1) = 0, so assume uq, us linearly independent. We can see
that [t, V] < (u1,us), so we can find a1,as € k not both zero such that aju; + asus € [t, V]
arur + aguz = t(arur + aguz) = (a1 + a2vi(u2) + ary2(ur)yi(u2))ur + (a2 + ar1y2(ur))uz.
Comparing us terms we see that a1y(u1) = 0, so either va(u;) = 0 or a3 = 0. If a3 = 0 then
as # 0 and comparing ug terms asyi(us) = 0 so 1 (u2) = 0.
4.45.: ForallveV,

iz (v) = 02 (v + 2 (v)ur) = v+ (71(v) +72(v))ur = v+ (71 +72) (V)ur = 172 (v),
sotrty> =t 72. Similarly for allv € V, 13171 (v) = t7} (v+71(v)u1) = v+71 (V)ur+71 (V)ug =
v+ 71(v)(ur +ug) =601, S0t =t
6.: For any c € k and v € V £ (v) = v + cy1(v)(u1) = v+ 71(v)(cur) = 7},

cul *®

O

Later we will want to write bireflections as products of transvections. The next lemma will
be useful when rewriting and comparing them.

Lemma 1.5. Let m € N, v1,...,%, € V* and uq, ..., uy such that v;(u;) =0 for 1 <i <
J<m. Let g =1t t]2 ...t7™, then the following hold:
(1) If v1,-..,vm are linearly independent and h = tZ}ltZZ o tz,m such that v;(u}) = 0 for
1<i<j<m, then g=hif and only if u; = u; for 1 <i<m.
(2) If ui,...,um are linearly independent and h = tiit,3 .. .tam such that vj(u;) = 0 for
1<i<j<m. Then g=hif and only if v} = for 1 <i < m.

Proof. 1.: As the v;’s are linearly independent for 1 < ¢ < n we can find v; € V such that
Lifi—
V={(vy|l<i<n)andfor1l<j<m~,v)= Olfz#] We can see that ¢ = h if and
if i # 7.
only if g(v;) = h(v;) for 1 <i < n. For m+1 <4 < n we have v; € VINV" so g(v;) = h(v;).
For 1 <i<m g(v;) = v; +uy, h(v;) = v; + ul, so g(v;) = h(v;) if and only if u; = ul.
2.: Clearly if v; = 7} for 1 < i < m then g = h. For any v € V §,(v) = Y%, vi(v)w
Sn(v) = Do vi(v)u,. As the u; are linearly independent if g(v) = h(v) then we can equate
coefficients and ~;(v) = ~vi(v) for 1 < i < m. If this holds for all v € V then v; = 4/ and
g = h, D

The following can be used to check the commutator and fixed spaces of elements of GL(V)
to see if they are bireflections.
Lemma 1.6. Let g,h € GL(V) be unipotent, w € V. Then we have:
(1) dgn(w) = b4(w) + dn(w) + 546p(w).
(2) 8y (w) =325, (5) 85 (w).
(3) If g is a bireflection then 04 (w) = idy(w) + w&g(w)
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Proof. 1.: For g,h € G, w € V: gh(w) = g(w + p(w)) = w + dg(w) + p(w) + 6405 (w), hence
(5gh(w) =4 ( )+ op(w) + (59(5h(w).
2. +3 For i = 1 the second result is trivial, we now proceed by induction. If §gi-1(w) =

i
(’jl 6J(w), then using the first result: dgi(w) = dy(w) + dgi-1(w) + Ggbgi-1(w) =

% i—1 i—1 (i— . i—1 i i i i
< )+ 02 (58 8 imE (7)) = idy(w) + 53 () + (1)) 8 + di(w) =
ijl (;) ;(w If g is a bireflection then 5;(11) =0 for any 7 > 2 and v € V | so we get:
Sgin(w) = idy + LU 52 (w). O

From this we easily see that if G is a unipotent transvection group then G is abelian if and
only if [G,V] < VY (see also [4, Lemma 3.5]). All reflections are bireflections hence reflection

. . . . . . . J 0
groups are bireflection groups and unipotent bireflections include transvections: < 02 I >
n—2

as well as those elements of GL(V') congruent to one of (%3 I 0 ) , an “index 3 bireflection, or
n—3
J: 0 0
0 Jo 0 |, a “double transvection”. Here Jo, J3 are Jordan 2 and 3 blocks respectively.
0 0 I, 4

If g is a unipotent bireflection it can be written as either ¢ for some u € V with v € u" in the
case of a transvection, or as ¢J1¢72 for some ui,up € V, 71 € ui, 2 € ug with 71 (ug) = 0. If

v2(u1) # 0 it is an index 3 bireflection, if y2(u1) = 0 then it is a double transvection.

2. SPECIAL CONFIGURATIONS

Definition 2.1. Let n > 5 and G < GL(V) a unipotent group. Let g,h € G be bireflections
and U = VI+ V", We call g, h a special pair if we can find r,72,v € V linearly independent
such that the following hold:

dim,(U) =n—1, dimp(VINV")=n—-3, v g U, 7r,mecVIiNV"and
0,(U) = kv, 04(v) =12, 0p(U) =k(v+r1), On(v)=2ri+ra.
If g, h € G form a special pair and G is a pure bireflection group then we call G an exceptional
pure bireflection group (or exceptional group) of type one, and g, h an exceptional pair.
Lemma 2.2. For g,h € GL(V) the following are equivalent:
(1) g,h form a special pair;
(2) g= tglt’;z for ¢1,0* € V* linearly independent, t,0 € ker(¢1) such that
0% (f2) =0, %(0)=1
and we can find a,b € k, 71 € ker(¢1) Nker(v*) and some o € V* linearly independent
to C1 and O such that (a(i2) = (1) = G(0) = C1(F1) = 0 and h = 15 3 15, where
b1 =b0+ (a— ab)fe + (2a + b)7y, B2 =v —afy + 71 and S5 = 271 + 7.
(3) we can find some y1,7v2,v* € V* linearly independent, and ri,r2,v € ker(y1) Nker(ys2)
linearly independent, with v*(ry) = v*(r2) = 0 and v*(v) = 1, such that g = t]'t, and
h = tzirﬁ tg"”l +ra”
Proof. 1) = 2) Suppose g, h are a special pair. Then ¢ is an index 3 bireflection so we can
find ¢;,0* € V* linearly independent, 75,0 € ker(y;) such that ¢*(f2) = 0, 9*(9) = 1 and
= ¢$'¢2". Let u; € ker(*) such that ¢;(u1) = 1. As g, h are a special pair if U = V9 + V"

v “ro
then dimy(U) =n —1. As V9 is n — 2 dimensional and 17, uy; € V9 are linearly independent we

can see that V' = ku; +k0+V9. Therefore can find some a’, a € k such that if u = a’u; —ad then
U=ku+V9. As §4(U) £ V9 and §,(0) € V9, we see a 7é0 so we can assume o’ = 1. We can
now find v = 5g(U) let v =d,4(u) = 6 o(u1 —ad) = 0 —ary. By the definition of a special pair we
can find 7, € V9N V" such that 6h(U) = k(v+71). Since d4(v) = 64(0 — aray) = d4(?) we know
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that 72 € VINV? and 8§, (v) = 0, (0 — arz) = 05,(0) = 271 + 72. Let ug € ker(¢;) Nker(9*) such
that 85 (ug) = v + 71. We know ug € U\V", so U = kugy + V". We know that u = u; —ad € U
so we can find some b € k such that u; — ad — buy € V" and 65, (u; — ad — bus) = 0. Therefore
Sn(u1) = bv+ (a — ab)ra + (2a + b)ry. Let (2 € V* such that ker(¢2) = VINV" + kuy + ko and
(a(up) = 1. Let By = bi-+(a—ab)ia+(2a-+b)i1, By = v—afa+iy, By = 21 +7p and h = £ 1537 .
We find 6; (u1) = uy + b0+ (a—ab)iy + (2a+b)71 = 0p(u1), 07, (u2) = ug +0 —afy +71 = op(u2),
85, () = 0 4 271 + F2 = 6,(9), and §5(VINV") =0=§,(VINV"), 50 h = h as required.

2) = 3) Let g, h be as described in part 2). Then we see that 81 = by + af3 and g = I

v “Tg

C14C1 G opo* _ 4G 0" 4al1 _ 4G Co 3% _ 4bC1,aC1 G2 0% _ 4C2+bC1 0" +aly
tﬁ t—afztafztf2 - tf)—f?tfz ’ h = tb52+a53t62t53 - tﬁz tﬁB t52t53 - t/82 t/BS

(using Lemma 1.4). Setting v1 = (1,72 = (o + b(1,v* = 0* +aly, 1 = 71,72 = Fo,v = ¥ — afg,

we can write g = tglt;’;, h= tZimt’Q’;I .y 50 they are in the form required.

3) = 1) Let g, h be as described in part 3). Aswv,ry and v+7r1, 2r1 +79 are linearly independent,
V9 = ker(y1) Nker(v*) and V" = ker(y) Nker(v*) so V9 + V" = ker(v*) Nker(v1) + ker(v*) N
ker(y2) =

ker(v*) N (ker(v1) + ker(y2)) = ker(v*) NV = ker(v*),
which has dimension n — 1. We also find V9 N V" = ker(y;) N ker(y2) N ker(v*) and check it
has the correct dimension
dimy (VI N VH) = dimy (V) + dimg (V) — dimp (VI + V) =n—24n—-2-n+1=n-3.

We can see that §,(U) = kv, d4(v) =712, 0p(U) =k(v+7r1), dn(v) =2r1 +12, 50 g,h are a
special pair. O
We now check that exceptional groups of type one do exist.

Lemma 2.3. If G is generated by a special pair then G is an exceptional group of type one.
Moreover, for p # 2, G = M(p) is an extraspecial group of order p3.

Proof. Let g,h € GL(V) be a special pair and G = (g, h). By Lemma 2.2 we can find some
1,72, v* € V* linearly independent, and r1,79,v € ker(y1) Nker(vz) linearly independent with
v*(r1) = v*(r2) = 0, v*(v) = 1, such that we can write: g = tJ't% , h = t? §:1+T2. Using

T2 v+r1
this and Lemma 1.4 we can find the commutator z = ghg 'h~': ghg~'h~! =
Y1 40* 12 v* v* v v Y2 71 Y2 Y2 v vt o _
tv trz tv+7"1t2r1+r2t—r2t—vt—2r1—rzt—v—h - tv t—v—2r1—rgtv+r1+r2t—v—r1tr2 t2r1t—2r1—r2 -

th, ., t72 and see that z commutes with g and h. As G is a p-group, ®(G) = G?[G,G].
Suppose p # 2. As g and h are index 3 bireflections, g¥ = h? = 1, so (z) = Z(G) = ®(G).
Knowing this and using Lemma 1.4 we see that any o € G can be written as: o = g'h™z" =
(e ) (2 8 )™ (8 102)™ = 28228, for some O < I,m,n < p— 1, where: a; =
lv —2nr; + Ww, o = mu + m?r; + WQ, ag = 2mry; + (m + D)ro. We
find that: 0 = 2may — 2lag + (2n — Im)as hence G is an extra special group consisting of
bireflections with |G| = p®. As all ¢ € G have order p, we see that G = M(p). For p = 2

we find that g = t;“t“* h = 7%tV are still index 3 bireflections, therefore ghg='h~! =

T2 v+7ry1 Yo
g?h? = 1272 € Z(G). Let z1 = g% and 2o = h? then 21,2, € Z(G). Hence any 0 € G
can be written as o = g**h®2z{®25* = tglltggtg;, where ai,...,a4 € Fy and a1 = a1v + asra,

Qo = agV + asry + agra, as = (a1 + az)re. We see that if a; = as then ag = 0, otherwise we
must have a; = 0, for either ¢ = 1 or ¢ = 2, in which case «; € kas. In any of these cases we
see that o is a bireflection, and G is a pure bireflection group. O

We see from above that exceptional groups of type one look quite different when p = 2. This
is not the case for our next family of exceptional pure bireflection groups.

Definition 2.4. Let G < GL(V) be a unipotent group with g1, ge,g3 € G. We call g1,92,93 a
special triple if there exists r1,72,73 € V, Y1,72,73 € i Nry N1y with dimy(ry,m2,73) =
dimyg (1,72,73) = 3 and we can find f € k such that g1 = t]11)2, go = 71102, g3 =t 52 ¢7°, .

T2 T2
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If G is a pure bireflection group then we call G an exceptional pure bireflection group (or
exceptional group) of type two, and g1, g2, gs an exceptional triple.

Note that special triples g1, g2, g3 have the property that the group generated by any pair
(gi,9;) with 1 <14 < j < 31is a hook group, so they are not an extension on exceptional groups
of type one. Again with exceptional groups of type two we need to check that these groups
exist,.

Proposition 2.5. A group G which is generated by a special triple is an exceptional group of
type 2, moreover G is elementary abelian of order p3.

Proof. Let g1, g2, 93 be a special triple, so for some r1,72,73 € V., v1,7v2,73 € 7 N7y N ry,
f ek gr =102, go = 11172, g3 = t}; 1%, . From their definitions we can see g1, g2, g3
commute, so for any 0 € G: o = g¢g5g5 = tRh 32t with a1 = ary + brs, az = ara + cfrs,
asz = bro —cfry. So cfa; = bas — aas and for all o € G, o is a bireflection. Therefore G is an
exceptional group of type two, which is an abelian group of order p3. O

If G < GL(V) is a pure bireflection group then the dual representation is also a pure
bireflection group. Since the dual representation of a group is represented by the transpose
inverse matrices (with regard to the dual basis), it follows that the dual representation of a
hook group is also a hook group, and similarly for exceptional groups of types 1 and 2. However
the dual of a two—row group is a two—column group (and visa versa).

We will show that the above are the only types of pure unipotent bireflection groups for
p # 2, to do this we will make regular use of Proposition 1.6. First we show that an index 3
bireflection defines a unique hyperplane and line for any hook group containing it.

Lemma 2.6. Let G < GL(V), and g € G an index three bireflection so we can find 1,72 € V*
and uy,uy € V linearly independent such that v1(u1) = y1(u2) = y2(u2) = 0, y2(u1) # 0 and
g=t1t12. If G is a hook group then it has hyperplane U = ker(y1) and line kus = [g, [g, V]].

Uy Cuz”

Proof. Let G be a hook group with hyperplane U. If v & ker(y1) then d,(v) € V9 sov ¢ U, so
U < ker(vq). As dimy(U) = n — 1 = dimy, ker(vy), we see that U = ker(vy1). As 0,(U) = kug
we see that the line of G must be kug. As [g, V] = (u1,us) we see that [g, [g, V]] = kus. O

We now begin to look at pure bireflection groups generated by two elements.

Lemma 2.7. Let G = (g, h) be a pure unipotent bireflection group and not a two—column or
two—row group. Then U = VI+V" <V is a hyperplane with dimy (5,(U)) = dimg (6, (U)) = 1.
Furthermore G is a hook group if and only if §4(U) = §,(U) < U.

Proof. As h is a bireflection dim (V") > n — 2, however as G isn’'t a two—column group
dimp(VIN V") < n—2. Hence VP #£ VINV" so VI £ V9. As g is also a bireflection
1 < dimy(6,(V")) < 2. Suppose dimy(6,(V")) = 2 then d,(V") = [g,V] < [gh,V]. For any
w € V dgn(w) = dg(w) + op(w) + 646 (w) € [gh, V]. As d4(w),040n(w) € [g, V] this means
that 5, (w) € [gh, V], hence [h,V] < [gh,V]. However this would mean that dimy([gh,V]) =
dimy([g, V] + [k, V]) > 2 and gh is not a bireflection. So dimy(d,(V")) = dimy(6,(V9)) = 1.
Let U = VI+V" then (6,(U)+0,(U)) < 2,50 U # V. We can also see that: dimy(VI+V") =
dimy, (V9) +dimg (V") —dimg (VINV?) > (n—2)+(n—2)— (n—2) = n—2, so dim(U) = n—1.
If 6,(U) = 6,(U) < U then G is a hook group with hyperplane U and line §,(U). Suppose G
is a hook group with hyperplane U’ and line kv < U’. If V9 £ U’ we can find some u € VI\U’
such that V = U’ +ku. Then [g,V] = [g,U’] = kv, [h, V] = [h, ku]+[h,U’] = kdp(u)+ kv. This
would mean that [G,V] = [g,V] + [k, V] = kdp(u) + kv but G is not a two-row group; hence
we must have V9 < U’. Similarly V* < U’, so VI +Vh = U < U’. As dimg(U) = dimy (U’)
this means that U = U’ and 0,(U) = §,(U) = kv < U. 0.

The next two lemmas give conditions under which a group generated by two elements is either
a two-row, two—column or hook group. It is here we start restricting to odd characteristic.
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Lemma 2.8. Let p > 2 and let G = {g,h) be a pure unipotent bireflection group with U =
VI +Vh If §,(U) < U then G is either a hook, two-row or two—column group.

Proof. Assume G is not a two-row or two—column group. We have shown in Lemma 2.7 that
U =V9+ V" <V is a hyperplane and dimg(d,(U)) = dimy(6,(U)) = 1. Let uz,us € V such
that: §4(U) = kui, 0,(U) = kus and choose some v € V\U so V' = U+kv. Assume §,(U) C U,
ug € U. Therefore 6y, (us) = ayus for some a; € k. Since 6, is nilpotent a; = 0 and uy € V.
Similarly if 6y, (v) = agv+r with az € kand r € U then ag = 0, 65 (v) € U so [h, V] < U. We look
at gh € G. Let uw € VM\V9 and o’ € VI\V", then: dyp(u) = dg(u), S4n (') = 0405 (w') + 05 (u).
We can see that dg(u), 940, (u") € kuy and 05 (u') € kug. Since d4(u) and dx(u') are non-zero
kuy + kus C [gh,V]. Suppose that dimy(ku; + kug) = 1. Then ku; = kup < VI N V" and
G is a hook group with hyperplane U and line ku;. Assume dimg(ku; + kug) = 2. Then:
[gh, V] = kuy + kus. From this we know: 04,(v) = d4(v) + 0p(v) + 040 (v) € kuy + kua. As
[h, V] < U, we must have 0,05,(v) < kug, so for some c1,ca € ki 04(v) + 0 (v) = crur + coug,
0n(v) = crur + coug — 6g(v). As [G,V] = [g,V]+ [h, V] = (u1, u2,d4(v), 55 (v)) has dimension
greater than two the set {u1, us, d4(v)} must be linearly independent. Looking at the action of
gh* on U for 2 <i < p—1 we find that: 0, (u) = dg(u), 6ypi (u') = i0p(u') + 0405 (u"). We see
that &4(u), 6405 (v') € kuy and 85 (') € kug so: [g*h, V] = kuy + kus. Using Lemma 1.6 we find
Sni (0) = 84(0)+ih (0)+ 962 (0) 408,65 (V) + 1521 6,62 (v) € kuy+kug. As [h, V] < U we can
see that: 07 (v) € kua, 040k (v), 6407 (v) € kuy, so for some by, ba € k 6,(v)+id4(v) = byug +baus.
Substituting in 65 (v) = cru1 + caug — 04(v), (1 — 1)dg(v) = (b1 — c1)ur + (ba — c2)ug but then
dg(v), u1, ug are not linearly independent and we have a contradiction. O

Now we see what happens if our group generated by two elements is not a two-row, two—
column or hook group.

Lemma 2.9. Letp > 2 and let G = (g, h) be a p-group consisting of bireflections, but not a two—
row, two-column or hook group. Then U = VI + V" has codimension one, 6,(U),8,(U) € U
and v € VAU, r € U such that §,(U) = kv, 0,(U) = k(v +r). We can find ¢ € k such that
either: d4(v) = —cr 4+ (c— 1)0p(v + 1) or ép(v+17) =cr + (c — 1)d4(v).

Proof. Using Lemma 2.7 we know that if G is not a two—row or two—column group then U has
codimension one. By Lemma 2.8 if G is not a hook group then 65, (U),64(U) € U. Let v € V
such that kv = 0,(U). As 64(U) € U we can write V. = U + kv. As §,(U) € U we can find
some r € U such that §,(U) = k(v +r). We look at gh € G. Let u € VM\V9 o/ € VI\V"
dgn(u) = d4(u) € ko,
Sgn(u') = 0p(u')+040,(v) € k(v+r+d4(v+7)). Asr € U, §4(r) € kv so: kv+k(v+r+d,4(v)) C
[gh, V]. Suppose dimy (kv +k(v+7+64(v)) = 1, then: k(v+r+04(v)) < kv,which would mean
that r 4 d,(v) € kv. As g is a bireflection and v € [g, V] we know that d,(v) € 62(V) < V9.
Since 1, 64(v) € U this tells us §4(v) = —r, s0 04(v) = —cr+ (¢ —1)dp(v+71) for ¢ = 1. Suppose
dimg (kv + k(v 417+ 04(v)) = 2, then as gh is a bireflection kv + k(v + 17+ 64(v)) = [gh, V] and
dgn(v + 1) = dg(v+7) + (v +7) + 6g0n(v +7) € kv + k(r + 04(v)). As h is a bireflection,
Sn(v+71) €V CU, s0 §,04(v+1),04(r) € kv. We can find c1, ¢y € k such that: (v + 1) =
c1(r +04(v)) + cav — 04(v). As v is the only term not in U, we can see co = 0, so if ¢ = ¢; we
have: 85, (v + 1) = cr+ (c — 1)dq(v). O
Lemma 2.10. Let p > 2 and let G = (g,h) < GL(V) be a p-group. Then G is a pure
bireflection group if and only if one of the following holds:

(1) G is a hook group.

(2) G is a two—row group.

(3) G is a two—column group.
(4) G is an exceptional group of type one.

Proof. If G is a two—column, two—row or hook group then we can easily check it consists of
bireflections (see Lemmas 5.2, 4.2 and 3.3) and exceptional groups consist of bireflections by
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definition. Suppose G = (g, h) isn’t a two—row, two—column, hook or exceptional group. Using
Lemma 2.9 U = V9 4+ V" has codimension one, 6,,(U),d,(U) € U and v € V\U, r € U such
that 64,(U) = kv, 6, (U) = k(v+r). We can choose g, h such that: o,(v+7r) = cr+ (c—1)d4(v).
As we are assuming our group is not a two-row group this means that v,r,d4(v) are linearly
independent. As r € U we can find s,t € k such that: §,(r) = s(v+ 1), d4(r) = tv. We will
show that either:

(I)e#£0and s=¢t=0,(2)c=0andt =0, or (3) c=0and s =0.

We do this by looking at the descending commutator series. Firstly we find that [G,V] =
(v,7,84(v)). We want to find [G, [G, V]], so we look at dy(v) = &,(v), d4(r) = tv, 6;(v) = 0,
On(v) = (c—1)04(v)+cr—s(v+r), 0p(r) = s(v+r). Hence [G, [G,V]] > (§4(v),tv, cr, s(v+7)).
As G is a p-group we know that dim([G,V]) > dimg([G, [G, V]], so two of ¢, s,t must equal
0. First assume ¢ 20, s =t =0sor € VC. WelookatgihEGfor1<i§p—1. Let
u € U\V9, v € U\V" then using Lemma 1.6: §,i5,(u) = iég(u)—l—@ég(u), dgin(u') = op(u')+
10405 (u") + WT_D(SE(S;L (u’). We have already found d4(v),v,r to be linearly independent, and
i0g(w)+ 5252 (u) € k(20+(i—1)04(v)), 34 (w') € k(v+7), i0g(v+7)+ T2 (v 4r) = idy(v),
so we can see that: [g'h, V] = k(20 + (i — 1)d4(v)) 4+ k(v + r 4 id4(v)). Therefore 6, (v) =

i04(v) + 81 (v) + 8,05 (v) + LG 62 (0) + LT 626, (0) € k(20 + (i — 1)34 (v)) + k(v + 7 +i04(v)).
We know that: 05 (v) = er 4 (¢ — 1)d,4(v), 02(v) = d4(r) = 0, so for some o,y € k:

(t+c—1)0g(v) +er =a1(2v+ (i — 1)d4(v)) + aa(v + 1+ id4(v)).

Comparing r terms as = ¢, then comparing v terms a3 = —%

5. Looking at the d,(v) terms:
itc—1=—5(—1)+ci, ci —1) = 2(i—1), c = 2. Now we can see that: dimy(U) =
n—1, dimg(VINV") =n—3, and if we let r = r, §,(v) = ro then: 6,(U) = kv, §4(v) = ra,
p(U) = k(v+1r1),0n(v) = 2r1 + 19, so g, h are a special pair with G as described in Lemma
2.3 an exceptional group of type one. Now suppose ¢ = 0. If ¢ = 0 we have: 0p(v + 1) =
—d4(v+7). As above let u € U\VY, ' € U\V" then: &, (u) = idy(u) + @53(@, dgip(u') =
Sn(u') + 0405 (u') + 52525, (). We know that id,(u) + “U5162(u) € k(20 + (i — 1)3,(v)),
on(u') € k(v+7), 84(r) = 62(v) = 0, so we find: [g*h, V] = k(20+(i—1)dg(v)) +k(v+r+idy(v)).
Hence 84i5(v) = i0,(v) + 05(v) + 10405 (v) + L5262 (0) + LTV 62(0) € k(20 + (i — 1)34(v)) +
k(v 4 1 4 idy(v)). We know 04(v) = —d4(v) — sv — 57, 62(v) = 0, §4(r) = 0, so for some
ar, a0 €k (1 —1—1is)dg(v) — sv —sr = a1 (2v+ (i — 1)d4(v)) + a2 (v + 1 +id4(v)). Comparing
V and r terms ap = —s, a1 = 0, but comparing d,(v) terms ¢ — 1 —is = —is, which only holds
for i = 1, so we have a contradiction. If s = 0 then we have: 65(v) = —d,4(v), which can be
dealt with using the symmetric argument to the one above where t = 0. We need to exclude
p = 2 in the above proposition as we can find additional groups, which don’t exist in the odd
p case. Il

Examples 2.11. Let p =2 and H := (g1, g2) where:

100000 100000
110000 010000
oo 100 0 ~loo 100 0
5o 00 100" o0 1100
000010 000010
000011 000011
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We find that H = Cs x Cy so it is an abelian group of order
1 0

This just leaves one mon-

identity element not given explicitly. As g1g2 = , we see that H consists

[N eNol Nol
O R OO

P>

0
0 0
0 0
10
0 1
0

OO OO
— O O o oo

0 0 0
of bireflections but isn’t a two—row, two—column or hook group.

We now want to see what happens if our group has more than two generators. First we
want to find non-transvection bireflections. We call G a one-row or one—column group, if in
Definition 0.4 (1), “n—2” is replaced by “n—1” and in (2), “2” is replaced by “17, respectively.

Lemma 2.12. Let g1,...,¢; be bireflections such that G = (g1,...,q) is a p-group which isn’t
a one—row or one—column group. Then we can find g € G such that V9 has codimension two.

Proof. By Proposition 8.2.12 of [8] G consists of transvections if and only if it is either a one—
row or one—column group. It follows that either g; is not a transvection for some 1 < i <[
or there exists g € G not a transvection which is a product of two transvections. Suppose for
some 71,72 € V¥, ui,ug € V, g = {7172, If either v € k7ys or u; € kus we see that g is a
transvection. Otherwise V9 has codimension 2. O

We want to be able to use Lemma 2.10 to help us with pure bireflection groups with more
than two generators. The next lemma allows us to find a useful subgroup with two generators
for groups which are not two—row or two—column groups.

Lemma 2.13. Let G be a unipotent bireflection group which is not a two—row or two—column
group. Then we can find ¢1,92 € G such that H = {(g1,g2) is not a two—-row or two—column
group.

Proof. By the previous lemma we can pick g € G such that V¢ has codimension 2. As G is not
a 2-column group we can find o1 € G such that V9 £ V. If also [0, V] £ [g, V] then choose
g1 = ¢, g2 = o1 and we are done. Otherwise, as G is not a 2-row group, we can find o5 € G
such that: [02,V] £ [g,V]. Either:

(1) Ve g V2, then ple g1 =g, g2 = 02,

(2) V9 <V and dimg (V') = dimg(V2) = n— 2, then VI = V72 50 V72 £ V! so pick

g1 =01, go = 02, O

(3) V9 <V and either dimy (V') > n — 2 or dimy (V%) > n — 2.
In the third case, as V9 £ V71 VI < V2 we can find u € VI\V7! so: o102(u) = o1(u) and
therefore u & Vo172, As 01, V] < [g, V] and [02, V] £ [g, V] we can find some v, r € V such that
r &g, V]: o2(v) =v+r, o102(v) = v+r+d,, (v+7). We know that §,, (v+7) € [01,V] < [g, V],
so 1+ ds, (v+7) & [g,V]. Therefore V9 £ V192 and [o102,V] £ [g,V]; so we choose g1 = ¢,
go = 0102. O

Now we are able to move up to looking at groups with three generators.

Lemma 2.14. Let p > 2. Suppose G = {(g1,g2,h) is a pure bireflection group such that
H = {(g1,92) is a hook group with hyperplane U and line kv which isn’t a two—row or two—
column group. Then either:

(1) G is a hook group with hyperplane U and line kv,
(2) G is an exceptional group of type one and either gi1,h or go, h are a special pair,
(3) G is an exceptional group of type two and g1, ga, h are double transvections.

Proof. Let G1 = (g1, h) and G2 = (ga2, h). Suppose that neither g1, h or gs, h are special pairs
(in which case G is an exceptional group of type one). As both G and G2 must consist of
bireflections up to duality we only need to consider the following four cases:

(1) G; and G4 two—column groups,
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G171 a two—row group, Gs a two—column group,
G171 a two—column group, G2 a hook group but not a two—column or two-row group,
G1 and G2 hook groups which aren’t two—column or two-row groups.

We will use that as H is not a two—column or two-row group we can see by Lemma 2.7 that
U =V94+V9, and we can find u; € VI'\V9, uy € V92\V9 such that dg, (u2) = dg, (u1) = v.
As U is of codimension one there exists some w ¢ U such that dimy (kdg, (w) + kdg, (w)) = 2.

Case 1

Case 2

Case 3

Case 4

If G; and G5 are two—column groups, then V9 < V" and V92 < V' so V9 + V92 =
U < Vh. Therefore 6,(U) = {0} < kv and G is a hook group with hyperplane U and
line kv.

If G is a two—row group and G5 is a two—column group then [h, V] < [g,V] < U and
V92 < VP We see that g1 goh(w) = w+ 8y, (w) + 64, () + 61 (w) +c1v, grgah(ur) = u+
On(u1)+cav, g1g2h(us) = w'+v for some ¢y, ¢y € k. As Gy is a two—row group: dp(u1) €
(v, 84, (w)). Suppose that G not a hook group. Then v, 65 (u1) are linearly independent,
so in order for gigsh to be a bireflection: [g1g2h, V] = (v, 5 (u1)) = (v, g4, (w)). This
would mean that 6y, (1) + g, (w) + 8 (w) + 10 € (1,8, (1), b2 (1) € (v, 6y, (1)) and
G (and therefore H) is a two—column group, which is a contradiction.

If G5 is a hook group but not a two—row or two—column group then by Lemma 2.7 it
has hyperplane U’ = V9 + V", Suppose the line of G5 is kv’. If G is a two—column
group V9 <V so U = V9 + V92 < Vh 4 V92 = U’ As dimy(U) = dimy,(U’) this
means that U = U’. As d,4,(U) = kv we see that kv’ = kv, so G is a hook group with
hyperplane U and line kv.

Suppose G and G are both hook groups which are not two—row or two—column groups.
Let Uy = V914V U, = V92 + V" be the hyperplanes of G; and Gy with lines kv; and
kv, respectively. If there exists u € (V2 N U)\V9 then u € Uy so Uy = VI + ku = U,
kv, = kv and (g1, g2, h) is a hook group. Similarly if there exists u € (V* N U)\V92.
Assume this is not the case. If we take uj,us as defined above then w; € Up\Us
and ug € Us\U;. We can see Uy + Uy = U + Uy = U + Uz = V and by definition
dimy (Uy) = dimg (Usz) = dimg(U) = n— 1. From this we see that dimg (U1 NUs) = n—
2, dim, (UNU;NUz) =n—3. As V" < Uy, V" < Uy and dimy (V") > n—2 we see that
UiNUs = VP, Similarly V9 = UNU;, V92 = UNU,. We can assume w € V*\U, and
as H not a two-row or two—column group, dy, (w), g, (w), v are linearly independent.
Since w € Uy NUs and we can see that kv; = kdy, (w) € Vh kv = kg, (w) € vh.
Let ai,as € k such that dp(u1) = a1dg, (w), On(uz) = axdy, (w). We now look at
G3 = (9192, h) and see that g1 g2(w) = w+0dg, (w) +dg, (W) +0g, 09, (W) g1g2(ur) = ur+v,
9192(u2) =uz +0v. As [g1927 V] = <591 (U}) + 592 (w),v> 7& <591 (U)), 592 (’LU)> = [ha V] we
know that G3 is not a two-row group. As dimy(V992) = dimy (V") = n — 2 and
w € V9192\V" we see that G is not a two—column group either. By Lemma 2.7 this
means that Us = V" 4+ V9192 hag codimension one. As u; — us € V9192 < U and
On(ur — u2) = Op(u1) — On(u2) = a164, (w) — azdy, (w) € V. By Lemma 2.8 we see
that G must be a hook group with line k(a1dy, (w) — azdy, (w)). As w € V* < U we
find: k(a1d, (w) — azdg,(w)) = k(8g, () + b, (w) + 09, 6, (w)). As b, (w), bg, (w), v
are linearly independent and 4,4, dy,(w) € kv we see that 04, dg, (W) = 64,04, (w) =0
and a1 = —as. Let 79,7v1,72 € V* such that: yo(w) = 1,ker(y0) = U, y1(u2) = 1,
ker(v1) = Up, Y2(u1) = 1, ker(y2) = Us. Let G' = (g1, g2, h) where ¢1 = tgsl(w)t;Yl’
ga = t}‘g:(w)tg?, h = t216g2(w)t12a16g1(w)7 then G’ is an exceptional group of type two.
We can see that for i = 1,2 V9 = U NU; = V9 and V* = U; N Uy = V*. We know
that V = V9 @ kuy @ kw = V92 @ kug @ kw = V" & kuy & kus. From the definition
of g1 G1(u2) = ug +v = g1(u2), g1(w) = w+ &g, (w) = g1(w), so g1 = g1, similarly
g2 = g2 and h = h. Hence G = G’ is an exceptional group of type two, and g1, g2, h
are double transvections.

d
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Proof. (of Theorem 0.5) Suppose G is not a two-row, two—column group or exceptional group.
By Lemma 2.13 we can find g1, g2 € G such that dimy (V9 NV92) < n — 2 and dim([g1, V] +
[92,V]) > 2. Let N := (g1, 92).

As G (and therefore N) counsists of bireflections by Lemma 2.10 N must be a hook group
with hyperplane U for some U C V, and line kv for some v € UY. As G is not an exceptional
group by Lemma 2.14 for any g € G, (g, N) is a hook group with hyperplane U and line kv.
Hence [G,U] < kv < VY% so G is a hook group with hyperplane U and line kv. O

3. TWO—COLUMN AND TWO—ROW GROUPS

Now that we know the pure bireflection groups for p # 2 we can start to look at them in
more detail. Although we don’t have the same classification of pure bireflection groups, two—
row, two—column and hook groups are still of interest for p = 2, so we don’t restrict to p # 2
for these sections. We start by looking at two—column groups.

Definition 3.1. Let r1,79 € V linearly independent, ¢ € V' such that ((r1) = 1, {(r2) = 0.
Then for all v1,72 € ri N7y, ¢ € k set kIV2S 1= t71402tS  and define the sets

Y1,72,¢C T17T2 7Cr2
K26 = {/igll%i | y1,72 €11 Ny, c € k}, L™ = {ﬁgf{a’c |y ertnry}.
Whenever r1,72,( are fized in context we will write Ky, ~y,c-
Lemma 3.2. Let ri,72 € V and (1, € V* such tha (1(r1) = (a(r1) =1, G1(r2) = ((r2) = 0.
Then KT1m2:61 = T2

Proof. Let g = kI172:%1 € K™"2:61, Ag () and (, agree on 71 and 75 we can find 3 € r{ N7y

Y1,72,¢
such that ¢; = (z +73. Hence g = s71728 = gl17202 e K2tz §o Kriradt < K126z,
A symmetric argument tells us that K772:61 < Km1:72:6 g0 KT172:60 = K126z, g

From here on we shall write K™ = K""2¢ we look at multiplication between the
elements of this set.

Lemma 3.3. If we fiz r1,7r2,( then
— — A/ — A/ — A/
By zse = Bl yger & N1 =71 Y2 =7 and c =¢.
R o I / / A ’
Ky ya,eByt b er = By a8 where: y1 =1+, Y2 =Y+ + ¢y, and é=c+c.
- !
Ky ya,e AN Kyt yp o commute iff ¢y) = 1.

)
)

4) k1
)

—
~—

Y1,72,C = K—y1,em—72,—c-

—1 -1 _ 1,72
Ry y2,eFof e By pyp Byt 4t o0 = Ferg—e/72,0,0 e L.

2 .
p?, ifp=2 andc#0,
(6) For ANY Koy ya,c € GL(V)" |’i’717’72,c| = . .
P, otherwise.

Proof. (1): If Kn, yy.c = Kyt 41, then: 67080288 = tit)? tg,. As r1, 79 are linearly independent
by Lemma 1.5 71 =}, v2 +cC =4+ (', s0y2 — 75 = (c— ). As ya — 74 € s, ( € ry we
see ¢ = ¢’ and y2 = 75.

!’ !’ 7 + ’
(20 16§ = oy amd b = g g then gh = (003265, 43543 = 600750 0BG, =
o +71 2 +v5+ey <
1 T2 (c+c)ra”

(3),(4),(5) and (6) follow from (2). O

We now move from looking at a set to looking at a group and it’s properties.
Proposition 3.4. Let G = (ky, v,.c[71,72 € riNry,c € k). Then G = K™ and |G| = ¢*" 3,
if k=TF,.

Proof. We know that K™ C G. By Proposition 3.3(2) all elements of the group can be
written as ., ,, . for some y1,72, ¢, so G = K", By Proposition 3.3(1) kv, qy.c = iyl 4p. o if
and only if 71 = v}, 72 = ¥4 and ¢ = ¢/. Therefore |K™"2| = |ri-Nry |2-|k| = (¢"2)%¢q = ¢*" 3,

if k =F,. O
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We want to see when different choices of r1, 79 determine different groups.
Lemma 3.5. Let r1,ro,u1,us € V, G = K™ and H = K"v"2. Then G = H if and only if

kro = kug and (ri,r2) = (u1, uz).

Proof. Let (1, (2 € V* such that {1(r2) = (2(u2) = 0 and ¢1(r1) = (2(u1) = 1. Suppose to start
with that kro = kug and (ry,72) = (uy, us). Firstly we note that this means r1 = aju; + agus

and 7y = aguy with aj,az # 0. Also 7 Nry = uf Nuy. For any ¢ € G we can write
g = ﬁfflffgﬂl € K™ for some 71,72 € ri Nry, ¢ € k. Using Lemma 1.4 this means that
g = RS = st S, = tTigasve eyl As kry = kup we can see that

Ci1(u2) = 0. Then (i(a1us + agus) = a1 (ug) = 1 and (1(u1) = 1/a;. Let b = 1/a;. As
¢1 and b(y agree on 71,75 we can find some 3 € ri Nry such that ¢; = 3 + b(y. Using
Lemma L4 g = 0t enely, — eyl — gngmerang i~
tzimtz§72+a1%+ca373tl§§asuz - ”:{1%2(2 € H, where v; = a171, 75 = azy2 + a171 + caz?s,
¢’ =beas. Hence G < H and by symmetry, H < G, so G = H. Suppose that (ry,ra) # (u1,us).
Then [G,V] # [H,V], so G # H. Suppose that (ri,r2) = (uy,us) but kro # kus. Then
kro =[G, V]9 # [H,V]H = kuy, so G # H. O

Clearly K™ is a two—column group for any r1,72 € V. We check that any two—column
group can be written as a subgroup of K"'"2 for some rq,79 € V.

Lemma 3.6. Let H be a two—column group. If [H, V| = [H,V] then H < K" for any
r1,79 € V such that [H,V] = (ri,m). If kv = [H, V] < [H,V], then H < K™ for any
ro € kv and r1 € V such that [H,V] = (r1,72).

Proof. Suppose H is a two—column group with [H,V]# = [H,V]. If we choose any 71,7 € V
such that [H,V] < (r1,72), then any h € H can be written as h = ¢]11)2 for some 71,72 € r{- N

1

r3-. Then for any ¢ € V* such that ((r1) = 1 and ((r2) = 0, h = £]1672 = 121§ = 112111,;22% €
K772 hence H < K™"2. Suppose that H is a two—column group with kv = [H, V]# < [H,V].
If we choose any ro € kv and 71 € V such that [H, V] = (r1,r2), then we can write and h € H
as h = t)11)2 for some 1 € ri{- Nry, 72 € V*. If 45 € r{ Nry then h € K™"2 by the above
argument. If y2(r1) = ¢ # 0 then let ¢ = 15 and write h = 719 ¢¢, = ngllszf, so h € K
and H < K™"2, O
Proposition 3.7. For n > 3 if G = K™" then it is a special group with Z(G) = ®(G) =
[G,G] = L™=,
Proof. As G is a p-group we know that ®(G) = GP[G,G|. We have shown in Proposition
3.3 that [G,G] < L™ and that GP = {e} for p odd and GP < L""" for p even. Putting
this together we find that ®(G) < L™"2. For v € r{ Nry take g1 = k0,0 and g2 = Ko0.1
then g19297 'g5+ = Ko,y,0 80 [G,G] = L™ = ®(G). If g € L™ then it commutes with all
elements K, 4, 0 so L™ < Z(G). If we choose K, 4,.c € Z(G) then for any v{,¢ we have
that ¢y} = y1s0y=0and ¢ =0, S0 Ky, 4,.c € L' and Z(G) = L™ = ®(G) = [G,G]. G
is a special p group. O

We can see that for any v1,72 € V*, G = (K772)* is a two-row group. Results for two-row
groups can be obtain by dualising the results of this section using Lemma 1.2.

4. HOOK GROUPS

‘We now move on to look at properties of hook groups. First we establish some notation.

Definition 4.1. Let U < V* be a hyperplane and fiz 0 # v € U and w € V*\U. For every
Aevtnuwt and u € U define bi’g’v € GL(V) by b'u”)({v(w) = w+ u, bi’g’v\y = t), so that
b:f,’g’”(u’) =u +u'(Nv for any v’ € U.

Choose w* € V* such that w*(w) = 1 and U = ker(w*). For ¢ € k we can then define:
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B Uv = {bﬁ””p\ € vt Nwt, ANu) = ¢}, BV = {bff’”p\ € vtNnuwtu e U}, Ryp =
{tv o € k} = {b20"|a € k}. For ¢ # 0 the elements of BV are index 3 bireflections. If

av,0

w,U,v are fized in context we will write b, » and B, instead of bx’g’" and BYUv.

We look at multiplication of the elements of BY:v.

Lemma 4.2. If we fiz w,U,v then

bur=bwxy Su=1u and A= N\,
) burby x = ba,}\ where A= XA+ XN and @ = u + v + Alu)v,
) bux and by n commute iff A(u') = N (u),

4) b\ = b_uia@wvas
) bur \rbu by 3 = box(u)-a@wy)w0 € Ro,us

p?, ifp=2andc#0,

p,  otherwise.

—
~

(6) Forbyx € Be |byux| =

Proof. (1) I by r = by y then: w+u=w+u', u=1u' For any s € U we find s+ A(s)v =
s+ N (s)v, A(s)v = N(s)v, s0 A = N.
(2) Let A = A+ X and @& = u+u'+ A(u')v. We can look at the action of b, ybys » on w and
on U. We start with w: by zbur x(w) = by (w+u') = w+ (u+u 4+ Xu')v) = b, 5 (w).
Let s € U then by, zby a(8) = bux(s + A(s)v) = s+ (A(s) + N(s))v = bﬂj\(’s)7 S0
busbux = b, ;.
(3),(4),(5,(6) follow from (2).
O

We see that BY"" is closed under multiplication, the next few propositions look at it’s group
structure.

Proposition 4.3. Let G = (b, \|u € U X € vt Nwh). Then G = BYY. Morever, |G| = ¢>"~!
ifk=TF,.

Proof. From the definition of G, {b,|u € U,A € vt Nwt} C G. By Proposition 4.2(2) all
elements of the group can be written as b, » for some u, A, so G = {b, x|u € U, X € vt Nwt}.
By Proposition 4.2(1) by x = by x if and only if u = v’ and X = X so |[{bya|u € U, X €
ol = [fue U] [{r € ot Aut}] = g2 = -3, =

Proposition 4.4. For n > 3, the group G = BY" is a special group with.:
Z(G)=2(G) =[G,G] = Rou

Proof. As G is a p-group we know that ®(G) = GP[G,G]. We have shown in Proposition 4.2
that [G,G] < R; y, and that GP = {e} for p odd and G? < R; i for p even. So we have that
®(G) < Rpu. Let w € V, for any d € k we can choose A € V* such that A(u) = —d. Then
bu,0,box € G and: by 0boaby, obg s = bavo € Rov. 50 [G,G] = Ryy = ®(G). If t € Ry then
it commutes with all elements b, x so Ry < Z(G). If we choose b, x € Z(G) then for any
', X we know A(u') = X (u). This can only happen if u = cv and A =0, so b, » € Ry y and
Z(G) = Ry v = ®(G) = [G,G]. Hence G is a special p group. O

We know that BY"? is special, for k = F, it is extra special so we know we can write it as a
central product of copies of extraspecial groups of order p3.

Lemma 4.5. Let k = F,, n > 3 and G = BYY. Ifp = 2 then G = Dgx Dg*...% Dg.

n—2 copies

Otherwise G = M (p) « M (p) *...* M(p).

n—2 copies
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Proof. Let {e1,...,en} be a basis for V such that e; = v and (zy,...,2,-1) = U. For
1<i<n—2let Hy = (be,,, 0, b07e;+1>. The H; are groups of order p? and we can check using
Lemma 4.2 that [H;, H;] = Z(H;) = Rs,v. Hence H; is extraspecial for 1 <i<n—2. If p=2
then as |by0| = 2 and b, o & ®(H;) we see that H; = Ds. If p is odd then as all elements
have order p, H; & M(p). Let H = HiHy...H,_5. For any 2 < i,57 <mn—1,1 # j we see
Z(H;) = Z(H;), and H; centralises H; so for p even H = Dg* Dg *...% Dg, and for p odd

n—2 copies

H = M(p)* M(p) *...x M(p). Clearly H < G and |H| = p*"~! = |G| so H = G. O

n—2 copies
The next Proposition relates B, and BY?. It is useful when looking for generators of BY:.
Proposition 4.6. Letn > 3. Forcc k let G, = (B.). Then G.= BY".

Proof. We know G, < BY?. We will show that for any element bux € BUwv, bux € G, so
BYv < G.. Since dimy,(V) = n > 3 we can choose u/, \’ such that: \(u') = ¢, N(u) = 0,
A') =0, 80 b xrs burguns b agnr € Be Then: by by = buo € Ge, buyiaby)y =
box € Ge, buobox = bux € Ge. O

We now look at some subgroups of BY:v.

Proposition 4.7. Let G = (by,...,b), where b; = by, », € BY" for 1 < i < | minimally
generate G. Then p' < |G| <p'*", if k =F, with q=p".

Proof. As G is a p-group ®(G) = GP[G,G]. We know that G? < R; ¢ and [G,G] < Ry so
®(G) < Rypand 1 < |®(G)| < |k|. By [1, Theorem 23.1] (X) = G if and only if (X, ®(G)) = G.
As G/®(G) is elementary abelian this means if [ is the minimal number of generators then
IG/2(G)| =p', s0 p' < |G| < gp* = p!T. O

Proposition 4.8. (1) Let G = (by,...,b;, Ry.r) where the set of b; = by, », € BYY for
1 <i <1, and the b;’s and Ry minimally generate G. Then |G| = p'*".
(2) Let G = (by,...,b) where the set of b; = by, », € BV for 1 < i <, and the b;’s
minimally generate G. Suppose [G,[G,V]] =0, then |G| = p'.

Proof. (1) Since ®(G) < Ry < Z(G), G/Rsu is elementary abelian of order p' and
|Rou| =q=0p", 50 |G| =p*".
(2) If [G,|G,V]] =0 it can be seen from Proposition 4.2 that G is elementary abelian and

if it is minimally generated by [ elements it has order p'.
O

5. EXCEPTIONAL GROUPS OF TYPE ONE

We now look at the exceptional groups of type one. In Lemma 2.3 we see that a group
generated by a exceptional pair G = (g,h) for p = 2 is quite different to a group generated
by a special pair for odd p. To start with we note that g and h have order p?> and not order
p. The centre of G also has order p? rather than p, and G is not an extra-special group. The
types of bireflection we find are also quite different:

ghg th=t = 11472

r9 Vro
is a transvection and not a double transvection for p = 2. We will see in the odd case that
exceptional groups do not contain any transvections (Lemma 5.9). For even p exceptional
groups of type one are part of a larger family of pure bireflection groups containing a pair of
elements
g= 15005 b= 0515

for (1,2, (3 € V*, uy,uz, us € V. We have already seen another one of these groups in Example
2.11 but we will not look at them in any detail.
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We will restrict to p > 2 for this section, we also need n > 5 for our definition of an
exceptional group of type one to make sense. We start by defining some groups containing a
special pair, and then show that these are the only possible exceptional groups of type one.

Definition 5.1. Define linearly independent sets v = {ry,ro,v} andy = {y1,72,v*} with
71,72, € V, 1,7 € r{ Nry Nut such that v* € ri Nry and v*(v) = 1. For alll,m,n € k set
X;;:L = tglltg’gtg?, where a; = v — 2nry + Mm, Qe = mu + m2ry + WT%
ag = 2mr1+(m+l)r2 and define the sets X™7 := {x;), , [ Lm,n € k}, Jr o == {xg)5.n | n € k}.

If r,~y are fived in context we will write Xi.mn-
Note that for all [,m,n € k, 2maq — 2lag + (2n 4+ ml)ag = 0, S0 Xi,m.n is a bireflection.

Lemma 5.2. For fized r,~y we have:
(1) Xi,mmn = Xt/,m/,n' & 1= ! m=m',n=n/,

Xliymn XU, m' n' = X+l m+m/ n+n’—ml’,
Xi,m.n 0Nd X1 ms n commute iff ml’ = m'l,

—1
) Xl,m,n = X-l,—m,—n—ml;
5 -1 -1 o
( ) Xtmn XV ,m! 0 X1 m n X1/ m! n/ = X0,0,lm/—1'm

(
(3
(4

Proof. (1): This is a direct application of Lemma 1.5.
(2): Let I,m,n,l',m',n’ € k then

Y1 Y2 $V V1L V2 LU 41 Y2 v
Xi,mn XU, m',n' = taltaztasta ta toc ta +a +l’a3ta2+oz2+m ozgtaa-i-oz ’
= 1) 2n

WT% oz = 2mr1+(m+l)7:2,

m’ (m/ —1420")4+2'n
2

where: a1 = lv—2nr; +
I(l1-1)— 2n
2

Tro, kg = mu+m? r+

oy =Uv—2n"r; + ro, oy = m'v + (m/)%r) + ro and

as =2m/ry + (m/ +1")rs.

We find that ag +af +lVas =14+ 1)v—=2(n+n" —ml')r, + (l+l/)(l+l/_1)2_2(n+n,_ml/)T2,

s+ oy +maz = (m+mv+ (m+m')ir + (m+m/)(m+m/_HQQ(ZH/)HQ("JF"I_M/)7‘2

a3+ O[é = 2(m + m,)rl + (m +m' + 1+ l/)T.Q, SO Xi,m,nXU',m/ ,n’ = XI+U',m+m' ,n+n’—ml’-
(3),(4),(5) and (6) follow from (2). O

We know that X7 is closed under multiplication, we can now start to look at it’s group
properties.

Proposition 5.3. G := (x;mn | ,m,n € k) = X™7, with |G| = ¢* if k = F,,.

Proof. By Proposition 5.2(2) all elements of the group can be written as x;m,, for some
I,m,n €k,s0 G={xi,mnll,m,n €k} =X"". By Proposition 5.2(1) Xim,n = Xt/,m’,n if and
only if [ =1I'm =m/,n=n'so | X™| = k|® = ¢ O
Proposition 5.4. Let G = X™7. Then G is a special group with Z(G) = ®(G) = [G,G] = Jy 4
Proof. As G is a p-group we know that ®(G) = GP[G, G]. We have shown in Proposition 5.2
that [G,G] < Jr~. As G is a pure bireflection group with p # 2, G? = {e} So we see that
®(G) < Jpn. Forany I € k if we let b1 = X1,00,02 = Xo0,1,0 then bibeb] b = X0,0,; SO
G,G] = Jry = ®(G). If t € J, , then it commutes with all elements X; ., s0 Jry < Z(G).

If we choose Ximn € Z(G) then for any I',m’ we have that ml’ = m/l so m =1 =0, so
Xi,m,n € Jr~. It follows that Z(G) = ®(G) = [G, G] and G is a special p group. O

Using the above we see that X™” is isomorphic to a group we recognise.

1 a b
Proposition 5.5. X" = U := < 0 1 c]labce k> < SLs(k).
0 0 1

Journal of Group Theory - JGT

Page 16 of 21



Page 17 of 21

oNOYTULT D WN =

Journal of Group Theory - JGT

THE FINITE UNIPOTENT GROUPS CONSISTING OF BIREFLECTIONS 17

—-n

m
Proof. It is easily seen that the map ¢ : G — Us, X1,m,n — 1 l | isaisomorphism. [
0

O O =

Note that if k¥ = F,, then Us is a Sylow p-subgroup of SLs(k). The next couple of lemmas
will help us towards our goal of showing that all exceptional groups of type one are isomorphic
to subgroups of Us.

Lemma 5.6. Let G1,G2 < GL(V) be hook groups with hyperplanes Uy,Us and lines vy, vy
respectively. Let 1,72 € V* such that ker(v1) = Uy and ker(y2) = Us. If Uy # Us, kv # kva
then for any t € G1 N Gy we can find a,b € k such that t = t%zt;ﬁl. Lety3 € V¥ and vs € V

such that dimg(vy,ve,v3) = dimg{vy1,7v2,73) = 3. If G3 < GL(V) is also a hook group with
hyperplane Us = ker(vys) and line vz and t € Gy N Ga N G3 then t = 1.

Proof. For any u € ker(y1) Nker(y2) we see that d;(u) € kro N k(2r1 + r2) = {0} so we can
find 73,74 € V such that ¢ = £)1¢)2. As ker(y2) £ ker(y1) we see that r3 € kvy and similarly
r4 € kvy, so we can find some a,b € k such that: t = t%Qt;’f}l. Ift € Gy NGy NG5 as above then

— Y1 Y2 — Y1 #3172 3 — 471 4702473
we see that for some ci,co,c3,c4 € bt =101, 802, =131, 123, =11 132, t5° = 21, t°t 23, ,

so using Lemma 1.5 ¢; = cy =c3 =c¢4 =0. 0

Lemma 5.7. Let g1 = X1,00, 92 = Xo,1,0 and 0 € GL(V). If G = (g1,92,0) is a pure
bireflection group then either o is a double transvection and for some a € k, o = x0,0,q 07 0 i
an index 3 bireflection and g1,0 or g2,0 are a special pair.

Proof. Let z = x0,0,1;, G1 = {g1,%,0) and G2 = (g2,%,0). As Gy, G2 are not two-row or
two—column groups, by Lemma 2.14 each could be a hook group, exceptional group of type
one or exceptional group of type two. As g7 is an index 3 bireflection G is not an exceptional
group of type two. As z is a double transvection if Gy is an exceptional group of type one then
g1,0 are an exceptional pair. Similarly either G5 is a hook group or go,c are an exceptional
pair. Suppose both G; and G2 are hook groups. As g; is an index 3 bireflection we see by
Lemma 2.6 that G; has hyperplane ker(y;) and line kro. Similarly G2 has hyperplane ker(vz)
and line k(2r; + r2). Using Lemma 5.6 we can find some a,b € k such that: ¢ = t:zrt2r1+r2)tgiz'
As 11,79 € ker(y1) Nker(vz) we see o is a double transvection.

Let G3 = (9192, z,0). Using Lemma 2.14 again, G3 is either a hook or an exceptional group. As
g1g2 is an index 3 bireflection it isn’t an exceptional group of type two, and as o, z are double

transvections G's isn’t a exceptional group of type one. This implies that G5 is a hook group. We

. ne:
know that g1gs = 63 gy bty 1o = toid*ter ) and [g1g2, (9192, V]] = k(r1 + 72). By

Lemma 2.6 k(r1+72) is the line of G, and U = ker(y;+72) is the hyperplane. If uy, us € ker(v*)
1ifi =,

such that for 4, 5 € {1,2}, 1 (u;) = . We can see that u; —ug € ker(y1+72) = U,

0 otherwise
S0 05 (u1 — uz) € k(ry +1r2), 2ary + (a — b)ry € k(r1 + r2). For this to happen we must have
b = —a and then ¢ = X0,0,4- O

We can now prove that all exceptional groups of type one are as described above.
Proposition 5.8. If G is an exceptional group of type one then G < X7 for some r, 7.

Proof. If G is an exceptional group of type one then we can find r = {ry,rs,v} and v =
{7,72,v"} such that X750, X570 € G- Let g1 = X700 92 = X1 0- I G £ X™7 then we
can find 0 € G\X™7. If G consists of bireflections then (g1, g2, o) consists of bireflections so
by Lemma 5.7 if o ¢ X™7 then either g1,0 or go,0 are an exceptional pair. Without loss of
generality we can assume g1, are an exceptional pair. By Lemma 2.2 we can find a,b € k,
rs € ker(y1) Nker(v*) and v3 € V* linearly independent to v, and v* such that

Y3(r2) = 72(r3) = v3(v) = 71 (r3) =0
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and o = tgitgztz; where 81 = bu+(a—ab)ra+ (2a+b)r3, 2 = v—arhy+r3, 3 = 2r3+7r,. Using

Lemma 1.4 we can find 2’ := og10 g7 ! = tg,l.ﬁ(l_b)wt”fw-

it can’t be part of an exceptional pair so because (g1, g2, 2’) must be a pure bireflection group

by Lemma 5.7 2’ = x¢,0,c for some ¢ € k. Then 2’ = tz(lwﬁm)tzzcm = t;;ﬁ(lfbmtliz. As

v is linearly independent to 2 and 3 we can find some u; € V such that v;(u1) = 1 and
'yg(ul) = ")/3(U1) = 0. We find 62/(U1) = 27’3 + (1 — b)T’Q = 201"1 + ¢rg so r3 = cry + %

As 2’ is not an index 3 bireflection

By multiplying 2’ on the right by (¢3%, ,.,,)”" and using Lemma 1.4 we get:
v SC— % Y _ 47 Y3 _ 4y
tc(127“1+r2)t*37”2 - tc(127“1+r2)t*257“2’ tfrz - tjcrz’ tfrz - t*TZz'

Using Lemma 1.5 we see that 73 = ¢y2. Now we see that o = ¢3! tZEthZ for

(c—1+b)
2

b(b—1)+ 2ac+ bcr

81 =bv+ (a—ab)ra+ (2a+b)(cr1 + 5

r9) = bv+ (2ac+be)ry + 2

—1 —1+2b) — 2ac —
cfay = cv — cary + c*ry + w = cv+ Py + cle—1+ 52) ac bC’
c—1+0b)r
Bs = 2(er1 + %) + 79 = 2cr1 + (c+ b)ra.
If L=b, M =cand L = —2%}¢ then 0 = 7, vy, s0 0 € X™7. O

This allows us to say more about exceptional groups of type one.

Corollary 5.9. If G is an exceptional group of type one then it contains no transvections and
any double transvections in G are contained within Jy ~, which is a two-row and two—column

group.

Corollary 5.10. If k =T, for fized r,~, there is only one exceptional group of type one which
is an extra special group of order p* which is isomorphic to M(p).

Proof. If G is an exceptional group of type one then by the above proposition G < X*7, for
some r,y, however G has no non-trivial subgroups which contain a special pair, so G = X*7.
We can see that ®(G) = [G,G] = Z(G) = Jy so G is extraspecial, and the order of G is p.
As G has no elements of order greater than p, G = M (p). g

6. EXCEPTIONAL GROUPS OF TYPE TWO

In this section we will treat exceptional groups of type two, as we have with exceptional
groups of type one above. Unlike exceptional groups of type one, many of our results for
exceptional groups of type two still hold for p = 2, so we do not restrict to odd characteristic
when we define some groups containing a special triple. We cannot, however, use our earlier
classification results for even characteristic, so we restrict to p # 2 when we show that these are
all possible exceptional groups of type two in Proposition 6.4. To be able to find G < GL(V)
an exceptional group of type two we need n > 6.

Definition 6.1. Let v = {ry,ro, 73} with r1,72,73 € V, v = {71,72,73} with y1,72,73 € ri N
ry Nry and dimg(ry, 79, 73) = dimy(y1,v2,7v3) = 3. For all a,b,c € k define wyy = tL 32t
where: a1 = ary +brg, az = ary +cry, az = bry —cr1, and VY = {w)’] |a,b,c € k}.

a,
Whenever r,~ are fized in context we shall write wzzc = Wa,b,c-

Lemma 6.2. For fized r,~ we have:
(1) wape =Wy l=Um=m'n=n
(2) Wa,b,cWa' b,/ = Wa+ta’,b+b',c+c’ -
(3) wap,e and wy o commute for all a,b,c,a’ b, ¢ € k.

4) wt

a,b,c = W-q,-b,—c-
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Proof. (1): We can see by using Lemma 1.5.. (2): For a,b,c,a’,V’,c € k we see that
Wa,b,cWa'b ¢! = tZ;’1+br3tZ72"2+cr3t’in2—crgtz’lrl+b’r3t3’2r2+c’r3tg’grg—c’rg =

t’)’l t’72 t’YS

(a+a’)r14+(b+b")r3“(a+a’)ro+(ct+c’)rs (b+b" )ro—(c+c’)rs”

(3),(4),(5),(6) follow from (2). 0

ry
a,b,c

Proposition 6.3. G = (w
|G| = ¢® if k =TF,.

la,b,c € k) = W™ is an elementary abelian group, with

Proof. By Proposition 6.2(2) all elements of the group can be written as wq s . for some a,b, ¢ €
k,s0 G ={wgp.cla,b,c € k} = W7, As all elements commute and have order p we see that G
is elementary abelian. By Proposition 6.2(1) wq e = W, if and only if a = a’,b=V,c=¢
so [Wr7| = ¢3. O

Proposition 6.4. Let p # 2. If G € GL(V) is an exceptional group of type two then there

exists some r,~y such that for all h € G, h = w.’] . for some a,b,c € k.

Proof. As G is an exceptional group of type two we can find a subgroup H = (g1, g2, g3) such
that g1, g2, g3 are a special triple. This means that for some r = {ry, 79,73}, v = {71, 72,73} and
seki g1 =wigo, 92 =wy o g3 =wpg . We will show that for all h € G we can find some
a,b,c € k such that h = wzzc From Proposition 5.9 we can see that GG is not an exceptional
group of type one: for any exceptional group of type one all elements which are not index three
bireflections are contained within the centre which is a two—column (and two-row group). The
special triple g1, g2, g3 are all double transvections which are not contained in any single two—
row or two—column group. For all h € G the subgroups (g;, g;,h) for 1 < ¢ < j < 3 consist
of bireflections so by Lemma 2.14 they are either hook groups or exceptional groups of type
two. Suppose (g1, g2, h) is a hook group then it has hyperplane ker(y;) and line kry. Similarly
if (g1,93,h) is a hook group then it has hyperplane ker(ys) and line kry, and if {(go, g3, h)
then it has hyperplane 73 and line r3. As v1,72,73 and ry,79,73 are linearly independent
this means if all three groups are hook groups by Lemma 5.6, h = 1. For h not the identity
we know that for some 1 < 4 < j < 3 that (g;,9;,h) is not a hook group, we can assume
i =1 and j = 2 without loss of generality. We can find v’ = {r{, 75,75}, v = {71,7, 7}

such that for some n € k: g = w' g, g2 = wh{y, h = why.. Then: tnz = ¢,
0, 1, 0, it
tz;t;fg’ = t:gt:z As (/{3’}/1 + k’yz) M (k"yl + k’}/3> = k1, (k?‘l + ]{37‘2) N (]CTQ + k?‘g) = krqy for

some I,m € k, 1 =71, ¥ = Yo+, v5 =yt my, vy =11 — ey, g = 15, 15 =

’ ’
— . . _ Y2 473 _4dm my1 Y2 V3 .
r3 — mrg. Using this we find that h = tnrétfnri = tn(rrmr2)t7n(rl7lr2)tn(7n37mr2)tin(h7”2) =
71 Y2 Y3 _ry .
t—mnh+lnr2tnr37mnr2t_nrl+lnr2 =W _ o inn 35 required. O

Corollary 6.5. If G is an exceptional group of type two then it contains no transvections or
index 8 bireflections.

Corollary 6.6. If k = IF, then for fized r,v there is only one exceptional group of type two
which is an elementary abelian group of order p>.

7. MAXIMAL PURE BIREFLECTION GROUPS OVER FINITE FIELDS

For later applications in invariant theory it is useful to know more about “maximal” pure
bireflection group over finite fields. Throughout this section, k is a finite field of order ¢ = p”.

Definition 7.1. A subgroup G < GL(V) is called a mazimal pure bireflection group if it is
a pure bireflection group, and for all G < H < GL(V) either H = G or H is not a pure
bireflection group.

Lemma 7.2. Let p # 2, n > 3. If G is a maximal pure unipotent bireflection group then it is
a special group and one of the following holds:

(1) G = BY" for some hyperplane U <V, v € U. |G| = ¢**~3.
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(2) G=K""2 or G = (K"72)* for some r1,m9 €V or y1,7v2 € V*. Then |G| = ¢*"~3.
(3) G = X™7 for somer = {ri,r2,v}, v = {71,72,v*}. Then |G| = ¢>.
(4) G =W fOT somer = {T17T27T3}7 Y= {FY1772773}' Then |G| = q3'

If k =T,, then G is extra special or abelian if and only if it is self-dual.

Proof. We show in Proposition 0.5 that if G is a pure bireflection group then it is either a
hook, two-row, two—column or exceptional group. Suppose it is a hook group. Then we can
find some U, v such that [G, V] < kv, so G < BY?, as G is maximal G = BY"| similarly for G
a two-row, two—column and exceptional group. Let k = F,. By Proposition 3.7 if G = K"
then |®(G)| = |L™"2| = p"~2 > p for n > 3, so G is not extra special if it is a two-row or
two—column group. If G is not a two—row or two—column group then it is either a hook group
or an exceptional group and is self dual. If G is a hook group then |®(G)| = |R,,u| =p, so G
is extraspecial. If G is exceptional of type one then |®(G)| = |Jr | = p, so it is extra special.
If it is exceptional of type two then it is abelian. O

Corollary 7.3. If G is a pure unipotent bireflection group, p # 2, n > 3, then it is a subgroup
of one of the groups in Lemma 7.2 and it has class less than or equal to two.

Proof. If G is a pure unipotent bireflection group then it must be either a maximal pure
bireflection group or contained in a maximal pure bireflection group. Above gives the list of
all possible pure bireflection groups which are all special, so each of their subgroups must have
class less than or equal to two. O

The following Proposition summarises the results of this Chapter and contains the proof of
the Main Theorem 0.5.

Proposition 7.4. Let p > 2, n > 3 and g € G, a unipotent pure bireflection group.

(1) If g =S, is a transvection then G is one of the following
(a) A subgroup of K™ with u € (ry,r3),
(b) A subgroup of (K772)* with ¢ € (y1,72),
(c) A subgroup of BY"Y with either U = ker(C) or u € kv.
(2) If g = 1§t is a double transvection so uy,us € ker((1) Nker((z) then G is one of the
following
(a) A subgroup of K™ with (r1,rs) = (uy,us),
(b) A subgroup of (K72)* with (y1,72) = (C1,C2),
(c) A subgroup of BY"V such that v € {u,uz)
(d) A subgroup of G < X7 where (r1,r2) = (u1,u2) and {(y1,72) = {C1,¢a),
(e) A subgroup of G < W™ where (r1,ra,r3) > (u1,u2) and {(y1,7v2,7vs) > (C1,C2)-
(3) If g =tSt$2 is an index 3 bireflection so uy & ker((2) and ug € ker((1) then G is one
of the following
(a) A subgroup of K"1-42,
(b) A subgroup of (K2)*,
(c) A subgroup of BUY where U = ker((2) and v € kus,
(d) A subgroup of G < X™7 where (ri,ra,v) > (u1,u2) and {y1,y2,v*) > (1, (a).

Proof. (1): Suppose g = t$ is a transvection. By the above corollary we know that G must be
a subgroup of one of the groups in Lemma 7.2. If G is a two—column group then by Lemma
3.6 we can find ri,re € V such that ku = [g,V] < [G,V] < (r1,72) and G < K™™2. If
G is a two—row group then G* is a two—column group so we can find 1,7y, € V* such that
k¢ < [G,V*] < (71,72) and G < (K7"72)* Suppose G is a hook group with line kv and
hyperplane U. Either u € kv or U = ker(¢). By Corollaries 5.9 and 6.5 we know that G is not
contained in an exceptional group of type one or type two.

(2): Suppose g = tf}l tf}; is a double transvection. If G is a two—row group then by Lemma
3.6 we can find r1,re € V with (uj,us) = [G,V] = (r1,72) such that G < K™, If G is
two—column group then G* is a two-row group and by Lemma 3.6 we can find 71,7y, with
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(C1,G) =[G, V*] = ((1,¢) such that G < (K772)*. If G < BY" is a hook group then as V9
has codimension two U # V9, hence kv < (uj,us). If G is an exceptional group of type one
then by Corollary 5.9 g € Jr o = {X0lg. | 7 € k}. This means that (uy, ua) = [Jr, V] = (r1,72)
and (y1,72) = ((1,¢2). Let H = W7, if G < H then [g,V] = (u1,u2) < [H,V] = (r1,72,73)
and similarly V# < V9 so (¢1,¢2) < (11,72,73)-

(3): Suppose g = tgllt% is an index 3 bireflection. If G is a two row group then we can again
use Lemma 3.6 to see that G = K"**2. Similarly by looking at the dual space we see that
if G is a two-row group then G < (K%:%)*. If G is a hook group we just apply Lemma 2.6.
If G < X™7 then [g,V] < [X™7, V] = (r1,72,0), so (r1,r2,v) > (u1,uz). By looking at the
fixed space (or by looking at the duals of both groups) we see that {vy1,72,v*) > ((1,(2). By
Corollary 6.5 we know that G is not contained in an exceptional group of type two. O
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