Specification and Verification of Media
Constraints using UPPAAL*

Howard Bowman!, Giorgio P. Faconti? and Mieke Massink®

! Computing Lab., U. of Kent, Canterbury, Kent, CT2 7NF, UK
2 CNR-Istituto CNUCE, Via S.Maria 36, 56126 - Pisa - Italy
3 Dept. of Computer Science, U. of York, Heslington, York, YO1 5DD, UK

H.Bowman@ukc.ac.uk, G.Faconti@cnuce.cnr.it and M.Massink@guest.cnuce.cnr.it

Abstract. We present the formal specification and verification of a mul-
timedia stream. The stream is described in a timed automata notation.
We verify that the stream satisfies certain quality of service properties,
in particular, throughput and end-to-end latency. The verification tool

used is the real-time model checker UPPAAL.

1 Introduction

The acceptance and utility of a broad range of application systems is substan-
tially affected by their ability to present information in an effective and appealing
way to human users. Rapid progress in the development of multimedia technol-
ogy promises more efficient forms of man/machine communication. However, the
use of multimedia for conveying information does not guarantee effective and in-
telligible presentations per se. Appropriate design decisions must be drawn that
lead to a fine grain coordination of communication media and modalities. This
may even become a harder and more complex task than solving the applica-
tion problem. Furthermore, in the vast majority of non-trivial applications the
information needs will vary from user to user and from situation to situation.
Consequently, a multimedia system should be able to flexibly generate various
presentations for one and the same information content in order to meet individ-
ual requirements of users and situations, resource limitations of the computing
system, and so forth.

In this respect, technology based techniques and models are just one out of
many components contributing to the design of an interactive system. Other dis-
ciplines provide complementary views and perspectives on design problems and
those contributions need to be related to one another to help support design
reasoning and decisions. Different kinds of analysis contribute to augment the
comprehension of a particular design space either by contributing complemen-
tary information or by providing criteria addressing equivalent requirements. In
addition, some design issues may be raised by one particular kind of analysis

* The first author is currently on leave at CNUCE under the support of the European
Research Consortium for Informatics and Mathematics (ERCIM).

from a discipline, but only solved if another kind of analysis is applied from
another discipline.

In such a scenario, many system requirements are generated and derived from
disciplines distant from technology and computer science such as semiotics and
cognitive psychology. With the current state of the art in system design, these
requirements cannot be bounded in a straightforward manner to a specific tech-
nology but require that system designers be informed both of why requirements
have been formulated and how they can possibly be satisfied. Techniques for
representing design decisions, and frameworks for communicating and contextu-
alizing more analytic approaches into the practicalities of design exist already in
the literature of both software engineering and human/computer interaction. Al-
though significant conceptual progress has been made in both of these directions,
their general application requires us to understand how the basic approaches can
actually be used in practical settings; this remains an open issue.

Here, we refer to a particular class of interactive systems, namely Multi-
Media Presentation Systems. This class of systems has been characterized in
[5] where a Reference Model for Intelligent Multi-Media Presentation Systems
is presented, integrating system concerns with the necessary representation of
the contextualized knowledge about domain problem, design process, and user
modeling. The model is abstract since it identifies the basic components of a pre-
sentation system and relates them. The details are addressed by specific models
that are located in the abstract model, such as the Presentation Environment
for Multimedia Objects [11]. Examples of applications that can be described are
teleconferences and automatic generation of multimedia help systems, their dis-
tinguishing features being the continuity of the involved media, and the kind of
indirect interaction with the media objects.

Interaction in these systems is indirect since it doesn’t concern the manipula-
tion of the media objects themselves (i.e. the video content); rather, it addresses
the mechanisms influencing their presentation (i.e. compression/decompression
algorithms, allocation of band) and the global quality of service. In [2], for exam-
ple, it is suggested that audio/video quality of service be controlled by separate
sliders each dealing with a specific parameter. The issue is that some parame-
ters reflect perceivable properties of the media objects with no direct link to the
underlying technology and it is difficult to predict the demand of computational
resources required to achieve the quality of service set by the end-user.

Continuity refers to media streams conveying digital objects with associated
time constraints, distinguishing these applications from traditional protocols.
Usual techniques such as retransmission of data in case of faults or losses are no
longer applicable and the verification of system throughput and latency against
the time constraints becomes a must. As an example, Video/Audio streams
must satisfy inter — media synchronization constraints as in the case of the lip-
synchronization. However, continuity plays also an important role in the context
of a single media stream since it demands intra — stream synchronization, i.e.
the relationship between media objects within the same data stream thus adding
to throughput and latency a further constraint on jitter.

Consequently, timing plays an important role in multimedia presentation
systems. The quality and the usability of those systems is crucially dependent
on their performance with respect to timeliness. Often there is a trade-off be-
tween the quality of the presentation of multimodal information and the quality
of service that can be offered by the medium over which the information is
transported. Specification and verification of real-time aspects of (multi)media
systems is however a difficult problem. The most common approach to building
those systems is to implement new ideas directly in a prototype and to measure
the performance. This approach is not always satisfactory. The complexity of the
behaviour of the distributed algorithms is often considerable and their correct-
ness is difficult to estimate by mere testing. Furthermore, it is often very hard
to find the causes of rare errors and to improve the implementation accordingly.
This has been illustrated for example in [10] where an Audio/Video protocol has
been analyzed that had been developed in an industrial setting.

In this paper, we restrict our analysis to the investigation of a number of
issues for the single data stream case. This allows us to set up a basic framework
for further work on multi-(inter-)media synchronization while enabling the in-
vestigation of the capabilities and the practical use of formal notations and their
associated tools with small size experiments.

2 A Simple Media Stream

The most basic requirement for supporting multimedia is to be able to define
continuous flows of data; such structures are typically called media sireams [4].
In this paper, we will discuss and illustrate a number of aspects related to media
constraint modeling using such a multimedia stream.

The basic media stream is as depicted in figure 1. It has three top level
components: a Source, a Sink and a communication Medium (which we will
from now on simply refer to as the Medium). The scenario is that the Source
process generates a continuous sequence of packets' which are relayed by the
Medium to a Sink process which displays the packets. Three basic inter-process
communication actions support the flow of data (see figure 1 again), sourceout,
sinkin and play, which respectively transfer packets from the Source to the
M edium, from the Medium to the Sink and display them at the Sink.

Formal descriptions of media streams have been given before, e.g. [4] etc.
However to our knowledge, no formal verifications have been performed. This is
one contribution of this paper.

The following informal description of the behaviour of the stream is kept
similar to the LOTOS/QTL specification that appears in [4].

— All communication between the Source and the Sink is asynchronous.
— The Medium is unreliable; it may loose and reorder packets.

! These could be video frames, sound samples or any other item in a continuous media
transmission. In this way the scenario remains completely generic. However, instan-
tiation of data parameters will specialize the scenario.

Source Sink
Process Process play
sourceout sinkin
Medium

Fig. 1. A Multimedia Stream

— The Source transmits a packet every 50 ms (i.e. 20 packets per second).

— Packets that do not get lost arrive at the Sink between 80 ms and 90 ms
after their transmission. This is the latency of the Medium.

— Whenever the Sink receives a packet, it needs 5 ms to process it, after which
it is ready to receive the next packet.

In section 4, we will present an UPPAAL description of this basic behaviour.
Then we focus on our main objective: to check that this system satisfies cer-
tain quality of service properties. Conceptually, these properties can be viewed
as being derived from user presentation requirements. The quality of service
properties that we wish to verify are:

1. Throughput. We would like to ensure that the Sink process receives pack-
ets at the rate of between:

15 and 20 packets per second.

Clearly, there is a direct link between the rate of loss of the Medium and
the throughput at the Sink. Thus, the flavour of our investigation of this
property will be to determine what are the bounds on the rate at which the
Medium looses messages in order to satisfy this throughput property.
We will also build into the system the possibility that it can go into an error
state and halt, if the throughput property is invalidated.

2. Latency. We will check the following latency property:

The end-to-end delay between a sourceout action and its correspond-
ing sinkin action cannot be more than 95ms.

which puts an upper bound on the end-to-end transmission delay.

3. Jitter. Jitter is defined as the variance of delay. It ensures that there is not
an unacceptable variability around the optimum presentation time, e.g. if
one packet is presented quite early and the next is presented relatively late
an unacceptable stutter in the presentation will result. A full analysis of jitter
would require stochastic techniques [9] to be employed. This is clearly not

possible with the verification technology we have available to us. However,
placing both an upper and lower bound on the latency would impose a crude
bound on jitter. Apart from noting that we could extend our latency analysis
to do this, we do not consider the property any further in this paper.

3 Introduction to UPPAAL

UPPAAL is a tool-suite for the specification and automatic verification of real-
time systems. It has been developed at BRICS in Denmark and at Uppsala
University in Sweden. In UPPAAL a real-time system is modeled as a network
of extended timed automata with global real-valued clocks and integer variables.
The behaviour of a network of automata can be analyzed by means of the simu-
lator and reachability properties can be checked by means of the model checker.

In UPPAAL, automata can be specified in two ways. Graphically by using
the tool Autograph or textually by means of a normal text editor. The graphical
specification can be used by the graphical simulator ‘simta’ or be automatically
translated into textual form and used as input for the model checker ‘verifyta’
together with a file with requirements to be checked on the model. The re-
quirements are formulas in a simple temporal logic language that allows for the
formulation of reachability properties. The model checker indicates whether a
property is satisfied or not. It the property is not satisfied a trace is provided
that shows a possible violation of the property. This trace can be fed back to the
simulator so that it can be analyzed with the help of the graphical presentation.

3.1 The UPPAAL model

UPPAAL automata consist of nodes and edges between the nodes. Both the
nodes, which are called locations, and the edges, which are called transitions, are
labeled. A network of automata consists of a number of automata and a definition
of the configuration of the network. In the configuration the global real-time
clocks, the integer variables, the communication channels and the composition
of the network are defined.

The labels on edges are composed of three optional components:

— a guard on clocks and data variables expressing under which condition the
transition can be performed. Absence of a guard is interpreted as the condi-
tion true.

— a synchronization or internal action that is performed when the transition
is taken. In case the action is a synchronization action then synchronization
with a complementary action in another automaton is enforced following
similar synchronization rules as in CCS [14]. Given channel name a, a! and
a? denote complementary actions corresponding to sending respectively re-
cetving on the channel a. Absence of a synchronization action is interpreted
as an internal action similar to 7-actions in CCS.

— a number of clock resets and assignments to integer variables

The label of locations consists also of three parts:

— the name of the location which is obligatory.

— an wnvarient expressing constraints on clock values, indicating the period
during which control can remain in that particular location.

— an optional marking of the location by putting c¢: in front of its name indi-
cating the location as commitied. This option is useful to model atomicity
of transition-sequences. When control is in a committed location the next
transition must be performed (if any) without any delay or interleaving of
other actions.

In the configuration, the following aspects of the network are defined:

— declarations of global clock and integer variables

— the channel names that are the names of the actions. Channels can be defined
as normal communication channels or urgent channels. When a channel is
urgent no timing constraints can be defined on the transition labeled by
that channel and no invariant can be defined on the location from which
that transition leaves. Urgent actions have to happen as soon as possible,
i.e. without delay, but interleaving of other actions is allowed if this does not
cause delays.

— the list of names of automata the system is composed of.

Formally, the states of an UPPAAL model are of the form (,v), where [is a
control vector and v a value assignment. The control vector indicates the current
control location for each component of the network. The value assignment gives
the current value for each clock and integer variable. All clocks proceed at the
same speed. There are three types of transitions in an UPPAAL model:

Internal transitions Such transitions can occur when an automaton in the
network is at a location in which it can perform an internal action. The
guard of that transition has to be satisfied and there must be no other
transitions enabled that start from a committed location.

Synchronization A synchronization transition can occur when there are two
automata which are in locations that can perform complementary actions.
The guards of both transitions must be satisfied and there must be no other
transitions enabled that start from a committed location.

Delay A delay transition can occur when no urgent transitions are enabled,
none of the current control locations is a committed location and the delay
is allowed by the invariants of the current control locations.

An example of an UPPAAL specification is given in Figure 2. The transition
between s! and s2 can only be taken when the value of clock y is greater than
or equal to 3. This holds also for the transition between rf and r2 because the
automata A and B are synchronized on channel a. The transition must happen
before y is equal to 6 because of the invariant at location si. If this invariant
would not be there control could have remained in sf and in rf indefinitely.

A Config

clock x, y;
intn;
chan a;
urgent chan b;
system A, B;
y>=4
B

X>=2

a?

n:=3 bt

x:=0 n:=n+1

O))

Fig. 2. Example of an UPPAAL specification

When control is in s2 and r2 the only transition that is possible is the syn-
chronization on action b. This is because b has been declared as an urgent channel
in the configuration. Note that if the guard y >= 4 would not have been label-
ing the transition between s2 and s3 in A both transitions between those two
locations would have been enabled! This is because urgency only prevents the
passing of time, but does not prevent the occurrence of other actions that are
enabled at the same time. To prevent interleaving actions in this case the loca-
tion r2 can be annotated as a committed location. This forces the action b to
happen without delay or interference of other actions.

3.2 Simulation and Model Checking

The future behaviour of a network of timed automata is fully determined by its
state, i.e. the control vector I, and the value of all its clocks and data variables.
Clearly this leads to a model with infinitely many states. The interesting obser-
vation made by Alur and Dill was that states with the same I but with slightly
different clock values have runs starting from [that are “very similar”. Alur and
Dill described exactly how to derive the sets of clock values for which the model
shows “similar” behaviour [1]. The sets of clock values are called time regions.
Regions can be derived from the guards, the invariants and the reset-sets in the
UPPAAL model. Since clock variables in the constraints are always compared
with integers and because in every model there is a maximum integer with which
a clock is compared the state space of a model can be partitioned into finitely
many regions. This makes model checking for dense time decidable.

In UPPAAL the regions are characterized by simple constraint systems which
are conjunctions of atomic clock and data constraints. Details on the calculation
of these constraint sets for simulation and model checking can be found in [15].

The properties that can be analyzed by the model checker are reachability
properties. They are formulas of the following form:

du—A[B|E<>0

B:=a|B1 and B2 | By or Bz | B implies B; | not B

where a is an atomic formula of the form: A;.l where A; is an automaton and
!l a location of A; or v; ~ n where v; is a variable, n a natural number and ~
a relation in {<, <=, >,>=,==}. The basic temporal logic operators are, A[]
and E <>, where, informally, A [] 8 requires all reachable states to satisfy 8 and
E <> B requires at least one reachable state to satisfy 8.

Although the final aim of the developers of UPPAAL is to develop a model-
ing language that is as close as possible to a high-level real-time programming
language with various data types the, current version is rather restrictive. For
example it does not allow assignment of variables to other variables and there is
no value-passing in the communication.

Despite these restrictions, quite a number of case-studies have been per-
formed in UPPAAL ranging from small examples to real industrial case studies,
e.g. [3,7,12].

4 Stream example formalized in UPPAAL

4.1 The basic model

Consider the stream example introduced in section 2. The simplest part of the
example is the Source. In the informal specification it is said that a packet is
sent every 50 ms. To make this more precise we assume that the first packet is
sent at time equal 0 and all later packets exactly 50 ms one after the other. This
behaviour is modeled as an UPPAAL automaton with two locations. The initial
location (indicated by a double circle) is annotated as committed to enforce that
the first packet (sourceout!) is sent immediately. To assure that every following
packet is sent exactly 50 ms after the previous one, a clock 1 is introduced. The

guard t1 == 50 enables the sending of sourceout at exactly 50 ms after the last
one. The invariant at Statel enforces that the enabled transition really happens
at t1 == 50. When the transition is performed ¢1 is reset and the behaviour

repeats itself.

The Sink is required to always accept a packet, except when it is playing a
packet. Whenever it receives a packet it plays it immediately during the next
5 ms. This behaviour is modeled by another automaton with two locations. In
the initial location the automaton waits for a packet from the medium. When it
arrives a timer ¢2 is set that is used to model the 5 ms delay caused by playing
of the packet before control returns to the initial location.

The third part to model is the medium. What is known of the medium is
that it acts as an infinite buffer, it has a latency of between 80 ms and 90 ms,
it may loose and reorder packets. At first sight we should model the medium

as an infinite structure. However, if we are only interested in the throughput of
the medium, the order in which packets arrive is irrelevant. What s relevant is
that we model the medium in such a way that it always allows the Source to
perform the next sourceout. We will show that the medium can be modeled by
two independent one-place-buffers. We first model the medium assuming that
it does not loose packets. Each buffer is modeled as an automaton with two
locations (see Figure 3). At the initial location the buffer can receive a sourceout
from the Source. At that point a timer is started to model the latency of the
medium. The sinkin action following the sourceout is delayed by at least 80 ms
and at most 90 ms.

Source Placel Place2
CﬂateLo) Statel Statel
sinkin! € sinkin! €
sourceout! t4> 80 t3>80
tatel sourceout? sgt_{cgout?
(t1 <= 50) t4:=0 t3:=
t1==50
| State2 State2
o <=0 t5<=%0)
Config L Sink
sinkin?
t2:=0
clock t1,t2, 13, t4;
intl; o
chan sourceout, sinkin, play;
system Source, Sink, Placel, Place2;
Statel State2
| (t2<=5)
p
t2==5

Fig. 3. UPPAAL specification of media stream

To be sure that it was correct to model the medium by only two one-place-
buffers, we should prove that it is never the case that when the Source wishes
to perform a sourceout, i.e. when t1 == 50, both one-place-buffers are full, i.e.
they are in location State2. In UPPAAL this situation can be formalized as:

E <> (t1 == 50 and Placel.State2 and Place2.State2)

which using the UPPAAL model checker can be shown not to hold.

It is important to note however that the minimal number of Places needed
to guarantee that the Source can always send its packet depends on the time
constraints used in the model. If the time between packets at the Source would
be less than 45 ms there are going to be problems. In our model we can easily

verify this by means of the reachability property we formulated before. In this
example it is not difficult to find a general formula that gives the minimal number
of Places needed as a function of the time between the packets and the maximal
latency. Let p be the number of Places, m the maximal latency and d the interval
time between packets sent by the Source then:

p=[m/d] (+)

In general however, time dependent behaviour can be very hard to predict and
a model checker can be helpful to get a good intuition about the relations that
hold between parameters of the system. An interesting illustration of this use of
model checking can be found in the description of a case study on a bounded
retransmission protocol [7].

4.2 Modeling a medium with losses

In this section we relax the assumption that the medium does not loose packets.
We assume that the losses are limited to not more than 4 packets per second.

To model this we need a Monitor that keeps track of the passing seconds
and we need to adapt the automata modeling the Places. We model the loss
of a packet by an additional internal transition from State2 to Statel in the
automata that model the Places. Further we add a global variable [that records
the number of losses. The transition is guarded by a constraint on the maximal
number of losses. Figure 4 shows the new medium (in fact, this specification
contains more additions than just the new medium; these will be explained in
the next section).

5 Verifying Quality of Service with UPPAAL

In this section we investigate how the quality of service properties identified
earlier in this paper can be verified using UPPAAL.

5.1 Throughput

Let us assume that the throughput of the medium is checked every second and
when it is below the threshold of 15 packets per second an error is signaled.

The number of packets that arrive at the Sink is counted by a global variable
z which is updated every time a sinkin action occurs. The Monitor checks
the variable = every second. If the throughput is sufficient then z is reset and
the timer starts again. If the throughput is too low an urgent action error is
generated. As soon as the Sink reaches state Statel it will synchronize on the
error action and the media stream will be stopped. In Figure 4 the automata
for the Monitor and the Sink are shown.

The Monitor that we present only forces an error if too few frames arrive,
i.e. if & < 15, this is because the possibility of too many frames arriving, i.e.

z > 20, cannot arise because of the parameters of the system. However, if it was
necessary we could easily add an extra branch in the transition system which
caters for this situation.

In addition, we can use UPPAAL to determine the parameters that bound
our throughput property. Specifically, we can check under what circumstances
our specification satisfies the formula:

E <> (Sink.Stop)

Satisfaction of this formula implies that our throughput requirement does not
hold. As suggested earlier, the obvious parameter that affects throughput is the
rate of loss in the medium. Using UPPAAL we can show that if the constraint
I < 4 is associated with the loss action in the medium, as it is in figure 4, then
the Stop state can be reached, and UPPAAL provides a sample trace. However,
if we change the constraint to I < 3 then the Stop state cannot be reached. Thus,
this gives us a clear bound on the number of errors that an acceptable medium
should allow.

A subtle point that arises from this specification is that since Statel in Sink
has two outgoing transitions, error and sinkin, if Statel is reached at a time
point in which both transitions are enabled then even though error is an urgent
action, either transition may be taken. This would clearly be undesirable as one
would like the system to stop as soon as it is in error. However, using UPPAAL
an analysis can be made that shows that as long as the Source is transmitting
at a rate of a frame every 50 ms then this situation cannot arise (interestingly, if
it was transmitting at the rate of a frame every 53 ms the situation could indeed
arise).

5.2 Verifying Latency

Although in fact, upper and lower bounds for latency of the stream can be very
easily discerned by inspection from the automata specification given, this will
not always be the case. In fact, in real world systems, communication mediums
have highly complex real-time behaviour. For example, there may be a number of
different potential routes that frames can take, each accumulating very different
latency delays. Furthermore, in the presence of congestion, analysis of latency is
far from straightforward. Thus, even though analysing latency is rather superflu-
ous in our stream scenario, it is a valuable exercise to determine the suitability
of UPPAAL in this respect.

The first thing to note is that in order to express our latency requirement
we must relate corresponding sourceout and play actions. In order to do this
some means of identifying corresponding packets, e.g. by means of time stamps
or sequence numbers, must be included.

So, let us formulate our basic latency property with the required sequence
numbering. The obvious property that we would like to verify is:

Ve € IN. (O(play(z) = ©<g5 sourceout(z)))

Source Placel Place2
c:State0.
© sinkin! sinkin! @ Statel
0 t3>80
sourceout! t4> 80
sourceout?
Statel —C
(<= 50) u:= loa 1<4
1=1+1 loss L1
t1==50
1 State2 State2
Sourceott WL O ge2y,
Config ki Sink
sinkin®?
clock t, t1, t2, t3, t4,;
intx,|;
urgent chan error;
chan sourceout, sinkin, play, stop, loss;
system Source, Sink, Placel, Place2, Monitor; Stzatgg 5
t == 1000 — i
X >=15 ;—<—115000 Monitor
f<_f:020 =0 State2
T =0 O Stop
x:=0 Statel t=0 /" error!
t:=0 {t <= 1000)

Fig.4. UPPAAL specification of mediastream with QoS Monitor

where the operators used are linear time temporal logic operators [13], which
contrast with the branching time operators used in UPPAAL. O P is the al-
ways/henceforth operator (i.e. in the future it is always the case that P holds),
= is logical implication and ©«; P is a past tense operator stating that, P must
hold no more than ¢ time units before the current moment. So, the formula
states that it is always the case that, if a play occurs then at some point not
more than 95ms before a sourceout must have taken place. The significance of
the past operator is that it allows for loss in the system, i.e. it only enforces a
timing constraint on the plays that arise from successfully received packets.

However, this property cannot be verified using UPPAAL. There are two
reasons for this.

1. Infinite data sets, such as the natural numbers; and
2. expressing data passing actions

are not supported at present by UPPAAL.

We will show how to handle the second of these difficulties shortly, but for
the moment, let us concentrate on the first. The problem is that we need to
bound the set of sequence numbers used and in fact, it will greatly simplify the
resulting automaton and the state space explosion problem if we can keep the
size of this bound very small.

What we would like to ensure is that we have a sufficient number of sequence
numbers that we do not get two packets with the same sequence number in the

system at the same time. This is a similar requirement to the bounding of the
size of the medium investigated in section 4.1. In fact, we can use formula (+)
stated there to derive that two sequence numbers are sufficient in a correctly
behaving system. Importantly though, we replace m in the formula with the
desired latency value rather than the known one.

Having decided that two sequence numbers, i.e. 1 and 0, will be sufficient
we have to adapt our automata specification accordingly. Now as already noted,
actions in UPPAAL are not data passing however, we can get the effect of data
passing actions by including a more discriminating set of actions and including
extra transitions?. The Sink in Figure 5 is a good illustration of the approach.
Specifically, rather than refering to actions sinkin and play as was the case
in our earlier formulations of the stream, now it refers to actions sinkin0?,
stnkinl?, play0? and playl?. Thus, we have flattened out our data type into a
more discriminating set of action names.

The formula that we would like to verify over this automata is:

Ve € {0,1}.(O(play(z) = ©<g5 sourceout(z))) (*)

Unfortunately a further problem remains: UPPAAL does not support past
operators®. We could though reformulate the property as:

Va € {0,1}. (O(sourceout(z) = O<os (play(z) V loss(z)))) (*)

which avoids the past operator. However we prefer an alternative approach
that avoids the reference to loss. This is because latency is an end-to-end prop-
erty and formulating in terms of actions local to components of the commu-
nication path seems conceptually unsatisfactory. Thus, we would like to view
the medium as a black box and formulate our property purely in terms of the
“end-point” actions sourceout and play.

In order to do this, let us consider the interplay between loss and latency.
In the presence of congestion, loss will relieve congestion and thus allowing loss
will implicitly reduce latency values. Thus, a reasonable strategy is to determine
upper bounds on latency on a stream specification which does not allow loss,
knowing that if it is added, this bound will still be valid. This is the strategy
that we adopt.

So, let us work with a basic medium which does not contain the possibility
to loose packets. The medium is as shown in Figure 5.

Now the property that we have to check is:

Va € {0, 1} . (O(sourceout(z) = O<os play(z)))

2 This is in fact a standard approach in process algebras for getting from a data passing
calculus to a basic calculus, see for example [14].

3 Actually, there is in any case a rather subtle problem with this formula, to do with the
interplay between the possibility to loose messages and not knowing the end-to-end
latency.

which can, in the standard way, be expanded out to avoid the universal
quantifier, which is not supported in UPPAAL (note: we write a(n) as an in
order to match action denotations in the automaton).

O(sourceoutd = C<gs play0) A O(sourceoutl = O<gs playl)

However, this is not a reachability property and can thus, not be directly
verified using UPPAAL. A strategy outlined in [12] can though be used to verify
such a “bounded liveness” property using reachability analysis. The approach
is to derive a testing automaton from the property using a form of tableau
algorithm, compose the testing automaton in parallel with the system and ver-
ify a simple reachability property. This strategy is not yet implemented in the
UPPAAL tool, so the automaton has been derived by hand using the informal
algorithms to be found in the literature [12].

The bounded liveness properties accepted by the testing automaton approach
are expressed in a different logic to any that we have seen so far: STL, a timed
modal logic. Our property can, with relative ease, be expressed in this logic
however, rather than introduce another logic, we will go straight to the testing
automaton that is derived from the formula. It is shown in Figure 5 along with
the full revised stream specification. In fact, this is the scenario used to check
that sourceoutOs and playOs are correctly matched. A similar approach can be
used to check sourceoutl’s and playl’s.

Note that sgout0 is a probe action that has been inserted at appropriate
places in the system. It is inserted (using a committed state) to signal the oc-
currence of sourceouts to the test automaton.

The property that we check is:

E <> (Tester.bad)

which, when checked with UPPAAL does, as would be hoped, fail to hold.
However as indicated earlier, this is not a very interesting result because it is
directly deducible by inspection of the system. Thus, the contribution of this
section is not this verification, but rather the investigation of a general strategy
for checking latency which can be applied to systems that are not so easily
interpreted. It is clear that the strategy we have documented is indeed generally
applicable.

6 Concluding Remarks

We have investigated the suitability of UPPAAL for the verification of multi-
media systems. The specification and analysis of a simple multimedia stream
was presented for this purpose. The main results of this paper are the identifi-
cation of generally applicable strategies for checking real-time quality of service
properties, specifically, checking throughput and latency.

Although our experiences with UPPAAL have generally been favourable,
some criticisms of the approach can be highlighted. [6] considers a number of

oo Source Placel Place2
sourceoutO!
£:0L sinkin0! Sitel sinkinl! Statel
sgoutO! ' t3>80
t4>80
Statel
t1==50 (<=5 SEEILCQOLEO? sourceout1?
sourceout1! sgouto! @:=0 t3:=(0
State2 c:s02
t1<=100) t1==100 State2 Sate?
() sourceoutO! (t4 <= 90) <=9
Config) Sink
sinkin0?
t2:=0

clock t, t1, t2, t3, t4; o o

chan sourceout0, sourceoutl, sinkin0, sinkin1,
play0, play1, sgout0;

system Source, Sink, Placel, Place2, Tester;

Tester

Fig.5. The Stream with Testing Automata

such criticisms. One criticism is though particularly worth considering here as
it arises directly from our case study. It is that due to expressiveness limitations
of the temporal logic accepted by the UPPAAL model checker it is difficult to
directly verify the standard temporal logic formulations of quality of service,
rather the basic system specification has to be adapted in order that checking
the property can be reduced to checking a reachability property. This can most
noticeably be seen in the latency verification where the basic system specification
has to be adapted through composition of a test automata and addition of probe
actions. Consequently the verification is not “transparent” to the behavioural
specification.

Other real-time model checking tools, in particular KRONOS [8], support
a richer set of temporal logic properties. Thus, we hope that verification that
avoids such invasive adaptation of the basic system specification may be possible
with KRONOS. Ongoing research is investigating application of KRONOS to the
multimedia stream case study.

Acknowledgements

We would like to thank Stavros Tripakis of SPECTRE-VERIMAG and Paul
Pettersson of UPPSALA who fielded queries that we had on model checking of
timed automata and UPPAAL respectively.

References

1.

2.

10.

11.

12.

13.

14.
15.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
(126):183-235, 1994.

V. Bellotti and A. MacLean. Integrating and communicating design perspec-
tives with QOC design rationale. Technical Report ID/WP29, ESPRIT 7040 -
AMODETUS, 1994.

Johan Bengtsson, W. O. David Griffioen, Kéare J. Kristoffersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of an audio protocol
with bus collision using uppaal. In R. Alur and T. A. Henzinger, editors, Proceed-
ings of the 8th International Conference on Computer-Aided Verification, LNCS
1102, pages 244-256, New Brunswick, New Jersey, USA, July 1996.

G.S. Blair, L. Blair, H. Bowman, and A. Chetwynd. Formal Specification of Dis-
tributed Multimedia Systems. University College London Press, September 1997.
M. Bordegoni, G. Faconti, S.Feiner, M.Maybury, T. Rist, S. Ruggieri, P. Trahanias,
and M. Wilson. A standard reference model for intelligent presentation systems.
Computer Standards and Interfaces, 1998.

. H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Automatic veri-

fication of a lip synchronisation algorithm using UPPAAL. Accepted at FMICS’98,
Amsterdam, The Netherlands, May 1998.

. P.R. D’Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded re-

transmission protocol must be on time! In Proceedings of the 3rd International
Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 1217, pages 416-431, Enschede, The Netherlands, April 1997.

. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid

Systems III, LNCS 1066. Springer-Verlag, 1996.

P.G. Harrison and N.M. Patel. Performance Modelling of Communication Net-
works and Computer Architectures. Addison-Wesley, 1993.

Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal modelling
and analysis of an audio/video protocol: An industrial case study using uppaal.
In Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 2-13, San
Francisco, California, USA, 3-5 December 1997.

I. Herman, G. Reynolds, and J. Van Loo. PREMO: An emerging standard for
multimedia. part i: Overview and framework. [EEE MultiMedia, 3:83—-89, 1996.
Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis
of a collision avoidance protocol using spin and uppaal. In Proceedings of the 2nd
SPIN Workshop, Rutgers University, New Jersey, USA, August 1996.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-time
communicating systems by constraint solving. In Proceedings of the 7th Inter-
national Conference on Formal Description Techniques, Berne, Switzerland, 4-7
October 1994.

