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Abstract

Several multicast routing heuristics have been proposed to support multimedia services,
both interactive and distribution, in high speed networks such as B-ISDN/ATM. Since such
services may have large numbers of members and have real-time constraints, the objective
of the heuristics is to minimise the multicast tree cost while maintaining a bound on delay.
Previous evaluation work has compared the relative average performance of some of these
heuristics and concludes that they are generally efficient, although some perform better for
small multicast groups and others perform better for larger groups.

We present an introduction to the problem and to some key heuristic solutions. Our
detailed analysis and evaluation of some of these heuristics illustrates that in some situations
their average performance is reversed; a heuristic that in general produces efficient solutions
for small multicasts may sometimes produce a more efficient solution for a particular large
multicast/network combination. Also, in a limited number of cases using Dijkstra’s algorithm
produces the best result. We conclude that the specific efficiency of a heuristics solution
depends on the topology of both the network and the multicast, and that it is difficult to
predict.

Because of this unpredictability we propose the integration of two heuristics with Dijk-
stra’s shortest path tree algorithm to produce a hybrid that consistently generates efficient
multicast solutions for all possible multicast groups in any network. The constituent heuris-
tics are based on Dijkstra’s algorithm which maintains acceptable time complexity for the
hybrid, and they rarely produce inefficient solutions for the same network/multicast. The
resulting performance attained is generally good and in the rare worst cases is that of the
shortest path tree. Our results show good performance over a wide range of networks (both
flat and hierarchical) and multicast groups, within differing delay bounds. We also study the
distribution of path delays to the multicast group members. As might be expected, although
the bound is always met, delays are generally longer than those achieved with Dijkstra’s
shortest path algorithm.

1 Introduction

Many of the new services envisaged for ATM networks involve point to multipoint connections.
Distribution services, such as video on demand or continuous information publishing services, are
likely to have large numbers of customers. Interactive services such as multimedia conferencing,
co-operative working and educational applications can also be well supported by multicasting.
ATM offers the integration of data and real-time components such as audio and video. This
implies that, for many multicast services on ATM networks, the network must make appropri-
ate Quality of Service (QoS) provision particularly in terms of maintaining agreed bandwidth
and minimising delay. Because of the potentially large numbers of users, routing of multicast
connections is an important issue. Multicasting itself is much more efficient in its use of the
network than multiple point to point connections, as cells are not replicated on individual links.



The topology chosen for the multicast routing tree can also give further efficiency savings, as we
discuss in this paper.

Our discussion concentrates on graph-theoretical heuristics for multicast routing which com-
bine bounded delay with efficient use of the network, for large-scale real-time multicast services.
For networks with n nodes, the lowest delay from a source to each of the other nodes can easily
be found in O(n?) time using Dijkstra’s algorithm. The paths found in the process form a
broadcast tree which can be pruned beyond the receiving group members. Provided all of the
destinations are reachable within the delay bound this offers a satisfactory solution. Where the
predominant requirement is efficiency, the total cost of a broadcast tree can be found using tech-
niques such as Prim’s or Kruskaal’s algorithms. However, the equivalent problem for a proper
subset of the nodes of the network is known as the Steiner tree problem which is NP-complete,
although heuristics are available which give reasonable solutions. Finding a multicast routing
tree which is both efficient and delay bound is also an NP-complete problem.

Our evaluations, and indeed those in the majority of published work in the area which we
review, are done across a range of networks whose edges each have two quantitative parameters:
which we call “cost” and “delay”. The evaluations take place on a large number of such networks
in order to assess different network conditions. The cost function could represent one of several
practical values in a real network. In general, at the time of calculation, the cost incurred using
each link can be considered to be constant (although it may vary in the life of the network). The
cost could be proportional to the monetary cost incurred when a user uses that link. A sensible
alternative would be to optimise the cost by relating it to the residual available bandwidth on a
link. Certainly, the network considered for routing should first be pruned of any links incapable
of carrying the bandwidth of the multicast under consideration. Yet another alternative is for
cost to be proportional to distance which may in turn also be related to delay.

Taking the delay as a constant for the purposes of the calculation may well appear more
questionable. However, in ATM networks, we are looking at setting up the multicast tree for
the duration of a virtual channel (with only occasional modifications due to members joining or
leaving the call) and it would be impractical to re-route due to short-term fluctuations in queue
size. A fixed value of delay for each link would include an expected component for queueing
delay onto the link as well as for the fixed switching, transmission and propagation delays and
should be sufficiently representative of the information available at the outset of a connection
set-up. For example, the delay could be based on the measured mean and variance of delay
over the most recent half-hour period. For certain real-time services, special queueing provision
and traffic shaping techniques may also reduce the variability of delay experienced within ATM
networks.

The problem of arbitrary delay bound low cost multicasting in networks, where link cost and
link delay are different functions, was first addressed by Kompella, Pasquale and Polyzos in [9].
Since then, there have been a number of other proposals for solutions to this problem. Previous
evaluation work [16], [11] shows that on average these heuristics perform well. Further detailed
analysis and evaluation of some of these heuristics has shown that there is a wide variance in the
efficiency of their solutions. Whilst on average one heuristic may be more efficient than another,
either for all multicast group sizes or for a particular range of multicast group sizes, there are
some multicast group and network combinations where this position is reversed. In particular,
we have found that as a multicast group grows and shrinks the heuristic that provides the
most efficient multicast solution also changes. The results of our evaluation work indicate that
it is difficult to predict which heuristic provides the most efficient solution for any particular
multicast /network combination. The variance in the efficiency of the heuristics solutions is
wide enough that on occasions Dijkstra’s shortest path algorithm (SPT) calculated on delay
is more efficient. By selecting two heuristics that can be efficiently integrated with each other
and the SPT algorithm, we propose a hybrid heuristic that produces reasonably consistent and
efficient solutions to the multicasting problem, with an acceptable order of time complexity, for
all possible multicast groups in any network.

The rest of this paper is organised as follows. In section 2 we define the bounded delay



minimum cost multicast routing problem. In section 3 we describe and assess three heuristics and
consider them as candidates for integration. Sections 4 describes the network model, benchmark
algorithms and arbitrary delay bound we use to evaluate both the candidate heuristics and the
hybrid. The candidate heuristics are evaluated in Section 5. Sections 6 describes the hybrid
heuristic, which is evaluated in Section 7. We conclude the paper in Section 8 and identify
current and further research.

2 Delay Bound Minimum Cost Multicast Routing

The bounded delay minimum cost multicast routing problem can be stated as follows. Given a
connected graph G = (V, E) where V is the set of its vertices and E the set of its edges, and
the two functions: cost ¢(i,7) of using edge (i,7) € E and delay d(i,j) along edge (i,j) € E,
find the tree T = (Vp, Ey), where T C G, joining the vertices s and My -1, € V such
that 3¢ iyem, ¢(i,7) is minimised and Vk,k = 1,n; D(s,My) < A, the delay bound, where
D(s, M) = 3(; ;) d(i,j) for all (i,7) on the path from s to M in T'. Note that, if the delay is
unimportant, the problem reduces to the Steiner tree problem. The addition of the finite delay
bound makes the problem harder, and it is still NP-complete, as any potential Steiner solution
can be checked in polynomial time to see if it meets the delay bound.

3 Heuristics with an Arbitrary Delay Bound

Several heuristics have been proposed that use arbitrary delay bounds to constrain multicast
trees. Kompella, Pasquale, and Polyzos [9] propose a Constrained Steiner Tree (C'ST.) heuristic
which uses a constrained application of Floyd’s algorithm [5]. Widyono [18] proposed four
heuristics based on a constrained application of the Bellman-Ford algorithm[1]. Zhu, Parsa and
Garcia-Luna-Aceves [19] based their technique on a feasible search optimisation method to find
the lowest cost tree in the set of all delay bound Steiner trees for the multicast. Evaluation
work carried out by Salama, Reeves and Vinitos [12] indicate that Constrained Steiner Tree
heuristics have good performance, but are inhibited by high time complexity. The proposals
for Constrained Shortest Path Trees by Sun and Langendoerfer [13], which we abbreviate as
CSPT and by Waters [16], which we abbreviate as CCET (Constrained Cheapest Edge Tree),
generally have a lower time complexity than Constrained Steiner Trees, but their solutions are
not as efficient.

In the following sections, we concentrate on the solutions offered by Kompella (as being
representative of a very efficient, but high time complexity technique) and the techniques of
Waters and Sun and Langendoerfer, which, because they are based on variations of Dijkstra’s
shortest path algorithm and are of similar time-complexity, are good candidates for a hybrid
capable of combination with Dijkstra’s algorithm.

Figure 1: The example network

In the worked examples in the following description of these heuristics, we use the network
illustrated in Figure 1, the edges of which are labelled with (cost,delay). The arbitrary delay



bound is set to 7 in all cases. Kompella and Sun use a A of 8 since they find paths with a delay
less than A; the Waters heuristic uses a A of 7 because it finds paths with a delay less than or
equal to A. In each case, the worked example finds the multicast tree connecting source F to
the destinations A, B, E and H.

(Note that we consider symmetrical cost and delay in either direction on a link. This may
well not be the case in practical ATM networks, especially where the cost takes into account
residual bandwidth. For asymmetrically weighted networks, the heuristics would have to start
from a directed graph.)

3.1 The Constrained Steiner Tree (C'ST.) Heuristic (Kompella, Pasquale and
Polyzos)

The C'ST, algorithm was first published in [9] and has three main stages [8].

1. A closure graph (complete graph) of the delay-constrained cheapest paths between all
pairs of members of the multicast group is found. The method to do this involves stepping
through all the values of delay from 1 to A (assuming A takes an integer value) and,
for each of these delay values, using a similar technique to Floyd’s all-pairs shortest path
algorithm (see [5]).

2. A constrained spanning tree of the closure graph is found using a greedy algorithm. Two
alternative selection mechanisms are proposed, one based solely on cost, the other on cost
and delay. In our evaluation we use the more efficient of these (cost only) which selects
edges for the spanning tree using the function :-

C(v,w) if P(v) + D(v,w) <A
fo = :
00 otherwise
where C(v,w) is the cost of a constrained path from node v to node w, P(v) is the delay
from the multicast source to node v and D(v,w) is the delay on the path (v, w).

3. The edges of the spanning tree are then mapped back onto their paths in the original
graph. Finally any loops are removed by using a shortest paths algorithm on the expanded
constrained spanning tree [8].

(Note that if the arbitrary delay bound applied to the heuristic is very large compared to
delays in the network then the solutions produced will be similar to those calculated using
the Minimum Spanning Tree (MST) for the Steiner Tree Problem [7].)

3.1.1 A Worked Example

Applying the first stage of the heuristic to the network in Figure 1 produces the constrained
closure graph illustrated in Figure 2A. Again, all links are labelled (cost, delay). Note that this
graph need not be a complete graph so long as there are paths between every multicast node and
the source. Path AF includes node G, path HF includes E and path EF includes G. There is a
conflict between the paths HF and EF which will result in a loop occurring in the constrained
spanning tree. The other paths have no intermediate nodes.

Figure 2B shows the spanning tree obtained from the closure graph using the edge selection
function fc. Expansion of the spanning tree into their original paths results in a graph with a
loop (Figure 2C.) which when removed produces the solution in Figure 2D. This tree has a cost
of 29 units and a delay bound of 7.

3.1.2 Time Complexity of the CST_c Heuristic

The calculation of the constrained shortest paths during the first stage of the heuristic is the
most time consuming, with a complexity of O(An3), where n is the number of vertices in the



Figure 2: The CST_c heuristic

graph [5]. The second stage has a time complexity of O(m?) where m is the number of nodes
in the multicast group. Mapping the closure graph back onto the original graph has a time
complexity of O(mn). Loop removal using Dijkstra’s algorithm has a time complexity of at
most O(n?). This gives the algorithm an overall time complexity of O(An?). The effect of A on
the time complexity can be reduced by decreasing the granularity of A through scaling, although
this will compromise the accuracy of the results [18].

3.1.3 When CST_c costs more than a Shortest Path Tree

In most cases CST_c calculates multicast solutions that are cheaper than those produced by a
Shortest Path Tree algorithm (SPT), but it does sometimes generate more expensive solutions.
Figure 3 illustrates such a case. The underlying graph is not shown, but sufficient information is
given for the purposes of illustration. The multicast is from the source node, F, to the destination
nodes, B and D. The arbitrary delay bound is 12. The first stage of CST_c constructs a closure
graph from the cheapest constrained paths between the multicast nodes and the source in the
underlying graph. From the closure graph, CST_c selects the solution. In the example the
multicast solution selected will be the closure graph edges FB and FD at a cost of 22 and a
delay of 11. The final stage of CST_c maps the closure graph solution back onto the original
graph, providing the solution FA, AB and FC, CD. The SPT algorithm will select paths solely
on the basis of the delay from the source to each node. The solution SPT provides is FA, AB
and AD at a cost of 21 and delay 5. By chance the SPT has been able to take advantage of the
common edge FA, which was not available in the closure graph for CST c.

3.1.4 Multicast Tree Stability and Dynamic Groups

The topology of a CST_c multicast tree may be reconfigured as the tree grows or shrinks. The
second stage of the algorithm applies a greedy process to extract the solution from a closure
graph that comprises only the multicast nodes. If a node is added or removed from the multicast,
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Figure 3: CST_c more expensive than SPT

the closure graph changes, and so the greedy process has a different set of nodes to consider.
This may result in a multicast solution with a different topology from its predecessor.

3.2

The Constrained Cheapest Edge Tree (CCET) Heuristic (Waters)

The CCET heuristic was first published in [15] along with some simple preliminary evaluations.
In [16], important variations of the heuristic were introduced and comprehensively evaluated.

The original heuristic and its variant [2] were bound by either the broadcast delay or the
multicast delay. Here we extend the heuristics such that they are bound by an arbitrary delay,
A. The effect this has upon the heuristic is to vary the size of the search space for the multicast
tree in the second stage of the process (steps 4 and 5). The greater value A has, the larger the
search space becomes. The extended procedure for the CCET heuristic is as follows:

1.

Use an extended form of Dijkstra’s shortest path algorithm, to find for each v € V' — {s}
the minimum delay, dbv, from s to v. As the algorithm progresses keep a record of all the
dbv found so far, and build a matrix Delay such that Delay(v, k;) is the sum of the delays
on edges in a path from s to k;, whose final edge is (v, k;), for each k that is adjacent to v.

. The arbitrary delay bound is A. Set all elements in Delay(v, k) that are greater than A

to oo. The matrix Delay then represents the edges of a directed graph derived from G
which contains many possible solutions to a multicast tree rooted at s which satisfy the
delay constraint.

. Now construct the multicast tree T'. Start by setting 7' = ({s}, 0).

. Take v € Vp, with the maximum dbv, that is less than A, and join this to T. Where there

is a choice of paths which still offer a solution within the delay bound, choose at each stage
the cheapest edge leading to a connection to the tree.

. Include in Ep all the edges on the path (s,v) not already in Ep and include in Vi all the

nodes on the path (s,v) not already in V.

. Repeat steps 4 and 5 until V; =V, when the broadcast tree will have been built.

. Prune any unnecessary branches of the tree beyond the multicast recipients.
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Figure 4: The CCET heuristic

3.2.1 A Worked Example

To illustrate the working of the heuristic we start with the graph shown in Fig. 1. The bracketed
parameters for each link indicate (cost, delay). The example finds the multicast route from source
F to destinations A, B, E and H.

The application of the extended form of Dijkstra’s algorithm pruned to the arbitrary delay
bound A results in the directed graph shown in Fig. 4A where the parameters shown against
each link represent the edge cost and total delay from the source F to reach the node at the
end of that link. The multicast tree is then constructed starting with 7" = (F, (). First H is
connected to F using the path HE, EF. Node C is connected via the path CD, DE and then
node B is connected via path BA, AG, GF. Finally, the edges CD and DE are pruned to give
the multicast tree in Fig. 4B) with a cost of 27 units and a final delay bound of 7.

3.2.2 Time Complexity of the CCET Heuristic

The first stage, determining the directed graph, has the same time complexity as Dijkstra’s
algorithm, O(n?). The vertices can be put in delay bound order during the construction of the
directed graph.

In the second stage, building the multicast tree, requires a depth first search from each leaf node
to find a path to the source. As the multicast tree grows, the search space for each leaf to source
node path becomes smaller. The time complexity of the depth first search is O(maz(N, |E|) [6]
where N is the number of nodes, and F is the set of edges in the search tree from the leaf node
to the source. The values of N and |E| depend on the topology of the network, the position of
the multicast source node and the arbitrary delay bound. As the network edge density or the
arbitrary delay bound increase so do the values of N and |E|. In practice, an optimal upper
bound can be placed on the arbitrary delay to limit the values of N and |E|. See section 5.1,
which discusses the performance of the heuristic.

3.2.3 Pathological Behaviour of the CCET Heuristic

The heuristic’s first stage constructs a directed graph of paths between the multicast source
node and every other node that can be reached within the delay bound. The number of paths
between any node and the source offered by this graph depends on the delay bound and the
graph density. The higher either of these values is, the more paths are available. This graph
also contains rogue paths that exceed the delay bound because they include a high proportion
of alternative edges. The “cheapest” path in Figure 5 between node G and the source includes
three alternative edges GH, FB and CD with a delay of 22. If the arbitrary delay bound placed
on this multicast were 21 the “cheapest” path is a rogue and would not be detected until the
last link, DS, was added to the path, necessitating the finding of an alternative path from G
without this link.
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Figure 5: Example of a Rogue Path

In the second stage, the heuristic extracts the bounded delay minimal cost tree from the
bounded directed graph constructed in first stage. To do this, the heuristics start by constructing
a path between the node furthest from the source and the source node, that is within the delay
bound. If the arbitrary delay bound is the broadcast bound or less the path between the first
node selected and the source will be a minimum delay path, irrespective of cost. If the delay
bound is greater than the broadcast delay then this path is not necessarily a minimum delay
path. This first path becomes the trunk of the bounded delay minimal cost tree. The heuristics
then add the return paths from each node successively closer to the source until the tree is
complete. Two characteristics affect how paths join the existing tree:-

e Nodes closer to the source have a greater choice of paths back to the source because of the
slack between their shortest path delay to the source and the delay bound on the multicast.

e As the tree grows the probability of a path joining the tree at a node closer to itself than
the source increases.

The combination of these characteristics generally minimises the probability of loops occurring
during tree construction and minimises the number of rogue paths found, thus radically reducing
the portion of the search tree which is actually considered. When the tree is young and sparse
branches are likely to be close to their shortest paths to the source. As the tree grows, branches
are more likely to meet the existing tree sooner.

The necessity of repeatedly rejecting rogue paths (and thus increasing search time) may
apply to single cluster networks where the arbitrary delay bound is very much larger than the
network diameter and few edges are removed in the first stage of the heuristic. It may also apply
in multi-cluster networks and an example is given in [3].

3.2.4 When CCET costs increase

The CCET heuristic selects return paths on the basis of the “cheapest” exits from each node,
back towards the source, that do not violate the arbitrary delay bound A. In some networks this
rule can cause multicast trees found by the heuristic to be more expensive than might otherwise
be expected.

@3 @2
G
—= Shortest path. -~ - -= Alternative path.
Figure 6: Costs increase as A is relaxed. Figure 7: CCET more expensive than SPT.



The cost of multicast trees found using the CCET heuristics can increase when the arbitrary
delay bound is relaxed. Such a case is illustrated in Figure 6. With a delay bound of A = 5
the multicast tree will include the edges FC, FG and GH at a cost of 8 units. This happens
because the edge BH will have been excluded as it gives node H a delay of 8 units from the
multicast source node F. If A is increased to 8 the edge BH is included and will be selected as
the “cheapest” return route from node H towards F. The multicast tree then becomes FC, CB,
and BH at a cost of 9 units.

The cost of solutions found using Dijkstra’s shortest path algorithm can sometimes be
cheaper than those found using the Waters heuristic. The multicast tree found using Dijk-
stra’s algorithm for the network in Figure 7 includes the edges FB, FG and GH, the shortest
paths. The cost of this tree is 20 units. If the CCET heuristic is used to calculate the multicast
tree with an arbitrary delay bound of A = 6 the solution will include edges FB, FG, GA and
AH because AH offers the “cheapest” exit back to the source from node H. The cost of this tree
is 21 units.

Figure 8: Adding a single node to the tree

As CCET multicast trees grow, their cost difference from the corresponding SPT solution
will fluctuate. The addition of a single node to the multicast can cause the CCET solution to
change from being cheaper than the SPT to becoming more expensive. Figure 8 illustrates the
CCET and SPT solutions for a multicast. The multicast source is node F and the delay bound,
A, is greater than 26. In the first instance the multicast includes only node G. The SPT solution
will choose the route FA, AG to reach G at a cost of 13 units. CCET will choose the route FB,
BH, HG to reach G at a cost of 11 units. If the multicast grows by the addition of node A the
cost of the SPT solution will remain the same since A is already on the path to node G. The
CCET solution has to add the link BA, increasing the tree cost to 15, to reach node A.

3.2.5 Multicast Tree Stability and Dynamic Groups

The broadcast tree constructed by the CCET heuristic will be the same for all multicast groups
with the same multicast source and arbitrary delay bound. This occurs because the heuristic
constructs the broadcast tree using only the multicast source and the arbitrary delay bound.
The multicast tree is extracted from the broadcast tree by removing unwanted branches. This
means that in a dynamic environment where the multicast tree grows and dies, the broadcast
tree only need be recalculated if the topology of the underlying network changes.

3.2.6 Constrained Cheapest Path Tree (CCPT)

A variation on the Waters heuristic, proposed by Crawford [2] uses the cheapest path back to
the source rather than the cheapest edge leading to the existing tree as its selection mechanism.
The idea is similar to a variation developed independently by Salama [11]. We have included
the CCPT heuristic in the first of our evaluations, but as it generally produces more expensive
results than the CSPT heuristic described below, we did not include this in the majority of our
evaluations.



3.3 The Constrained Shortest Path Tree (C'SPT) Heuristic (Sun and Lan-
gendoerfer)

This algorithm has three steps.

1. Using Dijkstra’s shortest path algorithm compute a lowest cost spanning tree to as many
destination nodes in the multicast as is possible without any path breaking the arbitrary
delay bound, A.

2. Use Dijkstra’s algorithm to compute a shortest delay path tree to those multicast nodes
not reached in the previous step.

3. Combine the lowest cost spanning tree from the first step with the shortest delay path tree
from the second step making sure that the delay to any destination node does not break
the delay bound, A, and that all loops are removed.

3.3.1 A Worked Example

Figure 9: The CSPT heuristic

Applying the first step of the heuristic to the network in Figure 1 produces the minimum cost
path tree illustrated in Figure 9A. Node H is not included in this tree because its minimum cost
path has a delay of 8, which breaks the delay bound. Figure 9B is the shortest delay path tree
constructed only as far as node H, the multicast node not yet included in the solution. The
combination of the minimum cost path tree and the shortest delay path tree will create a loop
with nodes F,G and A. For this reason the edge F'A is selected in preference to edge GA to
give the final solution in Figure 9C. This tree has a cost of 31 units and a delay of 6. Loop
removal in the CSPT heuristic is much simpler than it is with the CST_c heuristic. Because
steps 1 and 2 both use Dijkstra’s algorithm to compute their trees, a loop occurs. The loop can
be avoided by selecting, from the loop’s downstream node, the shortest delay path tree branch
in preference to the minimum cost path branch. This will increase the tree cost, but prevents
violation of the delay bound. For example, Figure 10 illustrates how the lowest cost spanning
tree (A) and shortest delay path tree (B) when combined create a loop (C). By choosing the
path AB from the shortest delay path tree and ignoring the path EB from the minimum cost
path tree we obtain a loop free solution that does not violate the delay bound (D).

3.3.2 Time Complexity of the CSPT Heuristic

Each of the first two steps of the heuristic have the time complexity of Dijkstra’s algorithm,
which is at most O(n?). Because these two steps are independent of each other they can be
performed in parallel. The last step has a time complexity of O(n).

10
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Figure 10: Loop removal in the CSPT heuristic

3.3.3 When CSPT costs more than the SPT.

Figure 11: CSPT more expensive than SPT.

For the majority of multicasts, CSPT also calculates solutions that are cheaper than those
produced by Dijkstra’s SPT algorithm. As with CCET, there are also some cases where the cost
of solutions found using the SPT algorithm can be cheaper than those found using the CSPT
heuristic. In figure 11, for a delay bound greater than 8, to connect the multicast nodes A,G and
H to the source F, the CSPT heuristic will use the path AB, BF at cost 18 and path GH, HF
at cost 13 because they are the shortest paths based on cost between the multicast nodes and
the source. This results in a multicast tree of cost 31. The SPT algorithm based on delay will
choose the path AG, GH, HF at a cost of 21 to connect all the multicast nodes to the source.

3.3.4 Multicast Tree Stability and Dynamic Groups

As CSPT multicast trees grow, their topologies are prone to reconfiguration if the arbitrary
delay bound is less than the delay along the cheapest path to the new destination node. This
happens if the heuristic has to add the new node using a shortest delay path, which may require
the removal of a cheapest path from the existing tree. We propose a minor modification the
the CSPT heuristic which eliminates its instability. Instead of calculating a solution for the
multicast group, the calculation includes all nodes in the network, as is the case with the CCET
heuristic. The multicast tree is extracted from the broadcast tree calculated in this way. We
refer to the modified version of the CSPT as the stable CSPT, or sCSPT. The two techniques are
compared in [3]. For smaller multicast group sizes the original heuristic produces, on average,
more efficient solutions than sCSPT. As the multicast group size increases the performance of
the heuristics converges, as expected. The difference between the two techniques is small enough
to consider sCSPT as a valid alternative to CSPT in dynamic routing situations.

11



4 Evaluation Environment

Two network models are used to generate random networks in the evaluations described in this
paper. In most cases, and where not stated explicitly, the network models are single cluster
systems such as backbones or autonomous systems. These are generated using Waxman’s model
[17] which distributes nodes randomly over a rectangular co-ordinate grid. The Euclidean metric
is then used to determine the distance between each pair of nodes and this is used for the delay
metric. Edges are introduced with a probability depending on their length. We also use a factor,
introduced by Doar [4] related to the number of nodes in the networks, to scale the probability
of edges being included. The cost assigned to each edge is selected at random from the range
[1,,L] where L is the maximum distance between any two nodes.

We also use a cluster network (connecting a number of clusters via a backbone network) for
some of our evaluations, based on the hierarchical model of Doar [4]. The cluster interconnection
mechanism proposed by Doar means that the number of links connecting each cluster to the
cores is pre-defined and static. Our model is made more general by first generating a number of
cluster networks, then a “backbone” network is produced using a node to represent each cluster.
The “backbone” is then mapped back onto the clusters by connecting together nodes at random
from each cluster. Further details are given in [3].

4.1 Benchmark Algorithms and Arbitrary Delay Bounds

The ideal benchmark algorithm to use would be one that produces optimal delay bound minimum
cost multicast trees which, being an NP-complete problem, is impractical for large graphs.
Instead we use the Minimum Steiner Tree heuristic (M ST) of Gilbert and Pollack [7] which
approaches a minimum cost for multicast trees, although they are of unbound delay. We also
use the SPT as a benchmark to evaluate the cost savings made by using the various heuristics.

We chose the network diameter as the arbitrary delay bound for the evaluation of the mul-
ticast algorithms. This purely arbitrary choice provides an evaluation “mid-point” between
the multicast delay, which is the tightest bound and the MST which is the delay at which the
maximum improvement in network utilisation for each heuristic will be achieved.

5 Evaluation of the Candidate Heuristics

Within this section, the following acronyms are used.

CSTc Constrained Steiner Tree (Kompella, Pasquale and Polyzos)
CSPT Constrained Shortest Path Trees (Sun and Langendoerfer)
CCET Constrained Cheapest Edge Tree (Waters)

CCPT Constrained Cheapest Path Tree (Crawford)

SPT Shortest Path Tree (Dijkstra)

MST Minimum Steiner Tree (Gilbert and Pollack)

5.1 Performance averages

For each evaluation, 200 networks of 100 nodes of low edge density were used. Multicast groups
were selected for sizes from 5 to 95 nodes, at steps of 5. There were 10 multicast samples for
each multicast group size, for each network.

Figure 12 illustrates the percentage excess costs of using the four heuristics described above,
relative to the M ST and SPT benchmarks. For the C'ST, heuristic we use a granularity of A/5
to step through possible delay values (see Section 3.1).

The algorithm of CST, generates multicast solutions that are on average cheaper than the
other heuristics although, as the size of the multicast group size increases, the CC ET heuristic’s
solutions become cheaper than those of C'ST,.. The performance of the CC ET heuristic is much
better than CSPT and C'CPT for larger multicasts, but is worse for smaller multicasts. The
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Figure 12: Average comparative costs Figure 13: CCET excess costs as A increases

CCPT heuristic shows poor performance in comparison with that of C'SPT. The solutions of
CSPT and CCPT are similar because they are tightly constrained through their construction of
paths using Dijkstra’s SPT algorithm. CCPT is not considered further in this paper. Although
CCET uses an extension of the SPT algorithm to construct its search space, it is not constrained
by the algorithm when finding its solution. Rather, it relies on the chances of the selected
edges leading to existing paths in the solution tree. This approach can result in small multicast
solutions being relatively expensive, while large multicasts solutions are generally much cheaper.

We have observed that as the delay bound approaches the M ST delay, improvements in
solution efficiency of the CCET heuristic become negligible. (See figure 13 which plots the
percentage excess cost achieved over MST for five different delay bounds, where D3 = 3*network
diameter; B3 = 3*broadcast delay from the source.) Up to these delay bound limits the number
of nodes visited during the tree search in the heuristic’s second stage is < O(2n), by observation,
where n is the number of nodes in the network. If the delay bound goes much beyond these
limits the heuristic is occasionally prone to very long execution periods which suggests that
either the number of nodes or the number of edges in the search tree can become unacceptably
large. (See the discussion in section 3.2.2.)

5.2 Specific multicast comparisons
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Figure 14: Exceptional comparative costs Figure 15: Cost distributions

The C'SPT heuristic is generally better for smaller multicast group sizes, while the CCET
heuristic is more suited to larger multicasts, although this is not always the case. Figure 14
illustrates a sample of the percentage of times CCET solutions are more expensive than those
of CSPT, CSPT solutions are more expensive than CCET, and when the solutions of both
CSPT and CCET are more expensive than the SPT. On average, the graph shows the expected
results where CCET is cheaper for large groups and CSPT is cheaper for smaller groups. In
nearly 5% of the sample, for multicast groups of 95 nodes, the solutions generated by CCET were
more expensive than those generated by CSPT. Similarly, in 7% of the sample, for multicast
groups of 5 nodes, the solutions generated by C'SPT were more expensive than those generated
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by CCET. For smaller multicast groups sizes, both C'SPT and CCET generated some solutions
that were more expensive than the SPT solutions. For larger multicasts C'SPT still generates
some solutions that are more expensive than SPT', while CCET does not. Figure 15 indicates
just how large and varied these differences can be. The graph for C'SPT plots the percentage
cost savings of CSPT over CCET for small multicasts. While the majority of C'SPT solutions
are up to 69% cheaper, some can be up to 65% more expensive. Similarly, for CCET the
majority of larger multicasts are up to 33% cheaper than CSPT, although some can be as much
as 11% more expensive. This behaviour shows, as might be expected from our analysis, that
the solutions each heuristic generates depend on the algorithm, the topology of the network and
the topology of the multicast. There is also a wide variance in the cost of solutions between the
heuristics for the same size multicasts.

6 Hybrid Approach to Multicast Routing Heuristics

We conclude from our analysis and evaluation work that none of the heuristics we have considered
can provide the “cheapest” multicast solutions in all networks for all sizes of multicast groups.
They either take too long to find their solutions or are vulnerable to generating unacceptable
solutions that depend on the network topology and/or the multicast topology. We propose
that by combining heuristics of acceptable time complexity that can be efficiently integrated,
the resulting hybrid will generate solutions that are predominantly cheaper than SPT's for all
network topologies, for all multicast group sizes.

CST, on average generates good solutions but has an order of time complexity which may
be too high for practical use. Also its calculation is based upon a variant of Floyd’s All Pair
Shortest Paths algorithm [5], making it unsuitable for integration with the other heuristics. We
discard CC'PT because of its poor overall performance.

The CCET and CSPT heuristics generate the majority of their most efficient multicast
solutions at opposite ends of the multicast group size range, and both base their calculations on
trees generated by the SPT algorithm. Individually, each is vulnerable to generating some inef-
ficient solutions throughout the full range of multicasts, but rarely will both heuristics generate
an inefficient solution for the same network/multicast group pair. We combine the CCET and
CSPT heuristics to obtain a hybrid of acceptable time complexity that produces solutions of
significantly improved efficiency over SPT's. The hybrid will select the “cheapest” tree provided
by each of these heuristics as the multicast solution. To guarantee maximum efficiency the SPT
algorithm is also included in the hybrid to cater for the rare instances where both C'SPT and
CCET produce solutions that are more expensive than the SPT. The CCET function, within
the hybrid, must place a maximum limit on the delay bound it uses to calculate its multicast
solution in order to limit its execution time, as previously suggested. This maximum value does
not apply to the C'SPT function.

Integration of the three heuristics is simple. All three calculate the shortest path tree for
delay, which is extended for the second stage of the C'C ET heuristic. The C'SPT heuristic also
calculates the SPT shortest path tree for cost, a task which can be conducted concurrently with
the delay calculation. Once the trees have been obtained for each method their costs can be
easily calculated and the cheapest tree selected as the solution.

The time complexity of the hybrid is dominated by the CCET function. The first stage of
this function has time complexity of at most O(n?). The second stage, the construction of the
broadcast tree, has a time complexity of O(maz(N,|E|)). In practice, the time taken by this
stage is limited by maximum value on the delay bound it uses, as discussed in Section 3.2 and
observed in Section 5. The C'SPT and SPT functions have a time complexity of O(n?).

7 Evaluation of the Hybrid Heuristic

Figure 16 illustrates the cost performance of the hybrid heuristic in comparison to CCET and
CSPT. The hybrid outperforms or equals both CCET and CSPT'. 1t is interesting to note that
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Figure 16: Average comparative costs Figure 17: Cost distribution

for mid-sized multicasts the hybrid is able to provide solutions that are better than either C'SPT
or CCET can do separately. This occurs because the hybrid is able to choose the most efficient
heuristic for each particular multicast. The efficiency of hybrid solutions for small multicasts
is still subject to a fairly wide variance as figure 17 shows. These graphs plot the cost savings
distributions of the hybrid over SPT for multicast group sizes of 5, 50 and 95 respectively. The
dominance of C'SPT for small multicast groups and CCET for large multicasts is obvious, as
is the narrow but sharp intervention of SPT when required.
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Figure 18: Multicast bound; single cluster Figure 19: Multicast bound; multi-cluster

Figures 18 and 19 show the performance of the heuristics at the tightest possible delay bound,
the delay to the furthest member of the multicast group. Figure 18 is plotted for a single cluster
network and Figure 19 is a two-level hierarchy with clusters connected by a backbone. Results
are similar for both hierarchical and non-hierarchical networks and the improved performance
of the hybrid is confirmed. Note that, within this tight delay bound, the CSPT gives much
smoother performance across the range of multicast group sizes and it is hard to achieve a very
efficient solution for the smaller groups. The hybrid reflects this situation.

7.1 Distribution of path delays

By aggregating paths between the multicast source and multicast destinations, extra delay is
introduced along some of the paths in the multicast tree. The closer a destination node is to
the source, the greater is the chance of its source-destination path being aggregated with a
longer path to a more distant node. This does not present any problems for the solutions to the
multicast problem addressed in this paper, since the arbitrary delay bound is not violated by
the extra delay introduced. Nor does the extra delay imply that data remains in the network
any longer than it would otherwise do. The very purpose of the aggregation of paths is to
reduce the replication of data across the multicast tree, without violating the arbitrary delay
bound. Figures 20 and 21 illustrate the distribution of path delays across all 5 node multicast
groups, and all multicast groups, respectively. The delay (the x-axis) is normalised against the
arbitrary delay bound, while the number of occurrences is the actual number of paths of each
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length for all the multicasts. There is little difference in the shape of the distributions for the
5 node multicasts and all the multicasts. We deduce from this that the distribution holds for
all multicast group sizes. As expected, the distribution shows that the paths produced by the
shortest path tree algorithm have lower delays. In both cases, different delays will be perceived
by different recipients. It is not practical to take remedial action in the network to equalise the
delays (e.g. by buffering cells at the switches or taking slower paths). Where it is necessary to
play information back at the same time, buffering must be provided in the destination stations.
In this case, on average, less total buffer storage will be required for the hybrid than if the
shortest path tree algorihtm is used.

8 Conclusions and Further Research

We have identified problems of time complexity and performance variability in heuristics that
have been proposed to calculate low-cost multicast trees that are bound by an arbitrary delay.
By combining appropriate heuristics we propose a hybrid that produces efficient solutions over
all multicast group sizes within an acceptable order of time complexity.

The hybrid heuristic uses metrics for every link in a network to perform its route calculation
and so is amenable for implementation in link-state routing protocols such as the Internet’s
Multicast Open Shortest Path First protocol[10] or that used by the ATM Forum’s Private
Network-Network Interface [14]. The MBone currently uses Distance Vector routing, and may
use the Resource Reservation protocol (RSVP) which reserves the requisite resources; this ap-
proach does not attempt to reduce the overall cost of the tree. Optimising the cost of the tree for
the MBone would involve a move to a link-state approach. The evaluations of the hybrid have
included both flat and hierarchical networks over a range of group sizes and using an “average”
and a tight delay bound. The hybrid is shown to perform well under all these circumstances.
The multicast tree produced by the hybrid reduces the total network bandwidth required to
support multicast transmission. We have also shown, in our study of path delay distribution,
that less buffering will be needed in the destinations using the hybrid than when using SPT,
where it is necessary to play back the information at the same time at all recipients.

Note that the hybrid, in common with CSTc¢ (Kompella) will sometimes involve reconfig-
uration of the multicast tree where group membership is dynamic. Where it is particularly
important to have a stable tree, which can be pruned and regrow branches, we suggest the use
of the constituent heuristics: CCET (Waters) for large groups relative to the size of the network
and the broadcast and prune version of CSPT (Sun) which we propose in Section 3.3.4.

An important result of this work, and a departure from current routing solutions, is the
integration of several heuristics which are individually unstable (as might be expected in an
heuristic approach) into a stable hybrid. Hybrid methods may also have an application in other
multicast or load sharing route calculation algorithms.

Further work is needed to evaluate the effect of using the heuristics within individual networks
which form part of a larger internet.
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