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Resolving Non-determinism in Choreographies ?
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Abstract. Resolving non-deterministic choices of choreographies is a crucial
task. We introduce a novel notion of realisability for choreographies –called
whole-spectrum implementation– that rules out deterministic implementations of
roles that, no matter which context they are placed in, will never follow one of the
branches of a non-deterministic choice. We show that, under some conditions, it
is decidable whether an implementation is whole-spectrum. As a case study, we
analyse the POP protocol under the lens of whole-spectrum implementation.

1 Introduction

The context A choreography describes the expected interactions of a system in terms
of the message exchanged between its components (aka roles):

“Using the Web Services Choreography specification, a contract containing a global definition of
the common ordering conditions and constraints under which messages are exchanged, is produced
[...]. Each party can then use the global definition to build and test solutions that conform to it. The
global specification is in turn realised by combination of the resulting local systems [...]”

The first part of the excerpt above taken from Kavantzas et al. [2004] envisages a chore-
ography as a global contract regulating the exchange of messages; the last part identifies
a distinctive element of choreographies: the global definition can be used to check the
conformance of local components so to (correctly) realise the global contract. Chore-
ographies allows for the combination of independently developed distributed compo-
nents (e.g., services) while hiding implementation details. Moreover, the communica-
tion pattern specified in the choreography suffices to check each component.

For illustration, take a simple choreography, hereafter called ATM, involving the
cash machine of a bank B and a customer C depicted as either of the following diagrams:

deposit

overdraft

C B

ok

ko

amount

amount

login loginC --> B

depositC --> B
overdraftC --> B

aumountC --> B

okB --> C

aumountC --> B

koB --> C

In the diagram on the
left, the doubly stroked
lines represent choices
and the dashed lines con-
nect interactions with the
branches where they oc-
cur. On the right, ATM
is expressed in terms of
the conversation proto-
cols of Fu et al. [2005].
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After successful authentication, B offers a deposit and an overdraft service to C. When
opting for a deposit, C indicates the amount of money to be deposited. If C asks to
overdraft then B can either grant or deny it; in the former case C will communicate the
amount of money required.

On realisations A set of processes is a realisation of a choreography when the be-
haviour emerging from their concurrent execution matches the behaviour specified by
the choreography. A choreography is realisable when it has a realisation.

A realisation of ATM can be given using two CCS-like processes Milner [1989]
(augmented with internal ⊕ and external + choice operators) for roles B and C:

TB = login.(deposit.amount + overdraft.(ok.amount ⊕ ko))

TC = login.(deposit.amount ⊕ overdraft.(ok.amount + ko))

In words, TB specifies that, after C logs in, B waits to interact either on deposit or
on overdraft; in the latter case, B non-deterministically decides whether to grant or
deny the overdraft; TC is the dual of TB. Note that ATM uses non-determinism to avoid
specifying the criteria for B to grant or deny an overdraft. The use of non-determinism
is also reflected in realisations, in fact TB uses the internal choice operator ⊕ to model
the reaction when C requests an overdraft.

Choreographies can be interpreted either as constraints or as obligations of dis-
tributed interactions Lohmann and Wolf [2011]. The former interpretation (aka par-
tial Lohmann and Wolf [2011] or weak Su et al. [2007]) admits a realisation if it exhibits
a subset of the behaviour. For instance, take

T ′B = login.(deposit.amount + overdraft.ko)

then T ′B and TC form a partial realisation of ATM where requests of overdraft are con-
sistently denied. On the contrary, when interpreting choreographies as obligations, a
realisation is admissible if it is able to exhibit all interaction sequences (hence such re-
alisations are also referred to as complete realisations Lohmann and Wolf [2011]). For
instance, TB and TC form a complete realisation of ATM.

The problem Choreographies typically yield non-deterministic specifications; here we
explore the problem of resolving their non-determinism. In fact, despite being a valu-
able abstraction mechanism, non-determinism has to be implemented using determin-
istic constructs such as conditional branch statements.

Using again ATM, we illustrate that traditional notions of complete realisation are
not fully satisfactory. The non-deterministic choice in TB abstracts away from the actual
conditions used in implementations to resolve the choice. This permits, e.g., different
banks to adopt different policies depending, for instance, on the type of the clients’
accounts. Consider the (deterministic) implementations B1 and B2 of TB below (for
brevity, each name refers to the interaction of ATM with the same initial):

Bi ::= l(c); (d(); a(x);Q+ o();Pi(c)) for i = 1, 2 (Q is immaterial)
P1(c) ::= if check(c) : ok.a(x) else ko and P2(c) ::= ko



The expression check(c) in P1 deterministically discriminates if the overdraft should
be granted. Clearly both B1 and B2 can be used as implementations of TB in partial re-
alisations of the choreography.4 (as e.g. in Dezani-Ciancaglini and de’ Liguoro [2009]).

Conversely, neitherB1 norB2 can be used in a complete realisation. This is straight-
forward for B2 (unable to interact over ok after receiving an overdraft request), but
not so evident for B1. Depending on the credentials c sent by the customer to login,
check(c) will evaluate either to true or to false. Therefore, B2 will be unable to
exhibit both branches. This will be the case for any possible deterministic implementa-
tion of ATM: only one branch will be matched. Consequently, there is not a complete,
deterministic realisation for ATM.

We prefer B1 to B2 arguing that they are not equally appealing when interpreting
choreographies as obligations. In fact, B2 consistently precludes one of the alternatives
while B1 guarantees only one or the other alternative (provided that check is not the
constant map) depending on the deterministic implementation of the role TC.

Contributions and synopsis We introduce whole-spectrum implementation (WSI), a
new interpretation of choreographies as interaction obligations. A WSI of a role R guar-
antees that, whenever the choreography allows R to make an internal choice, there is
a context (i.e., an implementation of the remaining roles) for which (the implementa-
tion of) R chooses such alternative. We illustrate the use of WSI to analyse the POP2
protocol (i.e., choreography § 2.2, implementation § 3.1, and verification § 5.1).

We develop our results in a behavioural typing framework since types directly re-
late specifications to implementations, but our results can be established in different
contexts (c.f. Appendix F). Our technical contributions are a formalisation of WSI and
a sound type system that guarantees that typable processes form WSIs. For instance,
our type system validates B1 against TB while it discards B2. Typing is decidable if so
is the logic expressing internal conditions. We relate a denotational semantics of global
types (featuring optional behaviours) to the operational semantics of local types (c.f.
Thm. 3). Finally, the strong connection between local types and processes ensures that
well-typed processes enjoy whole-spectrum implementability (c.f. Thm. 4).

2 Global and Local Types

Our types elaborate from Lange and Tuosto [2012] and use a more tractable form of
iteration (discussed below). We fix a countably infinite set C of (session channel) names
ranged over by u, y, s, . . . and a countably infinite set P of (participants) roles ranged
over by p, q, r, . . . (with C ∩ P = ∅). Basic data types, called sorts, (e.g., booleans
Bool, integers Int, strings Str, record types, etc.) are assumed; U ranges over sorts.

Tuples are written in bold font and, abusing notation, we use them to represent their
underlying set (e.g., if y = (y1, y2, y3), we write y2 ∈ y for y2 ∈ {y1, y2, y3}). Let #X
denote the cardinality of a set X . Write { / } for substitutions and in {y/s} assume
that s and y have the same length, that the components of y are pairwise disjoint, and
that the i-th element of y is replaced by the i-th element of s.

4 For instance, both B1 and B2 type-check against TB considered as a session type due to the fact that
subtyping for session types Gay and Hole [2005] is contra-variant with respect to internal choices (and
covariant with respect to external choices).



2.1 Types

A global type term (GTT, for short) G is derived by the following grammar:

G ::= p→ q : y 〈U〉
∣∣ G+ G

∣∣ G | G
∣∣ G; G

∣∣ G
∗f ∣∣ end

In words, a GTT can either be a single interaction, the non-deterministic ( + ), parallel
( | ), or sequential ( ; ) composition of two GTTs, the iteration of a GTT ( ∗ ), or the
empty term. Hereafter, we tacitly assume p 6= q in any interaction p → q : y 〈U〉. As
in Castagna et al. [2012], we adopt a form of iteration to statically check for WSI (see
§ 4); in G∗

f

, f injectively maps roles in G to pairs of channels and sorts; i.e., f(p) = y〈U〉
is used to notify p ∈ G when the iteration ends. We use cod(f) to denote the set of
channels appearing as first component in the image of f .

For a GTT G, ch(G) ⊆ C are the names, P(G) are the participants, and fst(G) are
the initially enabled input and output actions of each each participant in G; e.g., in

Gf = p→ q : y 〈U〉; q→ s : z 〈U〉 (2.1)

ch(Gf) = {y, z}, P(Gf) = {p, q, s}, and fst(Gf) = {(p, y), (q, y), (s, z)}. Formal
definitions of such maps are standard and relegated in Appendix A.

A global type is defined by an equation G(y) 4= G where y ⊆ C are pairwise distinct
names and ch(G) ⊆ y. The syntax of global types explicitly mentions names as they
are needed when typing processes to check if they form a WSI (c.f. § 5). We write G(y)
when the defining equation of a global type is understood or its corresponding GTT is
immaterial; we write G or G instead of G(y) when parameters are understood.

GTTs are taken up to structural congruence, defined as the smallest congruence
≡ such that ; , | , and + form a monoid with identity end and | and +

are commutative. Two global types G1(y1)
4
= G1 and G2(y2)

4
= G2 are structurally

equivalent when G1 ≡ G2{y2/y1}, in which case we write G1 ≡ G2.
We define the set of ready participants of G as follows.

rdy(p→ q : y 〈U〉) = {p} rdy(G+ G′) = rdy(G | G′) = rdy(G) ∪ rdy(G′) rdy(end) = ∅
rdy(G; G′) = rdy(G), if rdy(G) 6= ∅ rdy(G; G′) = rdy(G′), if rdy(G) = ∅ G∗

f

= rdy(G)

(note that for the GTT (2.1) rdy(Gf) = {p}). We extend P( ) and rdy( ) to global

types G(y) 4= G by defining P(G) = P(G) and rdy(G) = rdy(G).
As customary in session types, we restrict the attention to well-formed global types

in order to rule out specifications that cannot be implemented distributively. A global
type is well-formed when it enjoys the following properties: linearity, single threadness,
single selector Honda et al. [2008], knowledge of choice Castagna et al. [2012], Honda
et al. [2008], and single iteration controller. All but the last condition are standard.
The last condition is specific to our form of iteration; informally, it requires that in
each interation there is a unique participant that decides when to exit the loop (see
Appendix B for its definition).

A local type term (LTT for short) T is derived by the following grammar:

T ::=
⊕
i∈I

yi!Ui; Ti
∣∣ ∑
i∈I

yi?Ui; Ti
∣∣ T1; T2

∣∣ T
∗ ∣∣ end



An LTT is either an internal (
⊕

) or external (
∑

) guarded choice, the sequential com-
position of LTTs ; , an iteration ∗, or the empty term end. The set ch(T) of channels
of T is standard (see Appendix A).

A local type is defined by an equation T (y) 4= T where y are pairwise distinct
names and ch(T) ⊆ y. Hereafter, we write T (y) when the defining equation of a local
type is understood or its corresponding LTT is immaterial; we may write T or T instead
of T (y) when parameters are understood. We overload ≡ to denote the structural con-
gruence over local types defined as the least congruence such that internal and external
choice are associative, commutative and have end as identity, while ; is associative.
In the following, we consider types up-to structural congruence.

The projection operation extracts the local types from a global type. For a well-
formed GTT G and r ∈ P, G� r is the projection of G on r and it is defined homomor-
phically on ⊕ , + , and ; and as follows on the remaining constructs:

G�r =



y!U ( resp. y?U) if G = r→ p : y 〈U〉 ( resp. if G = p→ r : y 〈U〉)
Gi�r if G = G1 | G2 and r 6∈ P(Gj) with j 6= i ∈ {1, 2}
(G1�r)∗; b1!U1; . . . ; bn!Un if G = G∗

f

1 , cod(f) = {b1〈U1〉, . . . , bn〈Un〉}, and r ∈ rdy(G1)

(G1�r)∗; b?U if G = G∗
f

1 , f(r) = b〈U〉, and r 6∈ rdy(G1)

end if G = p→ q : y 〈U〉 and r 6= p, q or if G = end

end if G = G∗
f

1 and r 6∈ P(G1) or f(r) is undefined

Our projection is total on well-formed global types. All but the clauses for the projec-
tions of iteration in the definition of � are straightforward (c.f. Honda et al. [2008]).
Each iteration has a unique participant r ∈ rdy(G1) (by well-formedness) dictating
when to stop the iteration, and a number of ‘passive’ participants. Projection sends
messages from r to each passive participant to signal the termination of the iteration.

The projection G(y) � r of a global type G(y) 4= G with respect to r is a local type

T (y) 4= T where T = G�r.

Example 1. Let G = G∗
f

f , with Gf defined in (2.1), f(q) = b1〈U1〉 and f(s) = b2〈U2〉.
Then, the projections of G are

G�p = (y!U)∗; b1!U1; b2!U2 G�q = (y?U; z!U)∗; b1?U1 G�s = (z?U)∗; b2?U2

2.2 Running example
We illustrate our approach on a real yet tractable protocol, the Post Office Protocol -
Version 2 (POP2) Butler et al. [1985] between a client and a mail server. We describe
POP2 with the following choreography where GEXIT=S→ C : BYE 〈〉:

GPOP = C→ S : QUIT 〈〉; GEXIT + C→ S : HELO 〈Str〉; GMBOX
GMBOX = S→ C : R 〈Int〉; GNMBR + S→ C : E 〈〉; GEXIT
GNMBR = (C→ S : FOLD 〈Str〉; S→ C : R 〈Int〉

+ C→ S : READ 〈Int〉; S→ C : R 〈Int〉; GSIZE)∗S 7→QUIT〈〉; GEXIT
GSIZE = (C→ S : RETR 〈〉; S→ C : MSG 〈Data〉.GXFER

+C→ S : READ 〈Int〉; S→ C : R 〈Int〉)∗S 7→FOLD〈Str〉; S→ C : R 〈Int〉
GXFER = C→ S : ACKS 〈〉; S→ C : R 〈Int〉+ C→ S : ACKD 〈〉; S→ C : R 〈Int〉

+C→ S : NACK 〈〉; S→ C : R 〈Int〉

The protocol GPOP starts with C sending S either an empty message along channel QUIT
to quit the session, or a string on channel HELO representing C’s password. In the first
case, the protocol ends as per GEXIT while in the latter case the GMBOX is executed.



In GMBOX, the server S either sends the number of messages in the default mailbox or
it signals an error and ends the session as per GEXIT. In the former case, GNMBR establishes
that C repeatedly asks either (a) to enter a folder (sending the folder’s name on FOLD) and
then receiving back the number of messages in that folder, or (b) to request a message
by sending its index along READ and then receiving back the length of the message.
In case (a), the loop is immediately repeated after S’s reply, in case (b) the protocol
continues as GSIZE where another loop starts with C either (a) retrieving the message
or (b) asking for another message (by interacting again on READ). For (a), C signals
on RETR that it is ready to receive data that are sent by S on MSG (sort Data abstracts
away the format of messages specified in Crocker [1982]); after these interactions the
choreography continues as GXFER where the transmission is acknowledged by C with
the interactions in GXFER: ACKS keeps the message in the mailbox, ACKD deletes the
message, NACK notifies that the message has not been received and must be kept in the
mailbox; after any acknowledgement, S sends C the length of the next message. After
some iterations in GSIZE, C specifies a different folder and repeats GNMBR.

The projection TS = GPOP�S of GPOP onto the server is below; GPOP�C is dual.

TS = QUIT?; TEXIT
+ HELO?Str; TMBOX

TMBOX = R!Int; TNMBR ⊕ E!; TEXIT
TEXIT = BYE!

TNMBR = (FOLD?Str; R!Int+ READ?Int; R!Int; TSIZE)∗;
QUIT?; TEXIT

TSIZE = (RETR?; MSG!Data; TXFER + READ?Int; R!Int)∗;
FOLD?Str; R!int

TXFER = ACKS?; R!Int+ ACKD?; R!Int+ NACK?; R!Int

The messages in TS are as in GPOP and S iterates until C’s signals on QUIT or on FOLD.
In Ex. 2 we present, for illustrative purpose, a multiparty variant of GPOP where the

authentication is outsourced.

Example 2. A multiparty variant of POP2 is given by G′POP below where S uses a third-
party authentication service A:

G′POP = C→ S : QUIT 〈〉; GEXIT + C→ S : HELO 〈Str〉; G′MBOX
G′MBOX = S→ A : REQ 〈Str〉; A→ S : RES 〈Bool〉;

S→ C : R 〈Int〉; GNMBR + S→ C : E 〈〉; GEXIT

where, on RES, A sends the result of the authentication of C (GNMBR and GEXIT remain
unchanged). The projection of G′POP on S is

T′S = QUIT?; TEXIT + HELO?Str; TAUTH
TAUTH = REC!Str; RES?Bool; T′MBOX T′MBOX = R!Int; TNMBR + E!; TEXIT

�

2.3 Behaviour of types

The semantics of local types is given in terms of specifications, namely pairs of par-
tial functions Γ and ∆ such that Γ maps session names to global types and names to
sorts, and ∆ maps tuples of session names to local types. We use Γ • ∆ to denote a
specification and adopt the usual syntactic notations for environments:

Γ ::= ∅
∣∣ Γ, u : G

∣∣ Γ, x : U ∆ ::= ∅
∣∣ ∆, s : T

as usual, when writing ∆, s : T , s 6∈ dom(∆) is implicitly assumed (likewise for
Γ, : ) and ∆1, ∆2 ≡ ∆2, ∆1.

The semantics of specifications is generated by the rules in Fig. 1 using the labels

α ::= uns | uis | sv | sv | τ (2.3)



Γ (u)≡G(y)

Γ •∆ uny→ Γ •∆,y : G(y)�0
[TReq]

Γ (u)≡G(y)

Γ •∆ uiy→ Γ •∆,y : G(y)�i
[TAcc]

v : Uj sj ∈ s j ∈ I

Γ •∆, s :
⊕
i∈I

si!Ui; Ti
sjv→ Γ •∆, s : Tj

[TSend]
v : Uj sj ∈ s j ∈ I

Γ •∆, s :
∑
i∈I

si?Ui; Ti
sjv→ Γ •∆, s : Tj

[TRec]

Γ •∆, s : T α−→ Γ •∆, s : T ′

Γ •∆, s : T ; T ′′ α−→ Γ •∆, s : T ′; T ′′
[TSeq]

Γ •∆1
τ→ Γ •∆′1

Γ •∆1,∆2
τ→ Γ •∆′1,∆2

[TPar]

Γ •∆, s : T ∗ τ→ Γ •∆, s : end[TLoop1] Γ •∆, s : T ∗ τ→ Γ •∆, s : T ; T ∗[TLoop2]

Fig. 1. Labelled transitions for specifications

that respectively represent the request on u for the initialisation of a session among
n + 1 roles, the acceptance of joining a session of u as the i-th role, the sending of a
value on s, the reception of a value on s, and the silent step.

Intuitively, the rules of Fig. 1 specify how a single participant behaves in a session
s and are instrumental for type checking processes. Rules [TReq] and [TAcc] allow a
specification to initiate a new session by projecting (on 0 and i, resp.) the global type
associated5 to name u in Γ . By [TSend], if types are respected, a specification can send
any value on one of the names in a branch of an internal choice. Dually, [TRec] accounts
for the reception of a value. Note that values occur only on the label of the transitions
and are not instantiated in the local types. Rule [TSeq] is trivial. Rule [TPar] allows part
of a specification to make a transition. Finally, an iterative local type can either stop by
rule [TLoop1] or arbitrarily repeat itself by rule [TLoop2].

3 Processes and Systems

As we will see (Def. 1 in § 4), global types are implemented by systems. Our systems
exchange values specified by expressions having the following syntax:

e ::= x | v | e1 op e2 ` ::= [e1, . . . , en] | e1..e2

An expression e is either a variable, or a value, or else the composition of expres-
sions (we assume that expressions are implicitly sorted and do not include names). Lists
[e1, . . . , en] and numerical ranges e1..e2 are used for iteration; in the former case, all
the items of a list have the same sort, in the latter case, both expressions are integers and
the value of e1 is smaller than or equal to the value of e2. The empty list is denoted as
ε and the operations hd(`) and tl(`) respectively return the head and tail of ` (defined
as usual). We write var(e) and var(`) for the set of variables of e and `.

The syntax of processes and systems below relies on queues of basic values M and
input-guarded non-deterministic sequential process N , respectively defined as

M ::= ∅
∣∣ v ·M N ::=

∑
i∈I

yi(xi);Pi

5 The use of ≡ in the premises caters for α-conversion of names y. Also, P is the set of natural numbers (0
is the initiator of sessions) and for readability, in examples we use names to denote participants.



where i 6= j ∈ I =⇒ yi 6= yj ; we define 0
4
=
∑
i∈∅

yi(xi);Pi.

The syntax of systems S and processes P is

P,Q ::= ui(y).P
∣∣ un(y).P ∣∣ N ∣∣ se ∣∣ if e : P else Q

| P ;P
∣∣ for x in ` : P

∣∣ do N until b(x)

S ::= P
∣∣ (νs)S

∣∣ S | S ∣∣ s :M
All constructions but loops are straightforward. In for x in ` : P , the body P is exe-

cuted for each element in `, while do N until b(x) repeats N until a message on b is
received. Intuitively, the former construct is executed by the (unique) role that decides
when to exit the iteration while the latter construct is used by the “passive” roles in
the loop (see § 2.1 and § 5). Given a process P , fv(P ) denotes the set of all variables
appearing outside the scope of input prefixes in P . Also, we extend var( ) to systems in
the obvious way. In (νs)S, names s are bound (the set fc(S) of free session names of
S is defined as expected); a system S is closed when fc(S) = ∅ and it is initial when
S does not contain runtime constructs, namely new session (νs)S′ and queues s : M .
Formally, S is initial iff for each s and S′, if S ≡ (νs)S′ then s 6⊆ fc(S′).

The structural congruence ≡ is the least congruence over systems closed with re-
spect to α-conversion, such that | and + are associative, commutative and have 0
as identity, ; is associative and has 0 as identity, and the following axioms hold:

(νs)0 ≡ 0 (νs)(νs′)S ≡ (νs′)(νs)S (νs)(S | S′) ≡ S | (νs)S′, when s 6⊆ fc(S)

The operational semantics of systems is in Fig. 2 where a store σ records the values
assigned to variables, e ↓ σ is the evaluation of e (defined if var(e) ⊆ dom(σ) and
undefined otherwise), and σ[x 7→ v] is the update of σ at x with v. Labels are obtained
by extending the grammar in (2.3) with the production α ::= e ` αwhere e is a boolean
expression used in conditional transitions 〈S, σ〉 e`α−−→ 〈S′, σ′〉 representing the fact that
〈S, σ〉 has an α-transition to 〈S′, σ′〉 provided that e ↓ σ actually holds. We may write
α instead of true ` α and e ∧ e′ ` α instead of e ` (e′ ` α).

We comment on the rules in Fig. 2 where fc(α) is defined as fc(uns) = fc(uis) =
{u}, fc(sv) = fc(sv) = {s}, and fc(τ) = ∅. Rules [SReq] and [SAcc] are for request-
ing and accepting new sessions; in their continuations, newly created session names s
replace y. Rule [SRec] is for receiving messages in an early style approach (variables
are assigned when firing input prefixes); note that the store is updated by recording that
x is assigned v. Rule [SSend] is for sending values. Rules [SThen] and [SElse] handle
‘if’ statements as expected; their only peculiarity is that the guard is recorded on the
label of the transition: this is instrumental for the correspondence between systems and
their types (c.f. § 6). Rules [SFor1], [SFor2], [Sloop1], [Sloop2] unfold the correspond-
ing iterative program in an expected way. Except for session initialisation, the remaining
rules are standard. Rule [SInit] allows n roles to synchronise with un(y0).P0; in the
continuation of each role i, the bound names yi are replaced with a tuple of freshly
chosen session names for which the corresponding queues are created. Such queues
are used to exchange values as prescribed by rules [SCom1] and [SCom2]. Rule [SInit]
requires the synchronisation of all roles. Since processes are single-threaded, this is
only possible when each process plays exactly one role in that session. Note that the



s 6∈ fc(P )

〈un(y).P , σ〉 u
ns−−−→ 〈P{y/s}, σ〉

[SReq]
` ↓ σ 6= ε 〈P, σ[x 7→ hd(` ↓ σ)]〉 e`α−−−→ 〈P ′, σ′〉

〈for x in ` : P , σ〉 e`α−−−→ 〈P ′; for x in tl(`) : P , σ′〉
[SFor2]

s 6∈ fc(P )

〈ui(y).P , σ〉
uis−−→ 〈P{y/s}, σ〉

[SAcc]
e ↓ σ = true 〈P, σ〉 e

′`α−−−→ 〈P ′, σ′〉

〈if e : P elseQ, σ〉 e∧e
′`α−−−−−→ 〈P ′, σ′〉

[SThen]

〈s(x);P +N, σ〉 sv−→ 〈P, σ[x 7→ v]〉[SRec]
e ↓ σ = false 〈Q, σ〉 e

′`α−−−→ 〈Q′, σ′〉

〈if e : P elseQ, σ〉 ¬e∧e
′`α−−−−−−→ 〈Q′, σ′〉

[SElse]

e ↓ σ = v

〈se, σ〉 sv−→ 〈0, σ〉
[SSend] 〈do P until b(x), σ〉 bv−→ 〈0, σ[x 7→ v]〉[SLoop1]

〈P, σ〉 e`α−−−→ 〈P ′, σ′〉

〈P ;Q, σ〉 e`α−−−→ 〈P ′;Q, σ′〉
[SSeq]

〈P, σ〉 e`α−−−→ 〈P ′, σ′〉 b 6∈ fc(α)

〈do P until b, σ〉 e`α−−−→ 〈P ′; do P until b, σ′〉
[SLoop2]

` ↓ σ = ε

〈for x in ` : P , σ〉 τ−→ 〈0, σ〉
[SFor1]

P ≡ P ′ 〈P ′, σ〉 e`α−−−→ 〈Q′, σ′〉 Q′ ≡ Q

〈P, σ〉 e`α−−−→ 〈Q, σ′〉
[SStruct]

s 6∈ fc(Pi) Qi = Pi{yi/s} for i = 0, . . . , n

〈un(y0).P0 | u1(y1).P1 | . . . | un(yn).Pn, σ〉
τ−→ 〈(νs)(Q0 | . . . | Qn | s : ∅), σ〉

[SInit]

〈P, σ〉 e`sv−−−→ 〈P ′, σ′〉

〈P | s :M,σ〉 e`τ−−−→ 〈P ′ | s :M · v, σ′〉
[SCom1]

〈P, σ〉 e`sv−−−→ 〈P ′, σ′〉

〈P | s : v ·M,σ〉 e`τ−−−→ 〈P ′ | s :M,σ′〉
[SCom2]

〈S, σ〉 e`α−−−→ 〈S′, σ′〉 s 6∈ fc(α)

〈(νs)S, σ〉 e`α−−−→ 〈(νs)S′, σ′〉
[SNews]

〈S1, σ〉
e`α−−−→ 〈S′1, σ′〉 var(S1) ∩ var(S2) = ∅

〈S1 | S2, σ〉
e`α−−−→ 〈S′1 | S2, σ′〉

[SPar]

Fig. 2. Labelled transitions for processes (top) and systems (bottom)

semantics relies on a global store σ. However, the condition var(S1) ∩ var(S2) = ∅ in
rule [SPar] ensures that each program has its own local (logical) store (i.e., there is no
confusion between local variables of different programs).

Note that, in a sequential composition P ;Q, the store σ allows us to extend the
scope of names bound in P by input prefixes to Q.

3.1 Running examples

In Ex. 3 we give the implementation of TS (i.e., participant S of GPOP) from § 2.2. To
ease the presentation, we use the following auxiliary functions.

– auth : Str→ Bool that is used for authenticating clients;
– fn : Str → Int that given a folder name returns the number of messages in that

folder (we assume ”inbox” to be the default folder);
– mn : Int→ Int that given a message number returns its length (in bytes);
– data : void→ Data that returns the current message;
– next : void→ Int that returns the next message number;
– del : void → Int that returns the next message number and deletes the current

message from the folder.

Let sk denote the name in s corresponding to channel k in GPOP and likewise for G′POP.



Example 3. The process PINIT below implements POP2’s server.

PINIT=uS(s).PS PS=sQUIT();PEXIT + sHELO(x);PMBOX PEXIT=sBYE

PMBOX = if auth(x) : sRfn(“inbox”);PNMBR else sE;PEXIT

PNMBR = do(sFOLD(x); sRfn(x) + sREAD(x
′); sRmn(x

′);PSIZE) until sQUIT();PEXIT

PSIZE = do(sRETR(); sMSGdata();PXFER + sREAD(x
′); sRmn(x

′)) until sFOLD(x); sRfn(x)

PXFER = sACKS(); sRmn(next()) + sACKD(); sRmn(del()) + sNACK(); sRmn(x
′)

Firstly, PINIT initiates a session of type GPOP as S then it behaves according to TS. The
non-deterministic choice is resolved in the conditional statement of PMBOX. �

Ex. 4 gives an implementation of the server T′S of the multiparty variant of POP2.

Example 4. Let G′POP be as in Ex. 2 and P ′INIT=uS(s).P
′
S where

P ′S = sQUIT();PEXIT + sHELO(x);PAUTH

PAUTH = sREQx; sRES(y);P
′
MBOX

P ′MBOX = if auth(x) ∧ y : sRfn(“inbox”);PNMBR else sE;PEXIT

Here, P ′INIT resolves the non-deterministic choice in P ′MBOX by taking into account both
the value returned by auth( ) and the feedback of A stored in variable y. �

4 Whole-Spectrum Implementation

Definition 1 below introduces the notion of candidate implementation of a global type,
that is a system consisting of one process for each role in the global type.

Definition 1 (Implementation). Given G(y) 4= G s.t.P(G) = {p1, . . . , pn} and a map-
ping ι assigning a process to each p ∈ P(G), a ι-implementation of G is a system IιG
such that either (i) IιG ≡ ι(p1) | . . . | ι(pn) and y∩fc(ι(p1)) = . . . = y∩fc(ι(pn)) =
∅ or (ii) IιG ≡ (νy)(ι(p1) | . . . | ι(pn) | y : M).

In case (i) the session that implements G is not initiated. For simplicity, we assume
that roles do not use the channels defined by the global type before initiating the corre-
sponding session (i.e., y ∩ fc(ι(pi)) = ∅). This is not a limitation since channel names
can always be renamed to avoid clashes. Case (ii) captures already initiated sessions;
wlog, we assume that the system and the global type use the same session channels y.

We characterise WSI as a relation between the execution traces of a global type G
and its implementations IιG . An execution trace of IιG is a sequence of input and output
actions decorated with the role that performs them (in symbols 〈p, s!U〉 and 〈p, s?U〉).

Definition 2 (Runs of implementations). Let IιG be an implementation of G(y) 4= G.
The setRu(〈IιG , σ〉) of runs of IιG initiated on u with store σ is the least set closed with
respect to the rules in Fig. 3. We write Ru(IιG) for Ru(〈IιG , ∅〉). The runs of a set of
implementations I isRu(I) = ∪I∈IRu(I).



Let 〈ι(p), σ〉 e
′`α−−−→ 〈ι′(p), σ′〉 stand for 〈ι(p), σ〉 e

′`α−−−→ 〈P, σ′〉 and ι′ = ι[p 7→ P ]

〈IιG , σ〉
e`τ−−−→ 〈Iι′G , σ

′〉 〈ι(p), σ〉 e
′`α−−−→ 〈ι′(p), σ′〉

fc(α) ∩ y 6= ∅ r ∈ Ru(〈Iι
′
G , σ

′〉) obj(α) : U

〈p, α{obj(α)/U}〉r ∈ Ru(〈IιG , σ〉)
[RRInt]

〈IιG , σ〉 6−→

ε ∈ Ru(〈IιG , σ〉)
[RREnd]

〈IιG , σ〉
e`α−−−→ 〈Iι′G , σ

′〉 u 6∈ fc(α) 〈ι(p), σ〉 e
′`β−−−→ 〈ι′(p), σ′〉

fc(β) ∩ y = ∅ r ∈ Ru(〈Iι
′
G , σ

′〉)
r ∈ Ru(〈IιG , σ〉)

[RRExt]

Fig. 3. Runs of implementations

Rules in Fig. 3 rely on the semantics of Fig. 2. In rule [RRInt] (where obj(α) = v for
α = sv or α = sv), a system reduces when some process ι(p) in the implementation
interacts over a session channel (i.e., α is either yv or yv with y ∈ y). Since the action
α performed by ι(p) involves a session channel of the global type, an event α associated
to the role p is added to the trace. Note that the actual value of the message α is sub-
stituted by its type, i.e., α{obj(α)/U} in place of α. Rule [RREnd] is straightforward.
Rule [RRExt] accounts for a computation step that does not involve session channels,
i.e., an internal transition τ in a role, a communication over a channel not in y, or a
session initiation. This rule allows a process to freely initiate sessions over channels
different from u (i.e., sessions that do not corresponds to the global type G). On the con-
trary, when a role attempts to initiate a session over u, rule [RRExt] requires all roles
in the implementation to initiate the session (this behaviour is imposed by the premise
u 6∈ fc(α)). We assume that any role in the implementation will execute exactly one
action over the channel uwhich also matches the role assigned by ι. Nested sessions are
handled by assuming that all sessions are created over different channels that have the
same type. This is just a technical simplification analogous to the possibility of having
annotations to indicate the particular instance of the session under analysis.

For global types, we deviate from standard definition of traces Castagna et al.
[2012], Chen and Honda [2012] and use, for technical convenience, annotated traces
that distinguish mandatory from optional actions. We write [r] to denote the optional
sequence r. Moreover, we consider an asynchronous communication model à la Lam-
port Lamport [1978] and a trace implicitly denotes the equivalence class of all traces
obtained by permuting causally independent actions.

Definition 3 (Runs of a global type). Given a global type term G, the setR(G) denotes
the runs allowed by G and is defined as the least set closed under the rules in Fig. 4.

The first three rules are straightforward. Rule [RGPar] considers just the sequential com-
position of the traces corresponding to the two parallel branches (recall that a trace de-
notes an equivalence class of executions). The traces of an iterative type G∗

f

are given
by the rule [RGIter]; the set R̃(G∗f ) in the premise contains the traces of the unfold-
ing of G∗

f

defined by the rules [RG∗1] and [RG∗2]. Optional events are introduced when
unfolding an iterative type (rule [RG∗2]). The main motivation is that an iterative type
G∗

f

denotes an unbounded number of repetitions G (i.e., an infinite number of traces).



ε ∈ R(end)
[RGEnd]

〈p, s!U〉〈q, s?U〉 ∈ R(p→ q : s 〈U〉)
[RGComm]

r ∈ R(G1) ∪R(G1)

r ∈ R(G1 + G2)
[RGCh]

r1 ∈ R(G1) r2 ∈ R(G2)

r1r2 ∈ R(G1; G2)
[RGSeq]

r1 ∈ R(G1) r2 ∈ R(G2)

r1r2 ∈ R(G1 | G2)
[RGPar]

r1 ∈ R(G)

r1 ∈ R̃(G∗
f
)
[RG∗1]

r1 ∈ R̃(G∗
f
) r2 ∈ R(G)

[r1]r2 ∈ R̃(G∗
f
)

[RG∗2]

r ∈ R̃(G∗
f
) rdy(G) = {p} P(G) = {p, p1, . . . , pn} ∀1 ≤ i ≤ n : f(pi) = si〈Ui〉

r〈p, s1!U1〉 . . . 〈p, sn!Un〉〈p1, s1?U1〉 . . . 〈pn, sn?Un〉 ∈ R(G∗
f
)

[RGIter]

Fig. 4. Runs of a global type

Note that R̃(G∗f ) = {r1, [r1]r2, [[r1]r2]r3, . . .} with ri ∈ R(G). When implementing
an iterative type, we will allow the implementation to perform just a finite number of
iterations (but we require at least once iteration). Annotation of optional events are in-
strumental to the comparison of traces associated with iterative types (which is defined
below). Rule [RGIter] adds the events associated to the termination of an iteration:
(i) the ready role p sends the termination signal to any other role by using the dedi-
cated channels specified by f (i.e., 〈p, s1!U1〉 . . . 〈p, sn!Un〉), and (ii) the waiting roles
receive the termination message (i.e., 〈p1, s1?U1〉 . . . 〈pn, sn?Un〉). As for parallel com-
position, we just consider one of the possible interleavings for the receive events (that
can actually happen in any order).

We use the operator l to compare annotated traces, which is defined as the least
preorder satisfying the following rules

[r]l ε εl r
r l r′

[r]l [r′]

r1 l r′1 r2 l r′2

r1r2 l r′1r
′
2

Basically, r l r′ means that r′ matches all mandatory actions of r and all optional
actions in r′ are also optional in r. Let R1 and R2 be two sets of annotated traces, we
write R1 b R2 if r ∈ R1 implies ∃r′ ∈ R2 such that r l r′.

Definition 4 (Whole-spectrum implementation). A set I of implementations covers a
global type G with respect to u iffR(G) b Ru(I). A process P is a whole-spectrum im-
plementation of pi ∈ P(G) = {p0, . . . , pn} when there exists a set I of implementations
that covers G with respect to u s.t. IιG ∈ I implies ι(pi) = P .

A whole-spectrum implementation (WSI) of a role pi is a process P such that any ex-
pected behaviour of the global type can be obtained by putting P into a proper context.
For iteration types, the comparison of annotated traces implies that the implementation
has to be able to perform the iteration body at least once but possibly many times.

Remark 1. A set of implementations covering a global type G can exhibit more be-
haviour than the runs of G. Nonetheless, we use WSI with the usual soundness require-
ment (given in § 6) to characterise valid implementations.

5 Typing rules

We now give a typing system to guarantee that well-typed systems are a WSI of their
global type. Systems are typed by judgements of the form C Γ ` S . ∆ > Γ ′



Γ (u)≡G(y) C Γ ` P . ∆,y : G(y)�0 > Γ ′

C Γ ` un(y).P . ∆ > Γ ′
[VReq]

Γ (u)≡G(y) C Γ ` P . ∆,y : G(y)� i > Γ ′

C Γ ` ui(y).P . ∆ > Γ ′
[VAcc]

P =
∑
i∈I

yi(xi);Pi ∀i : yi ∈ y and C Γ, xi : Ui ` Pi . ∆,y : Ti > Γi

Γ ′ =
⋂
i∈I Γi fv(P ) ∪ fc(P ) ⊆ dom(Γ ′)

C Γ ` P . ∆, y :
∑
i∈I

yi?Ui; Ti > Γ ′
[VRec]

Γ (e)=U y ∈ y

C Γ ` ye . y : y!U > Γ
[VSend]

∆(s) = end ∀s ∈ dom(∆)

C Γ ` 0 . ∆ > Γ
[VEnd]

C Γ ` P1 . ∆1 > Γ1 C Γ1 ` P2 . ∆1 > Γ2

C Γ ` P1;P2 . ∆1;∆2 > Γ2

[VSeq]

Γ (e)=bool C ∧ e 6` ⊥ C ∧ ¬e ` ⊥ C ∧ e Γ ` P . ∆ > Γ ′

C Γ ` if e : P elseQ . ∆ > Γ ′
[VThen]

Γ (e)=bool C ∧ e ` ⊥ C ∧ ¬e 6` ⊥ C ∧ ¬e Γ ` Q . ∆ > Γ ′

C Γ ` if e : P elseQ . ∆ > Γ ′
[VElse]

Γ (e)=bool C ∧ e 6` ⊥ C ∧ ¬e 6` ⊥
C ∧ e Γ ` P . ∆1 > Γ1 C ∧ ¬e Γ ` Q . ∆2 > Γ2

C Γ ` if e : P elseQ . ∆1 ./ ∆2 > Γ1 ∩ Γ2

[VCond]

Γ (`)=[U] C ` ` 6= ε C ∧ x ∈ ` Γ, x : U ` P . y : T > Γ ′

C Γ ` for x in ` : P . y : T ∗ > Γ ′
[VFor1]

C ` ` = ε

C Γ ` for x in ` : P . y : end > Γ ′
[VFor2]

C Γ ` N . y : T > Γ ′

C Γ ` doN until b(x) . y : T ∗; b?U > Γ ′, x : U
[VLoop]

Fig. 5. Typing rules for processes

stipulating that, under condition C and environment Γ , system S is typed as ∆ and
yields Γ ′ (where environments Γ , Γ ′ and ∆ are as in § 2.3). Condition C is called
context assumption; it is a logical formula derivable by the grammar

C ::= e
∣∣ ¬C ∣∣ C ∧ C where e is of type bool

that identifies the assumptions on variables taken by processes in S. The map Γ ′ ex-
tends Γ with the sorts for the names bound in S. This is needed to correctly type P ;Q
where in fact a free names of Q could be bound in P .

Due to space limits, Fig. 5 gives only the typing rules to validate processes (the
rules for systems are adapted from Honda et al. [2008] and detailed in Appendix C).
Condition C 6` ⊥ is implicitly assumed among the hypothesis of each rule rule of Fig. 5.
Rule [VReq] types session requests of the form un(y).P ; its premise checks that P can
be typed by extending ∆ with the mapping from session names y to the projection of
the global type Γ (u) on the 0-th role. Dually, rule [VAcc] types the acceptance of a



(∆1 ./ ∆2)(s) =


∆1(s) if s ∈ dom(∆1) \ dom(∆2)

∆2(s) if s ∈ dom(∆2) \ dom(∆1)

∆1(s) ./ ∆2(s) if s ∈ dom(∆1) ∩ dom(∆2)

T1 ./ T2 =


T1 ⊕ T2 if T1 = y1!U1; T ′1 , T2 = y2!U2; T ′2 , y1 6= y2

y!U; (T ′1 ./ T ′2 ) if T1 = y!U; T ′1 , T2 = y!U; T ′2
⊥ otherwise

Fig. 6. Composition of types

session request as i-th role. Rule [VRec] types an external choice P =
∑
i∈I

yi(xi);Pi

checking that each branch Pi can be typed against the respective continuation of the
type,∆,y : Ti (once Γ is updated with the type assignment on the bound name xi); rule
[VRec] cannot be applied (making the validation fail) when the names in fv(P )∪fc(P )
are not mapped to the same sorts in all environments Γi. Rule [VSend] is trivial. Rules
[VThen] and [VElse] handle the cases in which the guard of the conditional statement
is either a tautology or a contradiction. Rule [VCond] ensures that both branches can be
selected by fixing a proper assumption (i.e., both C ∧ e and C ∧¬e are consistent). Note
that C is augmented with the condition e (resp. ¬e) for typing the ‘then’-branch (resp.
‘else’-branch). The resulting type is ∆1 ./ ∆2 defined in Fig. 6. The merge ∆1 ./ ∆2

is defined only when ∆1 and ∆2 are compatible, namely iff

∀s1 ∈ dom(∆1), s2 ∈ dom(∆2) : s1 ∩ s2 6= ∅ =⇒ s1 = s2

For s /∈ dom(∆1) ∩ dom(∆2), the merging behaves as the union of environments
∆1 and ∆2, otherwise it returns the merging of the local types T1 = ∆1(s) and
T2 = ∆2(s); in turn, T1 ./ T2 yields an internal choice of T1 and T2, but for a com-
mon sequence of outputs. Rule [VFor1] assigns the type T ∗ to a for loop when its body
P has type T under C extended with x ∈ `, and the environment Γ extended with
x : U. Rule [VFor2] is for empty lists. By rule [VLoop], the type of a loop is T ∗; b?U
when its body P has type T and b is the channel used to receive the termination signal.
Notice that the environments of the rules [VFor1] and [VLoop] include only one ses-
sion (respectively y : T ∗ and y : T ∗; b?U), hence the body can only perform actions
within a single session. Iterations involving messages over multiple sessions could not
be checked compositionally since the conformance of a process to a local type would
not be sufficient to ensure the correct coordination of a ‘for’-iteration with the corre-
sponding ‘loop’-iterations. Rule [VEnd] types idle processes with a ∆ that maps each
session s to the end type. Rule [VSeq] checks sequential composition. Here ∆1;∆2 is
the pointwise sequential composition of ∆1 and ∆2, i.e., (∆1;∆2)(s) = T1; T2 where
Ti = ∆i(s) if s ∈ dom(∆i) and Ti = end otherwise, for i = 1, 2. Note that P2 is typed
under the environment Γ1, which contains the names bound by the input prefixes of P1.

The following result ensures that type checking is decidable (it follows from the
obvious recursive algorithm and decidability of the underlying logic).

Theorem 1. Given C, Γ, Γ ′, S and ∆, then the provability of C Γ ` S . ∆ > Γ ′

is decidable.

Our proof system discerns between B1 and B2 in the introduction (i.e., only B1 is
validated) due to the rules for conditional statements and to the lack of a rule for type



refinement. In fact, after a few verification steps on B1 (resp. B2) we would reach the
following scenario: P1(c) = if c : sOK; sAMOUNT(x) else sKO (resp. P2(c) = sKO) and
∆ = s : OK!; AMOUNT?⊕ KO!. The verification of P1(c) terminates successfully after an
application of [VCond]. In the case of P2(c) the only rule for a sending process, [VSend],
cannot be applied against a type with a choice.

5.1 Running examples

We now apply our typing to different implementations of POP2.

Example 5. The first few verification steps of PINIT from Ex. 3 are shown below. By
rule [VAcc], the newly created session is added to the session environment, then the
verification of the external choice is split by [VRec] into the verification of each branch.
As we omit the whole derivation, just assume that PINIT yields Γ ′ = Γ, x : Str.

true Γ ` PEXIT . s : TEXIT > Γ ′

true Γ, x : Str ` PMBOX . s : TMBOX > Γ ′

[VRec]
Γ (u) ≡ GPOP(s) true Γ ` sQUIT();PEXIT + sHELO(x);PMBOX . s : TS > Γ ′

[VAcc]
true Γ ` uS(s).PS . ∅ > Γ ′

Consider the second branch PMBOX; assuming that true ∧ auth(x) is neither a tau-
tology nor a falsum, we apply [VCond] (if it was, the verification would terminate un-
successfully as the only possible branch would not validate against the choice in TMBOX).

auth(x) Γ, x : Str ` sRmn(“inbox”);PNMBR . s : R!Int; TNMBR > Γ ′

¬auth(x) Γ, x : Str ` sE;PEXIT . s : E!; TEXIT > Γ ′

[VCond]
true Γ, x : Str ` PMBOX . s : TMBOX > Γ ′

The rest is trivial observing s : TMBOX = s : R!Int; TNMBR ./ s : E!; TEXIT. �

Ex. 6 types the multiparty variant given in Ex. 4.

Example 6. Assume Γ (u) ≡ G′POP. The first steps are as in Ex. 5 by rules [VAcc] and
[VRec]. We focus on the second branch that in this case is PAUTH and apply [VSeq].

true Γ, x : Str ` sREQx . s : REQ!Str > Γ ′

true Γ, x : Str ` sRES(y);P
′
MBOX . s : RES?Bool; TAUTH > Γ ′

[VSeq]
true Γ, x : Str ` sREQx; sRES(y);P

′
MBOX . s : TAUTH > Γ ′

We show the verification of the first branch

−
[VEnd]

true Γ, x : Str ` 0 . s : end > Γ ′

[VSend]
true Γ, x : Str ` sREQx . s : REQ!Str > Γ ′

and the successive steps for the second branch:

true Γ, x : Str ` P ′
MBOX . s : T′MBOX > Γ ′

[VRec]
true Γ, x : Str ` sRES(y);P

′
MBOX . s : RES?Bool; T′MBOX > Γ ′



The verification of P ′MBOX proceeds with an application of [VCond], [VIf] or [VElse]
depending on auth() ∧ y. If auth() is not a contradiction then [VCond] can be applied
as the condition depends from the context (that is the administrator). This leads to a suc-
cessful validation. In this case, unlike in Ex. 5, the implementation is whole-spectrum
even if auth() is a tautology. If auth() is a falsum then [VElse] is applied and the
process will not validate against the type which has a choice. �

Ex. 7 deals with a process implementing two interleaved sessions. Ex. 7 shows that
the verification scales to more complex processes that compose different protocols.

Example 7. We give a process that, upon request, engages as a server in a session GPOP
(§ 2.2), and as a client in a session GADMIN to outsource the authentication. Instead of
embedding in the same session this extra interactions with the administrator, as we did
in Ex. 2, we represent the multiparty interaction as two interleaved sessions.

GADMIN=C→ A : REQ 〈Str〉; A→ C : RES 〈Bool〉 TC=REQ!Str; RES?Bool

In GADMIN, the client C sends the administrator A a password and A replies along RES.
TC is the projection on GADMIN on C. We assume Γ (u) ≡ GPOP and Γ (v) ≡ GADMIN. Process
PINIT starts, upon request, a session of type GPOP and then requests to start a session of
type GADMIN. We omit the definition of processes PNMBR and PEXIT which are as in Ex. 3.

P ′′INIT=uS(s).v
C(t).P ′′S P ′′S =sQUIT();PEXIT + sHELO(x);PAUTH

PAUTH=tREQx; tRES(y);P ′′MBOX P ′′MBOX=if y : sRfn(“inbox”);PNMBR else sE;PEXIT

The authentication is delegated to the administrator in session t via the message
along tREQ. Session s continues using the information in y, which stores the last message
received in session t. The first verification steps are by rules [VAcc], [VReq] and [VRec].

true Γ ` PEXIT . s : TEXIT, t : TS > Γ ′

true Γ, x : Str ` PAUTH . s : TMBOX, t : TS > Γ ′

[VRec]
Γ (u) ≡ GPOP(s) Γ (v) ≡ GPOP(t) true Γ ` P ′′

S . s : TS, t : TS > Γ ′

[VAcc],[VReq]
true Γ ` uS(s).v

S(t).P ′′
S . ∅ > Γ ′

The verification of the second branch PAUTH proceeds with one application of [VSeq]
where (s : TMBOX, t : TS) ≡ (s : end, t : REQ!Str); (s : TMBOX, t : RES?Bool).

true Γ, x : Str ` tREQx . ∆ > s : end, t : REQ!Str
true Γ, x : Str ` tRES(y);P

′′
MBOX . s : TMBOX, t : RES?Bool > Γ ′

[VSeq]
true Γ, x : Str ` tREQx; tRES(y);P

′′
MBOX . s : TMBOX, t : TS > Γ ′

Focusing on the second branch we apply [VRec]

true Γ, x : Str, y : Bool ` P ′′
MBOX . s : TMBOX, t : end > Γ ′

[VRec]
true Γ, x : Str ` tRES(y);P

′′
MBOX . s : TMBOX, t : RES?Bool > Γ ′

Rule [VCond] can be applied since condition y of the conditional statement in P ′′MBOX
is neither a tautology nor a contradiction. The rest is as in Ex. 5. �



Let push([ ], s!v) = s!v[ ] and push(s1!v1; . . . ; sn!vn[ ], s!v) = s1!v1; . . . ; sn!vn; s!v[ ]

Γ •∆, s : s!v;M@ p
sv→ Γ •∆, s : M@ p [TQueue]

Γ • s : T sv→ Γ • s : T ′ M′[ ] = push(M[ ], s!v)

Γ •∆, s : M[T ]@ p
τ→ Γ •∆, s : M′[T ′]@ p

[TCom1]

Γ • s : T sv→ Γ • s : T ′

Γ • s : s!v;M1@ p, M2[T ]@ q
τ→ Γ • s : M1@ p, M2[T ′]@ q

[TCom2]

u ∈ dom(Γ ) Γ (u) ≡ G(s) 4= G P(G) = {p1, . . . , pn}

Γ •∆ τ→ Γ •∆, s : (G�p1)@ p1, . . . , s : (G�pn)@ pn
[TInit]

Fig. 7. Additional labelled transitions (to those of Fig. 1) for runtime specifications

6 Properties of the type system

Runtime Types The properties of our type system are stated in terms of the behaviour
of local types. As in Honda et al. [2008], runtime types extend local types with message
contexts M of the form s1!v1; · · · ; sn!vn[ ] with n ≥ 0, namely M is a sequence of
outputs followed by a hole [ ]. To model asynchrony, we stipulate the equality

s1!v1; s2!v2;M ≈ s2!v2; s1!v1;M if s1 6= s2

A runtime type is either a message context M or a “type in context”, that is a term
M[T ]. We extend environments so to map session names s to runtime types of roles in
s; we write ∆, s : M[T ]@ p to specify that (1) the runtime type of p ∈ P in s is M[T ]
and (2) that for any s : M′[T ′]@ q in ∆ we have q 6= p.

The semantics of runtime types is obtained by adding the rules in Fig. 7 to those in
Fig. 1. Rule [TQueue] removes a message from of a queue. Rules [TCom1] and [TCom2]
establish how runtime specifications send and receives messages (the transition in their
premises are derived from the rules in Fig. 1). Rule [TInit] initiates a new session by
mapping the new session s to the projections of the global type assigned by Γ .
Soundness The typing rules in § 5 ensure the semantic conformance of processes with
the behaviour prescribed by their types. Here, we define conformance in terms of condi-
tional simulation that relates states and specifications. Our definition is standard, except
for input actions, for which specifications have to simulate only inputs of messages with
the expected type (i.e., systems are not responsible when receiving ill-typed messages).

Define α
=⇒ =

τ→
∗ α→. Let Γ •∆ s

=⇒ shorten ∃∆′∃v : Γ •∆ sv
=⇒ Γ •∆′.

Definition 5 (Conditional simulation). A relation R between states and specifications
is a conditional simulation iff for any (〈S, σ〉, Γ •∆) ∈ R, if 〈S, σ〉 e`α−−→ 〈S′, σ′〉 then

1. if α = sv then Γ • ∆ s
=⇒ and if Γ • ∆ sv

=⇒ then there is Γ • ∆′ such that
Γ •∆ sv

=⇒ Γ •∆′ and (〈S′, σ′〉, Γ •∆′) ∈ R
2. otherwise, Γ •∆ α

=⇒ Γ •∆′ and (〈S′, σ′〉, Γ •∆′) ∈ R.

We write 〈S, σ〉 - Γ •∆ if there is a conditional simulation R s.t. (〈S, σ〉, Γ •∆) ∈ R.

By (1), only inputs of S with the expected type have to be matched by Γ •∆ (recall rule
[TRec] in Fig. 1), while it is no longer expected to conform to the specification after an
ill-typed input (i.e., not allowed by Γ •∆).

Def. 6 establishes consistency for stores in terms of preservation of variables’ sorts.



r ∈ Rs(∆, s : M[Tk]@ p, M′[T′k]@ q) k ∈ J

〈p, sk!Uk〉〈q, sk?Uk〉r ∈ Rs(∆, s : M[sk!Uk; Tk]@ p, M′[
∑
j∈J

sj?Uj ; T
′
j ]@ q)

[RTCom]

r ∈ Rs(∆, s : Ti; Tj@ p)

r ∈ Rs(∆, s : T∗i ; Tj@ p)
[RTIt1]

rr′ ∈ Rs(∆, s : Ti; T
∗
i ; Tj@ p) r′ ∈ Rs(∆s : Ti; Tj@ p)

[r]r′ ∈ Rs(∆, s : T∗i ; Tj@ p)
[RTIt2]

r ∈ Rs(∆) s 6= r

r ∈ Rs(∆, r : T )
[RTPar]

r ∈ Rs(∆)

r ∈ Rs(∆, s : end@ p)
[RTEnd1] ε ∈ Rs(∅)[RTEnd2]

r ∈ Rs(∆, s : sj !Uj ; Tj@ p) j ∈ I

r ∈ Rs(∆, s :
⊕
i∈I

si!Ui; Ti@ p)
[RTCh]

Fig. 8. Runs of runtime local types

Definition 6 (Consistent store). Given an environment Γ , a context assumption C, and
a state 〈S, σ〉 with var(S) ⊆ dom(σ), store σ is consistent for S with respect to Γ and
C iff ∀x ∈ dom(σ), σ(x) : Γ (x), and C ↓ σ = true.

Theorem 2 (Subject reduction). Assume that

C Γ ` S . ∆ > Γ ′ and 〈S, σ〉 e`α−−→ 〈S′, σ′〉

with σ consistent for S with respect to Γ and C. Then

1. if α = sv then Γ • ∆ s
=⇒ and if Γ • ∆ sv

=⇒ then there is Γ • ∆′ such that
Γ •∆ sv

=⇒ Γ •∆′ with v : U and C ∧ e Γ, x : U ` S′ . ∆′ > Γ ′′ for some
x and some Γ ′′ ⊇ Γ ′

2. otherwise Γ • ∆ α
=⇒ Γ • ∆′ and C ∧ e Γ ` S′ . ∆′ > Γ ′′ for some

Γ ′′ ⊇ Γ ′.

Corollary 1 (Soundness). If C Γ ` S . ∆ > Γ ′ then 〈S, σ〉 - Γ •∆ for all σ
consistent store for S with respect to Γ and C.

WSI by typing We show that well-typed processes are WSIs (Def. 4). First, we relate
the runs of a global type with those of its corresponding runtime types. Then, we state
the correspondence between the runs of runtime types and well-typed implementations.

Definition 7 (Runs of runtime types). The setRs(∆) denotes the runs of events over
the channels in s generated by ∆, and is inductively defined by the rules in Fig. 8.

Rule [RTCom] builds the runs for two communicating types. Rules [RTIt1] and [RTIt2]
unfold the runs of an iterative type. Note that the mandatory actions of runs associ-
ated to recursive types are those requiring at least one execution of the iteration body,
while additional executions are optional. The remaining rules are self-explanatory. (The
correspondence between the operational and denotational semantics is in Appendix E.)

Thm. 3 ensures that well-formed global types are covered by their projections, while
Thm. 4 states that the set of well-typed implementation covers its specification.

Theorem 3. For any global type G(s),R(G(s)) b Rs({s : (G(s)�p)@ p}p∈P(G(s))).



Theorem 4. Let G(s) 4= G be a global type. Fix p ∈ P(G) and P a well-typed imple-
mentation of p. Define

Ip,P = {IιG |ι(p) = P,∀q ∈ P(G) : true Γ, u : G(s) ` ι(q) . ∆, s : G(s)�q > Γ ′}

then,Rs({s : (G(s)�p)@ p}p∈P(G)) b Ru(Ip,P ).

7 Conclusion and related work

WSI forbids implementations of a role that persistently avoid the execution of some al-
ternative branches in a choreography. Although WSI is defined as a relation between the
traces of a global type and those of its candidate implementations, it can be checked by
using multiparty session types. Technically, we show that (i) the sets of the projections
of a global type G preserves all the traces in G (Thm. 3); and (ii) any trace of a local
type can be mimicked by a well-typed implementation, if interacting in a proper con-
text (Thm. 4). The soundness of our type system (Corollary 1) ensures that well-typed
implementations behave as prescribed by the choreography.

We are currently working on the extension of WSI to other models of choreogra-
phy as e.g. those based on automata Fu et al. [2005], which poses the classical question
about the decidability of the notion of realisability (see Basu et al. [2012]). To the best of
our knowledge, the only proposal dealing with complete (i.e., exhaustive) realisations
in a behavioural context is Castagna et al. [2012] but this approach focuses on non-
deterministic implementation languages. Our type system is more restrictive than Bet-
tini et al. [2008], Bravetti and Zavattaro [2009], Caires and Vieira [2009], Castagna and
Padovani [2009], Honda et al. [2008]. We do not consider subtyping because the lib-
eral elimination of internal choices prevents WSI. The investigation of suitable forms
of subtyping for WSIs is scope for future work.

WSI coincides with projection realisability Castagna et al. [2012], Lanese et al.
[2008], Salaün and Bultan [2009] when implementation languages feature non-deterministic
internal choices. On the contrary, WSI provides a finer criterion to distinguish determin-
istic implementations, as illustrated by the motivating example in the introduction. To
some extend our proposal is related to the fair subtyping approach in Padovani [2011],
where refinement is studied under the fairness assumption: Fair subtyping differs from
usual subtyping when considering infinite computations but WSI differs from partial
implementation also when considering finite computations.

The static verification of WSI requires a form of recursion more restrictive than
the one in Bettini et al. [2008], Honda et al. [2008], where the number of iterations
is limited. This restriction is on the lines of Castagna et al. [2012] that also considers
finite traces. The extension of our theory with a more general form of iteration is scope
for future work. We argue that this is attainable using annotations Deng and Sangiorgi
[2006], Yoshida et al. [2001] to detect loop termination by typing.

Acknowledgements We thank the anonymous reviewers for their insightful and helpful
comments on the previous version of this paper.
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A Auxiliary functions

We define some common auxiliary functions. In the following we fix a a global type
term G.

– The set of channel names ch(G) ⊆ C of G is defined as:

ch(p→ q : y 〈U〉) = {y}
ch(G+ G′) = ch(G) ∪ ch(G′)
ch(G | G′) = ch(G) ∪ ch(G′)
ch(G; G′) = ch(G) ∪ ch(G′)
ch(G∗

f

) = ch(G) ∪ cod(f)
ch(end) = ∅

– The set of participants P(G) of G is defined as

P(p→ q : y 〈U〉) = {p, q}
P(G+ G′) = P(G | G′) = P(G; G′) = P(G) ∪ P(G′)
P(G∗f ) = P(G)
P(end) = ∅

– The set of enabled events fst(G) of G is defined as:

fst(p→ q : y 〈U〉) = {(p, y), (q, y)}
fst(G+ G′) = fst(G | G′) = fst(G) ∪ fst(G′)
fst(G; G′) = fst(G) ∪ {(p, y) ∈ fst(G′)

∣∣ ¬∃(p, z) ∈ fst(G)}
fst(G∗

f

) = fst(G)
fst(end) = ∅

– A participant p is waiting in G when its first enabled actions are only inputs; for-
mally, p is waiting in G iff fst(G) ∩ ({p} × C) = ∅ and fst(G) ∩ ({p} × C) 6= ∅.
In (2.1) above, q and s are waiting Gf, while p is not.

Given a local type term T, the set ch(T) is defined as follows:

ch(
⊕
i∈I

yi!Ui; Ti) = ch(
∑
i∈I

yi?Ui; Ti) = {yi
∣∣ i ∈ I} ∪⋃

i∈I
ch(Ti)

ch(T1; T2) = ch(T1) ∪ ch(T2) ch(T∗) = ch(T) ch(end) = ∅

Given an expression e (resp. a list `), the set of variables occurring in e (resp. `) are
denoted by var(e) (resp., var(`)) and it is defined by:

var(x) = {x} var(v) = ∅ var(e1 op e2) = var(e1) ∪ var(e2)

var([e1, . . . , en]) =
⋃n
i=1 var(ei) var(e1..e2) = var(e1) ∪ var(e2)

Given a system S, the free session names of S, written fc(S), are defined as:



fc(
∑
i∈I

yi(xi);Pi) =
⋃
i∈I

({yi} ∪ fc(Pi))

fc(se) = fc(s :M) = {s}
fc(if e : P else Q) = fc(P ;Q) = fc(P ) ∪ fc(Q)
fc(for x ∈ ` in P : ) = fc(P )
fc(do P until b(x)) = fc(P ) ∪ {b}
fc(un(y).P ) = fc(ui(y).P ) = {u} ∪ fc(P ) \ y
fc((νs)S) = fc(S) \ s
fc(S | S′) = fc(S) ∪ fc(S′)

B Well-formedness

We adopt the usual well-formedness conditions on global types extending them to our
framework. In particular, to the usual linearity Honda et al. [2008], single threadness
and single selector Honda et al. [2008], and knowledge of choice Castagna et al. [2012],
Honda et al. [2008] conditions, we add the conditions below specific to our form of
iteration.

Definition 8 (Well-formed iteration). A global type G(y) 4= G∗
f

0 is well-formed iff

G0(y)
4
= G0 is well-formed, cod(f) ∩ ch(G0) = ∅, and if G0 6= end then

1. #rdy(G0) = 1 and dom(f) = P(G0)\rdy(G0),
2. for any two different subterms G∗

f1

1 , G∗
f2

2 of G0, cod(f1)∩cod(f2) = ∅ and dom(f1) =
dom(f2) = dom(f).

The single threadness condition requires parallel threads to have disjoint roles and
channels, to prevent races on channels. The single selector and knowledge of choice
conditions require that in each choice there is a unique participants selecting the branch
to execute while all the others are made aware of the choice with suitable input actions.

Finally, the condition in Def. 8 is specific to our form of iteration; it requires a
unique role to signal the termination of the iteration to any other role q by using the
name f(q). Also, in case of nested iterations, there is no confusion on the names used
to signal the termination of each iteration.

C Typing rules for systems

The typing rules for systems in Fig. 9 extend those for processes, they are borrowed
from Honda et al. [2008], and use non-singleton assignments as defined in § 2. Rule
[VPar] for parallel composition uses the composition of mappings given below. If ∆1

and ∆2 are compatible, their composition is

(∆2 ◦∆2)(s) =


∆1(s) if s ∈ dom(∆1) \ dom(∆2)

∆2(s) if s ∈ dom(∆2) \ dom(∆1)

∆1(s) ◦∆2(s) if s ∈ dom(∆1) ∩ dom(∆2)



C Γ ` S1 . ∆1 > Γ1 C Γ ` S2 . ∆2 > Γ2 ∆1 and∆2 compatible

C Γ ` S1 | S2 . ∆1 ◦∆2 > Γ1, Γ2

[VPar]

C Γ ` S . ∆, s : {Tp@ p} > Γ1 Γ (u)≡G(s) and G�p = Tp

C Γ ` (νsu)S . ∆ > Γ1

[VNews]

C Γ ` si : M . ∆, s : M[·]@ p > Γ1

C Γ ` si : v ·M . ∆, s : si!v;M[·]@ p > Γ1

[VQueue]

C Γ ` s : ∅ . s : {[·]@ p}p∈I > Γ1 [VEmpty]

Fig. 9. Typing rules for systems

where, letting T1 ◦ T2 = M[T2] if T1 is a message context M, and T1 ◦ T2 undefined
otherwise, we stipulate that

{Tp@ p}p∈I ◦ {T ′q@ q}q∈J = {Tp@ p ◦ T ′p@ p}p∈I∩J
∪{Tp@ p}i∈I\J ∪ {Tq@ q}q∈J\I

if Tp ◦T ′p is defined for all p ∈ I∩J and it is undefined otherwise. Note that dom(∆) =
dom(∆1) ∪ dom(∆2).

Rule [VNews] uses an annotation u to extend, in the premise, ∆ with the correct
mapping for session s, namely the projections of Γ (u).

Rules [VQueue] and [VEmpty] are for queues.

D Soundness and Subject Reduction

The set of free channels of ∆ is defined as

ch(∆) = ∪s∈dom(∆){ch(T )|∆(s) = T @ p}

We write Γ ′ ⊆ Γ if dom(Γ ′) = dom(Γ ) and ∀x, u ∈ dom(Γ ′), Γ (u) = Γ ′(u) (resp.
Γ (x) = Γ ′(x)).

Lemma 1 (Subject congruence). If C Γ ` S . ∆ > Γ ′, S ≡ S′, and ∆ ≡ ∆′,
then C Γ ` S′ . ∆′ > Γ ′.

Lemma 2 (Substitution lemma on session channels). If C Γ ` S . ∆ > Γ ′

and s 6∈ fc(S) ∪ ch(∆) then C Γ ` S{s/y} . ∆{s/y} > Γ ′ (with y vector of
channels).

Lemma 3. If C Γ ` for x in ` : P . ∆ > Γ ′ and ` 6= ∅ then C Γ `
for x in tl(`) : P . ∆ > Γ ′

Lemma 4. If C Γ ` P . ∆ > Γ ′ and Γ ⊆ Γ ′ then C Γ ′ ` P . ∆ > Γ ′

Proof. Observe that if C Γ ` P . ∆ > Γ ′ then fv(P ) ⊆ dom(Γ ). Hence dom(Γ ) ∩
dom(Γ ′) can only include names that are bound in P . In this case we can apply a renaming in
P .



Lemma 5. If C Γ ` S1 | S2 . ∆1 ◦∆2 > Γ ′ then fv(S1) ∩ fv(S2) = ∅.

Lemma 6. If C Γ ` S . ∆ > Γ ′ and var(e) ∩ fv(S) = ∅ then C ∧ e Γ `
S . ∆ > Γ ′

Theorem 5 (Subject reduction). Let C Γ ` S . ∆ > Γ ′ and σ be a consistent
store for S wrt Γ and C. If 〈S, σ〉 e`α−−→ 〈S′, σ′〉 then

– if α is an input sv, then Γ • ∆ s
=⇒ . Furthermore, if Γ • ∆ sv

=⇒ Γ • ∆′ with
v : U then C ∧ e Γ, x : U ` S′ . ∆′ > Γ ′′ for some x, Γ ′′ ⊇ Γ

– otherwise Γ •∆ α
=⇒ Γ •∆′ and C ∧ e Γ ` S′ . ∆′ > Γ ′

Proof. By induction on the proof (of transition rules for systems).

Base cases - [SReq/SAcc]. By transition rule [SReq] S is of the form un(y).Q,α = uns
and S′ is of the form Q{s/y}. By hypothesis (and [VReq]), for some C, ∆, Γ and Γ ′:

Γ (u)=G(x) C Γ ` Q . ∆,y : G{y/x}�0 > Γ ′

C Γ ` un(y).Q . ∆ > Γ ′

By transition rule [TReq], and since by premise of (D) Γ (u) = G(x),

Γ •∆ uns→ Γ •∆, s : G{s/x}�0

The thesis (i.e., C Γ ` Q{s/y} . ∆,y : G{y/x}{s/y}�0 > Γ ′) follows from the
second premise of (D) applying Lemma 2 (substituting y with s). The case for [SAcc]
is similar.

Base case - [SSend]. By transition rule [SSsend], S is of the form se, α = sv, and S′

is 0, and e ↓ σ = v. By hypothesis (and [VSend])

Γ (e)=U s ∈ s

C Γ ` se . s : s!U > Γ

By consistency of σ with respect to Γ and since Γ ` e : U we have v : U. Hence
Γ •s : s!U; end sv→ Γ •s : end by transition rule [TSend]. The thesis (i.e., C Γ ` 0 .
s : end > Γ ) follows by typing rule [VEnd] (explicitly writing the trailing occurrences
of the idle system/type, i.e., se;0 and s : s!U; end).

Base case - [SRec]. By transition rule [SRec], S is of the form s(x).Q + N , α = sv,
S′ = Q, and σ′ = σ[v/x]. By hypothesis S can be validated, and it can be only by using
rule [VRec]. Hence S we can written as

∑
i∈I

si(xi);Pi with s = sj , x = xj , Pi = Q for

j ∈ I .
∀i ∈ I si ∈ s C Γ, xi : Ui ` Pi . ∆, s : Ti > Γi

C Γ `
∑
i∈I

si(xi);Pi . ∆, s :
∑
i∈I

si?Ui; Ti >
⋂
i Γi



By using rules [TPar2] and [TRec] in the premise Γ • ∆, s :
∑
i∈I

si?Ui; Ti can make a

corresponding input transition on channel sj . Furthermore, if v : Uj then: Γ • ∆, s :∑
i∈I

si?v; Ti
sv→ Γ •∆, s : Tj . The thesis (i.e., C Γ, x : U ` Q . ./i∈I ∆, s : Tj > Γj)

follows by the premise of (D) since Γi ⊇
⋂
i Γi.

Case - [SLoop1]. By transition rule [SLoop1], S is of the form do P until b(x), and
S′ = 0 with α = bv. By hypothesis

C Γ ` N . s : T > Γ ′

C Γ ` do N until b(x) . s : T ∗; b?U > Γ ′, x : U

By using rules [TSeq] and [TLoop] in the premise we have Γ •s : T ∗; b?U τ→ Γ •s :
end; b?U ≡ Γ •s : b?U. By transition rule [TRec] we then have Γ •s : b?U bv→ Γ •s : end.
The thesis follows by typing rule [VEnd] (i.e., C Γ ` 0 . s : end > Γ ′).

Case - [SFor1] By transition rule[SFor1]: S = for x in ` : P , ` ↓ σ = ε, S′ = 0 and
α = τ . By hypothesis

Γ (`)=[U] C ∧ x ∈ ` Γ, x : U ` P . ∆, s : T > Γ ′

C Γ ` for x in ` : P . ∆, s : T ∗ > Γ ′

We have Γ •∆, s : T ∗ τ→ Γ •∆, s : end. By typing rule [VEnd]:

C Γ ` 0 . ∆, s : end > Γ ′

as required.

Case - [SInit] For this case we will use the runtime rules. By transition rule[SInit]:
S = un(y0).P0 | u1(y1).P1 | . . . | un(yn).Pn, S′ = (νs)(P0{s/y0} | P1{s/y1} |
. . . | Pn{s/yn} | s : ∅), and α = τ . By hypothesis (and rule [VPar2]):

C Γ ` un(y0).P0 . ∆0 > Γ ′ C Γ ` un(yi).Pi . ∆i > Γ ′

C Γ ` un(y0).P0 | u1(y1).P1 | . . . | un(yn).Pn . ∆0 ◦∆1 ◦ .. ◦∆n > Γ ′

By induction each ui(yn).Pi (same for session request) moves to Pi{s/yi} and

C Γ ` ui(yi).Pi . ∆i, s : T @ i > Γ ′

And, by [VEmpty]:

C Γ ` s : ∅ . s : {[·]@ i}i∈{0,..n} > Γ ′

By [TInit] we have Γ •∆ τ→ Γ •∆, s : {Ti@ i}.
Since ∆, s : T0@0◦ s : T1@1◦ . . . s : Tn@n◦s : {[·]@ i}i∈{0,..n} is (by definition

of ◦) ∆, s : {Ti@ i}i∈{0,..n} we can use (D) and (D) as premises for the validation rule
[VNews] obtaining the thesis:

C Γ ` (νs)(P0{s/y0} | P1{s/y1} | . . . | Pn{s/yn} | s : ∅) .∆, s : {Ti@ i}i∈{0,..n} > Γ ′



Case - [SCom1/SCom2] By transition rule [SCom1], S is of the form P | s : M , S′ =
P |M · v, α = τ , and by the premise of [SCom1]:

〈P, σ〉 sv−→ 〈P ′, σ′〉

By hypothesis (proof rule[VPar2], noticing that M[T ]@ p = T @ p ◦M[·]@ p)

C Γ ` P . ∆, s : T @ p > Γ ′ C Γ ` s :M . s : M[·]@ p > Γ ′

C Γ ` P | s :M . ∆, s : M[T ]@ p > Γ ′

From the first premise of (D) and (D), by induction

Γ •∆, s : T sv→ Γ •∆, s : T ′

and
C Γ ` P ′ . ∆, s : T ′@ p > Γ ′

Using (D) as premise for [TCom1], which is in turn used as a premise for [TPar]:

Γ •∆, s : M[T ]@ p
τ→ Γ •∆, s : M[T ′]@ p

By the second premise of (D), used as a premise for proof rule [VQueue] we obtain

C Γ ` s :M · v . s : M[·]@ p > Γ ′

The thesis

C Γ ` P ′ . ∆, s : T ′@ p > Γ ′ C Γ ` s :M · v . s : M[·]@ p > Γ ′

C Γ ` P | s :M · v . ∆, s : M[T ′]@ p > Γ ′

holds by proof rule [VPar] where the first premise of [VPar] holds by (D) and the second
premise holds by (D). The case for [SCom2] is similar.

Case - [SThen/Selse] By transition rule[SThen]: S = if e : P else Q, S′ = P ′,
α = e ` α′, and e ↓ σ = true. By hypothesis (it can be by either [VThen] or [VIf], we
consider the latter case, the case for [VThen] is similar):

Γ (e)=bool C ∧ e 6` ⊥ C ∧ ¬e 6` ⊥
C ∧ e Γ ` P . ∆1 > Γ1 C ∧ ¬e Γ ` Q . ∆2 > Γ1

C Γ ` if e : P else Q . ∆1 ./ ∆2 > Γ1 ∩ Γ2

By induction, from the first premise of (D) and since by premise of [SThen], P e′`α−−−→ P ′

we have
Γ •∆1

α→ Γ •∆′1

and
C ∧ e Γ ` P ′ . ∆′1 > Γ1 ∩ Γ2



By (D) and definition of ∆1 ./ ∆2

Γ •∆1 ./ ∆2
α→ Γ •∆′1

hence the thesis is straightforward by (D). The case for [SElse] is similar.

Case - [SFor2] By transition rule[SFor2]: S = for x in ` : P and
S′ = P ′; for x in tl(` ↓) : P :

¬` ↓= ε P{hd(` ↓)/x} α−→ P ′ α 6= b

for x in ` : P
α−→ P ′; for x in tl(` ↓) : P

Also by hypothesis:

Γ (`)=[U] C ∧ x ∈ ` Γ, x : U ` P . ∆, s : T > Γ ′

C Γ ` for x in ` : P . ∆, s : T ∗ > Γ ′

By the second premise of (D) and the substitution lemma:

C ∧ x ∈ ` Γ, x : U ` P{hd(` ↓)/x} . ∆, s : T > Γ ′

By induction, the second premise of (D) and (D) imply

Γ •∆, s : T α→ Γ •∆, s : T ′

and for some C′ and Γ ′:

C′ Γ ′ ` P ′ . ∆, s : T ′ > Γ ′

By transition rule [TLoop2]

Γ •∆, s : T ∗ τ→ Γ •∆, s : T ; T ∗

which, by transition rule [TSeq] with premise (D) gives

Γ •∆, s : T ; T ∗ α→ Γ •∆, s : T ′; T ∗

By (D) and Lemma 3

C Γ ` for x in tl(`) : P . ∆, s : T ∗ > Γ ′

Finally, by using (D) and (D) as premise for typing rule [VFor]

C Γ ` P ′; for x in tl(`) : P . ∆, s : T ′; T ∗ > Γ ′

By (D) and (D) we have the thesis. The case for [SLoop2] is similar.



Case - [PSeq] By transition rule [SSeq] S is of the form P ;Q, and S′ is of the form
P ′;Q. Furthermore P e`α−−→ P ′. Observe that P appears before Q in a sequential com-
position. Since we assume that processes do not have a conditional statement as a prefix
of a sequential composition, we have e = true. By hypothesis

C Γ ` P1 . ∆1 > Γ1 C Γ1 ` P2 . ∆1 > Γ2

C Γ ` P1;P2 . ∆1;∆2 > Γ2

If α is not an input action, by induction

Γ •∆1
α→ Γ •∆′1

and by transition rule [TSeq] and (D):

Γ •∆1;∆2
α→ Γ •∆′1;∆2

with
C ∧ e Γ ` P ′ . ∆′1 > Γ1 (e = true)

The thesis

C ∧ e Γ ` P ′1;P2 . ∆′1;∆2 > Γ2

follow from typing rule [VSeq], using (D) as first premise, and the second premise of
(D) as second premise where the assumption context can be extended with e since
e = true.

If α is an input action, by induction we still have (D) and Γ •∆1 is ready to make
a corresponding input action. If Γ •∆1

α→ Γ •∆′1 then for some x, U, Γ ′1 ⊇ Γ1

C ∧ e Γ, x : U ` P ′ . ∆′1 > Γ ′1 (e = true)

By the second premise of (D) and Lemma 4 observing that Γ ′1 ⊇ Γ1

C Γ ′1 ` P2 . ∆1 > Γ2

The thesis follows by the fact that if Γ •∆1 is ready to make a corresponding input
action then by [TSeq] also Γ •∆1;∆2 is and if Γ •∆1;∆2

α→ Γ •∆′1;∆2 then

C ∧ e Γ, x : U ` P ′1 . ∆1 > Γ ′1 C ∧ e Γ ′1 ` P2 . ∆1 > Γ2

C ∧ e Γ ` P ′1;P2 . ∆1;∆2 > Γ2

follows by applying [VSeq] with premises (D) and (D) where the assumption context
can be extended with e because e = true.

Case - [SPar] By transition rule Par S is of the form S1 | S2, and S′ is of the form
S′1 | S2. Furthermore, S1

e`α−−→ S′1. By hypothesis

C Γ ` S1 . ∆1 > Γ1 C Γ ` S2 . ∆2 > Γ2

C Γ ` S1 | S2 . ∆1 ◦∆2 > Γ1, Γ2



By induction, if α is not input, from the first premise of (D) and from S1
e`α−−→ S′1 we

have Γ •∆1
α→ Γ •∆′1 and

C ∧ e Γ ` S′1 . ∆′1 > Γ1

By Lemma 5 fv(S1) ∩ fv(S2) = ∅.
fv(e) ∩ fv(S2) = ∅ because.
From the second premise of (D) and by Lemma 6

C ∧ e Γ ` S2 . ∆2 > Γ1

The thesis follow from typing rule [VPar], using (D) as first premise, and the second
premise of (D) as second premise.

Case - [SNews] By transition rule [SNews], S is of the form (νs)S1, and S′ = (νs)S′1
with

s 6∈ fc(S1)

By hypothesis

C Γ ` S1 . ∆, s : {Tp@ p} > Γ1 ∃a ∈ Γ.Γ (a) = G and G�p = Tp

C Γ ` (νs)S1 . ∆ > Γ1

By induction Γ • ∆, s : {T @ p} can make a step α and by (D) and applying the
transition rule [TPar1] for runtime specifications (Fig. 7), Γ •∆, s : {T @ p} moves to
a specification of the form

Γ •∆′, s : {T @ p}

and by induction
C Γ ` S′1 . ∆′, s : {Tp@ p} > Γ1

Using (D) as premise of typing rule [VNews] we obtain

C Γ ` (νs)S′1 . ∆′ > Γ1

as required.

Soundness follows by straightforward coinduction from Thm. 5.

Corollary 2 (Soundness). If C Γ ` S . ∆ > Γ ′ then 〈S, σ〉 - Γ •∆ for all σ
consistent store for S wrt Γ and C.

Proof. Soundness follows from showing that

R = {(〈S, σ〉, Γ •∆)
∣∣ C Γ ` S . ∆ > Γ ′ and σ is a consistent store for S wrt Γ and C}

is a conditional simulation, which is straightforward from Thm. 2.



E WSI by typing

The next two results show that the denotational semantics of runtime types coincides
with the operational rules given in Fig. 1 and 7.

Lemma 7. Γ • ∆ τ
=⇒ Γ • ∆′ then there exists r ∈ Rs(∆) and sk ∈ s such that

r = 〈p, sk!Uk〉〈q, sk?Uk〉r′ with r′ ∈ Rs(∆
′).

Proof. By induction on the proof of the derivation. Then, we proceed by case analysis
on the last applied rule. Note that none of the followings [TQueue], [Tcom1], [TInit],
[TReq], [TAcc], [TSend], [TRec], [TSeq], [TPar], [TLoop1] and [TLoop2]. Case [TCom2]
is as follows.

Γ • s : T @ q
sv→ Γ • s : T ′@ q

Γ • s : s!v;M1@ p, M2[T ]@ q
τ→ Γ • s : M1@ p, M2[T ′]@ q

[TCom2]

It is easy to check (by proof induction) that Γ • s : T @ q
sv→ Γ • s : T ′@ q implies

either

1. T = M[T0; T1] with T0 =
∑
i∈I

si?Ui; Ti, for some k ∈ I : s = sk, and T ′ =

M[Tk; T1];
2. T = M[T ∗0 ; T1] with T1 =

∑
i∈I

si?Ui; Ti, for some k ∈ I : s = sk, and T ′ =

M[Tk; T1];
3. T = M[T ∗0 ; T1] with T0 =

∑
i∈I

si?Ui; Ti, for some k ∈ I : s = sk, and T ′ =

M[Tk; T ∗0 ; T1]

Case (1) follows by using rule [RTCom]. Case (2) follows by using first rule [RTIt1]
first and then [RTCom] while case (3) follows by using [RTIt2] instead. The proof is
completed by noting that all τ reductions that precedes the communication are either
initiation of sessions (that do not interfere with the runs) or addition of messages to
the queues (that are mimicked by rule [RTCh]. (Note that we can reason analogously to
consider reductions after the communication step.)

Lemma 8. Let r ∈ Rs(∆) then either (i) Γ • ∆(s) 6→ or (ii) Γ • ∆ τ
=⇒ Γ • ∆′,

r = 〈p, sk!Uk〉〈q, sk?Uk〉r′, and r′ ∈ Rs(∆
′).

Proof. The proof follows by induction on the proof of the derivation. By straight-
forward analysis of the last applied rule. The only interesting case is the usage of
rule [RTCh] which is mimicked by using rule [TCom1]. We notice here that the traces
we consider are generated by keeping outputs in ordered fashion.



We start by stating several auxiliary results about the runs of Runtime Local Types,
that will be used for proving main results.

Lemma 9. Given r ∈ Rs(s :
∑
i∈I

si?Ui; Ti@ p,T) and s ∈ s and s 6= si for all i ∈ I ,

then r ∈ Rs(s : s : U.T
′ +
∑
i∈I

si?Ui; Ti@ p,T).

Proof. By straightforward induction on the structure of the proof.

It is easy to notice that the converse of the above result does not hold since the
new branch can add new traces. Next result characterises some cases in which the other
inclusion is also valid. In order to achieve other direction we impose a restriction on
the names that can be used as guard of the added branch. This condition mimics the
well-formedness condition for the choice operator of global types.

Lemma 10. Let ∆ = s :
∑
i∈I

si?Ui; Ti@ q, {Tj@ pj}j∈J and s s.t.

1. ∀i ∈ I : s 6= si and
2. 6 ∃r ∈ Rs(∆) with r = r1r2 and r2 ∈ Rs(M[T⊕ s!U; T′]@ p,

∑
i∈I

si?Ui; Ti@ q,T)

Then,Rs(∆) = s : s?U; T′′ +
∑
i∈I

si?Ui; Ti@ q, {Tj@ pj}j∈J

Proof. (⊆) By Lemma 9. (⊇) By induction on the structure of the proof. Interesting
case is when rule [RTCom] is applied, but the case follows because condition (2) avoids
the selection of the added branch.

Next result show that projections of a well-formed global type are confusion-free
w.r.t. the choices.

Lemma 11. Let G(s) = G1 + G2 s.t. rdy(G) = {p}, ∆ = s : {G(s)� p@ p}p∈P(G(s)),
∆i = s : {Gi(s)�p@ p}p∈P(G(s)) for i = 1, 2. Then,Rs(∆) = Rs(∆1) ∪Rs(∆2)

Proof. If one of the branch Gi is end we are done. Otherwise, by straightforward in-
duction on the structure of G we can conclude that G(s) � p = G1 � p ⊕ G1 � p with
G1 � p =

⊕
i∈I

si!Ui; Ti and G1 � p =
⊕
j∈J

sj !Uj ; Tj with all guards different. Then, the

proof proceeds by contradiction. Assume that there exists r ∈ Rs(∆) and r 6∈ Rs(∆i).
Note that the last step of the proof for r ∈ Rs(∆) needs to be by rule [RTCh] be-
cause all of the projections G(s) � pi for pi 6= p are external choices, then assume
some si ∈ I is selected. Then, r ∈ Rs(s : si!Ui; Ti@ p, {G(s)� pi@ pi}pi∈P(G(s)\p})).



Assume r = r1〈pk, si!Ui〉〈qk, si?Ui〉r2 where 〈pk, si!Ui〉〈qk, si?Ui〉 is the first com-
munication that do not belong to G1. In this case, it should be that the run is inferred
from Rs(s : M′[sk!Uk; T′k]@ p, M[

∑
j∈J

sj?Uj ; Tj ]@ q,T) with the sender in G1 and the

receiver in G2 this contradicts well formedness, because it should be the case that the
choice of the branch has appeared before.

Lemma 12. Let ∆ = s : T1,T2 s.t. ch(T1) ∩ ch(T2). If r1 ∈ Rs(s : T1) and r2 ∈
Rs(s : T2) then r1r2 ∈ Rs(s : ∆).

Proof. By straightforward induction on the length of r1.

Lemma 13. Let ∆ = s : {T@ pi}i∈I and ∆′ = s : {T′@ pi}i∈I . If r1 ∈ Rs(∆1) and
r2 ∈ Rs(s : ∆

′) then r1r2 ∈ Rs(s : {T; T′@ pi}i∈I).

Proof. By straightforward induction on the length of r1.

Proof (of Thm. 3). By induction on the derivation of r ∈ R(G(s)) we showR(G(s)) ⊆
Rs(∆) implies R(G(s) b Rs(∆)). We proceed by analyzing the last applied rule in
the derivation of r ∈ R(G(s)).

– Case [RGComm]: Then, G = p → q : s 〈U〉 and r = 〈p, s!U〉〈q, s?U〉. More-
over, ∆ = s : s!U@ p; end, s?U; end@ q. It is easy to check that r ∈ Rs(∆) by
using rule [RTCom] (and rules [RTEnd1] and [RTEnd2] to infer that ε ∈ Rs(s :
end@ p, end@ q)).

– Case [RGCh]: Then G = G1 + G2 and r ∈ R(G1) ∪ R(G1). Assume r ∈ R(G1)
(case r ∈ R(G2) follows analogously). By inductive hypothesis, we know that
r ∈ Rs(s : {G(s)� p@ p}p∈P(G1(s))). W.l.o.g. we can assume that rdy(G) = p0.
Then, by rule [RTCh]

r ∈ Rs(s : G1(s)�p0 ⊕ G2(s)�p0@ p0, {G1(s)�p@ p}p∈P(G1(s))\p0)

By well-formedness condition, P(G1(s)) = P(G2(s)) = P(G(s)) and for any
p ∈ P(G(s))\p0, we now that they start with input actions over different names
in G1(s) and G2(s). Therefore, we can repeatedly use Lemma 9 (once for any
p ∈ P(G(s))\p0) to conclude that r ∈ Rs(s : {G1(s)�p+ G2(s)�p@ p}p∈P(G(s))).

– Case [RGPar]: Then G = G1|G2 and r = r1r2 with ri ∈ R(Gi). By well-formedness
condition, P(G1) ∩ P(G2) and ch(G1) ∩ ch(G2) = ∅. Hence,

∆ = s : {G1(s)�p@ p}p∈P(G1(s)), {G2(s)�p@ p}p∈P(G2(s))

By inductive hypothesis, r1 ∈ Rs(s : {G1(s)� p@ p}p∈P(G1(s))) and r2 ∈ Rs(s :
{G2(s)�p@ p}p∈P(G2(s))). The proof is completed by using Lemma 12.



– Case [RGSeq]: Then G = G1; G2 and r = r1r2 with ri ∈ R(Gi). By well-formedness
condition,

∆ = s : {G1(s)�p;G2(s)�p@ p}p∈P(G(s))
By inductive hypothesis, r1 ∈ Rs(s : {G1(s)� p@ p}p∈P(G1(s))) and r2 ∈ Rs(s :
{G2(s)�p@ p}p∈P(G2(s))). The proof is completed by using Lemma 13.

– Case [RGIter]: Then, G = G∗
f

1 with P(G) = {p, p1, . . . , pn}, rdy(G) = p, ∀1 ≤
i ≤ n : f(pi) = si〈Ui〉, and r = r′〈p, s1!U1〉 . . . 〈p, sn!Un〉〈p1, s1?U1〉 . . . 〈pn, sn?Un〉
with r′ ∈ R̃(G). Therefore,

∆ = s : (G1(s)�p)∗; b1!U1; . . . ; bn!Un@ p, {(G1(s)�pi)∗; bi?Ui@ pi}i∈1..n

By induction on the structure of the derivation, it can be proved that

r1 = [. . . [[r′k]r
′
k−1] . . . r

′
1]r
′
0

with r′i ∈ R(G1). Then, by induction on k we show that r ∈ Rs(∆). Case k = 0.
Then, r′0 ∈ R(G1) and

∆′ = s : (G1(s)�p); b1!U1; . . . ; bn!Un@ p, {(G1(s)�pi); bi?Ui@ pi}i∈1..n
It is easy to check that r′0 ∈ Rs(∆′) (by using first Lemma 13, inductive hypothesis
and repeatedly rule [RTCom]). By rule [RTIt1], r ∈ Rs(∆). Case k = n+1 follows
immediately by using inductive hypothesis and rule [RTIt2].

– Case [RGEnd]: Follows straightforwardly since all projections are end. Hence, the
derivation is built by using [RTEnd2] and repeated application of [RTEnd1] (once
for each participant).

Proof (of Thm. 4). We proceed by induction on the derivation of r ∈ Rs({s : (G(s)�
p)@ p}p∈P(G)) to show that for all ∆ = s : {Tp@ p}p∈P(G),

Rs(∆) b Ru({〈IιG , σ〉 | IιG ∈ I∆,Cp,P ∧ σ consistent with C})

with
I∆,Cp,P = {IιG | ι(p) = P, C Γ ` IιG . ∆ > Γ ′}

We proceed by case analysis on the last rule applied to derive r and write . If last
rule is:

– Case [RTCom]: Then, r = 〈p, sk!Uk〉〈q, sk?Uk〉r′ with Tp = M[sk!Uk; Tk], Tq =

M′[
∑
j∈J

sj?Uj ; T
′
j ] with k ∈ J , and r′ ∈ Rs(∆, s : M[Tk]@ p, M′[T′k]@ q).

Consider Tp. By inspecting the typing rules for systems, we can conclude that M
capture the types of the messages in the session queues of IιG (applying the rule
[VQueue]), while sk!Uk; Tk is the type associated to ι(p). Then, by inspecting the
typing rule for processes (Fig. 5), we can conclude that ι(p) is a process having,
possibly after conditional, iteration operators or actions over different sessions, an



output prefix on top (this can be shown by induction on the derivation of the type).
In what follows, we assume wlog that the output prefix is on top. Consequently, for
all σ consistent with C and , we assume

〈ι(p), σ〉 e`skv−−−−→ 〈ι′′(p), σ〉

for some ι′′ (s.t. ι′′(pi) = ι(pi) for all pi 6= p. Therefore

〈IιG , σ〉
e`skv−−−−→ 〈Iι

′′

G , σ〉 (1)

Now, take Tq. Reasoning as for Tp, we can conclude that
∑
j∈J

sj?Uj ; T
′
j is the type

of ι(q) and also that ι(q) is a process having an input prefix on top. Analogously,
for all σ consistent with C,

〈ι′′(q), σ〉 e′`skv−−−−→ 〈ι′(q), σ′〉

for some ι′ for some ι′ (s.t. ι′(pi) = ι′′(pi) for all pi 6= p. Hence,

〈Iι
′′

G , σ〉
e′`skv−−−−→ 〈Iι

′

G , σ〉 (2)

By subject reduction on applied twice (on Eq.(1) and Eq.(2)), there exist ∆1, ∆2

s.t.
- Γ •∆ skv=⇒ Γ •∆1

skv=⇒ Γ •∆2

- C ∧ e ∧ e′ Γ, x : U ` Iι′G . ∆2 > Γ ′ for some x and some Γ ′ ⊇ Γ .
Let C′ = C ∧ e ∧ e′. Note that C′ is consistent and σ′ is consistent with C ∧ e ∧ e′.
From Γ • ∆ skv=⇒ Γ • ∆1

skv=⇒ Γ • ∆2 we can conclude Γ • ∆ τ
=⇒ Γ •

∆2 (by combining both proofs with the rules [TQueue], [TCom1] and [TCom2]). By
Lemma 8, r = 〈p, sk!Uk〉〈q, sk?Uk〉r′, and r′ ∈ Rs(∆2).
By inductive hypothesis,

r′ ∈ Ru({〈IιG , σ〉 | IιG ∈ I∆2,C′
p,ι(P ) ∧ σ consistent with C}) (3)

The proof is completed by combining Eq. (1-3) using the rules [RRExt] and [RRInt]

to conclude that r ∈ Ru({〈IιG , σ〉 | IιG ∈ I∆,Cp,P ∧ σ consistent with C}).
– Case [RTCh]: By inspecting typing rules for systems and processes, we conclude

that ι(p) = if e : P elseQ (cases in which branch is after actions over other ses-
sion or sequential composition are handled analogously). Then, the proof follows
from the fact that both C∧e 6` ⊥ and C∧¬e 6` ⊥ because ι(p) = if e : P elseQ
is typed as a sum. Hence, there is at least one σ consistent with C, such that
〈ι(p), σ〉 τ−→ 〈ι′(p), σ〉 and C Γ ` ι′(p) . s : sj !Uj; Tj@ p, ∆′ > Γ ′. Then,
the proof is completed by using inductive hypothesis and rule [RRExt].

– Case [RTPar] holds trivially.
– Case [RTEnd1] and [RTEnd2]: Follows by using rule [RREnd].



– Case [RTIt1]: Wlog assume that ι(p) = for x in ` : P ;Q or ι(p) = doN until b(x);Q
(we remark that by typing rules [VThen] and [VElse] iteration can appear under
if : else but the proof follows analogously). Consider ι(p) = for x in ` : P ;Q.
As for [RTCh], it should be the case that there is at least one σ consistent with
C and C ` ` 6= ε. Then, assume ` to have length k. Then, the iteration will
be equivalent to ι(p) ≡ P{`1/x}; . . . ;P{`k/x};Q. Therefore, the operational
semantics of processes ensures that r′ ∈ Ru(〈IιG , σ〉) implies r′ = r1r2 with
r2 ∈ Ru(〈Iι

′

G , σ〉) and ι′(p) = P ;Q, ι′(q) = ι(q) for all p 6= q (this can
be checked by structural induction on processes). By typing rule we know that
C Γ ` P ;Q . s : Ti; Tj@ p, ∆′ > Γ ′. By inductive hypothesis, r2 ∈ Rs(s :
{T′p@ p}p∈P(G)) with C Γ ` ι′(p) . ∆′ > s : Tp, Γ . Then, the proof is
completed by noting that the run r of the specification is matched by a potentially
longer trace r′, but they coincide on the suffix r2 (condition established by second
inference rule of l). Case ι(p) = do N until b(x);Q follows analogously.

– Case [RTIt2]: Analogous to the previous case.

F Whole-spectrum implementations and Guarded Automata

In this section we briefly discuss how our notion of whole-spectrum implementation
(WSI) can be defined when specifications and implementations are defined as Guarded
Automata.

We first recall some basic definitions from Fu et al. [2005]: (P,M) is a compo-
sition schema where P = {p1, . . . , pn} is a set of participants and M are the mes-
sages (i.e., the alphabet), R = 〈(P,M), A〉 is a conversation protocol where A is a
guarded automaton,W = 〈(P,M), A1, . . . , An〉 is a web service composition,L(R) =
L(A) is the language of a conversation protocol. For a web service composition W =
〈(P,M), A1, . . . , An〉 we have runs, send sequences and conversations;

1. a run of W is a sequence of configurations γ = c0, c1, . . . , cn where:
– c0 is an initial configuration
– ci → ci+1 (i = 0 . . . n− 1)
– cn is a final configuration

2. a send sequence γ on a run γ is the sequence messages, one for each send action in
γ, recorded in the order in which they are sent,

3. a conversation is a wordw overM for which there is a run γ ofW such thatw = γ,
4. the conversations of a web service W , written C(W ), is the set of all the conversa-

tions for W .

We are now ready to introduce a notion of WSI for guarded automata.

Definition 9 (Whole-spectrum realisation of a guarded automaton). Let P be a set
of participants defined as {p1, . . . , pn}.Ai is a whole-spectrum realisation of pi ∈ P in
conversation protocolR = 〈(P,M), A〉 if for allw ∈ L(R) there exist {Aj}j∈{1,...,n}\{i}
such that w ∈ C(< (P,M), A1, . . . , An >).



Definition 10 (WSI of guarded automaton). Ai is a WSI of pi in conversation proto-
col R = 〈(P,M), A〉 if: (1) Ai is a deterministic guarded automaton, and (2) Ai is a
whole-spectrum realisation of pi in R = 〈(P,M), A〉.


