
Shen, Kish, Costa, Vitor Santos and King, Andy (1998) Distance: a New
Metric for Controlling Granularity for Parallel Execution. In: Jaffar, Joxan,
ed. Proceedings of the 1998 Joint International Conference and Symposium
on Logic Programming. Logic Programming . MIT Press, Cambridge, Massachusetts,
USA, pp. 85-99. ISBN 0-262-60031-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21639/ The University of Kent's Academic Repository KAR

The version of record is available from
https://dl.acm.org/citation.cfm?id=300851

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21639/
https://dl.acm.org/citation.cfm?id=300851
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Distance: a New Metric for Controlling
Granularity for Parallel Execution

Kish Shen
University of Manchester

M13 9PL, U.K.� Vı́tor Santos Costa
DCC-FC & LIACC, Univ. do Porto

4150 Porto, Portugal
vsc@ncc.up.pt

Andy King
University of Kent at Canterbury

CT2 7NF, U.K.
A.M.King@ukc.ac.uk

Abstract

Granularity control is a method to improve parallel execution performance by limiting ex-
cessive parallelism. The general idea is that if the gain obtained by executing a task in
parallel is less than the overheads required to support parallel execution, then the task is
better executed sequentially. Traditionally, in logic programming tasksize is estimated
from the sequential time-complexity of evaluating the task. Tasks are only executed in
parallel if task size exceeds a pre-determined threshold.

We argue in this paper that the estimation of complexity on its own is not an ideal met-
ric for improving the performance of parallel programs through granularity control. We
present a new metric for measuring granularity, based on a notion ofdistance. We present
some initial results with two very simple methods of using this metric for granularity con-
trol. We then discuss how more sophisticated granularity control methods can be devised
using the new metric.

1 Introduction

Granularity control is a method to improve parallel execution performance by limit-
ing excessive parallelism. The general idea is that if the gain obtained by executing
a task in parallel is less than the overheads required to support parallel execution,
then the task is better executed sequentially [6]. Granularity control have been re-
cently applied to Prolog/Logic Programming [18, 9, 8] and toFunctional Program-
ming [7]. In logic programs, a “task” is considered to be a goal or an alternative to
be executed in parallel, and “useful work” the amount of computation performed
to solve the goal or try the alternative. Granularity control in most of these sys-
tems thus boils down to a two-phase process. At compile-time, a global analysis
system calculates an upper or lower bound on the time-complexity of a potentially
parallel goal. At run-time, a pre-determined threshold fortime-complexity of the�Current address: IC-PARC, Imperial College, London SW7 2AZ, U.K., e-mail:
k.shen@icparc.ic.ac.uk

1

whole task is used to determine if a task is to run in parallel or not: if its time-
complexity is less than the threshold, it will not be executed in parallel. Results for
small benchmark type programs have shown that these methodscan and do increase
performance of parallel logic programming systems.

The key motivation for controlling grain size is to reduce overheads.Direct
parallel task execution overheads correspond to the cost of creating and maintain-
ing a parallel task. These overheads usually include the cost of scheduling the task
for parallel execution, the cost of initialising the new parallel task, and hardware
related costs such as interprocess communication and locking. Up to a first approx-
imation, direct overheads are either fixed, such as publishing a task, or proportional
to task size, such as the interprocess communication overheads, and are therefore
proportional to the goal’s time complexity for sizeable tasks. Furthermore, in many
systems, as long as there is parallel execution, the direct overheads probably do not
vary (on average) greatly from program to program, so the constant of proportion-
ality would not change greatly between programs. Task size,as estimated by using
a goal’s time complexity, is therefore a suitable metric foraccounting this source
of overheads across a wide range of programs.

However, in many parallel systems, including most parallellogic programming
systems, tasks can and do create other potentially paralleltasks dynamically. Sub-
task creation adds to the available parallelism, but it alsoadds to total overheads,
which are not measured by the direct parallel task executionoverheads. Instead,
these new overheads should be considered a separate class, the indirect parallel
execution overheads. Indirect overheads can contribute significantly to the total
overhead. Indeed, and as shall be discussed later, experimental results from [8]
strongly suggest that, at least for those two configurationsand programs studied,
the major factor for the increase in performance of the programs with granularity
control is avoiding the indirect overheads associated withcreating largely superflu-
ous parallel work which the system does not have the resources to exploit.

In contrast to direct overheads, indirect overheads may notbe very dependent
on the size of the task being executed in parallel and, in addition, may vary greatly
from programs to programs. We thus believe that using task size as the metric is
not sufficient in general to capture the full complexities ofoverheads in parallel
execution. We would instead prefer a more robust metric, onethat is generally
applicable, and could apply to cases where it is hard to estimate time-complexity,
and to cases where work creation is unevenly balanced.

Towards this goal, we propose in this work a different metricfor measuring
“granularity”, thedistance metric, defined as the amount of work performed be-
tween successive points at which major parallel overheads are incurred. Figure 1
shows this metric, along with the difference from the conventional complexity met-
ric. Figure 1a illustrates a task executing sequentially, without any overheads. Fig-
ure 1b shows the conventional view of granularity. The same task is executed in
parallel, with initialisation and termination overheads explicit. Moreover, the task
itself takes somewhat longer to execute due to run-time parallel overheads. To-
gether these form the direct parallel execution overheads.Figure 1c shows the
situation assuming dynamic creation of parallel work. Overheads arise at several
points in the execution. These overheads add to the cost of executing the task in
parallel, and are unfortunately unaccounted for by the conventional view of granu-
larity control. Note that in the general case these creationpoints occur at irregular
intervals.

2

a) sequential

time complexity + run−time
parallel overheads

distances

time complexity + run−time & parallel work
creation overheads

start and termination overheads

c) parallel, dynamic creation of work

time complexity of goal

parallel work creation
overheads

b) parallel, no dynamic

creation of work
Figure 1: The “Distance” Metric

Figure 1c also shows the new distance metric. The metric measures distances
(amounts of work performed) between points of major parallel overheads, such as
parallel work creation, task creation and termination.

The above general description applies to any parallel system in which creation
of parallel work incurs overheads. For example, in a conventional parallel pro-
gramming environment, the parallel work creation overheads might correspond to
the creation of a process. With parallel Prolog, for traditional or-parallel systems
such as Aurora [10], Muse [1] and PEPSys [2], a task corresponds to the com-
plete execution of a new alternative, and the overhead for creating parallel work
corresponds to the overhead for creating an or-node which allows or-parallelism
to be exploited (sometimes referred to as a branch-node). For independent and-
parallel (IAP) systems such as &-Prolog [5] and &ACE [11], a task corresponds to
an and-goal, the overhead for creating parallel work corresponds to the overhead
of handling CGEs, hence “distance” corresponds to the distance between succes-
sive CGEs. For concreteness, in the rest of this paper, we will discuss the issues
within the context of IAP. This allows us to use specific examples for illustration
and, as we have ready access to an IAP system (the IAP part of DASWAM [12]),
this allows us to perform experiments.

There are several important considerations when using the distance metric.
Firstly, if the creation of parallel work occurs at irregular intervals directed by the
program, then the individual distances between such creation points can vary con-
siderably. Therefore, it should be theaverage distance over the whole program (or
over parts of the program in which granularity control is applied) that should be
considered.

A second consideration is that to achieve the best executiontime for a particular
configuration the amount of parallelism produced should be just sufficient to keep
the processors in the system as busy as possible doing usefulwork, while minimis-
ing the amount of parallel overheads. This is difficult to achieve, as it depends on a
large number of factors, many of which cannot be known with high precision before
runtime (for example, the ideal amount of parallelism can vary for different queries
to the same program [8]). In addition, different sources of parallelism (points where
parallel work are created) can lead to very different amounts of parallelism. The
point is that for a given average distance, the amount of parallelism that is available
can differ significantly, depending on which actual sourcesare removed. We would
want to remove the “worst” sources of parallelism, that is, those that lead to the
least amount of parallelism, first.

This ideal is almost certainly impossible to achieve in practice, but a system

3

which seeks to perform close to the ideal would require both run-time and compile-
time controls. On the one hand, the “worth” of a particular source of parallelism
is only available after the execution of the particular task, not before, when the
granularity control system actually needs it. On the other hand, it is impossible to
determine at compile-time what the ideal amount of parallelism should be, because
the query (and indeed the load and even the configuration of the parallel system)
is usually not known. Thus, a good granularity control system should try to deter-
mine at run-time the actual amount of parallelism that should be made available,
guided by information generated by compile-time analysis as to the best sources of
parallelism to make available.

Such a sophisticated system has not yet been designed. However, and as a first
step towards using the distance metric for controlling granularity and studying its
usefulness, we will consider two simple schemes, one compile-time and the other
run-time. These metrics do not take the quality of parallelism into account, i.e.
they simply try to increase the distance betweenindividual sources of parallelism
by removing those sources when distances are considered toosmall.

The amounts and distributions of the various types of overheads will of course
vary with different machines. This will have an impact on granularity control. For
example, for distributed non-shared memory machines or networks, the direct par-
allel execution overheads would be much more significant, and although it is more
appropriate to ignore indirect parallel overheads in such cases, using the distance
measure is still appropriate as it represents a more accurate picture of the overheads.
In addition, it will apply in situations where it is difficultto estimate the complexity
of a goal.

2 The New Granularity Control Methods

We next discuss and compare the two simple methods for increasing grain-size
as estimated by measuring distances between points of creation of work. The first
method uses a simple source-to-source transformation to increase distance between
CGEs. The second uses a run-time counter to estimate the distance between CGEs.

2.1 The Compile-Time Method

This method tries to determine the (average) distances between run-time CGEs (the
sources of parallelism in a goal-level and-parallel Prologscheme) at compile-time,
and if the distance is too small, it increases the distance bysource-to-source trans-
formations that remove CGEs. In many cases, the distance between CGEs can be
easier to determine than the time-complexity of a goal: e.g.if no recursive goals
are executed sequentially between successive CGEs, as is the case for every ex-
ample program in [8] except quick-sort, then the distance can simply be calculated
by counting the number of resolutions between successive CGEs. As we already
stated, we do not believe that these simple methods would lead to the best results,
and our interest here is simply to study the effectiveness ofdistance as a granularity
control metric in order to guide our development of more sophisticated methods.
Therefore, we would not consider the exact method that wouldbe needed to deter-
mine the distance.

To explain the compile-time method, consider first the Boyerbenchmark as
ported to Prolog by Tick [16]. This program has significant amounts of (non-strict)

4

IAP. Most of the parallelism arises from parallel executionof term rewrite rule,
that is a part of therewrite args procedure (following &-Prolog, & indicates a
parallel conjunction):

rewrite_args(0,_,_) :- !.
rewrite_args(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
N1 is N-1,
(rewrite(OldArg,MidArg0)
&
rewrite_args(N1,Old,Mid)),
MidArg0 = MidArg.

Experience has shown that this program has very small granularity by the dis-
tance measure, because successive CGEs occur very close together at run-time.
This results in a very significant overhead for running Boyerwith the parallel anno-
tation on a single worker versus running it without annotations – on the DASWAM
running on a Sequent Symmetry, it is 43% slower, the largest such overhead for
any IAP program examined in [12]. Moreover, the program is not suitable for the
granularity control based on time-complexity analysis as described in [9, 8], be-
cause of the difficulties of deriving a relationship betweeninput arguments and the
complexity. The distance metric, however, suggests a very simple way to increase
the distance, by performing a source-to-source transformation on the program such
that and-parallelism is generated only for every second call to rewrite args/3.
We show the modification forrewrite args’:

rewrite_args(0,_,_) :- !.
rewrite_args(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
N1 is N-1,
(rewrite1(OldArg,MidArg0)
&
rewrite_args1(N1,Old,Mid)),
MidArg0 = MidArg.

rewrite_args1(0,_,_) :- !.
rewrite_args1(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
N1 is N-1,
rewrite(OldArg,MidArg),
rewrite_args(N1,Old,Mid).

This simple transformation reduces the number of CGEs allocated by half, re-
gardless of what query is run.

2.1.1 Evaluation

To evaluate the impact of this method, we experimented with the original and the
transformed program in several parallel machines. The results are shown in Table 1.
The ‘#w’ column shows the number of workers for each row. We present results
for ‘ideal’, giving the ‘ideal’ amount of parallelism as obtained from the DASWAM
simulator [12]; ‘sun’, giving results for a 10 processor SPARCcenter-2000 running
Solaris; ‘chal’ for a 10 processor Silicon Graphics Challenge running IRIX; and
‘pc’ for a 4 processor PC with 200MHz Pentium Pros, running Linux. The ‘(g)’
column indicates cases with granularity control, and the ‘(no-g)’ without. All times

5

are in seconds. The timings measure the duration from the start of query execution
to the production of the (only) solution, and are the best of at least 5 executions.
DASWAM is compiled withgcc (except for the Challenge, where it was compiled
with MIPS’ cc, because that resulted in faster code), with optimisation turned on.
Note the extremely low speedup obtained for 2 workers on the Challenge for the
granularity controlled case: this problem seem to be isolated to 2 workers on some
programs (note for example the problem does not occur for thenon-controlled case)
on this particular machine; another SGI Challenge that we have access to (with 4
slower processors) does not appear to have this problem. Forthe SPARCcenter,
there is a known problem with the cache on some of the processors, which results
in slower performances when these particular processors are used. Also, we had
no control over who else can use both the Challenge and the SPARCcenter, and
in particular the SPARCcenter was heavily loaded very frequently, and thus the
results presented throughout the paper were obtained undervarying loads. These
factors all have impacts on the results in detail, although we do not believe that
they affected the general conclusions we draw. Also, note that we experimented
on several parallel machines in order to show that the methods are applicable to
different machines, and the purpose is not to make any sort ofcomparison between
the various machines used.

#w ideal sun chal pc
(no-g) (g) (no-g) (g) (no-g) (g) (no-g) (g)

1 – – 10.951 (1.00�) 9.034 (1.00�) 6.189 (1.00�) 5.051 (1.00�) 2.494 (1.00�) 2.025 (1.00�)
2 1.99� 1.98� 6.039 (1.81�) 4.787 (1.89�) 3.588 (1.73�) 4.389 (1.15�) 1.354 (1.84�) 1.074 (1.89�)
3 2.98� 2.93� 4.329 (2.53�) 3.466 (2.61�) 2.514 (2.46�) 1.955 (2.58�) 0.971 (2.57�) 0.777 (2.63�)
4 3.95� 3.85� 3.276 (3.34�) 2.862 (3.16�) 1.959 (3.16�) 1.547 (3.27�) 0.799 (3.12�) 0.608 (3.33�)
5 4.92� 4.74� 2.804 (3.91�) 2.251 (4.01�) 1.641 (3.77�) 1.312 (3.85�)
6 5.87� 5.58� 2.426 (4.51�) 1.978 (4.57�) 1.436 (4.31�) 1.151 (4.39�)
7 6.82� 6.39� 2.088 (5.25�) 1.811 (4.99�) 1.285 (4.82�) 1.064 (4.75�)
8 7.76� 7.16� 1.997 (5.48�) 1.660 (5.44�) 1.187 (5.21�) 0.976 (5.18�)
9 8.69� 7.86� 1.823 (6.01�) 1.574 (5.74�) 1.112 (5.57�) 0.928 (5.44�)
10 9.60� 8.58� 1.732 (6.32�) 1.537 (5.88�) 1.020 (6.07�) 0.894 (5.65�)

Table 1: Compile-time granularity control results for Boyer

Granularity control is effective if it gives better performances than the non-
granularity controlled program. The ideal columns show that, as expected, granu-
larity control reduces the amount of available parallelism. Thus, in the absence of
overheads, performance should be better without granularity control. Instead, the
results show that this form of granularity control gives better execution times, and
is indeed effective in all cases. The main component that leads to the increased
performance is clearly the removal of parallel creation overheads, as shown by the
difference in performances for the one worker cases. Even so, and for all these
systems, thespeedup (which is relative to their respective 1 worker case) is better
for the lower number of workers for the granularity controlled cases. The better
speedups show that the granularity control was able not onlyto remove the paral-
lel creation overheads (cost of allocating CGEs), but also some direct parallel task
execution overheads, especially for the faster machines.

The major weakness of this method is that the reduction in parallelism can
become quite significant with larger numbers of workers. It should be possible to
achieve better performance if a more selective way is found to remove CGEs, but
this would need some form of analysis (at compile-time) to determine the ‘worth’

6

of the CGEs. In addition, the method is quite a blunt instrument in that it applies
to all CGEs, thus not allowing any form of control at the individual CGE level.
Finally, this purely compile-time transformation does nottake into account run-
time situations: for example, with smaller number of workers, better results can be
achieved by producing less CGEs.

The example for boyer transformed the program to create and not create CGEs
alternately, thus reducing the number of CGEs generated at run-time by about half.
One can of course reduce the numbers of CGEs by a greater or lesser amount by
transforming the program to generate CGEs more or less often.

2.2 The Run-Time Method

This second granularity control method uses a simple counter in order to decide
whether a CGE should be allocated or not. The counter measures the work done
since the last CGE was allocated. If its value is below a pre-determined threshold,
then the new CGE would not be allocated, and the goals in the CGE will be run
sequentially instead. Conceptually, this method can be thought of as:

(above_threshold(Counter) -> reset(Counter), g1(...) & ... gn(...)
; g1(...), ... gn(...))

The actual implementation of this method is at the abstract machine level. Due
to lack of space, details of this scheme will not be given here. The reader is re-
ferred to [14] for a discussion of the implementation. The key idea is that, instead
of counting unifications as a measure of work, we count the number of abstract
machine instructions. The threshold is set by special abstract machine instructions
which would be supplied at compile-time. The scheme is supported at a very low
level, and the overheads for using the scheme are not high. Infact even for the
(near) worst case of boyer where the threshold is 0, giving a very short distance
between CGEs, the total overhead was only about 2%.

One more thing to be noted is that in parallel execution the number of CGEs that
will be sequentialised is non-determinate for a given threshold. This is due to the
fact that the threshold is counted from the start of a new and-goal. Given that which
goals are selected first to execute in parallel is non-determinate, the calculations of
distance can vary, and the number of sequentialised CGEs canvary. Our results
suggest that this variation is relatively small, and that asmore tasks are actually
executed in parallel, the number of sequentialised CGE would increase slightly.

2.2.1 Performance

Table 2 shows the results of using the runtime method on boyer, with the threshold
set at 64, 80, and 96 abstract machine instructions. These particular thresholds were
chosen because the implementation allowed the threshold tobe set in increments
of 16 units only. Again, the results are the best timings of atleast 5 runs. The
system was run on the 10 processor SGI Challenge. The numbersin brackets in the
1 worker case are the number of CGEs in each of the 1 worker case. The bracketed
numbers in the other cases are the speedups relative to theirrespective 1 worker
case.

7

#w no gran 64 80 96
1 6189 (94056) 5456 (48511) 5370 (44104) 5040 (32230)
3 2514 (2.46�) 2158 (2.53�) 2099 (2.56�) 1920 (2.63�)
4 1959 (3.16�) 1717 (3.18�) 1651 (3.25�) 1514 (3.33�)
5 1641 (3.77�) 1492 (3.66�) 1444 (3.72�) 1301 (3.87�)
6 1436 (4.31�) 1347 (4.05�) 1292 (4.16�) 1168 (4.32�)
7 1285 (4.82�) 1242 (4.39�) 1190 (4.51�) 1083 (4.65�)

Table 2: Run-time granularity control for boyer

As the machine was loaded at the time the experiments were performed, no
results were gathered beyond 7 workers, because the system did not have the re-
sources to allow DASWAM to utilize these processors. The results for no gran,
the case with no granularity, is taken from the experiment with the compile-time
method presented in Table 1, when the machine was not busy. Thus, the results
should favour nogran. The results for 2 workers are not included because of the
same problem as discussed previously.

Even with a bias towards nogran, the results shows that the granularity control
can improve the performance. Base speed (performance on oneworker) improves,
as one would expect. Speedups are quite close to the nogran version. Interestingly,
the improvements becomes greater with the higher thresholds, probably indicating
that more direct parallel execution overheads were being reduced. Further experi-
ments with even larger thresholds are necessary.

#w no gran 96
1 7893 (2100) 8034 (2100)
2 4062 (1.94�) 4074 (1.97�)
4 2035 (3.88�) 2063 (3.89�)
8 1053 (7.50�) 1060 (7.58�)

10 835 (9.45�) 859 (9.35�)

Table 3: Run-time granularity control for orsim

Table 3 shows a worst-case program for traditional granularity analysis. The
program is orsim [15, 13]. This is quite a complex program that is very difficult
to analyse. The program has quite high granularity, hence does not need granular-
ity control. We obtained the results on a the SGI Challenge when it was lightly
loaded. Times are in milliseconds, and are again the best of at least 5 timings. One
advantage of the run-time method is that it does not require any analysis, and the
overhead of using it is very small, so that in this case where no CGEs are sequen-
tialised, the performance of the program with granularity control is quite close to
the original performance.

8

3 Discussion

The average distance between CGEs is a good metric to explainthe effectiveness
of granularity analysis on programs such as boyer, as studied in [8]. Table 4 shows
the average distances for these programs with no granularity control as a function
of abstract machine instructions: i.e. the average number of instructions executed
per CGE.

prog �inst �CGE av. distance
boyer 5106759 94056 54.3

hanoi(10) 47083 1023 46.0
hanoi(16) 3014635 65535 46.0

fib(17) 95593 2583 37.0
fib(19) 250290 6764 37.0
qs(300) 55452 300 184.9
qs(3200) 823168 3200 257.2

orsim 9069226 1200 7557.7

Table 4: Average distances

The average distances clearly show that all the programs except quick-sort and
orsim have very small average distances: there are only about 3 to 5 unifications
between each CGE (using the approximation that each unification approximately
corresponds to 10 abstract machine instructions). We wouldexpect that in these
cases granularity control would be very effective in reducing the parallel overheads.
On the other hand, we would expect that granularity control to be less effective for
quick-sort. This is indeed the case from experimental results [9, 8].

The reason that quick-sort, running in IAP, has a large average distance is be-
cause the partition predicate is executed between successive CGEs:

qsort([], Rest, Rest).
qsort([X|Unsorted], Sorted, Rest) :-

partition(Unsorted, X, Smaller, Larger),
(qsort(Smaller, Sorted, [X|Sorted1]) &
qsort(Larger, Sorted2, Rest)),
Sorted2 = Sorted1.

The partition predicate is recursive and does not contain any CGEs. Analysis
should be able to determine that it is likely that this predicate will perform a signif-
icant amount of work, thus making the distance between CGEs large on average.
Such an analysis would decide not to add compile-time granularity control in this
case.

It is interesting to compare the new methods with granularity-based approaches.
Tables 5, 6 and 7 show the effect of the using granularity controls on qs(3200),
hanoi(16), and fib(23) respectively. The programs are takenfrom [8], with 23 used
as the parameter for fib to get results that would take over a second to execute on
the Challenge. The results are again in milliseconds, the best of at least 5 execu-
tions. The qs(3200) query was performed on a 10 processor Sequent Symmetry,

9

while hanoi(16) and fib(23) were performed on the SGI Challenge. We present the
compile-time and run-time control methods, along with the traditional complexity
threshold methods. The results for the complexity threshold method of qs(3200)
are taken from [8], and are average timings, rather than the best times, but in the
context of these experiments, the differences from best times are small. For the
run-time control method, thresholds of 64, 80 and 96 abstract machine instructions
were used. These are shown in the column with the threshold asthe headings. The
‘compile-time’ columns are for the program transformed to call CGE only on al-
ternate recursive calls, which reduces the CGEs by half for qs(3200) and fib(23),
and by two-thirds for hanoi(16). The reduction is two-thirds for hanoi(16) because
many of the calls terminates in the base case, and generate noCGEs. The results for
the complexity method are show in the columns with headings of size(X), where X
is the size threshold, measured in resolution steps.

The programs have quite different characteristics. As explained before,
qs(3200) has a high average distance, and relatively low parallelism. The hanoi(16)
and fib(23) queries have very low average distances and significant parallelism. The
size of the two goals that are run in parallel in a CGE are identical for hanoi(16),
but are slightly less well balance for fib(23), where one goalis about 60% larger
than the other. Another difference is that CGEs occurs regularly and at constant dis-
tances for hanoi(16) and fib(23), but irregularly for quick-sort. Note that although
the compile-time transformation was applied to quick-sort, in an actual usage of
the method, no control would be applied because the analysiswould have con-
cluded that the average distance is sufficiently large and the query does not need
granularity control. The results are presented here mainlyto show the effect of an
inappropriate application of the method.

We shall first discuss and compare the results obtained from the two new meth-
ods, and then compare them to the more traditional complexity-based approach.

3.1 Run-Time versus Compile-Time Methods

Table 5 shows the results for quick-sort. The run-time control removes some CGEs
resulting in slight improvement in execution times for one worker. These differ-
ences are not very significant, because the original averagedistance was relatively
large. In addition, and because in this benchmark CGEs occurs between recur-
sive partitions of the list, each successive CGE distance must be smaller than the
last (because smaller and smaller lists are partitioned). Sequentialising CGEs with
small distances therefore removes those CGEs that result insmall tasks, and does
not significantly affect the available parallelism, and so the speedups were only re-
duced very slightly. When compared to nogran, the slight reduction of speedups
with run time control tends to cancel out the slight decrease in overhead, but nev-
ertheless, small improvements were still being obtained upto the 9 workers.

#w no gran 64 80 96 compile-time size(64) size(256)
1 13486 (3200) 13377 (2462) 13298 (2093) 13232 (1724) 13035 (1601) 14084 (2093) 13197 (557)
2 7453 (1.81�) 7399 (1.81�) 7376 (1.80�) 7364 (1.80�) 8151 (1.60�) 7701 (1.83�) 7338 (2.77�)
4 4818 (2.80�) 4767 (2.83�) 4762 (2.79�) 4818 (2.75�) 7091 (1.83�) 4926 (2.86�) 4772 (2.77�)
9 3722 (3.62�) 3699 (3.62�) 3703 (3.59�) 3698 (3.58�) 6988 (1.87�) 3767 (3.74�) 3742 (3.53�)

Table 5: Granularity control for qs(3200) on a Sequent

10

On the other hand, the compile-time approach shows that an inappropriate ap-
plication of the CGE removal transformation can have negative impact on the per-
formance. In fact, the speedup was greatly reduced, and the parallel performance
is significantly worse than the other cases. Another point illustrated by the results
is the importance of removing the right CGEs. Whereas the number of CGEs for
the 96 run-time threshold case is only slightly more than thecompile-time trans-
formation case, the speedup obtained from the 96 threshold case is significantly
better, because only the CGEs that produced the least parallelism were removed. A
final point to note about the results is that the one worker case for the compile-time
transformation are noticeably better than the other cases.We believe this is because
the compile-time transformation carries no run-time overheads as the parallelism is
removed at compile-time.

#w no gran 64 80 96 compile-time size(16) size(256)
1 2745 (65535) 2325 (34952) 2190 (26760) 2073 (21536) 1857 (21845) 1646 (8191) 1374 (256)
2 1671 (1.64�) 1276 (1.82�) 1176 (1.86�) 1097 (1.89�) 1012 (1.83�) 836 (1.97�) 676 (2.03�)
4 939 (2.92�) 703 (3.31�) 637 (3.44�) 591 (3.51�) 542 (3.43�) 434 (3.79�) 338 (4.07�)
9 567 (4.84�) 376 (6.18�) 337 (6.50�) 313 (6.62�) 278 (6.68�) 201 (8.19�) 157 (8.75�)

Table 6: Granularity control for hanoi(16) on a SGI Challenge

Table 6 shows results for the hanoi(16) query. Both compile-time and run-
time methods were effective in increasing execution efficiency and, in fact, their
improvements are quite significant. Part of this can be attributed to the use of the
Challenge, which is a much faster machine than the Sequent, and therefore the
parallel execution overheads are more significant. The compile-time method is
more effective in this case, because again there is less overhead to pay for using the
compile-time control.

#w no gran 64 80 96 compile-time size(16) size(1024)
1 1939 (46367) 1578 (20735) 1355 (14674) 1303 (13928) 1586 (23184) 1379 (10945) 945 (232)
2 1190 (1.63�) 820 (1.92�) 732 (1.85�) 710 (1.84�) 870 (1.82�) 722 (1.91�) 474 (1.99�)
4 671 (2.89�) 446 (3.54�) 391 (3.47�) 387 (3.37�) 463 (3.43�) 376 (3.67�) 235 (4.02�)
9 405 (4.79�) 254 (6.21�) 265 (5.11�) 282 (4.62�) 251 (6.32�) 179 (7.70�) 107 (8.83�)

Table 7: Granularity control for fib(23) on a SGI Challenge

The results for the Fib benchmark, as shown in Table 7, are similar to the
ones for Hanoi, although the increase in performance is somewhat less, and the
reduction in speedups is more marked, especially when the distance threshold is
set high. The result is that the best run-time method performance for 9 workers is
obtained for the lowest threshold value of 64, although the performance is better
in the higher thresholds for smaller number of workers. The compile-time method
removes slightly less CGEs than the 64 threshold case. Performance in terms of
speedups and actual execution times are similar, although again the performance
on one worker is slightly better in the compile-time method,even though it retains
somewhat more parallel CGEs. At least for these cases where CGEs occurs reg-
ularly, neither the compile-time nor run-time methods are better at removing the
“right” CGEs.

11

3.2 Distance-Based versus Complexity-Based Methods

We have seen that choosing the “right” CGEs can have very profound impact on
how many CGEs can be removed without decreasing parallel speedups. The re-
sults obtained for the time-complexity granularity methodillustrates this point even
more dramatically: there has been a great reduction in the number of parallel CGEs
in all three programs (but most especially for Hanoi), but the resulting speedups
are not greatly affected. Our previous results [8] on using complexity analysis for
granularity control illustrates this point for a larger setof programs and query sizes.

size fib(17) fib(19) hanoi(10) hanoi(16) qs(300) qs(3000)
0 2583 (8.37�) 6764 (8.66�) 47083 (8.28�) 65535 (8.93�) 300 (3.34�) 3200 (3.62�)

16 986 (8.40�) 4180 (8.74�) 127 (8.17�) 8191 (8.95�) 124 (3.32�) 2093 (3.74�)
64 376 (8.53�) 986 (8.72�) 31 (7.69�) 2047 (8.94�) 63 (3.20�) 557 (3.53�)

256 88 (8.38�) 232 (8.65�) 7 (7.63�) 511 (8.98�)
1024 20 (6.79�) 54 (8.07�) 1 (2.02�) 127 (8.59�)

Table 8: Number of CGEs with complexity granularity control

Table 8 shows the number of CGEs remaining after performing the task com-
plexity granularity control with the various granularity thresholds for the various
programs. The mean speedup obtained for 9 workers on a Sequent Symmetry is
shown in brackets. The results again show that although the number of CGEs was
drastically reduced, in most cases the available parallelism is not greatly reduced.
This is because the CGEs that are removed are the ones that do not contribute
much extra parallelism with the relatively small number of workers used. How-
ever, results for the hanoi(10) query show that this is not always the case: if the
parallelism is constrained to be less than what the processor resource can exploit,
there can be a dramatic effect on the speedup. This again illustrates the importance
of run-time considerations. As the query a program will run with cannot in gen-
eral be determined at compile-time, run-time information is needed to ensure good
performances in these cases.

The reason for the much better performance of the complexitybased method
than the two distance methods for the Hanoi and Fib benchmarkcan be attributed to
the great reduction in CGEs with granularity control. Thesetwo programs are ideal
for the complexity method because the and-goals in the CGEs are highly recursive
and the two goals in each CGE would both lead to significant parallelism if they
are sufficiently large. In addition, the distances between successive CGEs are very
small. Thus, using even small complexity thresholds, a verylarge number of CGEs
are removed, and those are precisely the CGEs which lead to least parallelism.
Very few CGEs are needed to keep the workers busy, because theparallel tasks are
large and well balanced in size. Thus, even though CGEs were not considered by
the method, nevertheless a “side-effect” is the removal of many less useful CGEs.
However, because CGEs are not directly considered, this method would not work
as well for several classes of programs, such as programs with other distributions
of CGEs, for example where the sizes of the goals in a CGE are less well balanced,
or programs where the average distance is larger, as it is thecase for quick-sort. In
this case, although the proportion of removed CGEs for the 16and 64 resolution
steps are similar to the Fib benchmark, the positive impact is much less. In fact,

12

there was a negative impact on the 16 resolution steps threshold case, because the
gain from reducing CGEs cannot compensate the cost of the relatively expensive
list length threshold test.

A different problem with using the complexity threshold is that it relies on being
able to derive a relationship between the input arguments’ sizes and the resulting
complexity. Such a relationship does not always exist, and in cases where it does, it
may not always be easy to derive. Even where it can be estimated, we have seen it
might require relatively large run-time overheads to determine the size parameter,
as in the case for quick-sort.

4 Improvements and Extensions

The quick-sort example showed a situation where the compile-time method (when
applied blindly) performed worse than the run-time method because it removed
“good” CGEs. There are cases where the run-time method can also remove “good”
CGEs. As an example, consider the case where, early in the execution early in the
execution, a program creates several pieces of parallel work of significant size in
quick succession, and then stops creating parallel work. Inthis case (which does
occur in the btcluster benchmark first used by Andorra-I [17]), the actual distances
between each CGE will be short, but the average distance (defined as the ratio of
total work per number of CGEs) would be much larger. The CGEs should therefore
not be sequentialised.

This situation illustrates a weakness of any purely run-time scheme. These
methods cannot look ahead into what may happen further into the execution. In
this case, when and where new CGEs will be created, and how much parallelism
they might provide. Of course, more sophisticated run-timesystems than the very
simple counter method can be designed, for example, systemswhich takes into ac-
count if the workers are currently busy or not; and heuristics based on the execution
history to try and anticipate future behaviour [4]. For example, a more sophisticated
run-time scheme can only start to sequentialise CGEs when all the workers are busy
and the distance is below the threshold. However, and as we have seen even for the
simple scheme presented here, any run-time scheme does carry some overheads:
the more sophisticated the scheme, the more expensive the overhead. In the end,
run-time systems will always suffer from not having specificinformation about the
execution still to come. This information can only be provided by compile-time
analysis. On the other hand, a compile-time only method cannot take into account
run-time conditions such as the load of the machine, and furthermore there will
probably always be programs that cannot be analysed.

The ideal distance also needs to be adjusted for different parallel systems and
machines, as system architecture would affect the relativeimportance of various
sources of overheads. In fact, distributed network systems, where Debray et al. [3]
have recently shown some promising results with complexity-based granularity
control, would require larger average distances than shared-memory machines in
order to obtain performance improvements. Moreover, the penalty for parallelis-
ing the “wrong” CGE may be very high, suggesting that they mayrequire more
sophisticated distance granularity control schemes than the two we presented here.
We believe that the notion of distance, under the appropriate granularity control
scheme, will be a suitable basis for novel granularity control methods.

13

We would also like to extend granularity analysis to dependent and-parallelism.
In a previous working paper [14], we described some initial experimentations with
DAP granularity control. Our results showed that granularity control for DAP is
more complicated than for IAP. the definition of distance needs to be modified to
take into account such overheads as task suspension and, in addition, the actual
time a task spends suspended would also need to be considered.

5 Conclusions

In this paper, we presented a new metric — distances between sources of paral-
lelism — for measuring granularity, and explained how this metric can be used
to control granularity to improve parallel execution performance. We presented
results for two very simple schemes that make use of this metric, one run-time
based and the other compile-time based. Results show that the new metric is quite
promising. In fact, the two distance-based methods were able to obtain significant
performance improvements in complex programs that are hardto improve with tra-
ditional, complexity based, systems. Initial results suggest that even the simple
run-time method can obtain surprisingly good performance for some of the bench-
marks, even though no consideration has been given to the “worth” of CGEs being
sequentialised. On the other hand, better performance requires compile-time anal-
ysis in order to remove the “correct” CGEs. This point was demonstrated by the
fact that a complexity-based system could outperform the new methods for bench-
marks that create parallelism regularly, frequently, and have well balanced parallel
tasks, as in such cases it was able to greatly increase the average distance through
removing the “correct” CGEs.

We believe that to fully make use of this distance metric, combined run-time
and compile-time granularity control scheme will be needed. Hard problems are
still open, such as how to best set thresholds, how to more efficiently combine run-
time and compile-time techniques, how to combine the complexity based and the
distance based metrics, and how to use these principles to improve execution for
other parallel systems. We are actively researching ways toachieve these goals.

Acknowledgements

The authors would like to acknowledge and thank for the contribution and support
that Manuel V. Hermenegildo and Pedro López-Garcı́a gave to this work, including
the use of several multiprocessors. Kish Shen would like to thank the department
of Computer Scinece at Manchester for the use of their computer facilities and
office space after the end of his employment there. Vı́tor Santos Costa has been
supported by the PRAXIS PROLOPPE project, the JNICT MELODIAproject, and
by the NATO MAPLE project.

References

[1] K. A. M. Ali and R. Karlsson. The Muse Approach to Or-Parallel Prolog. Technical
Report SICS/R-90/R9009, Swedish Institute of Computer Science, 1990.

[2] U. C. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, J.-
C. Syre, and H. Westphal. The Parallel ECRC Prolog System PEPSys: An Overview

14

and Evaluation Results. InProceedings of the International Conference on Fifth
Generation Computer Systems 1988, Volume 3, pages 841–850, 1988.

[3] S. K. Debray, P. López-Garcı́a, and M. V. Hermenegildo. Lower BoundCost Estima-
tion for Logic Programs. In J. Małuszyński, editor,Logic Programming: Proceedings
of the 1997 International Symposium, pages 291–306. The MIT Press, 1997.

[4] I. Dutra. Strategies for Scheduling And and Or Work in Parallel Logic Programming
Systems. InLogic Programming: Proceedings of 1994 Internation Symposium. The
MIT Press, 1994.

[5] M. V. Hermenegildo and K. J. Green. &-Prolog and its Performance: Exploiting
Independent And-Parallelism. In D. H. D. Warren and P. Szeredi, editors,Logic
Programming: Proceedings of the Seventh International Conference, pages 253–268.
The MIT Press, 1990.

[6] R. W. Hockney and C. R. Jesshope.Parallel Computers 2. Adam Hilger, 1988.
[7] L. Huelsbergen, J. R. Larus, and A. Aiken. Using the Run-Time Sizesof Data Struc-

tures to Guide Parallel-Thread Creation. InLFP’94. ACM Press, 1994.
[8] A. King, K. Shen, and F. Benoy. Lower-bound Time-complexity Analysis of Logic

Programs. In J. Małuszyński, editor,Logic Programming: Proceedings of the 1997
International Symposium, pages 261–276. The MIT Press, 1997.

[9] P. López-Garcı́a, M. V. Hermenegildo, and S. K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs.Journal of Symbolic Comput-
ing, Special Issue on Parallel Symbolic Computation, 11(3–4):217–242, 1996.

[10] E. L. Lusk, R. Butler, T. Disz, R. Olson, R. A. Overbeek, R. Stevens, D. H. D. War-
ren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski,
and B. Hausman. The Aurora Or-Parallel Prolog System. InProceedings of the In-
ternational Conference on Fifth Generation Computer Systems 1988, Vol. 3, pages
819–830. Institute for New Generation Computer Technology, 1988.

[11] E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance Parallel
Prolog System. InInternational Parallel Processing Symposium. IEEE Computer
Society Technical Committee on Parallel Processing, IEEE Computer Society, April
1995.

[12] K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.Jour-
nal of Logic Programming, 29(1–3):245–293, Oct.–Dec. 1996.

[13] K. Shen and M. V. Hermenegildo. A Simulation Study of Or- and Independent And-
parallelism. In V. Saraswat and K. Ueda, editors,Logic Programming: Proceedings
of 1991 International Symposium, pages 135–151. The MIT Press, 1991.

[14] K. Shen, V. Santos Costa, and A. King. A New Metric for Controlling Granularity for
Parallel Execution. In1997 Post ILPS Workshop on Parallelism and Implementation
Technology for (Constraint) Logic Programming, 1997.

[15] K. Shen and D. H. D. Warren. A Simulation Study of the Argonne Model for Or-
Parallel Execution of Prolog. InProceedings of the Fourth Symposium on Logic
Programming. Computer Society Press of the IEEE, Sept. 1987.

[16] E. Tick. Memory Performance of Lisp and Prolog Programs. In E. Shapiro, editor,
Third International Conference on Logic Programming, pages 642–649. Springer-
Verlag, 1986. Published as Lecture Notes in Computer Science 225.

[17] R. Yang, A. J. Beaumont, I. Dutra, V. Santos Costa, and D. H. D. Warren. Perfor-
mance of the Compiler-based Andorra-I System. Technical report, Departmentof
Computer Science, University of Bristol, 1993.

[18] X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry, and R.Sundararajan.
Towards an Efficient Compile-Time Granularity Analysis Algorithm. In Proceedings
of the International Conference on Fifth Generation Computer Systems 1992, Volume
2, pages 809–816. Institute for New Generation Computing, June 1992.

15

