University of

"1l Kent Academic Repository

Shen, Kish, Costa, Vitor Santos and King, Andy (1998) Distance: a New

Metric for Controlling Granularity for Parallel Execution. In: Jaffar, Joxan,

ed. Proceedings of the 1998 Joint International Conference and Symposium

on Logic Programming. Logic Programming . MIT Press, Cambridge, Massachusetts
USA, pp. 85-99. ISBN 0-262-60031-5.

Downloaded from
https://kar.kent.ac.uk/21639/ The University of Kent's Academic Repository KAR

The version of record is available from
https://dl.acm.org/citation.cfm?id=300851

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21639/
https://dl.acm.org/citation.cfm?id=300851
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Distance: a New Metric for Controlling
Granularity for Parallel Execution

Kish Shen Vitor Santos Costa
University of Manchester DCC-FC & LIACC, Univ. do Porto
M13 9PL, U.K* 4150 Porto, Portugal
vsc@cc. up. pt
Andy King
University of Kent at Canterbury
CT2 7NF, U.K.

A. M Ki ng@ikc. ac. uk

Abstract

Granularity control is a method to improve parallel execution perfocadry limiting ex-

cessive parallelism. The general idea is that if the gain obtained by exgeutask in

parallel is less than the overheads required to support parallel exectgnthe task is
better executed sequentially. Traditionally, in logic programming &is& is estimated
from the sequential time-complexity of evaluating the task. Tasks ialye executed in
parallel if task size exceeds a pre-determined threshold.

We argue in this paper that the estimation of complexity on its owotsn ideal met-
ric for improving the performance of parallel programs through glarity control. We
present a new metric for measuring granularity, based on a notidistahce. We present
some initial results with two very simple methods of using thisrodor granularity con-
trol. We then discuss how more sophisticated granularity control mgistcan be devised
using the new metric.

1 Introduction

Granularity control is a method to improve parallel exesnperformance by limit-
ing excessive parallelism. The general idea is that if thie gbtained by executing
a task in parallel is less than the overheads required toostpprallel execution,
then the task is better executed sequentially [6]. Graitylaontrol have been re-
cently applied to Prolog/Logic Programming [18, 9, 8] andrtmctional Program-
ming [7]. In logic programs, a “task” is considered to be algwaan alternative to
be executed in parallel, and “useful work” the amount of catapon performed
to solve the goal or try the alternative. Granularity cohtromost of these sys-
tems thus boils down to a two-phase process. At compile;targiobal analysis
system calculates an upper or lower bound on the time-codtplef a potentially

parallel goal. At run-time, a pre-determined thresholdtfore-complexity of the

*Current address: IC-PARC, Imperial College, London SW7 2Ad.K., e-mail:
k. shen@cparc.ic. ac. uk

whole task is used to determine if a task is to run in paraliehat: if its time-
complexity is less than the threshold, it will not be exeduteparallel. Results for
small benchmark type programs have shown that these methadsd do increase
performance of parallel logic programming systems.

The key motivation for controlling grain size is to reducesdwads. Direct
parallel task execution overheads correspond to the cost of creating and maintain-
ing a parallel task. These overheads usually include theat@eheduling the task
for parallel execution, the cost of initialising the new giéel task, and hardware
related costs such as interprocess communication andigcldp to a first approx-
imation, direct overheads are either fixed, such as puhblishitask, or proportional
to task size, such as the interprocess communication cwgshend are therefore
proportional to the goal’s time complexity for sizeablekms-urthermore, in many
systems, as long as there is parallel execution, the divecheads probably do not
vary (on average) greatly from program to program, so thestzon of proportion-
ality would not change greatly between programs. Task sizestimated by using
a goal’'s time complexity, is therefore a suitable metric docounting this source
of overheads across a wide range of programs.

However, in many parallel systems, including most parédigic programming
systems, tasks can and do create other potentially patatlkes dynamically. Sub-
task creation adds to the available parallelism, but it aldds to total overheads,
which are not measured by the direct parallel task execui@iheads. Instead,
these new overheads should be considered a separate hiaggljitect parallel
execution overheads. Indirect overheads can contribute significantly to theltot
overhead. Indeed, and as shall be discussed later, expggimesults from [8]
strongly suggest that, at least for those two configuratams programs studied,
the major factor for the increase in performance of the mogr with granularity
control is avoiding the indirect overheads associated erigating largely superflu-
ous parallel work which the system does not have the resstooexploit.

In contrast to direct overheads, indirect overheads mayaotery dependent
on the size of the task being executed in parallel and, intiaddimay vary greatly
from programs to programs. We thus believe that using task & the metric is
not sufficient in general to capture the full complexitiesookrheads in parallel
execution. We would instead prefer a more robust metric, thae is generally
applicable, and could apply to cases where it is hard to estitime-complexity,
and to cases where work creation is unevenly balanced.

Towards this goal, we propose in this work a different mefoic measuring
“granularity”, the distance metric, defined as the amount of work performed be-
tween successive points at which major parallel overhesslghaurred. Figure 1
shows this metric, along with the difference from the cortieral complexity met-
ric. Figure 1a illustrates a task executing sequentiall{hout any overheads. Fig-
ure 1b shows the conventional view of granularity. The saas& ts executed in
parallel, with initialisation and termination overheadgliit. Moreover, the task
itself takes somewhat longer to execute due to run-timellpa@erheads. To-
gether these form the direct parallel execution overhedgéigure 1¢ shows the
situation assuming dynamic creation of parallel work. eeds arise at several
points in the execution. These overheads add to the costeslirg the task in
parallel, and are unfortunately unaccounted for by the entignal view of granu-
larity control. Note that in the general case these cregi@mints occur at irregular
intervals.

start and termination overheads distances

.—I . I I I I parallel work creation

overheads
time complexity of goal time complexity + run—time time complexity + run—time & parallel work
parallel overheads creation overheads
a) sequential b) parallel, no dynamic c) parallel, dynamic creation of work

creation of work . .
Figure 1: The “Distance” Metric

Figure 1c also shows the new distance metric. The metric unesaslistances
(amounts of work performed) between points of major paralerheads, such as
parallel work creation, task creation and termination.

The above general description applies to any parallel sygtevhich creation
of parallel work incurs overheads. For example, in a corigeat parallel pro-
gramming environment, the parallel work creation overiseaight correspond to
the creation of a process. With parallel Prolog, for tratitl or-parallel systems
such as Aurora [10], Muse [1] and PEPSys [2], a task corretpdo the com-
plete execution of a new alternative, and the overhead featicrg parallel work
corresponds to the overhead for creating an or-node whiowslor-parallelism
to be exploited (sometimes referred to as a branch-node).inBependent and-
parallel (IAP) systems such as &-Prolog [5] and &ACE [11]aak corresponds to
an and-goal, the overhead for creating parallel work cpoads to the overhead
of handling CGEs, hence “distance” corresponds to the ristdbetween succes-
sive CGEs. For concreteness, in the rest of this paper, walisduss the issues
within the context of IAP. This allows us to use specific extagor illustration
and, as we have ready access to an IAP system (the IAP part 8T\BM [12]),
this allows us to perform experiments.

There are several important considerations when using igtange metric.
Firstly, if the creation of parallel work occurs at irregulatervals directed by the
program, then the individual distances between such oregtints can vary con-
siderably. Therefore, it should be theerage distance over the whole program (or
over parts of the program in which granularity control is kg that should be
considered.

A second consideration is that to achieve the best exectitienfor a particular
configuration the amount of parallelism produced shoulduisé gufficient to keep
the processors in the system as busy as possible doing uwsefylwhile minimis-
ing the amount of parallel overheads. This is difficult toiaeh, as it depends on a
large number of factors, many of which cannot be known witfnlgrecision before
runtime (for example, the ideal amount of parallelism caty ¥ar different queries
to the same program [8]). In addition, different sourcesafielism (points where
parallel work are created) can lead to very different amswiftparallelism. The
point is that for a given average distance, the amount oflpisan that is available
can differ significantly, depending on which actual sourmesremoved. We would
want to remove the “worst” sources of parallelism, that lgse that lead to the
least amount of parallelism, first.

This ideal is almost certainly impossible to achieve in fica; but a system

which seeks to perform close to the ideal would require bothtime and compile-
time controls. On the one hand, the “worth” of a particulanrse of parallelism
is only available after the execution of the particular tas&t before, when the
granularity control system actually needs it. On the otlard; it is impossible to
determine at compile-time what the ideal amount of paiatielshould be, because
the query (and indeed the load and even the configurationeopdinallel system)
is usually not known. Thus, a good granularity control sysshould try to deter-
mine at run-time the actual amount of parallelism that sthdad made available,
guided by information generated by compile-time analysigéahe best sources of
parallelism to make available.

Such a sophisticated system has not yet been designed. Elpwad as a first
step towards using the distance metric for controlling glarity and studying its
usefulness, we will consider two simple schemes, one centipile and the other
run-time. These metrics do not take the quality of paraeliinto account, i.e.
they simply try to increase the distance betwémdividual sources of parallelism
by removing those sources when distances are considerexinaib

The amounts and distributions of the various types of oathevill of course
vary with different machines. This will have an impact onrgrtarity control. For
example, for distributed non-shared memory machines ovorés, the direct par-
allel execution overheads would be much more significart,adiough it is more
appropriate to ignore indirect parallel overheads in sug$es, using the distance
measure is still appropriate as it represents a more aecpicture of the overheads.
In addition, it will apply in situations where it is difficutb estimate the complexity
of a goal.

2 TheNew Granularity Control Methods

We next discuss and compare the two simple methods for isiogayrain-size
as estimated by measuring distances between points ofoeredtwork. The first
method uses a simple source-to-source transformatiorctease distance between
CGEs. The second uses a run-time counter to estimate tlaacésbetween CGEs.

2.1 The Compile-TimeMethod

This method tries to determine the (average) distancesdegtvwun-time CGEs (the
sources of parallelism in a goal-level and-parallel Pradolgeme) at compile-time,
and if the distance is too small, it increases the distanceohyce-to-source trans-
formations that remove CGEs. In many cases, the distaneeebetCGESs can be
easier to determine than the time-complexity of a goal: i€igo recursive goals
are executed sequentially between successive CGEs, as tatke for every ex-
ample program in [8] except quick-sort, then the distancesiaply be calculated
by counting the number of resolutions between successiVEIC@s we already
stated, we do not believe that these simple methods wouldttetne best results,
and our interest here is simply to study the effectivenesisténce as a granularity
control metric in order to guide our development of more ssfdated methods.
Therefore, we would not consider the exact method that wbeldeeded to deter-

mine the distance.
To explain the compile-time method, consider first the Bdyenchmark as
ported to Prolog by Tick [16]. This program has significantoamts of (non-strict)

4

IAP. Most of the parallelism arises from parallel executminterm rewrite rule,
that is a part of the ewr i t e_ar gs procedure (following &-Prolog, & indicates a
parallel conjunction):

rewite_args(0, ,) :- !.
rewite_args(N,Ad,Md) :-
arg(N, A d, A dArg),
arg(N, M d, M dArg),
Nl is N1,
(rewite(d dArg, M dArgo0)
&
rewite_args(NL,Ad,Md)),
M dArg0 = M dArg.

Experience has shown that this program has very small gaetyuby the dis-
tance measure, because successive CGEs occur very clasbetogt run-time.
This results in a very significant overhead for running Boyih the parallel anno-
tation on a single worker versus running it without annotasi— on the DASWAM
running on a Sequent Symmetry, it is 43% slower, the largash ®verhead for
any IAP program examined in [12]. Moreover, the program isswtable for the
granularity control based on time-complexity analysis asctibed in [9, 8], be-
cause of the difficulties of deriving a relationship betwéagut arguments and the
complexity. The distance metric, however, suggests a vergle way to increase
the distance, by performing a source-to-source transfooman the program such
that and-parallelism is generated only for every seconldaalewr i t e_ar gs/ 3.
We show the modification farewri t e ar gs’:

rewite_args(0, ,) :- !.
rewite_args(N,Ad,Md) :-
arg(N, A d, A dArg),
arg(N, M d, M dArg),
Nl is N1,
(rewitel(d dArg, M dArgo0)
&
rewite_argsli(N1,dd, Md)),
M dAr g0 M dArg.

rewite_argsl(0, _,) :-
rewite_argsli(N, dd,Md) :-
arg(N, A d,ddArg),
arg(N, M d, M dArg),
Nl is N1,
rewite(d dArg, M dArg),
rewite_args(NL, Ad, Md).

This simple transformation reduces the number of CGEs alkatby half, re-
gardless of what query is run.

2.1.1 Evaluation

To evaluate the impact of this method, we experimented wighariginal and the
transformed program in several parallel machines. Thdteeare shown in Table 1.
The ‘#w’ column shows the number of workers for each row. Wespnt results
for ‘ideal’, giving the ‘ideal’ amount of parallelism as @bbed from the DASWAM
simulator [12]; ‘sun’, giving results for a 10 processor F&@center-2000 running
Solaris; ‘chal’ for a 10 processor Silicon Graphics Chadjerrunning IRIX; and
‘pc’ for a 4 processor PC with 200MHz Pentium Pros, runningux. The ‘(g)’
column indicates cases with granularity control, and the-¢)’ without. All times

5

are in seconds. The timings measure the duration from tiiectquery execution
to the production of the (only) solution, and are the besttdéast 5 executions.
DASWAM is compiled withgcc (except for the Challenge, where it was compiled
with MIPS’ cc, because that resulted in faster code), with optimisatiometd on.
Note the extremely low speedup obtained for 2 workers on thall€nge for the
granularity controlled case: this problem seem to be isdl&b 2 workers on some
programs (note for example the problem does not occur fandmecontrolled case)
on this particular machine; another SGI Challenge that we la@cess to (with 4
slower processors) does not appear to have this problemthEd8PARCcenter,
there is a known problem with the cache on some of the procgsstich results
in slower performances when these particular processersisgd. Also, we had
no control over who else can use both the Challenge and th&SBénter, and
in particular the SPARCcenter was heavily loaded very feedly, and thus the
results presented throughout the paper were obtained wadgng loads. These
factors all have impacts on the results in detail, althoughde not believe that
they affected the general conclusions we draw. Also, haewe experimented
on several parallel machines in order to show that the metlaod applicable to
different machines, and the purpose is not to make any sagroparison between
the various machines used.

‘ #w H ideal sun ‘ chal ‘ pc ‘
(no-g9)| (@ (no-g) | @ (no-g) | @ (no-g) | @
= —[10.951 (1.00x) 9.034 (1.00<) | 6.189 (1.00k) 5.051 (1.00<) | 2.494 (1.00<) 2.025 (1.00<)

T00x 1.08x | 6.030 (1.8%) 4.787 (1.8%) | 3.588 (1.7%) 4.380 (1.15) | 1.354 (1.84&) 1.074 (1.8%)
7.08x 2.93x | 4.320 (25%) 3.466 (2.6K) | 2.514 (2.46¢) 1.955 (2.58) | 0.971 (25K) 0.777 (2.6)
3.05x 3.85x | 3.276 (3.3K&) 2.862(3.16<) | 1.959 (3.16K) 1.547 (3.2%) | 0.799 (3.1<) 0.608 (3.3%)
492x 4.74x | 2.804 (3.9K) 2.251 (4.0K) | 1.641 (3.7k) 1.312 (3.85)
587/x 556x | 2426 (A5k) 1.078 (45K) | 1.436 (4.3K) 1.151 (4.3%)
6.82< 6.30x | 2.088 (5.25) 1.811(4.9%) | 1.285 (4.8X) 1.064 (4.75)
776x 7.16x | 1.997 (5.48) 1.660 (5.44) | 1.187 (5.2k) 0.976 (5.18)
8.60x 7.86x | 1.823(6.0k) 1574 (5.74&)|1.112 (55k) 0.928 (5.44)
060x 856x | 1.732(6.3%) 1.537 (5.85) | 1.020 (6.0%) 0.894 (5.65)

©| oo| | o) | A wf No| -

=
o

Table 1: Compile-time granularity control results for Boye

Granularity control is effective if it gives better perfoamces than the non-
granularity controlled program. The ideal columns show,tha expected, granu-
larity control reduces the amount of available parallelisthus, in the absence of
overheads, performance should be better without gramyleontrol. Instead, the
results show that this form of granularity control givestbeexecution times, and
is indeed effective in all cases. The main component thalsl¢a the increased
performance is clearly the removal of parallel creationrbeads, as shown by the
difference in performances for the one worker cases. Evemso for all these
systems, thepeedup (which is relative to their respective 1 worker case) is drett
for the lower number of workers for the granularity contedllcases. The better
speedups show that the granularity control was able nottontgmove the paral-
lel creation overheads (cost of allocating CGES), but atsnesdirect parallel task
execution overheads, especially for the faster machines.

The major weakness of this method is that the reduction iallgdism can
become quite significant with larger numbers of workers.htildd be possible to
achieve better performance if a more selective way is foongmove CGEs, but
this would need some form of analysis (at compile-time) teeine the ‘worth’

of the CGEs. In addition, the method is quite a blunt instmanie that it applies
to all CGEs, thus not allowing any form of control at the iridival CGE level.
Finally, this purely compile-time transformation does take into account run-
time situations: for example, with smaller number of wogkdyetter results can be
achieved by producing less CGEs.

The example for boyer transformed the program to create ahdraate CGEs
alternately, thus reducing the number of CGEs generatathdime by about half.
One can of course reduce the numbers of CGEs by a greaterser lasount by
transforming the program to generate CGEs more or less.often

2.2 TheRun-Time Method

This second granularity control method uses a simple counterder to decide
whether a CGE should be allocated or not. The counter measineework done
since the last CGE was allocated. If its value is below a ptesthined threshold,
then the new CGE would not be allocated, and the goals in the ®i® be run
sequentially instead. Conceptually, this method can beghiof as:

(above_t hreshol d(Counter) -> reset(Counter), g1(...) & ... gn(...)
;og1(...), ..oogn(...))

The actual implementation of this method is at the abstraathime level. Due
to lack of space, details of this scheme will not be given hérke reader is re-
ferred to [14] for a discussion of the implementation. Thg kkea is that, instead
of counting unifications as a measure of work, we count thebmrmof abstract
machine instructions. The threshold is set by special attstnachine instructions
which would be supplied at compile-time. The scheme is sdpgdat a very low
level, and the overheads for using the scheme are not higfiactreven for the
(near) worst case of boyer where the threshold is 0, givingr ghort distance
between CGEs, the total overhead was only about 2%.

One more thing to be noted is that in parallel execution thelver of CGEs that
will be sequentialised is non-determinate for a given thoéks This is due to the
fact that the threshold is counted from the start of a newgwal- Given that which
goals are selected first to execute in parallel is non-detere, the calculations of
distance can vary, and the number of sequentialised CGEsargin Our results
suggest that this variation is relatively small, and thatrase tasks are actually
executed in parallel, the number of sequentialised CGE avimgrease slightly.

2.2.1 Performance

Table 2 shows the results of using the runtime method on baytr the threshold
set at 64, 80, and 96 abstract machine instructions. Theseytar thresholds were
chosen because the implementation allowed the threshdid et in increments
of 16 units only. Again, the results are the best timings ofeast 5 runs. The
system was run on the 10 processor SGI Challenge. The nuinldaeckets in the
1 worker case are the number of CGEs in each of the 1 worker Gasebracketed
numbers in the other cases are the speedups relative toréispeective 1 worker
case.

#w no_gran 64 80 96
1| 6189 (94056)| 5456 (48511) 5370 (44104) 5040 (32230)
3| 2514 (2.46¢) | 2158 (2.5%) 2099 (2.56<) 1920 (2.6%)
4| 1959 (3.16¢<) | 1717 (3.1&) 1651 (3.2%) 1514 (3.3%)
511641 (3.7%&) | 1492 (3.66<) 1444 (3.7%) 1301 (3.8%)
6 | 1436 (4.3k) | 1347 (4.0%) 1292 (4.16) 1168 (4.3%)
711285 (4.8%) | 1242 (4.3%) 1190 (4.5%k) 1083 (4.6%)

Table 2: Run-time granularity control for boyer

As the machine was loaded at the time the experiments weferped, no
results were gathered beyond 7 workers, because the systenotchave the re-
sources to allow DASWAM to utilize these processors. Theltedor nagran,
the case with no granularity, is taken from the experimenhwhe compile-time
method presented in Table 1, when the machine was not bugys, Time results
should favour naggran. The results for 2 workers are not included becauseeof th
same problem as discussed previously.

Even with a bias towards ngran, the results shows that the granularity control
can improve the performance. Base speed (performance owanker) improves,
as one would expect. Speedups are quite close to tlggaroversion. Interestingly,
the improvements becomes greater with the higher threshptdbably indicating
that more direct parallel execution overheads were beidgaed. Further experi-
ments with even larger thresholds are necessary.

#w no_gran 96
1| 7893 (2100) 8034 (2100)
2 | 4062 (1.94) | 4074 (1.9%)
4 | 2035 (3.8&%) | 2063 (3.8%)
8 | 1053 (7.5() | 1060 (7.5&)

10| 835(9.45¢) | 859 (9.3%)

Table 3: Run-time granularity control for orsim

Table 3 shows a worst-case program for traditional graitylanalysis. The
program is orsim [15, 13]. This is quite a complex progrant ikavery difficult
to analyse. The program has quite high granularity, henes dot need granular-
ity control. We obtained the results on a the SGI Challengemih was lightly
loaded. Times are in milliseconds, and are again the bestiest 5 timings. One
advantage of the run-time method is that it does not requiyeaaalysis, and the
overhead of using it is very small, so that in this case wher€GEs are sequen-
tialised, the performance of the program with granularitytecol is quite close to
the original performance.

3 Discussion

The average distance between CGEs is a good metric to exprieffectiveness
of granularity analysis on programs such as boyer, as studif8]. Table 4 shows
the average distances for these programs with no granutzoittrol as a function
of abstract machine instructions: i.e. the average numbmstructions executed
per CGE.

prog Yinst YCGE | av. distance
boyer | 5106759 94056 54.3
hanoi(10)| 47083 1023 46.0
hanoi(16)| 3014635 65535 46.0
fib(17) 95593 2583 37.0
fib(19) 250290 6764 37.0
gs(300) 55452 300 184.9
gs(3200) | 823168 3200 257.2
orsim 9069226 1200 7557.7

Table 4: Average distances

The average distances clearly show that all the programepexgiick-sort and
orsim have very small average distances: there are onlytabtau5 unifications
between each CGE (using the approximation that each uificapproximately
corresponds to 10 abstract machine instructions). We wexiebct that in these
cases granularity control would be very effective in redgdihe parallel overheads.
On the other hand, we would expect that granularity contrdie less effective for
quick-sort. This is indeed the case from experimental te$| 8].

The reason that quick-sort, running in IAP, has a large @eedistance is be-
cause the partition predicate is executed between sucedSSEs:

gsort([], Rest, Rest).

gsort ([X] Unsorted], Sorted, Rest) :-
partition(Unsorted, X, Snaller, Larger),
(gsort(Smaller, Sorted, [X Sortedl]) &
gsort (Larger, Sorted2, Rest)),
Sorted2 = Sortedl.

The partition predicate is recursive and does not contaynGAEs. Analysis
should be able to determine that it is likely that this pratiowill perform a signif-
icant amount of work, thus making the distance between C@ige lon average.
Such an analysis would decide not to add compile-time geaitylcontrol in this
case.

Itis interesting to compare the new methods with granyldsased approaches.
Tables 5, 6 and 7 show the effect of the using granularity rot;mon gs(3200),
hanoi(16), and fib(23) respectively. The programs are tdikan [8], with 23 used
as the parameter for fib to get results that would take ovecargkto execute on
the Challenge. The results are again in milliseconds, tisé dfeat least 5 execu-
tions. The qs(3200) query was performed on a 10 processaregedymmetry,

9

while hanoi(16) and fib(23) were performed on the SGI Chaer\We present the
compile-time and run-time control methods, along with ttaelitional complexity
threshold methods. The results for the complexity thresmoéthod of gs(3200)
are taken from [8], and are average timings, rather than ¢s¢ times, but in the
context of these experiments, the differences from bestdiare small. For the
run-time control method, thresholds of 64, 80 and 96 abistrechine instructions
were used. These are shown in the column with the threshdltedseadings. The
‘compile-time’ columns are for the program transformed &l €GE only on al-
ternate recursive calls, which reduces the CGEs by half $68200) and fib(23),
and by two-thirds for hanoi(16). The reduction is two-tkifdr hanoi(16) because
many of the calls terminates in the base case, and gener&€Bs. The results for
the complexity method are show in the columns with headirigize(X), where X
is the size threshold, measured in resolution steps.

The programs have quite different characteristics. As arpd before,
gs(3200) has a high average distance, and relatively loallplism. The hanoi(16)
and fib(23) queries have very low average distances andisami parallelism. The
size of the two goals that are run in parallel in a CGE are idahfor hanoi(16),
but are slightly less well balance for fib(23), where one gsalbout 60% larger
than the other. Another difference is that CGEs occurs eetyuhnd at constant dis-
tances for hanoi(16) and fib(23), but irregularly for qusdrt. Note that although
the compile-time transformation was applied to quick-sortan actual usage of
the method, no control would be applied because the analmidd have con-
cluded that the average distance is sufficiently large aadjtiery does not need
granularity control. The results are presented here mamghow the effect of an
inappropriate application of the method.

We shall first discuss and compare the results obtained fnertwto new meth-
ods, and then compare them to the more traditional compieesed approach.

3.1 Run-Time versus Compile-Time Methods

Table 5 shows the results for quick-sort. The run-time admegmoves some CGEs
resulting in slight improvement in execution times for onerker. These differ-
ences are not very significant, because the original avetistgnce was relatively
large. In addition, and because in this benchmark CGEs sdumetween recur-
sive partitions of the list, each successive CGE distancst tmei smaller than the
last (because smaller and smaller lists are partitioneeuéntialising CGEs with
small distances therefore removes those CGEs that ressithatll tasks, and does
not significantly affect the available parallelism, andls® $peedups were only re-
duced very slightly. When compared to_geaan, the slight reduction of speedups
with run_time control tends to cancel out the slight decrease in @athbut nev-
ertheless, small improvements were still being obtainetbupe 9 workers.

no_gran 64 80 96 compile-time size(64) size(256)
13486 (3200) | 13377 (2462) | 13298 (2093) | 13232 (1724) || 13035 (1601) || 14084 (2093) 13197 (557)

© AN

7453 (1.81x) | 7399 (1.81%) | 7376(1.80<) | 7364 (1.80) || 8151 (1.60<) || 7701(1.8%) | 7338 (2.7%)
4818 (2.80<) | 4767 (2.8%) | 4762 (2.7%) | 4818(2.75¢) || 7091 (1.8%) || 4926 (2.86<) | 4772 (2.7%)
3722(3.6%) | 3699(3.6x%) | 3703(35%) | 3698(3.58) || 6988 (1.8%) || 3767 (3.74) | 3742 (35%)

Table 5: Granularity control for qs(3200) on a Sequent

10

On the other hand, the compile-time approach shows thatagpiopriate ap-
plication of the CGE removal transformation can have nggathpact on the per-
formance. In fact, the speedup was greatly reduced, andattadigd performance
is significantly worse than the other cases. Another poiastiated by the results
is the importance of removing the right CGEs. Whereas thebaurof CGEs for
the 96 run-time threshold case is only slightly more thandbmpile-time trans-
formation case, the speedup obtained from the 96 threslasd is significantly
better, because only the CGEs that produced the leastedamllwere removed. A
final point to note about the results is that the one workee éasthe compile-time
transformation are noticeably better than the other cadleselieve this is because
the compile-time transformation carries no run-time oeadts as the parallelism is
removed at compile-time.

#w no.gran 64 80 96 compile-time size(16) size(256)
T 2745 (65535) | 2325 (34952) | 2190 (26760) | 2073 (21536) || 1857 (21845) || 1646 (8191) 1374 (256)
2 1671 (1.64<) | 1276(1.8%) | 1176(1.86<) | 1097 (1.8%) 1012 (1.83¢) 836 (1.9%) | 676 (2.03)
4 939 (2.92¢) 703 (3.31x) 637 (3.44¢) 591 (3.51x) 542 (3.43<) 434 (3.7%) | 338(4.07%)
9 567 (4.84¢) 376 (6.18¢) 337 (6.50¢) 313 (6.62¢) 278 (6.68¢) 201(8.1%) | 157 (8.75)

Table 6: Granularity control for hanoi(16) on a SGI Challeng

Table 6 shows results for the hanoi(16) query. Both comtpihe and run-
time methods were effective in increasing execution efficyeand, in fact, their
improvements are quite significant. Part of this can bebatteid to the use of the
Challenge, which is a much faster machine than the Sequedttherefore the
parallel execution overheads are more significant. The derime method is
more effective in this case, because again there is leshea@ito pay for using the
compile-time control.

H#w no_gran 64 80 96 compile-time size(16) size(1024)
1 1939 (46367) | 1578(20735) | 1355 (14674) | 1303 (13928) || 1586 (23184) || 1379 (10945) 945 (232)
2 1190 (1.63) 820 (1.92<) 732 (1.85¢) 710 (1.84x) 870 (1.8%) 722 (1.91x) 474 (1.9%)
4 671 (2.8%) 446 (3.54x) 391 (3.4%) 387 (3.3%) 463 (3.43%) 376 (3.67%) 235 (4.0)
9 405 (4.7%X) 254 (6.21x) 265 (5.11x) 282 (4.62) 251 (6.3%) 179 (7.70<) 107 (8.83«)

Table 7: Granularity control for fib(23) on a SGI Challenge

The results for the Fib benchmark, as shown in Table 7, ardasino the
ones for Hanoi, although the increase in performance is sdraeless, and the
reduction in speedups is more marked, especially when gtardie threshold is
set high. The result is that the best run-time method pedioca for 9 workers is
obtained for the lowest threshold value of 64, although thggomance is better
in the higher thresholds for smaller number of workers. Ttwmile-time method
removes slightly less CGEs than the 64 threshold case. rAefee in terms of
speedups and actual execution times are similar, althoggim ¢he performance
on one worker is slightly better in the compile-time metheden though it retains
somewhat more parallel CGEs. At least for these cases whBies©ccurs reg-
ularly, neither the compile-time nor run-time methods aettdr at removing the
“right” CGEs.

11

3.2 Distance-Based ver sus Complexity-Based M ethods

We have seen that choosing the “right” CGEs can have venopraf impact on
how many CGEs can be removed without decreasing paralleldsgps. The re-
sults obtained for the time-complexity granularity metfibgtrates this point even
more dramatically: there has been a great reduction in thebeu of parallel CGEs
in all three programs (but most especially for Hanoi), bu tasulting speedups
are not greatly affected. Our previous results [8] on usiognplexity analysis for
granularity control illustrates this point for a larger séprograms and query sizes.

size fib(17) fib(19) hanoi(10) hanoi(16) gs(300) qs(3000)
0 | 2583 (8.3%) | 6764 (8.66¢<) | 47083 (8.2&) | 65535 (8.9%) | 300 (3.34x) | 3200 (3.6X%)
16 | 986 (8.40<) | 4180 (8.74) 127 (8.1%) | 8191 (8.95) | 124 (3.3%) | 2093 (3.74)

64 | 376(8.5%) | 986 (8.7X) 31(7.6%) | 2047 (8.94) | 63(3.20<) | 557 (3.5%)
256 | 88(8.38) | 232 (8.65) 7 (7.63) 511 (8.98)
1024 | 20 (6.7%) 54 (8.0%) 1(2.0) 127 (8.5%)

Table 8: Number of CGEs with complexity granularity control

Table 8 shows the number of CGEs remaining after perforntiegtéask com-
plexity granularity control with the various granularitiiresholds for the various
programs. The mean speedup obtained for 9 workers on a Se§yemmetry is
shown in brackets. The results again show that althoughuhear of CGEs was
drastically reduced, in most cases the available parsitels not greatly reduced.
This is because the CGEs that are removed are the ones thait domtribute
much extra parallelism with the relatively small number afriers used. How-
ever, results for the hanoi(10) query show that this is notgs the case: if the
parallelism is constrained to be less than what the procg&gsource can exploit,
there can be a dramatic effect on the speedup. This agaitrdtas the importance
of run-time considerations. As the query a program will ruithveannot in gen-
eral be determined at compile-time, run-time informatisméeded to ensure good
performances in these cases.

The reason for the much better performance of the complddsed method
than the two distance methods for the Hanoi and Fib benchozarkbe attributed to
the great reduction in CGEs with granularity control. Thiee programs are ideal
for the complexity method because the and-goals in the C@Hsighly recursive
and the two goals in each CGE would both lead to significardligdism if they
are sufficiently large. In addition, the distances betweetassive CGEs are very
small. Thus, using even small complexity thresholds, a i&ge number of CGEs
are removed, and those are precisely the CGEs which leachsd parallelism.
Very few CGEs are needed to keep the workers busy, becaupaithiiel tasks are
large and well balanced in size. Thus, even though CGEs watreomsidered by
the method, nevertheless a “side-effect” is the removal afiyriess useful CGEs.
However, because CGEs are not directly considered, thisadetould not work
as well for several classes of programs, such as prograrhsotfier distributions
of CGEs, for example where the sizes of the goals in a CGE asanell balanced,
or programs where the average distance is larger, as it isabe for quick-sort. In
this case, although the proportion of removed CGEs for tharib 64 resolution
steps are similar to the Fib benchmark, the positive immaatuch less. In fact,

12

there was a negative impact on the 16 resolution steps thiceshse, because the
gain from reducing CGEs cannot compensate the cost of thévedly expensive
list length threshold test.

A different problem with using the complexity thresholdhstit relies on being
able to derive a relationship between the input argumeizsssand the resulting
complexity. Such a relationship does not always exist, arudses where it does, it
may not always be easy to derive. Even where it can be estimatehave seen it
might require relatively large run-time overheads to deiae the size parameter,
as in the case for quick-sort.

4 Improvementsand Extensions

The quick-sort example showed a situation where the contipile method (when
applied blindly) performed worse than the run-time methedduse it removed
“good” CGEs. There are cases where the run-time method sanmemnove “good”
CGEs. As an example, consider the case where, early in tfoeiioe early in the
execution, a program creates several pieces of paralldt wiosignificant size in
quick succession, and then stops creating parallel workhigncase (which does
occur in the hicluster benchmark first used by Andorra-1 [17]), the actustizshces
between each CGE will be short, but the average distancenédeéis the ratio of
total work per number of CGEs) would be much larger. The CGesikl therefore
not be sequentialised.

This situation illustrates a weakness of any purely ruretischeme. These
methods cannot look ahead into what may happen further rg@xecution. In
this case, when and where new CGEs will be created, and how parallelism
they might provide. Of course, more sophisticated run-taystems than the very
simple counter method can be designed, for example, systdrich takes into ac-
count if the workers are currently busy or not; and heursstiased on the execution
history to try and anticipate future behaviour [4]. For exden a more sophisticated
run-time scheme can only start to sequentialise CGEs wh#realorkers are busy
and the distance is below the threshold. However, and as we lesreeven for the
simple scheme presented here, any run-time scheme dogssoane overheads:
the more sophisticated the scheme, the more expensive ¢nkead. In the end,
run-time systems will always suffer from not having spedifilormation about the
execution still to come. This information can only be praddby compile-time
analysis. On the other hand, a compile-time only method aiatake into account
run-time conditions such as the load of the machine, andhéumore there will
probably always be programs that cannot be analysed.

The ideal distance also needs to be adjusted for differematlpbsystems and
machines, as system architecture would affect the relatiymrtance of various
sources of overheads. In fact, distributed network syst@rhere Debray et al. [3]
have recently shown some promising results with compldxityed granularity
control, would require larger average distances than shaemory machines in
order to obtain performance improvements. Moreover, thealtg for parallelis-
ing the “wrong” CGE may be very high, suggesting that they mexyuire more
sophisticated distance granularity control schemes thamvio we presented here.
We believe that the notion of distance, under the apprapgaanularity control
scheme, will be a suitable basis for novel granularity aantrethods.

13

We would also like to extend granularity analysis to depebdad-parallelism.
In a previous working paper [14], we described some initigdegimentations with
DAP granularity control. Our results showed that grantyacontrol for DAP is
more complicated than for IAP. the definition of distancedse® be modified to
take into account such overheads as task suspension andditiom, the actual
time a task spends suspended would also need to be considered

5 Conclusions

In this paper, we presented a new metric — distances betwaeunes of paral-
lelism — for measuring granularity, and explained how thistmec can be used
to control granularity to improve parallel execution penfance. We presented
results for two very simple schemes that make use of thisicpeine run-time
based and the other compile-time based. Results show #hatth metric is quite
promising. In fact, the two distance-based methods were tabbbtain significant
performance improvements in complex programs that are fodrdprove with tra-
ditional, complexity based, systems. Initial results sgjghat even the simple
run-time method can obtain surprisingly good performamesbme of the bench-
marks, even though no consideration has been given to thehwaf CGEs being
sequentialised. On the other hand, better performanceéresgtompile-time anal-
ysis in order to remove the “correct” CGEs. This point was dastrated by the
fact that a complexity-based system could outperform themethods for bench-
marks that create parallelism regularly, frequently, aadehwell balanced parallel
tasks, as in such cases it was able to greatly increase tregaveistance through
removing the “correct” CGEs.

We believe that to fully make use of this distance metric, biod run-time
and compile-time granularity control scheme will be needeiérd problems are
still open, such as how to best set thresholds, how to mogezffly combine run-
time and compile-time techniques, how to combine the coxitglbased and the
distance based metrics, and how to use these principlespimua execution for
other parallel systems. We are actively researching wagshieve these goals.

Acknowledgements

The authors would like to acknowledge and thank for the dautibn and support
that Manuel V. Hermenegildo and Pedro Lopez-Garcia gattai$ work, including
the use of several multiprocessors. Kish Shen would likéanamk the department
of Computer Scinece at Manchester for the use of their coenffacilities and
office space after the end of his employment there. Vitot@&a@osta has been
supported by the PRAXIS PROLOPPE project, the INICT MELOPi##ject, and
by the NATO MAPLE project.

References

[1] K. A. M. Ali and R. Karlsson. The Muse Approach to Or-Parallel Ppldechnical
Report SICS/R-90/R9009, Swedish Institute of Computer Scien&§€,.19

[2] U. C. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliff&dbert, J.-
C. Syre, and H. Westphal. The Parallel ECRC Prolog System PEPSys: An @vervi

14

and Evaluation Results. IRroceedings of the International Conference on Fifth
Generation Computer Systems 1988, Volume 3, pages 841-850, 1988.

[3] S. K. Debray, P. Lopez-Garcia, and M. V. Hermenegildo. Lower BdDost Estima-
tion for Logic Programs. In J. Matuszynski, editbggic Programming: Proceedings
of the 1997 International Symposium, pages 291-306. The MIT Press, 1997.

[4] I. Dutra. Strategies for Scheduling And and Or Work in Parallel lcdgiogramming
Systems. IrLogic Programming: Proceedings of 1994 Internation Symposium. The
MIT Press, 1994.

[5] M. V. Hermenegildo and K. J. Green. &-Prolog and its Performance: Etxpp
Independent And-Parallelism. In D. H. D. Warren and P. Szeredi, editogic
Programming: Proceedings of the Seventh International Conference, pages 253—-268.
The MIT Press, 1990.

[6] R. W. Hockney and C. R. Jesshop#@arallel Computers 2. Adam Hilger, 1988.

[7] L. Huelsbergen, J. R. Larus, and A. Aiken. Using the Run-Time Sif&=ata Struc-
tures to Guide Parallel-Thread Creation.LIRP’ 94. ACM Press, 1994.

[8] A. King, K. Shen, and F. Benoy. Lower-bound Time-complexity Arséd of Logic
Programs. In J. Maluszyhski, editdmgic Programming: Proceedings of the 1997
International Symposium, pages 261-276. The MIT Press, 1997.

[9] P. Lopez-Garcia, M. V. Hermenegildo, and S. K. Debray. A Methogipfor Granu-
larity Based Control of Parallelism in Logic Prograndsurnal of Symbolic Comput-
ing, Special Issue on Parallel Symbolic Computation, 11(3—4):217-242,1996.

[10] E. L. Lusk, R. Butler, T. Disz, R. Olson, R. A. Overbeek, R. $tey, D. H. D. War-
ren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A.i€l&pski,
and B. Hausman. The Aurora Or-Parallel Prolog SystemPrbteedings of the In-
ternational Conference on Fifth Generation Computer Systems 1988, Vol. 3, pages
819-830. Institute for New Generation Computer Technology, 1988.

[11] E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Perfame Parallel
Prolog System. Irnternational Parallel Processing Symposium. IEEE Computer
Society Technical Committee on Parallel Processing, IEEE Computer Socjetly, A
1995.

[12] K. Shen. Overview of DASWAM: Exploitation of Dependent And-pléelism. Jour-
nal of Logic Programming, 29(1-3):245-293, Oct.—Dec. 1996.

[13] K. Shen and M. V. Hermenegildo. A Simulation Study of Or- andeipehdent And-
parallelism. In V. Saraswat and K. Ueda, editdrsgic Programming: Proceedings
of 1991 International Symposium, pages 135-151. The MIT Press, 1991.

[14] K. Shen, V. Santos Costa, and A. King. A New Metric for ContngjiGranularity for
Parallel Execution. 11997 Post ILPS Wbrkshop on Parallelism and Implementation
Technology for (Constraint) Logic Programming, 1997.

[15] K. Shen and D. H. D. Warren. A Simulation Study of the Argonnedgldfor Or-
Parallel Execution of Prolog. IRroceedings of the Fourth Symposium on Logic
Programming. Computer Society Press of the IEEE, Sept. 1987.

[16] E. Tick. Memory Performance of Lisp and Prolog Programs. In E. Sbapiitor,
Third International Conference on Logic Programming, pages 642—649. Springer-
Verlag, 1986. Published as Lecture Notes in Computer Science 225.

[17] R. Yang, A. J. Beaumont, I. Dutra, V. Santos Costa, and D. H. D. &karPerfor-
mance of the Compiler-based Andorra-l System. Technical report, Departhent
Computer Science, University of Bristol, 1993.

[18] X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry, andSRndararajan.
Towards an Efficient Compile-Time Granularity Analysis Algorithm.Hroceedings
of the International Conference on Fifth Generation Computer Systems 1992, \olume
2, pages 809-816. Institute for New Generation Computing, Jun2.199

15

