
Speci�cation and Veri�cation of MediaConstraints using UPPAAL?Howard Bowman1, Giorgio P. Faconti2 and Mieke Massink31 Computing Lab., U. of Kent, Canterbury, Kent, CT2 7NF, UK2 CNR-Istituto CNUCE, Via S.Maria 36, 56126 - Pisa - Italy3 Dept. of Computer Science, U. of York, Heslington, York, YO1 5DD, UKH.Bowman@ukc.ac.uk, G.Faconti@cnuce.cnr.it and M.Massink@guest.cnuce.cnr.itAbstract. We present the formal speci�cation and veri�cation of a mul-timedia stream. The stream is described in a timed automata notation.We verify that the stream satis�es certain quality of service properties,in particular, throughput and end-to-end latency. The veri�cation toolused is the real-time model checker UPPAAL.1 IntroductionThe acceptance and utility of a broad range of application systems is substan-tially a�ected by their ability to present information in an e�ective and appealingway to human users. Rapid progress in the development of multimedia technol-ogy promises more e�cient forms of man/machine communication. However, theuse of multimedia for conveying information does not guarantee e�ective and in-telligible presentations per se. Appropriate design decisions must be drawn thatlead to a �ne grain coordination of communication media and modalities. Thismay even become a harder and more complex task than solving the applica-tion problem. Furthermore, in the vast majority of non-trivial applications theinformation needs will vary from user to user and from situation to situation.Consequently, a multimedia system should be able to
exibly generate variouspresentations for one and the same information content in order to meet individ-ual requirements of users and situations, resource limitations of the computingsystem, and so forth.In this respect, technology based techniques and models are just one out ofmany components contributing to the design of an interactive system. Other dis-ciplines provide complementary views and perspectives on design problems andthose contributions need to be related to one another to help support designreasoning and decisions. Di�erent kinds of analysis contribute to augment thecomprehension of a particular design space either by contributing complemen-tary information or by providing criteria addressing equivalent requirements. Inaddition, some design issues may be raised by one particular kind of analysis? The �rst author is currently on leave at CNUCE under the support of the EuropeanResearch Consortium for Informatics and Mathematics (ERCIM).

from a discipline, but only solved if another kind of analysis is applied fromanother discipline.In such a scenario, many system requirements are generated and derived fromdisciplines distant from technology and computer science such as semiotics andcognitive psychology. With the current state of the art in system design, theserequirements cannot be bounded in a straightforward manner to a speci�c tech-nology but require that system designers be informed both of why requirementshave been formulated and how they can possibly be satis�ed. Techniques forrepresenting design decisions, and frameworks for communicating and contextu-alizing more analytic approaches into the practicalities of design exist already inthe literature of both software engineering and human/computer interaction. Al-though signi�cant conceptual progress has been made in both of these directions,their general application requires us to understand how the basic approaches canactually be used in practical settings; this remains an open issue.Here, we refer to a particular class of interactive systems, namely Multi-Media Presentation Systems. This class of systems has been characterized in[5] where a Reference Model for Intelligent Multi-Media Presentation Systemsis presented, integrating system concerns with the necessary representation ofthe contextualized knowledge about domain problem, design process, and usermodeling. The model is abstract since it identi�es the basic components of a pre-sentation system and relates them. The details are addressed by speci�c modelsthat are located in the abstract model, such as the Presentation Environmentfor Multimedia Objects [11]. Examples of applications that can be described areteleconferences and automatic generation of multimedia help systems, their dis-tinguishing features being the continuity of the involved media, and the kind ofindirect interaction with the media objects.Interaction in these systems is indirect since it doesn't concern the manipula-tion of the media objects themselves (i.e. the video content); rather, it addressesthe mechanisms in
uencing their presentation (i.e. compression/decompressionalgorithms, allocation of band) and the global quality of service. In [2], for exam-ple, it is suggested that audio/video quality of service be controlled by separatesliders each dealing with a speci�c parameter. The issue is that some parame-ters re
ect perceivable properties of the media objects with no direct link to theunderlying technology and it is di�cult to predict the demand of computationalresources required to achieve the quality of service set by the end-user.Continuity refers to media streams conveying digital objects with associatedtime constraints, distinguishing these applications from traditional protocols.Usual techniques such as retransmission of data in case of faults or losses are nolonger applicable and the veri�cation of system throughput and latency againstthe time constraints becomes a must. As an example, Video/Audio streamsmust satisfy inter�media synchronization constraints as in the case of the lip-synchronization. However, continuity plays also an important role in the contextof a single media stream since it demands intra� stream synchronization, i.e.the relationship between media objects within the same data stream thus addingto throughput and latency a further constraint on jitter.

Consequently, timing plays an important role in multimedia presentationsystems. The quality and the usability of those systems is crucially dependenton their performance with respect to timeliness. Often there is a trade-o� be-tween the quality of the presentation of multimodal information and the qualityof service that can be o�ered by the medium over which the information istransported. Speci�cation and veri�cation of real-time aspects of (multi)mediasystems is however a di�cult problem. The most common approach to buildingthose systems is to implement new ideas directly in a prototype and to measurethe performance. This approach is not always satisfactory. The complexity of thebehaviour of the distributed algorithms is often considerable and their correct-ness is di�cult to estimate by mere testing. Furthermore, it is often very hardto �nd the causes of rare errors and to improve the implementation accordingly.This has been illustrated for example in [10] where an Audio/Video protocol hasbeen analyzed that had been developed in an industrial setting.In this paper, we restrict our analysis to the investigation of a number ofissues for the single data stream case. This allows us to set up a basic frameworkfor further work on multi-(inter-)media synchronization while enabling the in-vestigation of the capabilities and the practical use of formal notations and theirassociated tools with small size experiments.2 A Simple Media StreamThe most basic requirement for supporting multimedia is to be able to de�necontinuous
ows of data; such structures are typically called media streams [4].In this paper, we will discuss and illustrate a number of aspects related to mediaconstraint modeling using such a multimedia stream.The basic media stream is as depicted in �gure 1. It has three top levelcomponents: a Source, a Sink and a communication Medium (which we willfrom now on simply refer to as the Medium). The scenario is that the Sourceprocess generates a continuous sequence of packets1 which are relayed by theMedium to a Sink process which displays the packets. Three basic inter-processcommunication actions support the
ow of data (see �gure 1 again), sourceout ,sinkin and play , which respectively transfer packets from the Source to theMedium, from the Medium to the Sink and display them at the Sink.Formal descriptions of media streams have been given before, e.g. [4] etc.However to our knowledge, no formal veri�cations have been performed. This isone contribution of this paper.The following informal description of the behaviour of the stream is keptsimilar to the LOTOS/QTL speci�cation that appears in [4].{ All communication between the Source and the Sink is asynchronous.{ The Medium is unreliable; it may loose and reorder packets.1 These could be video frames, sound samples or any other item in a continuous mediatransmission. In this way the scenario remains completely generic. However, instan-tiation of data parameters will specialize the scenario.

Source
Process

Sink
Process play

sourceout sinkin

MediumFig. 1. A Multimedia Stream{ The Source transmits a packet every 50 ms (i.e. 20 packets per second).{ Packets that do not get lost arrive at the Sink between 80 ms and 90 msafter their transmission. This is the latency of the Medium.{ Whenever the Sink receives a packet, it needs 5 ms to process it, after whichit is ready to receive the next packet.In section 4, we will present an UPPAAL description of this basic behaviour.Then we focus on our main objective: to check that this system satis�es cer-tain quality of service properties. Conceptually, these properties can be viewedas being derived from user presentation requirements. The quality of serviceproperties that we wish to verify are:1. Throughput.We would like to ensure that the Sink process receives pack-ets at the rate of between:15 and 20 packets per second.Clearly, there is a direct link between the rate of loss of the Medium andthe throughput at the Sink. Thus, the
avour of our investigation of thisproperty will be to determine what are the bounds on the rate at which theMedium looses messages in order to satisfy this throughput property.We will also build into the system the possibility that it can go into an errorstate and halt, if the throughput property is invalidated.2. Latency. We will check the following latency property:The end-to-end delay between a sourceout action and its correspond-ing sinkin action cannot be more than 95ms.which puts an upper bound on the end-to-end transmission delay.3. Jitter. Jitter is de�ned as the variance of delay. It ensures that there is notan unacceptable variability around the optimum presentation time, e.g. ifone packet is presented quite early and the next is presented relatively latean unacceptable stutter in the presentation will result. A full analysis of jitterwould require stochastic techniques [9] to be employed. This is clearly not

possible with the veri�cation technology we have available to us. However,placing both an upper and lower bound on the latency would impose a crudebound on jitter. Apart from noting that we could extend our latency analysisto do this, we do not consider the property any further in this paper.3 Introduction to UPPAALUPPAAL is a tool-suite for the speci�cation and automatic veri�cation of real-time systems. It has been developed at BRICS in Denmark and at UppsalaUniversity in Sweden. In UPPAAL a real-time system is modeled as a networkof extended timed automata with global real-valued clocks and integer variables.The behaviour of a network of automata can be analyzed by means of the simu-lator and reachability properties can be checked by means of the model checker.In UPPAAL, automata can be speci�ed in two ways. Graphically by usingthe tool Autograph or textually by means of a normal text editor. The graphicalspeci�cation can be used by the graphical simulator `simta' or be automaticallytranslated into textual form and used as input for the model checker `verifyta'together with a �le with requirements to be checked on the model. The re-quirements are formulas in a simple temporal logic language that allows for theformulation of reachability properties. The model checker indicates whether aproperty is satis�ed or not. It the property is not satis�ed a trace is providedthat shows a possible violation of the property. This trace can be fed back to thesimulator so that it can be analyzed with the help of the graphical presentation.3.1 The UPPAAL modelUPPAAL automata consist of nodes and edges between the nodes. Both thenodes, which are called locations, and the edges, which are called transitions, arelabeled. A network of automata consists of a number of automata and a de�nitionof the con�guration of the network. In the con�guration the global real-timeclocks, the integer variables, the communication channels and the compositionof the network are de�ned.The labels on edges are composed of three optional components:{ a guard on clocks and data variables expressing under which condition thetransition can be performed. Absence of a guard is interpreted as the condi-tion true.{ a synchronization or internal action that is performed when the transitionis taken. In case the action is a synchronization action then synchronizationwith a complementary action in another automaton is enforced followingsimilar synchronization rules as in CCS [14]. Given channel name a, a! anda? denote complementary actions corresponding to sending respectively re-ceiving on the channel a. Absence of a synchronization action is interpretedas an internal action similar to � -actions in CCS.{ a number of clock resets and assignments to integer variables

The label of locations consists also of three parts:{ the name of the location which is obligatory.{ an invariant expressing constraints on clock values, indicating the periodduring which control can remain in that particular location.{ an optional marking of the location by putting c: in front of its name indi-cating the location as committed. This option is useful to model atomicityof transition-sequences. When control is in a committed location the nexttransition must be performed (if any) without any delay or interleaving ofother actions.In the con�guration, the following aspects of the network are de�ned:{ declarations of global clock and integer variables{ the channel names that are the names of the actions. Channels can be de�nedas normal communication channels or urgent channels. When a channel isurgent no timing constraints can be de�ned on the transition labeled bythat channel and no invariant can be de�ned on the location from whichthat transition leaves. Urgent actions have to happen as soon as possible,i.e. without delay, but interleaving of other actions is allowed if this does notcause delays.{ the list of names of automata the system is composed of.Formally, the states of an UPPAAL model are of the form (�l; v), where �l is acontrol vector and v a value assignment. The control vector indicates the currentcontrol location for each component of the network. The value assignment givesthe current value for each clock and integer variable. All clocks proceed at thesame speed. There are three types of transitions in an UPPAAL model:Internal transitions Such transitions can occur when an automaton in thenetwork is at a location in which it can perform an internal action. Theguard of that transition has to be satis�ed and there must be no othertransitions enabled that start from a committed location.Synchronization A synchronization transition can occur when there are twoautomata which are in locations that can perform complementary actions.The guards of both transitions must be satis�ed and there must be no othertransitions enabled that start from a committed location.Delay A delay transition can occur when no urgent transitions are enabled,none of the current control locations is a committed location and the delayis allowed by the invariants of the current control locations.An example of an UPPAAL speci�cation is given in Figure 2. The transitionbetween s1 and s2 can only be taken when the value of clock y is greater thanor equal to 3. This holds also for the transition between r1 and r2 because theautomata A and B are synchronized on channel a. The transition must happenbefore y is equal to 6 because of the invariant at location s1. If this invariantwould not be there control could have remained in s1 and in r1 inde�nitely.

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;
int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;
chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;
urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;
system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2 s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3 s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1 r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2 c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3 r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0

b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?

y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4

n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0 b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!

n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1Fig. 2. Example of an UPPAAL speci�cationWhen control is in s2 and r2 the only transition that is possible is the syn-chronization on action b. This is because b has been declared as an urgent channelin the con�guration. Note that if the guard y >= 4 would not have been label-ing the transition between s2 and s3 in A both transitions between those twolocations would have been enabled! This is because urgency only prevents thepassing of time, but does not prevent the occurrence of other actions that areenabled at the same time. To prevent interleaving actions in this case the loca-tion r2 can be annotated as a committed location. This forces the action b tohappen without delay or interference of other actions.3.2 Simulation and Model CheckingThe future behaviour of a network of timed automata is fully determined by itsstate, i.e. the control vector �l, and the value of all its clocks and data variables.Clearly this leads to a model with in�nitely many states. The interesting obser-vation made by Alur and Dill was that states with the same �l but with slightlydi�erent clock values have runs starting from �l that are \very similar". Alur andDill described exactly how to derive the sets of clock values for which the modelshows \similar" behaviour [1]. The sets of clock values are called time regions.Regions can be derived from the guards, the invariants and the reset-sets in theUPPAAL model. Since clock variables in the constraints are always comparedwith integers and because in every model there is a maximuminteger with whicha clock is compared the state space of a model can be partitioned into �nitelymany regions. This makes model checking for dense time decidable.In UPPAAL the regions are characterized by simple constraint systems whichare conjunctions of atomic clock and data constraints. Details on the calculationof these constraint sets for simulation and model checking can be found in [15].

The properties that can be analyzed by the model checker are reachabilityproperties. They are formulas of the following form:� ::= A [] � j E <> �� ::= a j �1 and �2 j �1 or �2 j �1 implies �2 j not �where a is an atomic formula of the form: Ai:l where Ai is an automaton andl a location of Ai or vi � n where vi is a variable, n a natural number and �a relation in f<;<=; >;>=;==g. The basic temporal logic operators are, A []and E <>, where, informally,A [] � requires all reachable states to satisfy � andE <> � requires at least one reachable state to satisfy �.Although the �nal aim of the developers of UPPAAL is to develop a model-ing language that is as close as possible to a high-level real-time programminglanguage with various data types the, current version is rather restrictive. Forexample it does not allow assignment of variables to other variables and there isno value-passing in the communication.Despite these restrictions, quite a number of case-studies have been per-formed in UPPAAL ranging from small examples to real industrial case studies,e.g. [3,7, 12].4 Stream example formalized in UPPAAL4.1 The basic modelConsider the stream example introduced in section 2. The simplest part of theexample is the Source. In the informal speci�cation it is said that a packet issent every 50 ms. To make this more precise we assume that the �rst packet issent at time equal 0 and all later packets exactly 50 ms one after the other. Thisbehaviour is modeled as an UPPAAL automaton with two locations. The initiallocation (indicated by a double circle) is annotated as committed to enforce thatthe �rst packet (sourceout!) is sent immediately. To assure that every followingpacket is sent exactly 50 ms after the previous one, a clock t1 is introduced. Theguard t1 == 50 enables the sending of sourceout at exactly 50 ms after the lastone. The invariant at State1 enforces that the enabled transition really happensat t1 == 50. When the transition is performed t1 is reset and the behaviourrepeats itself.The Sink is required to always accept a packet, except when it is playing apacket. Whenever it receives a packet it plays it immediately during the next5 ms. This behaviour is modeled by another automaton with two locations. Inthe initial location the automaton waits for a packet from the medium. When itarrives a timer t2 is set that is used to model the 5 ms delay caused by playingof the packet before control returns to the initial location.The third part to model is the medium. What is known of the medium isthat it acts as an in�nite bu�er, it has a latency of between 80 ms and 90 ms,it may loose and reorder packets. At �rst sight we should model the medium

as an in�nite structure. However, if we are only interested in the throughput ofthe medium, the order in which packets arrive is irrelevant. What is relevant isthat we model the medium in such a way that it always allows the Source toperform the next sourceout. We will show that the medium can be modeled bytwo independent one-place-bu�ers. We �rst model the medium assuming thatit does not loose packets. Each bu�er is modeled as an automaton with twolocations (see Figure 3). At the initial location the bu�er can receive a sourceoutfrom the Source. At that point a timer is started to model the latency of themedium. The sinkin action following the sourceout is delayed by at least 80 msand at most 90 ms.
SourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSource Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1 Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2

clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;clock t1, t2, t3, t4;
int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;int l;
chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;chan sourceout, sinkin, play;
system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;system Source, Sink, Place1, Place2;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig SinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSink

c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0
State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1 State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1
(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)

sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!
t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80

sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0

sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!
t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80

sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?
t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0

playplayplayplayplayplayplayplayplayplayplayplayplayplayplayplayplay
t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5

sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!

t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50
sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

Fig. 3. UPPAAL speci�cation of media streamTo be sure that it was correct to model the medium by only two one-place-bu�ers, we should prove that it is never the case that when the Source wishesto perform a sourceout, i.e. when t1 == 50, both one-place-bu�ers are full, i.e.they are in location State2. In UPPAAL this situation can be formalized as:E <> (t1 == 50 and P lace1:State2 and P lace2:State2)which using the UPPAAL model checker can be shown not to hold.It is important to note however that the minimal number of P laces neededto guarantee that the Source can always send its packet depends on the timeconstraints used in the model. If the time between packets at the Source wouldbe less than 45 ms there are going to be problems. In our model we can easily

verify this by means of the reachability property we formulated before. In thisexample it is not di�cult to �nd a general formula that gives the minimalnumberof P laces needed as a function of the time between the packets and the maximallatency. Let p be the number of P laces,m the maximal latency and d the intervaltime between packets sent by the Source then:p = dm=de (+)In general however, time dependent behaviour can be very hard to predict anda model checker can be helpful to get a good intuition about the relations thathold between parameters of the system. An interesting illustration of this use ofmodel checking can be found in the description of a case study on a boundedretransmission protocol [7].4.2 Modeling a medium with lossesIn this section we relax the assumption that the medium does not loose packets.We assume that the losses are limited to not more than 4 packets per second.To model this we need a Monitor that keeps track of the passing secondsand we need to adapt the automata modeling the P laces. We model the lossof a packet by an additional internal transition from State2 to State1 in theautomata that model the P laces. Further we add a global variable l that recordsthe number of losses. The transition is guarded by a constraint on the maximalnumber of losses. Figure 4 shows the new medium (in fact, this speci�cationcontains more additions than just the new medium; these will be explained inthe next section).5 Verifying Quality of Service with UPPAALIn this section we investigate how the quality of service properties identi�edearlier in this paper can be veri�ed using UPPAAL.5.1 ThroughputLet us assume that the throughput of the medium is checked every second andwhen it is below the threshold of 15 packets per second an error is signaled.The number of packets that arrive at the Sink is counted by a global variablex which is updated every time a sinkin action occurs. The Monitor checksthe variable x every second. If the throughput is su�cient then x is reset andthe timer starts again. If the throughput is too low an urgent action error isgenerated. As soon as the Sink reaches state State1 it will synchronize on theerror action and the media stream will be stopped. In Figure 4 the automatafor the Monitor and the Sink are shown.The Monitor that we present only forces an error if too few frames arrive,i.e. if x < 15, this is because the possibility of too many frames arriving, i.e.

x > 20, cannot arise because of the parameters of the system. However, if it wasnecessary we could easily add an extra branch in the transition system whichcaters for this situation.In addition, we can use UPPAAL to determine the parameters that boundour throughput property. Speci�cally, we can check under what circumstancesour speci�cation satis�es the formula:E <> (Sink:Stop)Satisfaction of this formula implies that our throughput requirement does nothold. As suggested earlier, the obvious parameter that a�ects throughput is therate of loss in the medium. Using UPPAAL we can show that if the constraintl < 4 is associated with the loss action in the medium, as it is in �gure 4, thenthe Stop state can be reached, and UPPAAL provides a sample trace. However,if we change the constraint to l < 3 then the Stop state cannot be reached. Thus,this gives us a clear bound on the number of errors that an acceptable mediumshould allow.A subtle point that arises from this speci�cation is that since State1 in Sinkhas two outgoing transitions, error and sinkin, if State1 is reached at a timepoint in which both transitions are enabled then even though error is an urgentaction, either transition may be taken. This would clearly be undesirable as onewould like the system to stop as soon as it is in error. However, using UPPAALan analysis can be made that shows that as long as the Source is transmittingat a rate of a frame every 50 ms then this situation cannot arise (interestingly, ifit was transmitting at the rate of a frame every 53 ms the situation could indeedarise).5.2 Verifying LatencyAlthough in fact, upper and lower bounds for latency of the stream can be veryeasily discerned by inspection from the automata speci�cation given, this willnot always be the case. In fact, in real world systems, communication mediumshave highly complex real-time behaviour. For example, there may be a number ofdi�erent potential routes that frames can take, each accumulating very di�erentlatency delays. Furthermore, in the presence of congestion, analysis of latency isfar from straightforward. Thus, even though analysing latency is rather super
u-ous in our stream scenario, it is a valuable exercise to determine the suitabilityof UPPAAL in this respect.The �rst thing to note is that in order to express our latency requirementwe must relate corresponding sourceout and play actions. In order to do thissome means of identifying corresponding packets, e.g. by means of time stampsor sequence numbers, must be included.So, let us formulate our basic latency property with the required sequencenumbering. The obvious property that we would like to verify is:8x 2 IN : (2(play(x)) 3-�95 sourceout(x)))

SourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSource Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1 Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2

clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;
int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;int x, l;
urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;urgent chan error;
chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;chan sourceout, sinkin, play, stop, loss;
system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;system Source, Sink, Place1, Place2, Monitor;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig SinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSink

MonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitor

c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0
State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1 State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1
(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)(t <= 1000)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1
(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2 StopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop

sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!
t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80

sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0 l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4

losslosslosslosslosslosslosslosslosslosslosslosslosslosslosslossloss
l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1

sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?sourceout?
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0 l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4l < 4

losslosslosslosslosslosslosslosslosslosslosslosslosslosslosslossloss
l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1l := l + 1

sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!sinkin!
t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80

sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?sinkin?
x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1x := x + 1
t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0

playplayplayplayplayplayplayplayplayplayplayplayplayplayplayplayplay
t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5

t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000
x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15x >= 15
x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20x <= 20
l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0
t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0

sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!

t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50
sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!sourceout!
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000t == 1000
x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15x < 15
l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0l := 0
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0
t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0

error?error?error?error?error?error?error?error?error?error?error?error?error?error?error?error?error?

StopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop
error!error!error!error!error!error!error!error!error!error!error!error!error!error!error!error!error!Fig. 4. UPPAAL speci�cation of mediastream with QoS Monitorwhere the operators used are linear time temporal logic operators [13], whichcontrast with the branching time operators used in UPPAAL. 2P is the al-ways/henceforth operator (i.e. in the future it is always the case that P holds),) is logical implication and 3-�tP is a past tense operator stating that, P musthold no more than t time units before the current moment. So, the formulastates that it is always the case that, if a play occurs then at some point notmore than 95ms before a sourceout must have taken place. The signi�cance ofthe past operator is that it allows for loss in the system, i.e. it only enforces atiming constraint on the plays that arise from successfully received packets.However, this property cannot be veri�ed using UPPAAL. There are tworeasons for this.1. In�nite data sets, such as the natural numbers; and2. expressing data passing actionsare not supported at present by UPPAAL.We will show how to handle the second of these di�culties shortly, but forthe moment, let us concentrate on the �rst. The problem is that we need tobound the set of sequence numbers used and in fact, it will greatly simplify theresulting automaton and the state space explosion problem if we can keep thesize of this bound very small.What we would like to ensure is that we have a su�cient number of sequencenumbers that we do not get two packets with the same sequence number in the

system at the same time. This is a similar requirement to the bounding of thesize of the medium investigated in section 4.1. In fact, we can use formula (+)stated there to derive that two sequence numbers are su�cient in a correctlybehaving system. Importantly though, we replace m in the formula with thedesired latency value rather than the known one.Having decided that two sequence numbers, i.e. 1 and 0, will be su�cientwe have to adapt our automata speci�cation accordingly. Now as already noted,actions in UPPAAL are not data passing however, we can get the e�ect of datapassing actions by including a more discriminating set of actions and includingextra transitions2. The Sink in Figure 5 is a good illustration of the approach.Speci�cally, rather than refering to actions sinkin and play as was the casein our earlier formulations of the stream, now it refers to actions sinkin0?,sinkin1?, play0? and play1?. Thus, we have
attened out our data type into amore discriminating set of action names.The formula that we would like to verify over this automata is:8x 2 f0; 1g : (2(play(x)) 3-�95 sourceout(x))) (�)Unfortunately a further problem remains: UPPAAL does not support pastoperators3. We could though reformulate the property as:8x 2 f0; 1g : (2(sourceout(x)) 3�95 (play(x) _ loss(x)))) (�)which avoids the past operator. However we prefer an alternative approachthat avoids the reference to loss. This is because latency is an end-to-end prop-erty and formulating in terms of actions local to components of the commu-nication path seems conceptually unsatisfactory. Thus, we would like to viewthe medium as a black box and formulate our property purely in terms of the\end-point" actions sourceout and play.In order to do this, let us consider the interplay between loss and latency.In the presence of congestion, loss will relieve congestion and thus allowing losswill implicitly reduce latency values. Thus, a reasonable strategy is to determineupper bounds on latency on a stream speci�cation which does not allow loss,knowing that if it is added, this bound will still be valid. This is the strategythat we adopt.So, let us work with a basic medium which does not contain the possibilityto loose packets. The medium is as shown in Figure 5.Now the property that we have to check is:8x 2 f0; 1g : (2(sourceout(x)) 3�95 play(x)))2 This is in fact a standard approach in process algebras for getting from a data passingcalculus to a basic calculus, see for example [14].3 Actually, there is in any case a rather subtle problem with this formula, to do with theinterplay between the possibility to loose messages and not knowing the end-to-endlatency.

which can, in the standard way, be expanded out to avoid the universalquanti�er, which is not supported in UPPAAL (note: we write a(n) as an inorder to match action denotations in the automaton).2(sourceout0) 3�95 play0) ^ 2(sourceout1) 3�95 play1)However, this is not a reachability property and can thus, not be directlyveri�ed using UPPAAL. A strategy outlined in [12] can though be used to verifysuch a \bounded liveness" property using reachability analysis. The approachis to derive a testing automaton from the property using a form of tableaualgorithm, compose the testing automaton in parallel with the system and ver-ify a simple reachability property. This strategy is not yet implemented in theUPPAAL tool, so the automaton has been derived by hand using the informalalgorithms to be found in the literature [12].The bounded liveness properties accepted by the testing automaton approachare expressed in a di�erent logic to any that we have seen so far: STL, a timedmodal logic. Our property can, with relative ease, be expressed in this logichowever, rather than introduce another logic, we will go straight to the testingautomaton that is derived from the formula. It is shown in Figure 5 along withthe full revised stream speci�cation. In fact, this is the scenario used to checkthat sourceout0s and play0s are correctly matched. A similar approach can beused to check sourceout1's and play1's.Note that sgout0 is a probe action that has been inserted at appropriateplaces in the system. It is inserted (using a committed state) to signal the oc-currence of sourceouts to the test automaton.The property that we check is:E <> (Tester:bad)which, when checked with UPPAAL does, as would be hoped, fail to hold.However as indicated earlier, this is not a very interesting result because it isdirectly deducible by inspection of the system. Thus, the contribution of thissection is not this veri�cation, but rather the investigation of a general strategyfor checking latency which can be applied to systems that are not so easilyinterpreted. It is clear that the strategy we have documented is indeed generallyapplicable.6 Concluding RemarksWe have investigated the suitability of UPPAAL for the veri�cation of multi-media systems. The speci�cation and analysis of a simple multimedia streamwas presented for this purpose. The main results of this paper are the identi�-cation of generally applicable strategies for checking real-time quality of serviceproperties, speci�cally, checking throughput and latency.Although our experiences with UPPAAL have generally been favourable,some criticisms of the approach can be highlighted. [6] considers a number of

SourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSourceSource Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1Place1 Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2Place2

clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;clock t, t1, t2, t3, t4;
chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,chan sourceout0, sourceout1, sinkin0, sinkin1,
 play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0; play0, play1, sgout0;
system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;system Source, Sink, Place1, Place2, Tester;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig SinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSink

TesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTesterTester

c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0c:State0

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)(t4 <= 90)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)(t3 <= 90)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1 State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)

State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1State1
(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)(t1 <= 50)

State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2State2
(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)(t1 <= 100)

State3State3State3State3State3State3State3State3State3State3State3State3State3State3State3State3State3
(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)(t2 <= 5)

c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01c:s01

c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02c:s02

st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1 st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3 st4st4st4st4st4st4st4st4st4st4st4st4st4st4st4st4st4

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!sinkin0!
t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80t4 > 80

sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?sourceout0?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0

sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?sourceout1?
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!sinkin1!
t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80t3 > 80

sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?sinkin0?
t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0

play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!play0!
t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5

t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50t1 == 50
sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!sourceout1!

sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?sinkin1?
t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0

play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!play1!
t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5t2 == 5

sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!

sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!

t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100t1 == 100
sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!sourceout0!
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!sgout0!

t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95t <= 95
play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?play0?

t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95t > 95

sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?sgout0?
t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0 Fig. 5. The Stream with Testing Automatasuch criticisms. One criticism is though particularly worth considering here asit arises directly from our case study. It is that due to expressiveness limitationsof the temporal logic accepted by the UPPAAL model checker it is di�cult todirectly verify the standard temporal logic formulations of quality of service,rather the basic system speci�cation has to be adapted in order that checkingthe property can be reduced to checking a reachability property. This can mostnoticeably be seen in the latency veri�cation where the basic system speci�cationhas to be adapted through composition of a test automata and addition of probeactions. Consequently the veri�cation is not \transparent" to the behaviouralspeci�cation.Other real-time model checking tools, in particular KRONOS [8], supporta richer set of temporal logic properties. Thus, we hope that veri�cation thatavoids such invasive adaptation of the basic system speci�cation may be possiblewith KRONOS. Ongoing research is investigating application of KRONOS to themultimedia stream case study.

AcknowledgementsWe would like to thank Stavros Tripakis of SPECTRE-VERIMAG and PaulPettersson of UPPSALA who �elded queries that we had on model checking oftimed automata and UPPAAL respectively.References1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,(126):183{235, 1994.2. V. Bellotti and A. MacLean. Integrating and communicating design perspec-tives with QOC design rationale. Technical Report ID/WP29, ESPRIT 7040 -AMODEUS, 1994.3. Johan Bengtsson, W. O. David Gri�oen, K�are J. Kristo�ersen, Kim G. Larsen,Fredrik Larsson, Paul Pettersson, and Wang Yi. Veri�cation of an audio protocolwith bus collision using uppaal. In R. Alur and T. A. Henzinger, editors, Proceed-ings of the 8th International Conference on Computer-Aided Veri�cation, LNCS1102, pages 244{256, New Brunswick, New Jersey, USA, July 1996.4. G.S. Blair, L. Blair, H. Bowman, and A. Chetwynd. Formal Speci�cation of Dis-tributed Multimedia Systems. University College London Press, September 1997.5. M. Bordegoni, G. Faconti, S.Feiner, M.Maybury, T. Rist, S. Ruggieri, P. Trahanias,and M. Wilson. A standard reference model for intelligent presentation systems.Computer Standards and Interfaces, 1998.6. H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Automatic veri-�cation of a lip synchronisation algorithm using UPPAAL. Accepted at FMICS'98,Amsterdam, The Netherlands, May 1998.7. P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded re-transmission protocol must be on time! In Proceedings of the 3rd InternationalWorkshop on Tools and Algorithms for the Construction and Analysis of Systems,LNCS 1217, pages 416{431, Enschede, The Netherlands, April 1997.8. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In HybridSystems III, LNCS 1066. Springer-Verlag, 1996.9. P.G. Harrison and N.M. Patel. Performance Modelling of Communication Net-works and Computer Architectures. Addison-Wesley, 1993.10. Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal modellingand analysis of an audio/video protocol: An industrial case study using uppaal.In Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 2{13, SanFrancisco, California, USA, 3-5 December 1997.11. I. Herman, G. Reynolds, and J. Van Loo. PREMO: An emerging standard formultimedia. part i: Overview and framework. IEEE MultiMedia, 3:83{89, 1996.12. Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysisof a collision avoidance protocol using spin and uppaal. In Proceedings of the 2ndSPIN Workshop, Rutgers University, New Jersey, USA, August 1996.13. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer-Verlag, 1992.14. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.15. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic veri�cation of real-timecommunicating systems by constraint solving. In Proceedings of the 7th Inter-national Conference on Formal Description Techniques, Berne, Switzerland, 4-7October 1994.

