University of

"1l Kent Academic Repository

King, Andy and Bryans, Jeremy W. (1998) Using Probability to Reason
about Soft Deadlines. University of Kent, School of Computing, 7 pp.

Downloaded from
https://kar.kent.ac.uk/21616/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Presented at the International Workshop on Constraint Programming for Time Critical Applications and Multi-Agent Systems, Nice,
France

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21616/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Using Probability to Reason about Soft
Deadlines

Andy King and Jeremy Bryans

Computing Laboratory,
University of Kent at Canterbury, CT2 7NF, UK.
{amk, jwb}@Qukc.ac.uk

Abstract. Soft deadlines are significant in systems in which a bound
on the response time is important, but the failure to meet the response
time is not a disaster. Soft deadlines occur, for example, in telephony and
switching networks. We investigate how to put probabilistic bounds on
the time-complexity of a concurrent logic program by combining (on-line)
profiling with an (off-line) probabilistic complexity analysis. The profiling
collects information on the likelihood of case selection and the analysis
uses this information to infer the probability of an agent terminating
within k steps. Although the approach does not reason about synchro-
nization, we believe that its simplicity and good (essentially quadratic)
complexity mean that it is a promising first step in reasoning about soft
deadlines.

1 Introduction

Time-critical constraint applications, such as those that arise in robotics, dis-
tributed multimedia and embedded systems, typically have to answer a request
for a service within a specified time. In a real-time command and control sys-
tem, failure to meet a deadline may lead to the loss of human life. In telephony
or switching, however, failure to meet a deadline, may simply compromise the
quality of a video stream. This would be undesirable rather than catastrophic.
These deadlines are said to be soft [6] and it is sufficient to ensure that there is
a high probability that the deadline is met.

In this short paper we propose a simple analysis that infers the likelihood
of an agent, expressed in a concurrent logic language, of meeting a soft dead-
line. The basic problem is to infer a distribution for the probability of an agent
terminating (and hence servicing a request) in, say, up to k steps of computa-
tion. By examining this distribution the programmer can isolate a performance
bug/bottleneck and thus patch/redesign the code. This probabilistic informa-
tion is not available from existing techniques, such as profiling [5], that would
typically associate each agent with an average execution time. Although profiles
can be enriched with variance information [8], variance is just a crude (and often
hard to interpret) measure of spread. For example, suppose that we can model
the likelihood of an agent answering a request for a service with an exponential
distribution (this sort of assumption is routinely made in probabilistic model

checking [6]). Information like “the probability of servicing the request within &
steps is 1 — e~ 7 is far more useful than “the agent has a mean of % steps with
a variance of %”. Put simply, different distributions have the same variance and
mean and variance alone are not enough to infer the probability of terminating
with k steps.

Rather than just inferring that the application (the top-level or main agent)
terminates, our analysis infers the probability of each agent (and hence each
service) in the system terminating. This is important because time-critical ap-
plications are frequently persistent. Although the approach is applicable to con-
current, constraint programming, we simply measure time in terms of the number
of resolution (goal-head matching) steps. It is not clear whether this measure
would be a sensible unit of time with a more elabourate constraint solver where
the time to check for entailment and satisfiability is likely to vary dramatically
from agent to agent and from store to store. Deciding the time unit that is most
appropriate for a constraint application, we feel, is an independent problem and
it is not addressed in this paper.

This paper is structured as follows: In section 2 we discuss the need for an
(on-line) probabilistic profiling component in the analysis. In section 3 we present
two (off-line) analyses that take the profiling information, as input, and produce,
as output, the distribution of each agent terminating within & steps. Sections 4
and 5 respectively present the related and future work; whereas section 6 presents
our conclusions.

2 On-line profiling component

Like other probabilistic analyses [1], our analysis is based on being able to asso-
ciate execution frequencies (or, when non-zero, normalized, execution probabil-
ities), with the cases defining an agent. Light-weight profiling techniques have
been developed for logic programs [5] and adapted to concurrent logic programs
such as Strand [4] so acquiring the probabilities is not a problem. What is a
potential problem is the reliability of this execution frequency information. The
essential problem is that the termination behaviour of a concurrent logic pro-
grams relates to (1) synchronization and (2) non-deterministic case selection and
these properties are store sensitive. This is illustrated in the program P:

p(x) =x=a—=p(x) q:=p(x)
P= +x=a—stop r:-(tell(x =b) | p(x))
+x=b—stop s:-(tell(x = a) || p(x))

The agents q, r and s essentially invoke the agent p(x) with a different store
(different test data). q will never terminate since p(x) suspends immediately. r
will always terminate within & = 2 steps. s, however, may or may not terminate
depending on the non-deterministic case selection. In fact, assuming that each
case has an equal chance of selection, then s has a probability of 1 — QL,C of termi-
nating within k& steps. Thus, profiling the program with different test data can
lead to very different termination behaviour. This is the weakness of profiling. It

is also strength of profiling. Case selection probabilities abstract away from the
synchronization and non-deterministic behaviour of the program. Probabilities
give a high level view of the way computation paths can flow through a pro-
gram. In fact probabilistic information is almost certainly necessary as well as
sufficient for soft deadline analysis: without probabilistic information the only
useful termination property would be eventual reachability. Thus, henceforth, we
assume that the different rules that define an agent are annotated with selection
probabilities. We borrow a notation from [3] and express a program and a profile
together as:

p(x) :—x:a|%—>p(x) q - true | 0 — p(x)
Q= +x=al|;—stop r:-true|0— (tell(x =b) || p(x))
+x=b|0—stop s:-true|l — (tell(x = a) || p(x))

In this case the profile is for when the top-level agent agent is s. Note that we
use probabilities descriptively rather than prescriptively as in [3]. Note also that
only non-zero frequencies are normalised and that q and r are annotated with
probabilities of zero.

3 Off-line termination component

The program () takes a special form in that the left-hand-side of each rule
contains at most one user-defined agent. We can exploit this and apply an algo-
rithm that appears in the model checking literature [6]. Algorithm 1 of [6] can
be reinterpreted as a way calculating the probability of an agent reducing to stop
within, say k = 4, steps. We let p, (respectively g, rn, s, and stop,) denote
the probability of reaching the agent p (respectively q, r, s and stop) at step n.
Thus, assuming our initial agent is s, we have pg =0 g9 =0, r9o =0, so = 1 and
stopp = 0. More generally, for n > 0, we have the system:

1 1 =0
Pn+1 = Epn +0gn + O0rp + sp, stOppyr = ipna Tn+1 =0
Sn+1 = 0

The equation pp41 = %pn +0q¢y, + 07y, + 55, for example, expresses the probability
of reducing to p (at step n + 1) given the likelihood of reducing to either p, q,
ror s (at step n). Computing p,, qn, ™n, s, and stop, for 1 < n < k and then
EZi’f stopy, gives the probability of terminating in at most n steps. For program
Q, with k =4, ZZZL stop, = % as is shown below.

N|Pn qn Tn Sn STOPR
00 0010
111 0 0 0 O

1 1
A 0o

t t
4§ 000 3

Also, not surprisingly, > >° | stop, = 1. As [6] point out, their algorithm is
attractive as the total number of multiplications required in the (off-line) analysis
is just O(k.r) where r is the total number of cases that are annotated with a
non-zero probability. In @, for example, r = 3.

The limitation of the algorithm is that it is only applicable when the program
assumes a particularly simple syntactic form. The analysis cannot be applied,
for instance, to the program R that is listed below. We thus extend the method
of [6].

+ true | = — stop

R— {p(X) - true | % = (p() Il p(x) [p(x))

3

Consider the likelihood of the agent p terminating at exactly step n. p can
only terminate in n = 1 steps through case 2 and hence p; = % Otherwise, if
n > 1, then the first, second and third agents of the composition in case 1 must
terminate in 4,7,k > 0 steps where i + j + k = n. Case 1 has a probability of %
of being selected which leads the system:

1 9 i<n j<nk<n
b1 = 3 Pnt1 = 3 ZZ Zpipjpk
i=1 j=1 k=1
Nitjt+k=n

The nested summand means that the cost of computing p, for 1 < n < k is
O(X*F_, n?) = O(k®). (The index k of the innermost summand is fixed by the
i and j in the outermost summands.) More generally, if each rule contains a
composition of at most m agents, then the complexity would be O(Zszl n™)
= O(k™*1). Note, however, that p, can be expressed as a double summand by
introducing t,, that can itself be expressed as a double summand.

i<n j<n

1 i<n j<n 9
pr=g, th=) > pipj P =3)) tip;
i=1 j=1 i=1 j—1
Aitj=n Nitj=n

This reduces the complexity to O(Zszl n) = O(k?). More generally, a nested

summand Eiii? Zi? . E;:i? H;:ln p{j where p',...,p™ are the m agents,
can be decomposed into m—1 double summands by introducing m —2 temporary
variables. Using this tactic we obtain a complexity of O(mk?). We are really
introducing a form of memoisation since ¢ avoids recomputation. The usefulness
of memoisation is illustrated below. cyr denotes the number of multiplications

__ok
required to compute Zz;f Pn- The log, ¢ox column indicates that memoisation

is required for the analysis to be quadratic.

natve memoisation n Pn tn

k Cok log2 Cok Cok 10g2 Cok 110.3333 0.0000
2 5 2.3 15 3.9 2(0.0000 0.1111
3 77 6.3 63 6.0 3/0.0000 0.0000
4 925 9.9 255 8.0 4(0.0247 0.0000
5 9021 13.1 1023 10.0 5/0.0000 0.0165
6 79485 16.3 4095 12.0 6/0.0000 0.0000
7 666877 19.3| 16383 14.0 710.0055 0.0000
8| 5462525 22.4| 65535 16.0 8(0.0000 0.0043
9| 44217341 25.4| 262143 18.0 9|0.0000 0.0000
10(355821565 28.4|1048575 20.0 10(0.0016 0.0000

In fact Y7 | p, = 0.366025 and indeed, we would expect Y.~ | py, to be slightly
larger than %

4 Related work

A Markov model for probabilistic concurrent constraint programming in pre-
sented in [3] which, we believe, might form another basis for a probabilistic
soft deadline analysis. By using the short-circuit protocol [9], an observation
(x =y, p) for an agent like ¢(z,y) could be reinterpreted as expressing the prob-
ability p of ¢ (eventually) terminating. Unfortunately, the constraint systems of
[3] are required to be finite and it is not clear that a termination analysis based
on an (infinite dimensional operator algebra) extension would be practical.

Generating functions are used in [2] to quantify the relative efficiency of
backtracking search and parallel search. Generating functions have been used in
the average case analysis of imperative programs and so it might be possible to
apply this approach to soft deadline analysis. Parellisation is also the focus of the
time-complexity work in [7, 10]. These papers describe criteria for recognising
short-lived agents so that fine-grained processed can be coalesced into more
course-grained units. Neither papers describe probabilistic techniques.

The most closely related work is that described in [6]. This paper extends the
temporal logic CTL with time and probability to reason about properties such
as the probability of a service being carried out within a certain time. Like our
work, the objective is to verify the likelihood of satisfying soft deadlines. Our
work shows how to generalise algorithm 1 of [6].

5 Future work

An interesting direction for future work is to try and infer probabilistic estimates
on the size of the store. Another challenge will be to put probabilistic bounds
on the time-complexity of, say, branch-and-bound for a particular class of input
data. We think that it is unlikely that estimated profiles will be able to deliver an

accurate soft deadline analysis but the experiment should be attempted for com-
pleteness. We also intend to investigate how our work can be used in granularity
control [7, 8, 10].

6 Discussion and conclusions

The problem with using profiling based analyses, as [11] points out, is that a
profile for one run may not adequately predict the behaviour of another run. Put
simply, the distributions inferred for the analysis may not accurately characterize
the behaviour of the program for another data set. One way forward is to de-
couple the on-line and off-line components of the analysis so that the frequency
information can be acquired from several program runs with different sample
data. By enriching the analysis with intervals it would it possible to characterize
the probability of case selection as a range, [0.3,0.33], say. Furthermore, with an
appropriate GUI, the user would be able to alter/extend/contract the intervals.
The off-line component could then be recomputed to construct a what-if style
probabilistic profiling tool.

To summarize, although our approach relies on profiling information, we
believe that its simplicity and good complexity mean that it is a sensible and
useful first step in inferring the likelihood of an agent meeting a deadline.

Acknowledgements

We thank Kish Shen for motivating discussions; the EPSRC grants GR/MO8769
and GR/L95878 that funded the work; and “COTIC” European working group
23677 that funded the travel.

References

1. S. Debray, S. Kannan, and M. Paithane. Weighted Decision Trees. In Proceedings
of the Joint International Conference and Symposium on Logic Programming, pages
654-668. MIT Press, 1992.

2. N. Dershowitz and N. Lindenstrauss. = Average Time Analyses Related to
Logic Programming. In Proceedings of the Sizth International Conference on
Logic Programming, pages 369-381. MIT Press, 1989. Also available from
http://www.cs.huji.ac.il/ naomil/.

3. A.Di Pierro and H. Wiklicky. A Markov Model for Probabilistic Concur-
rent Constraint Programming. In To appear in proceedings of APPIA-GULP-
PRODE’98, Joint Conference on Declarative Programming, 1998. Also available
from http://www.soi.city.ac.uk/ adp/.

4. 1. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-
Hall, 1989.

5. M. M. Gorlick and C. F. Kesselman. Timing Prolog Programs Without Clocks.
In Proceedings of the Symposium on Logic Programming, pages 426-432. IEEE
Computer Society, 1987.

6. H. Hanson and B. Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6:512-535, 1994.

7. A. King, K. Shen, and F. Benoy. Lower-bound Time-complexity Analysis of Logic
programs. In International Symposium on Logic Programming, pages 261-276.
MIT Press, 1997. http://www.cs.ukc.ac.uk/pubs/1997/506/.

8. V. Sarkar. Determining Average Program Execution Times and their Variance.
In SIGPLAN Conference on Programming Language Design and Implementation,
pages 298-312, 1989.

9. E. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21(3), 1989.

10. K. Shen, V. Santos Costa, and A. King. Distance: a new metric for controlling
granularity for parallel execution. Journal of Functional and Logic Programming,
To appear, 1998. http://www.cs.ukc.ac.uk/pubs/1998/588.

11. D. W. Wall. Predicting Program Behaviour Using Real or Estimates Profiles.
In SIGPLAN Conference on Programming Language Design and Implementation,
pages 59-70, 1991.

This article was processed using the BTEX macro package with LLNCS style

