University of

"1l Kent Academic Repository

Pearson, Justin and Bryans, Jeremy W. (1998) Constraint Oriented Specification
with CSP and Real Time Temporal Logic. Technical report. University of
Kent

Downloaded from
https://kar.kent.ac.uk/21625/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21625/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Constraint Orientated Specification with CSP
and Real Time Temporal Logic

Justin Pearson
Department of Computer Systems
Box 325
Uppsala University
Sweden
justin@docs.uu.se

Jeremy Bryans
Computing Laboratory
University of Kent at Canterbury CT2 7TNF
J.W.Bryans@ukc.ac.uk

July 22, 1998

1 Introduction

A popular specification style, particularly for the initial specification of a
system, is the constraint-oriented style, where the constraints are properties
required to hold of the final system. This style is independent of the partic-
ular specification notation being used: properties are individually described,
and then composed (using, for example, parallel composition within process-
algebraic notations, or conjunction within logic-based languages) to form an
initial description of the system. This initial description can then be refined
down to a specification suitable for implementation, using the refinement
principles and rules offered by the chosen notation. The appeal of this style
lies in the fact that the initial specification merely asserts properties of the
system, and makes no demands on how the system should be implemented.
So the specifier may gain confidence in the specification by, for example,
checking the logical consistency, and deducing further consequences of the
specification, before any consideration is given to implementation. Imple-

mentation decisions are made during the refinement steps, in which choices
left open by the specification are refined away.

One of the difficulties of using this style is that, for any particular nota-
tion, certain types of constraints are much harder to capture than others. For
example, a language which captures abstract behavioural constraints may not
be able to capture so easily specific timing constraints. A logical extension
of the constraint-oriented style would therefore be to allow the specifier to
capture individual constraints in any of a range of languages, and to provide
a formal semantic framework for combining these constraints and performing
the necessary consistency checking.

In this paper we propose such a specification framework, which allows
the specifier a choice of two languages: Communicating Sequential Processes
(CSP) [Hoa85] and a version of Propositional Temporal Logic (PTL), derived
from [Eme90].

CSP is a process-algebraic language designed for the specification and
analysis of parallel systems and (our version of) PTL is a real-time tem-
poral logic designed to capture time-dependent constraints concisely. The
behaviour of a CSP process is dependent on its environment; it is therefore
difficult to assert global properties. PTL can be easily used to express global
timing properties of systems, but it is less suited to describing the purely
behavioural aspects. We will therefore develop a framework in which a spec-
ification is a pair (P, ¢), where P is a CSP process and ¢ is a formula of PTL.
Global and timing constraints can be described within PTL, and behavioural
constraints can be described within CSP.

Both components of a specification have to be checked for mutual con-
sistency, to do this we present a common semantic framework for both PTL
and CSP. Since we wish to retain all the behavioural and all the timing infor-
mation in this mapping, we choose to use a real-time CSP semantic model.
However, the existing real-time CSP models [Ree88, Sch92, Dav93| insist
that recursive processes must be time-guarded, that is some time must elapse
between any instantiation of a process and its recursive invocation. This fa-
cilitates the task of semantically defining recursive processes, but goes against
the philosophy of the dual language style which we develop here. We there-
fore present in Section 2 a novel denotational model for CSP (which we call
My, for unguarded CSP), which does not require recursive processes to be
time-guarded.

In Section 3 we present the logic PTL, and define a satisfaction relation
between PTL statements CSP processes, to allow us to determine whether
processes and formulae are consistent.

In Section 4 we present the definition of a specification pair, give a re-
finement relation between specification pairs, and show how this refinement

relation is related to deduction within PTL and the common CSP notion of
refinement. This is illustrated with a simple example.

The main contribution of this paper is therefore the framework of speci-
fication pairs, and further contributions are the development of a new CSP
semantic model and the interpretation of PTL formulae over this model.

2 The CSP model

Communicating Sequential Processes (CSP) [Hoa85| is a process-algebraic
language designed for the specification and analysis of parallel systems. It
is a language of processes and events: processes describe patterns of events,
and may be built up and combined using a set of powerful operators. The
language of CSP has been extended to include timing constructs, and a num-
ber of semantic models for real-time CSP have been proposed [RR86, RR87,
Sch92]. All these models require that processes be time-guarded — some time
must elapse between any instantiation of a process and its recursive invoca-
tion. Therefore all recursive processes must contain some timing information.
Consider, for example, a simple behavioural constraint as captured by the
CSP process

Light = on — off — Light

which requires that the light may initially switched on, and then may be
switched on and off alternately. If we wish to combine this constraint with
one which explicitly mentions timing values, we must first interpret it within
a timed semantic model. But then we must insert a delay somewhere in the
process, which was not part of the original constraint. This is contrary to our
desire to separate as much as possible the concerns of timing and behaviour.

We therefore present in this section a new denotational semantic model
My, which allows recursive processes to contain no timing information. In
doing so we build on the work on unbounded non-determinism presented
in [Ros93] and [Sch92], and the work on fixed points of recursive processes
presented in [MRS95].

2.1 Notation

We assume a set of actions X.. A timed action is a pair (¢, a), where t € RT
and a € ¥. A timed trace is a sequence of chronologically ordered timed

actions. Timed traces may be finite or infinite. The set of timed traces is
denoted T'T.

A timed refusal is a set of timed actions. Each timed refusal is associated
with a timed traces, and record the events which the process was seen to
refuse while performing that trace. The set of all refusal sets is denoted
RSET.

A divergence value is a non-negative real number, or the symbol co. This
records the time at which the process was seen to have diverged.

An observation is a triple (s, X, d), where s is timed trace, X is a timed
refusal and d is a divergence value.

Some useful operators on traces and refusals are:

s T I extracts from the timed trace s only the timed actions with times
in the interval I, where I may be closed or right-open. It is defined as

1=
~ _J(tae) (st D)iftel
(b,0) s 11 = {STI otherwise

We overload the extraction operator by defining it on refusals: X 1 [
extracts from the timed refusal X only the timed actions with times in the
interval I, where I may be closed or right-open.

XTI=XNnYxI
And as convenient abbreviations:

5,X [t =5 X 1[t,00)
s, X1t=s,X1[0,t

The beginning of a trace is defined as:

begin(t,a) " s =t
begin() = oo

and the end of a trace as

ends ™ (t,a) =t
end() =0

The beginning and end of a refusal set are defined as

begin X = min{t | Ja e (¢,a) € X}, if X A0

begin () = co
end X =max{t|Jae(t,a) e X},if X £0
end) =0

The begin and end operators can be extended to whole observations:

begin(s, X, d) = min(begin s, begin X, d)
end(s, X, d) = max(end s,end X, d), if d is finite,
max(end s, end X '), otherwise.

We overload the subtraction operator (the addition operator is overloaded
in an analogous way), to allow us to subtract time values from traces and
refusals.

0—1=0
((u,a) " s)—t=(u—t,a) " (s—t), ifu>t
((u,a) " s)—t=s—t, otherwise

(
={(u,a) | (u+t,a)e X ANu >0}
((u,a) " s)+t=(u+ta) s

X+t={(u+ta)|(ua)eX)}

Finally, we say that a trace s is a prefix of a trace t if the trace s can be
extended to the trace t. Formally, we write this as

s<tedues T u=t

2.2 Syntax

The syntax used in this paper is similar to real-time CSP. The significant
differences are: we include a second prefix operator (—), and to simplify the
presentation, do not include message passing or variables.

If P is a process, t is a time value, [is an index set, A is a set of events
and a is a single event, then the syntax used in this paper is

P == 1| Stop | Skip | Wait(t) | P|[A]|P | PO P |
M, Pla=Pla—P|P; P|P{t} P[P\ A

These represent: the most nondeterministic process, L; the broken pro-
cess, Stop; successful termination, Skip; delay, Wait(t); parallel composi-
tion, P |[A]| P; external choice, P O P; nondeterministic choice, I_Iiel P;
first form of action prefix, a — P; second form of action prefix, a — P;
sequential composition, P ; P; timeout, P >{¢} P and hiding, P \ A.

5

2.3 The axioms

A process S is a subset of Oy, where Oy = TT x TREF x Rt U{oo}, which
satisfies the following axioms.

Axiom 1 The empty observation is an observation of any process.
((),0,00) € 8

Axiom 2 Observations are prefix closed.

(s s',X,d) e S=Vtecends, begins'] e

r<d=(s,X11[0,t),00) €S
t=d=((s,X 110,t),0) €S
A
(s, X 11[0,¢),d) € 5))
t>d=(s,X110,¢),t) €S

Axiom 3 Refusal information is subset closed.
(s, XUY,d)eS=(s,X,d)eS
Axiom 4 Maximal refusal sets exist.

(s,X,00)€ S=3X"e
(s,X',oo) e SAX CX'A
V(t,a) eRT x Y e (t,a) & X' =
(510,17 (t,a), X' 10,2),00) € §

From this axiom, taken together with the chaos axiom below, we can
derive two important properties of observations within a CSP process. The
first is that all observations may be extended *.

Definition 1 An observation (s, X', d') is an extension of an observation
(s, X,d), written (s, X', d") > (s, X, d) if
s< s
X CX'
d > d"if d is finite
d' > end(s, X, d) if d is infinite

!This is similar to the behavioural partial order in [Sch92].

6

This is essentially an information ordering on observations. Information
may be added to an observation in two ways. The first is by filling out
the information already contained, either by adding refusal information or
by improving divergence information, and the second is by increasing the
duration of the observation, by adding further trace, refusal or divergence
information.

A consequence of the above definition is the existence of point-wise max-
imal observations. A point-wise maximal observation is one which contains
complete information for every point in time, up to the end of the observa-
tion. Therefore the only way to add information to these observations is by
increasing their duration.

Definition 2 (s, X, d) is point-wise mazimal in [P]] whenever

V(s, X', d") e [P].(s X", d) 2 (s,X,d) = (¢, X", d") = (s, X, d)
V
end(s’, X', d") > end(s, X, d)

Axiom 5 Divergence is chaotic. If an observation contains a divergence
value of d, where d # oo, this means that the process diverged at or before
that time. This is consistent with the CSP philosophy of including all possible
observations after divergence.

Vd#ocoe (s,X,d)eS= (s (s+d),XU(X'"+d),d+d) el

The final axiom is a requirement that every nondivergent process may be
implemented deterministically, and furthermore that the process is equal to
the union of these implementations. Before we present it, we require some
definitions.

Definition 3 Refinement is defined on processes as @ C P ((Q is refined by
P) if and only if

V(s,X,d)e Pe(s,X,d) e Q
or

[P] < [@Q]

The lowest member of this order is L, the highest are those that cannot
be further refined.

Definition 4 An observation (s, X, d) € P is an earliest diverging observa-
tion in P, if d = min{d' | (s, X, d") € [P]}.

7

Predeterministic processes are deterministic until they diverge, if they do.

Definition 5 Process P is predeterministic if for all earliest diverging ob-
servations

(s,X,d) € P,(t,a) € X o
t<d= (s1[0,¢t]"{(t,a)),X 1[0,¢),00) &P

Axiom 6 The final axiom is then defined as
imp(P) #0 A P = imp(P)
where imp(P) is the set of predeterministic implementations of P, defined as
imp(P)={Q | PC @ A @ is predeterministic}
Alternatively the last axiom can be stated in terms of upward closure:
Definition 6 The upward closure of a set of observations in S is defined as
S={(s,X,d)|Vte(s,X,d)]teS}

That is, if all finite prefixes of an infinite observation are in S, then the
infinite observation is in S.

The last axiom simply states that predeterministic processes are equal to
their own closure.

2.4 The Equations

The semantics of a CSP process is given by Fy, where Fy is a function from
CSP syntax to M. It is defined inductively over the CSP operators as

FulLl] ={(s,X,d)|s€ TT AN X € RSET A d € R" U {oo}}

FulStop]] = {({), X,00) | X € RSET}

Ful Wait(d)] = {((), X, 00) [vV & X 1 [d, 00)}

U
{(((t/,\/)>,X,OO)|t/ > d/\\/Q/XT[d,t,/)}

FulP|[A]l Q] =A{(s,X,d) [Isp, Xp,dp,sq, Xq,dg
(SP,XP, dp) € fU[[P]] N
(sq, Xq, dg) € FuQ] A
sespl[A]lsg A
X = Xp|[A][Xg A
d = min{dp, dg}}

where sp || A]| sq is defined recursively as (assuming a € A; b, ¢ ¢ A)

ONAlO={0}
sp|[A]l () = {sp}
O 1[A]lsq = {sq}

(¢,a) “spl[All(ta) " so ={(t,a) " (sp|[A]l 5¢)

(t1,0) " sp|[A]l (82, ¢) 7 sg = {(t,0) " (sp[[A]| (t2,¢) T sg)}, if th < b
={(t2,c) " ((t1,0) " sp|[A]|sQ)}, if ta < s
= {(t1,0) " (sp[[A]l (2,) " s@) }

U

{(t2,¢) = (0, 0) " sp[[A]l @)}, ity = 1

The recursive definition is necessary because the order of simultaneous events

is important.
Xp|[A]| Xg is defined as the unique X such that

XTA=Xp[AUX, | A
VAN
XTENA)=Xp [(E\NA)NXg [(X 4)

FulP B QI =A{(s,X,d) | (s,X,d) € Fy[P] A
((), X 1[0, begin s),00) € Fy[Q]}
U
{(SaXad) | (SaXad) EfU[[Q]] N
((), X 1[0, begin s),00) € Fy[P]}

FulP 1 Q] = Fy[PTU Fu[d]

Fuylla = P]=A{((),X,00) | a & a(X)}

U

{(S,X, d) | HSP,XP, dp,ta [
(SP,XP, dp) € fU[[P]] A\
s = ((ts,a)) " sp A
a & a(X 11[0,t)) A
X—t,=XpA
d=dp+t.}

The new operator — includes nondeterministic waits on either side of the

action a.
If t, is the time at which a is offered, t, the time at which it is accepted,

and tp the time at which the process P is initiated, then the definition is:

Fulla — P] = {({), X,00) | I, € R & [t,,00) x {a} N X = 0}
U
{((taaa)/\stad) | (SvapadP) EfU[[P]] A
Tt, <ty o [to te) X {a}NX =0 A
HtPZtGOSZSP—i‘tP/\
X—tP:XP/\
d=dp+tp}

FullSkip] = {((), X, 00) | v & a(X)}
U
{({(t,v)), X, 00 | v € a(X 1]0,1,))}

FulP; Q] ={(s,X,d)| (s, X U[0,min{end(s, X), d}) x {v}, d) € Fy[P]}
U
{(S,X, d) | HSP,XP,SQ,XQ, dQ []
(sp ~((ty, V), Xp U [0,8,) x {V},00) € Fy[P] A
(sq: Xq, dg) € Fu[Q] A
s=sp (sg+t,) A
X=XpU(Xg+1t,)A
d=dg+ tr}

10

FullPo{t} Q] ={(s,X,d) | (s,X,d) € Fy[P] A
min{d, begin s} < t}
U
{(s,X,d) | 3sqg, Xg,dg e
(sq. Xq, dq) € FullQ] A
(0, X 11[0,t),00) € Fy[P] A

s=8g+1IAN
X —-t=Xg AN
d:dQ+t}

FulP\ Al ={(s,X,d) | Isp, Xp o
(sp, Xp, d) € Fy[[P] A
s=sp\ANA
Xp =X U|[0,min{end(s, X), d}) x A}

2.5 Recursion

None of the above clauses explicitly introduce finite divergence values into
the observations of a process. We can only create divergent processes using
recursion. The semantics of a process X = F(X), where F' is a CSP process,
is given by the least fixed point of the corresponding function over the domain
M. As an example, consider the process P = a — P. The traces generated
by this process are

O, ((t, @), (L, @)™, ...

If the trace becomes infinitely long at a finite time d, a divergence value of

d is introduced.
The exact semantics of the process P = a¢ — P is therefore given by

{(s, X, 00) [a(s) = {a} A
aalX)A
#(s) = oo = end(s) = oo}

U
{(s,X,d) | It < de#(s1[0,t] | a) =00 A
Vi <te#(s7T[0,t) <o0)A
a(s 1[0,1) = {a}) A
a & (a(X)1]0,#))}

11

Standard CSP recursion theory [Hoa85, Ros88] cannot be applied, be-
cause the model My is not a complete partial order (CPO). Further the
metric space theory of ordinary real-time CSP [Dav93] cannot be used, be-
cause the metric is not applicable. To see that My is not a CPO, consider
the set of processes defined by

P, = |_|n<t<oo Wait(t) ; a — Stop

The chain {P;}3°,does not have an upper bound. Any upper bound would
have to refuse a at all times, since for any time ¢ we can always find a process
which will refuse a at that time, but would not be able to refuse it forever,
since no individual component can. This is forbidden by the maximal refusal
set axiom: an action must be either possible or refusable at all times.

We therefore use the framework presented in [MRS95]|, which relies on
local cpo’s.

Definition 7 A local cpo is a partially ordered set with a least element, in
which every directed subset with an upper bound has a least upper bound.

A local cpo is much weaker than a cpo. Obviously every cpo is a local
cpo, but in a local cpo we only require least upper bounds to exist when
upper bounds exist (in a cpo least upper bounds would have to exist for
every increasing chain).

Theorem 1 M with the nondeterminism ordering is a local cpo: it has a
least element, L, and every directed subset with an upper bound has a least
upper bound.

Proof 1 Let S be a subset of My, directed under the nondeterminism or-
dering C, and suppose that an upper bound of S exists. Consider J{S" |
S" is an upper bound for S}. This is non empty, since S has at least one
upper bound, and it must be the least upper bound, since it contains all
other upper bounds. It is also a legitimate process, since it satisfies all the
process axioms.

Not all monotone functions over local cpos have fixed points. To see why
this is so, consider the local cpo defined on the set @ = {2+ | n > 0} by
the mapping f("T_l) = 7. The monotone function f maps each element to
the one above it, but clearly has no fixed point.

In CSP terms, this means that not all monotonic chains of processes will
have fixed points. For example, consider the chain of processes defined by:

P, =11 Wait(t) ; a — Stop

te[1—1,1)

n?

12

The limit of this chain must refine each element in the chain. Thus, in the
limit process, a cannot be offered at any time before 1, because for any time
before 1 we can find a P; which does not offer ¢ at that time. But on the
other hand @ must be offered before time 1, since all elements of the chain
offer a before time 1. This contradiction ensures that the limiting process
does not exist.

A sufficient condition for a monotone function over a local cpo to have a
fixed point is for it to have a pre-fixed point.

Definition 8 A pre-fixed point of a function f over a set X is an element
z € X such that f(z) < z.

If we can show that a pre-fixed point exists, then the following theorem
shows that we can find a fixed point.

Theorem 2 X is a local cpo with least element 1, and f : X — X is a
monotone function.
If z is a pre-fixed point of f, then f has a least fixed point given by

fix(f) = sup{f*(L) | canordinal}
Proof 2 Omitted, see [MRS95].

Theorem 2 only proves the existence of a fixed point for functions which
already have a pre-fixed point, i.e. a point z such that f(z) < z.

In order to prove the existence of this pre-fixed point, we use a dominated
convergence theorem.

Theorem 3 Let @ be a local cpo, E a set, i : £ — @ a function and
[+ @ — @ a monotone selfmap. Suppose there is a related function f such
that fov < iof, ie. the following diagram commutes up to <.

E —f>E
11
Q —f’ Q
If z € E is a fixed point of f, then i(z) € Q is a pre-fixed point of f.

Proof 3 f(i(z)) < i(f(z)), and since z = f(z) we conclude that f(i(z)) <
i(z). Thus i(z) is a pre-fixed point of f, as required.

To apply the framework outlined above, we must produce a model which
dominates the model M ;. We identify a space E, an injection function
i - E — F and a function f : E — FE such that Fy oi T 50 f. These are
defined in Appendix A.

The denotation of recursive processes can then be defined in the usual
way, since the theory of local cpo’s guarantees that all the relevant fixed
points exist (see [MRS95] for details).

3 PTL

In this section we introduce the linear-time propositional temporal logic
(PTL) [Eme90], which will be used for temporal specifications. Our ver-
sion of PTL has three classes of atomic propositions. The atoms P,, O,
express the fact that a process either does an action a or offers and action a
and the atom D expresses the fact that the process has diverged. The logic
is defined in terms of a satisfaction relation |=; between observations and
formulas of the logic. The expression (s, X, d) =, ¢ asserts that the formula
¢ holds on the observation (s, X, d) at time ¢. Observations in our model are
of two types: either they are extended infinitely in time, that is end(s, X, d)
is infinite; or an observation ends at some finite time ¢{. So the assertion
(s,X,d) =; ¢ can never be true for ¢ > end(s, X, d), because we read the
assertion (s, X, d) |, ¢ as the observation (s, X, d) makes ¢ true at time ¢.
If the observation supplies no information about time ¢ then (s, X, d) = ¢
is undefined.

The relation |=; for ¢ <= end(s, X, d) is then defined inductively as
follows. For atoms:

e (s,X,d) ¢ D whenever d < t;
e (5,X,d) E, P, whenever (¢,a) € s;
e (s,X,d) E; O, whenever (¢,a) € X;

So the assertion (s, X,d) =, P, asserts that the action « is actually per-
formed at time t. Note that we use negative information to characterize
offers. We say that an observation (s, X, d) offers an a at time ¢ if it does
not refuse it.

The connectives A and — are defined in the standard way:

e (s,X,d) Ey ¢ Atp whenever (s,X,d) =, ¢ and (s, X, d) |y ¢;
e (s,X,d) Ey — ¢ whenever (s, X, d) [~ ¢;

14

The operator U is standard to temporal logic. Here we simply translate it
into assertions on observations:

e (5,X,d) Ei ¢ U -1 whenever

A(finite)ty :ty >tand [t —t |[<Te

(S,X,d)):tl 1/) and
Vt21t<t2<t1 (S,X;d)):t2¢

Other operators can be derived operators are defined in the usual way:
e ¢V 1 is defined as = (= ¢ A = 1);

e ¢ = 1) is defined as ¢ V = ¢;

o O, ¢ is defined as true U .. ¢,

e O¢ is defined as = (= 9).

So far we have explained what it means for an observation to model
a formula of PTL. A process is a collection of observations satisfying the
consistency conditions from Section 2.3. This makes the definition of what it
means for a process to satisfy a formula slightly subtle. Because observations
in processes are prefix-closed, it is not sufficient to say that a process P
satisfies a formula ¢ when all its observations do. Take for example the
process

a— b — Stop

intuitively this should satisfy the formula true &/ Oy, but for example the
observation (<>,(, c0) does not eventually offer the action b. To avoid this
we say that a process P satisfies a formula ¢ if for each observation in P
either it satisfies it or some extension does in the <g ordering.

A further problem arises because refusal sets in observations are also
downward closed, so given the observation

(<>,[0,t) x {b},)

from the process a — b — Stop the process axioms require that the obser-
vation (<>, X, 00) where

X ={(t',b) | t' < tand t'is rational}

hence it can appear that the process is offering an action at every irrational
time point. So we refine the definition of a process satisfying a formula
further so that we only consider maximal refusal sets. This leads is to the
following definition.

15

Definition 9 We say that a process P satisfies ¢ (P = ¢) if for all observa-
tions o in Fy[[P] :

Jo' € Fy|[P] such that o' 25 0 A o' |=¢ &

This definition allows the use of an inferential style of reasoning via rules
such as:

PE
a—»PEO,U (P, A)

with the side condition (= (¢ = — P,)). If ¢ is true of the process
P, then when we consider the process a — P we know that the event a is
offered immediately, and if it is performed then ¢ will immediately become
true. Some rules are presented in Appendix B.

4 Specification and Refinement

We now come on to an important notion in this paper, the idea of specifica-
tion pairs. A specification pair combines a CSP process P and a PTL formula
¢ into a single pair (P, ¢). This pair represents the subset of observations of
Fuy[[P] which satisty ¢. Specification pairs give a way of mixing two devel-
opment styles: process refinement as used extensively in the CSP community
and the use of temporal logic for time-dependent system development.

As with the definition of [= relating processes and formulae there are some
similar technical considerations with incomplete observations which lead to
the following definition:

Definition 10 A specification pair is a pair (P, ¢) consisting of a CSP pro-
cess P and a PTL formula, ¢. It is defined in terms of observations as

(P,¢) ={0 € Fy[P] |30 >2E owith o' = ¢}

It is important to realize that although the pair (P, ¢) is a specification,
it does not always denote a CSP process, but represents a wider notion than
that of a process. It may then be unimplementable, for example:

(P =a— P,0(0))

does not denote a process, because the process P is never able to offer a
an action b and therefore the process specification pair contains no observa-
tions. Such unimplementable specifications can be difficult to spot and arise

16

because the behavioural and temporal specifications are in conflict. Thus
when using specification pairs there are further proof obligations on the de-
signer to show that the components of a pair are consistent with each other
and that the specification is therefore implementable. Such proof obligations
seem unavoidable, in a system which allows such a wide separation of con-
cerns as we do here. Below we shall discuss some of the forms that such proof
obligations take.

As with ordinary CSP processes, process specification pairs can refined,
formally this gives:

Definition 11 (P, ¢) is refined by (Q,) (written (P,¢) C (Q,v)) if
(Q,¢) C(P,9)

To connect standard process refinement and deduction in PTL we present
the following proposition (where ¢ - ¢ indicates that ¢ follows from 1), the
deduction system in [Jac90] could be used to prove this):

Proposition 1

PEQ YFo¢
(P,¢) E(Q,¢)

This proposition allows the two styles of development, process refinement
and temporal logic deduction, to be combined in one framework.

Given a specification (P, ¢), one way of showing that is it implementable
is by proving that it meets the axioms for defining a process. In practice
this would be tedious, but for various cases there simpler ways of checking
implementability.

Given a process @, if @ = ¢ then it is easy to see that (Q,¢) is a
process, since (Q,¢) = Fy[[Q]. This gives a simple sufficient condition to
test whether a refinement of a specification is a process.

An example development would start with a specification (P, 1) and pro-
ceed by a series of refinements:

(P,y) E(PLY)E ... E(Q,9)

where the last specification can easily be shown to be an implementable
specification by showing) = ¢. While Proposition 1 is powerful and useful
it provides no mechanism for moving information from a formula ¢ in (P, ¢)
to the process P. We mention one proof rule which allows timing information
to be moved across:

(6= Q.9 QFEYV ¢k (U)
(a = Q.¢) E (a = Wait(r) ; Q,¢)

17

Returning to the example of Section 2, if we wished to insist that every time
the light was turned on, it stayed on for at least two seconds, we could write

(Light = on = off — Light, Ocse(Pon = (= Oog) U 520,7)))
which is refined by the above rule to

(Light = on — Wait(2) ; off — Light, Ocoo(Pon = ((— Oug) U 520,5)))
and further refined to

(Light = on — Wait(2) ; off — Light,true)

However, some temporal logic formulae capture global constraints, and
can only be refined into the CSP process when the entire system has been
described. For example, if Light was only a subcomponent of a larger system,
then the global constraint that the light remained on for at most two seconds:

Ocoo(Pon = (true U <P ,5))

could only be verified once the CSP description had been completed.

5 Recursion

Consider the CSP process u X .F(X). Iterations of the function [F] = f give
rise to the constructable chain:

L C AL C AW C AL ...C AL C...

The lowest element of this chain, L, has every possible behaviour. If we
said that the limit of a constructable chain models a formula whenever all
its approximations do, then the only formula that recursive processes could
model would be true.

We therefore consider only the non-divergent traces of an element of the
chain.

Furthermore, the fact that observations are prefix-closed can present some
problems. As an example, consider p X.a — X. One of the simplest things
which is true of this process is that it always offers an a. Therefore we
want pX.a — X | 00,. But this does not hold initial segment of the
constructible chain, because once the a actions have been performed, the
process behaves chaotically. To solve this problem, we make use of the notion
of pointwise-maximal observations, the definition of which is repeated here
from Definition 2.

18

Definition 12 (s, X, d) is pointwise-mazimal in [P]] whenever

V(s, X', d") € [P].(s,X",d") 2p (s, X,d) = (s, X', d") = (s, X, d)
V
end(s, X', d") > end(s, X, d)

We must also introduce a new notion of satisfaction which, although
defined for a general process, is designed to apply to recursive processes.

Definition 13 [[P]l=,¢ whenever for all pointwise-maximal, nondivergent
(s,X,00) € [P], (s, X,00) ¢ ¢, or some extension of (s, X, 00) does.

The above definitions allow us a form of Scott-induction for a certain
class of processes.

Definition 14 An pointwise-mazimal admissable predicate is one which, if
it holds (in the sense of {=,) for each finite element of a constructable chain,
also holds (again in the sense of {=,) for the fixpoint of the chain. Formally,
¢ is a pointwise-maximal admissable predicate if, for all constructable chains

Ji;
Viefi(L)io = [pX.f(X)]k0

Definition 15 A specification pair is a pair (P, ¢) consisting of a CSP pro-
cess and a PTL formula. It is defined in terms of observations as

(P,¢) ={(s,X,d) € [P] | 3pointwise —maximal extension(s’, X', d') e
(s" X",d") 2g (s,X,d) A
(s, X",d)YE=oAN
V(s", X", d") 25 (s, X', d')with X" maximal
(SH,X”, d//)): ¢}

If ¢ is a pointwise-maximal admissable predicate, we have the following
theorem.

Theorem 4

Vo(F" (L) {F9)
(W X.F(X),B-D) E ¢

Proof 4 Consider (s,X,00) € (uX.F(X),0- D), where X is a maximal
refusal set.
Since ¢ is a pointwise-maximal admissable predicate, it follows immedi-

ately that [u X.F(X)] K=o.

19

Thus if (s, X, 00) is pointwise-maximal then it follows immediately that
(s, X, 00) = ¢.

If (s,X,00) is not pointwise-maximal, then we know that there exist
pointwise-maximal nondivergent extensions of (s, X, 00) in (1 X.F(X), 0~ D).
Since these are also in [u X.F(X)], there is some extension of (s, X,00) in
(0 X.F(X),0- D) which models ¢.

Therefore either (s, X,00) = ¢, or some extension does.

Theorem 5 All predicates (excluding those which include D) are pointwise-
maximal admissable.

Proof 5 Consider (s, X,00) € [pX.F(X)]. If #s < oo then (s, X,00) €
fi(L) for some i. If #s = oo then we perform a structural induction.

The atomic propositions form the base cases.

case P,: If #s = oo then end(s) = oo, and there exists a finite prefix
(s', X', 00).(s', X', 00) =, P,.

case O,: as P,.

The remainder of the proof follows by a routine structural induction.

6 Conclusions, comparisons and future work

We have presented a specification framework which uses the languages of
CSP and PTL, and cleanly separates the concerns of behaviour and timing,
by allowing each constraint to be captured in the most suitable language.
We have developed an enhanced denotational semantic model for CSP, and
we have also interpreted the temporal logic PTL over this model. This has
enabled us to combine the two formalisms at the semantic level in a uniform
way, by the use specification pairs.

In [Jac90] the author presents a way of relating temporal logic with real-
time CSP. The semantics for the temporal logic is given as a Kripke model,
and to express properties of time-guarded processes the model of [Sch89]
is reinterpreted as a Kripke model. The emphasis there is on the relation
between the two models, and it is essentially concerned with the form of the
relation }=;. Whereas in this work we have developed a framework, which
allows properties from both models to be combined.

In [Sch97], a theory of timewise refinement within the context of CSP is
presented. This has a very similar goal to the work presented here, in that
it allows the translations of specifications and proofs of correctness between
timed and untimed semantic models. The timed interpretations proposed
in [Sch97] initially allow more timed processes to be refinements of untimed

20

ones, but the parallel composition operator does not in general preserve re-
finement. In our approach the timed interpretation is more selective, and
parallel composition preserves refinement.

A dual language specification framework is proposed in [Bla94], using
LOTOS and a temporal language called QTL. In that work, rather develop
a common semantic model, the author presents a specialised technique for
verifying a specification of a system presented both in QTL and LOTOS
against it requirements (described in QTL). The work is carried out with the
specific application domain of multimedia systems in mind.

Many questions remain open, while it is theoretically possible to reason
about systems using the semantics the derivation of useful proof rules is of
importance, these are being investigated in the context of a case study. An
area of possible further research is to investigate the techniques developed in
model checking [ACD93] to derive an algorithm for automatically checking
that a process P meets a specification ¢.

Acknowledgements

Thanks are due to Steve Schneider and John Derrick, for their valuable com-
ments on earlier versions of this paper.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model checking
in dense real-time. Information and Computation, 104(1):2-34,
May 1993.

[Bla94] Lynne Blair. The Formal Specification and Verification of Dis-
tributed Multimedia Systems. PhD thesis, Lancaster University,
U.K., September 1994.

[Dav93] Jim Davies. Specification and proof in real time CSP. Cambridge
University Press, 1993.

[Eme90] E. Allan Emerson. Temporal and modal logic. In Handbook of
Theoretical Computer Science, chapter 16, pages 996-1072. Else-
vier, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

21

[Jac90]

[MRS95]

[Ree88|

[Ros88]

[Ros93]

[RRS6]

[RRS7]

[Sch89]

[Sch92]

[Sch97]

D. M. Jackson. Specifying Timed Communicating Sequential Pro-
cesses using Temporal Logic. Technical Report PRG-TR-5-90, Ox-
ford University, U.K., 1990.

M. Mislove, A. Roscoe, and S. Schneider. Fixed points without
completeness. Theoretical Computer Science, 138:273-314, 1995.

G. M. Reed. A Uniform Mathematical Theory for Real-Time Dis-
tributed Computing. PhD thesis, Oxford University, 1988.

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall Series in Computer Science. Prentice Hall, 1988.

A. W. Roscoe. Unbounded Non-determinism in CSP. Journal of
Logic and Computation, 3(2):131-172, 1993.

G. M. Reed and A. W. Roscoe. A timed model for communicating
sequential processes. In Proceedings of ICALP 86, 1986. LNCS
226.

G. M. Reed and A. W. Roscoe. Metric spaces as models for real-
time concurrency. In Proceedings of the third workshop on the Math-
matical Foundations of Programming Language Semantics, 1987.

LNCS 298.

S. A. Schneider. Correctness and communication in real-time sys-
tems. PhD thesis, Oxford University, 1989.

S. A. Schneider. Unbounded nondeterminism for real-time pro-
cesses. Technical Report TR 13-92, Oxford University, 1992.

S A. Schneider. Timewise refinement for communicating processes.
Science of Computer Programming, 28:43-90, 1997.

22

A The predeterministic space

The space Op of predeterministic processes consists of all processes which
satisy axioms 1-5 and are predeterministic. The function Fp over the space
of predeterministic processes dominates the function Fy. For every process
P which may be constructed using the CSP operators, the corresponding
process P constructed using the dominating operators will always dominate
the process P. Fy[P] C Fp[P].

The function Fp is defined as follows:

FplL] = Fy[[Stop] = {((), X,00) | X € RSET}

FplStop] = Fy[Stop] = {((), X,00) | X € RSET}

Fp[Wait(d)]| = Fy[Wait(d)]

FrPI[A) Q] ={(s, X, d) | Fsp, Xp, dp, sq, Xq, dg ®
(SP,XP, dp) € fU[[P]] VAN
(sq, Xq, dg) € FuP] A
sesp|[A]lsg A
X=Xp|[A]|Xg A
d = min{dp, dg}}

where sp |[A]| sg is defined recursively as (a € A, b, ¢ € A)

St
o
~—
)
—~ A~~~

—~
~
=
=
~
)
»
!
N
Vo)
O
~
—~
e
—
o
A
<~
=

and

Xp|[A]l Xo = Xp|[A]]l Xq

External choice

23

fp[[PﬁQ]] = {(S,X,d) | (S,X,d) S fP[[P]] A
((), X 1[0, begins),00) € Fp[Q]}
U

{(SaXad) | (SaXad) S fP[[Q]] N
((), X 1[0, begins] U s 1 [¢,1],00) € Fp[P]}

Dominated internal choice is easily defined

FelPTIQ] = Fp[P]

The immediate prefix choice introduces no nondeterminism

Fplla=P] = Fylla — P]J

The nondeterminsitic prefix operator is dominated by the immediate pre-
fix operator.

Fplla=P] = Fyla — P]J

Skip introduces no nondeterminism

Fo[FFip] = FulSkip]

The sequential composition operator may introduce nondeterminism at
the point of transfer of control. For example, if a single copy of the action «a
is observed, then it is nodeterministic whether or not control has passed in
the process

P = (a — Skip
(|
Skip) ; a — Stop

To resolve this, we give the action v" precedence over all other actions.

24

Fe[P; Q] ={(s,X,d) | (s, X U[0,min{end(s, X),d} x {V'},d) € Fp[P] A
vV & a(s) A
Vu,ves=u"v=
- Elt/ b (UA<(t~/a‘/)>aXT [O,IZ/),OO EfU[[P]]}
U
{(S,X, d) | HSP,XP,SQ,XQ, dQ, t/ []
(sp 7 ((tv,v)), Xp U [0, 8,) x {v'},00) € Fy[[P] A
Vu,ves=u"v=
— 3ty e (w((t, V), X 1[0,1,),00 € Fy[P] A
(s@: Xq, do) Fu Q] A
SZSPA(SQ—i-t,/)/\
X=XpU(Xg+1t,)A
d=dg+t/}

The timeout operator may introduce nondeterminism at the point of
transfer of control. If both processes can perform the same action at time
t, then the decision as to which process survives is nondeterministic. We
resolve this by insisting that at time ¢, the second process may only perform
events which the first process is incapable of performing.

Fel[Po{t}Q] = {(s, X, d) | (s, X, d) € Fp[P] AU
min{d, begin s} < t}
{(s,X,d) | Fsq,Xg,dg ®
(sq: Xq. dg) € Fp[Q] A
(0, X 1[0, 8]U {3 1 [t, t]}, 00) € Fp[P] A

s=sg+1tA
X—-t=XgpA
d=dg+t}

The hiding operator may introduce nondeterminism into a process, since
different observations may become identical after hiding. We resolve this
using a choice function choose, which provides a unique way of choosing a
single action from any set of actions.

Fp[P\A] = {(s, X, d) | Fsp, Xp ®
(8P7XP7 d) € fp[[P]] N
s=sp \ AN
Xp =X U0, min{end(s, X),d}) x A A
accp,q(sp)}

25

aCCP,A(SP) :vuawataa.s = UA(t,a)AU) =

sp.a(u)(t) 7 {} A
a = choose(sp a(u)(t))
V

sp.a(u)(t) = {}

Sp.a(u)(t) is the set of events from A open to the process P at time ¢
after the trace u.

26

a€XU{V} PE¢ QFEY

Stop = 0(=0,) PNQEOVY
1 = true PE¢ QE¢
POQE?®
Skip = Oy U <Py PE¢ QFE+Y PlEtueld .0,
Py QFEQ U<
provided ¢ does not contain P, or O, as
subformulae.
PE¢ QEY PE¢
Po{ty Q¢ U <19 P\ AE¢ANDOcoo(Agea 706) AOcoo(Agea 7Pa)

provided ¢ contains no sub- provided O, and P, are not subformulae of
terms U ,p with ¢ > ¢. ¢, for all a € A.

Table 1: Rules for combining processes and formulae

B Rules for finite processes

In this section present a set of rules for finite processes (processes which
are constructed without recursion) which connect the processes constructors
with the rules of the logic. The rules which are routine to work out are in
table 1.

The immediate form of the event prefix operator has the rule

Pl
a—»PEO, U (P, A)

with the side condition (= (¢ = = P,)). If ¢ is true of the process P,
then when we consider the process a — P we know that the event a is offered
immediately, and if it is performed then ¢ will immediately become true.

Unlike the process a — P, the process a — P introduces two arbitrary
delays, one before and one after the occurrence of the event a. So the rules

27

becomes

PEé
0 — PEtruelU coo(Of U coo(Py A (true U co09)))

with the same side condition: (= (¢ = = P,)).
The rule for parallel is more complicated. A first attempt, considering
only the empty synchronisation set, would be something like: (where P |||

Q@ ="Pl0] Q)

PEOANQEY
PllQEOANY

but we can find a simple counter example. Consider the processes b — Stop
and ¢ — Stop. It is easy to see that b — Stop = 0O(— O.) and ¢ — Stop =
true, but it is equally clear that a — Stop [[0]| ¢ — Stop = O(=0,). The
difficulty arises because ¢ can assert negative information about ¢) and there-
fore to state the rule properly we have to characterise negative information.
Thus we define two operators ‘neg’ and ‘pos’ on formulae which capture pos-
itive and negative assertions about events. These operators are defined by
mutual recursion:

pos(true) = pos(false) = () neg(true) = neg(false) = ()

pos(0,) = pos(P,) = {a} neg(0,) = neg(P,) =10

pos(¢ A) =pos(¢ V) =pos(p)Upos(ih) neg(¢ A i) =neg(¢ V) =neg(¢) Uneg(v)
pos(¢ U) =pos(¢ S ¢) =pos(¢)Upos(y) neg(p U ¢)=neg(¢ S 1)) =neg(¢)Uneg()
neg(— (¢)) = pos(¢) pos(— (¢)) = neg(¢)

We add the following two side conditions to the rule:

neg(¢) N (neg(y) Upos(y)) =0 neg(y) N (neg(¢) U pos(¢)) = 0

The formula ¢ must contain no negative information about any event in
1, unless that event is also in the synchronisation set, and similarly for .

The rules presented above are not complete in two senses. First, we have
not presented rules for all of the CSP operators. Second, the rules differ
from the derivation rules found in [Dav93] where the rules are complete in
the sense they completely characterise the behaviours of CSP operators in
logical terms. But these rules differ from ours in using the full power of first
order logic, as opposed to PTL in this paper. Although it is not possible to
make the rules complete in the sense [Dav93], using PTL simplifies reasoning
about specifications. Furthermore, it seems that the rules could be made
complete using first order temporal logic as opposed to PTL and this is
being investigated.

28

