University of

"1l Kent Academic Repository

Bocchi, Laura and Melgratti, Hernan (2014) On the Behaviour of General
Purpose Applications on Cloud Storage. Service Oriented Computing and
Applications, 9 (3). pp. 213-227. ISSN 1863-2386.

Downloaded from
https://kar.kent.ac.uk/43735/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/s11761-014-0165-7

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/43735/
https://doi.org/10.1007/s11761-014-0165-7
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

myjournal manuscript No.
(will be inserted by the editor)

On the behaviour of general-purpose applications on cloud storages

Laura Bocchi - Hernan Melgratti

Received: date / Accepted: date

Abstract Managing data over cloud infrastructures raises
novel challenges with respect to existing and well studied
approaches such as ACID and long running transactions.
One of the main requirements is to provide availability and
partition tolerance in a scenario with replicas and distributed
control. This comes at the price of a weaker consistency,
usually called eventual consistency. These weak memory
models have proved to be suitable in a number of scenarios,
such as the analysis of large data with map-reduce. How-
ever, due to the widespread availability of cloud infrastruc-
tures, weak storages are used not only by specialised appli-
cations but also by general purpose applications. We provide
a formal approach, based on process calculi, to reason about
the behaviour of programs that rely on cloud stores. For in-
stance, it allows to check that the composition of a process
with a cloud store ensures ‘strong’ properties through a wise
usage of asynchronous message-passing; in this case we say
that the process supports the consistency level provided by
the cloud store. The proposed approach is compositional: the
support of a consistency level is preserved by parallel com-
position when the preorder used to compare process-store
ensembles is the weak simulation.

Keywords cloud - weak stores - eventual consistency -
process calculi

1 Introduction

In the past decade, the emergence of the Service-Oriented
paradigm has posed novel requirements in transaction man-

School of Computing, University of Kent
CT27NF, Canterbury, UK.
E-mail: L.Bocchi@kent.ac.uk

University of Buenos Aires
Pabelln I, Ciudad Universitaria. C1428EGA Buenos Aires, Argentina.
E-mail: hmelgra@dc.uba.ar

agement. For instance, the classic notion of ACID transac-
tion (i.e., providing Atomicity, Consistency, Isolation and
Durability) proved to be unsuitable in loosely coupled multi-
organizational scenarios with long lasting activities. Both in-
dustry and academia found an answer to these requirements
in a weaker notion of transaction, the so called Long Run-
ning Transactions (LRTs).

At present, the increasing availability of resources of-
fered by cloud infrastructures enables small and medium-
sized enterprises to benefit from IT technologies on a pay-
per-use basis, hence with no need for high up-front invest-
ments. The range of available resources, offered as services,
includes e.g., applications (Software as a Service), develop-
ment platforms (Platform as a Service), hardware compo-
nents (Infrastructure as a Service), and data storage. Provid-
ing and managing data over cloud infrastructures poses yet
novel challenges and requirements to data management.

Whereas the main issue in LRTs, with respect to the
ACID properties, is to minimise resource locks by dropping
isolation, the problematic properties in cloud databases are
durability and consistency. Durability is dropped in favour
of a soft state (i.e., data is not preserved unless its persis-
tence is explicitly ‘renewed’ by the user), whereas consis-
tency is relaxed in order to guarantee availability. These re-
quirements are summarised in [19] with the acronym BASE
(Basically Available, Soft State, Eventual Consistency), as
opposed to ACID. In this paper we focus on consistency,
leaving the consideration of soft state as a future work.

Cloud infrastructures provide data storages that are vir-
tually unlimited, elastic (i.e., scalable at run-time), robust
(which is achieved by using replicas), highly available and
partition tolerant. It is known (CAP theorem [13]) that one
system cannot provide at the same time availability, partition
tolerance, and consistency, but has to drop one of these prop-
erties. Cloud data stores typically relax consistency, while
providing a weaker version called eventual consistency. Even-

Laura Bocchi, Herndn Melgratti

tual consistency ensures that, although data consistency can
be at time violated, at some point it will be restored.

Although not appropriate in all scenarios, BASE prop-
erties are the most practicable solution in some scenarios.
In other words, eventual consistency is suitable sometimes.
In fact, some applications e.g., some banking applications,
need consistency, whereas some others can provide a satis-
factory functionality also when consistency is relaxed e.g.,
YouTube file upload.

We set the basis for a formal analysis of what ‘suitable’
and ‘sometimes’ means, so that general purpose applications
can be safely run using these weaker memory models. In
fact, the widespread availability of cloud infrastructures is
broadening the range of applications using cloud data stores:
not only specialised applications, such as those analysing
large data using map-reduce, but also general purpose ap-
plications. It is therefore crucial to provide modelling prim-
itives and analysis tools that help architects and developers
to tackle the possible mismatch between the properties ex-
pected/needed and the properties provided by dynamically
discovered resources, such as the BASE properties offered
by cloud stores.

The aim of this paper is to offer the basis for a test-
ing theory, based on process calculi, that enables to verify
that an application ‘works fine’ when composed with a weak
store. We focus on distributed and interoperable applications
that can both communicate asynchronously, and use cloud
stores. These applications can be naturally modelled as pro-
cesses in CCS [18], a well known formalism for concurrent
and distributed systems.

Existing literature on weak memory models and eventu-
ally consistent stores (see § 6 for an overview) focuses on
the engineering of weak stores and on the properties they
guarantee. The aim of our contribution is somehow orthogo-
nal; that is analysing the observable behaviour of distributed
applications using these stores. With respect to the existing
work on the properties of systems that use weak stores, in-
stead, we do not focus on a specific set of properties but,
rather, we aim at analysing if the observable behaviour of an
application can be preserved when using different types of
stores. Namely, we address the following questions: which
behaviour can we expect from an application, that was de-
veloped with a certain type of store in mind, when it uses
a store providing weaker properties? When we run a spe-
cific application in a system where resources are provided
on a pay-per-use basis, which level of consistency should we
seek/pay for in order to still observe the desired behaviour?

This work is an extended version of [6]; the main im-
provements are summarised below:

1. The operational characterisation given in [6], although
sufficient for illustrating how stores work, strongly binds
the definition of a store to its current state. We now give a
more abstract characterisation that differentiates a store

from its states. Consequently, we are able to talk about
the properties (i.e., the consistency level) satisfied by a
store regardless of its current state. For instance, the con-
sistency level of a store is now defined in terms of all its
possible states (See Definition 19). Nevertheless, a new
result (Proposition 5) allows us to restrict the compar-
ison of the consistency level of two stores just to their
initial states. This also shows that the new formalisation
conservatively extends the presentation in [6], in which
consistency levels are determined by the initial states of
the stores.

2. We introduce a notion of compatibility between states
(Definition 16 in § 4.3) to enable the comparison of stores
supporting different datatypes or representing data dif-
ferently. This notion is essential to the formulation of the
aforementioned Proposition 5. The separation between
stores and states, together with the notion of compatibil-
ity between states, enables coinductive reasoning on the
behaviour of stores (e.g., Theorem 1).

3. Although still leaving our framework parametric with re-
spect to the operations offered by stores as in [6], we
have made our assumptions on these operations explicit.
Namely, we introduced a notion of well-formedness for
store operations (Definition 15), which induces a more
realistic behaviour of applications over cloud storage,
since read operations cannot block depending on the con-
tent of the store.

4. A new section (§ 5) discusses the practical applicability
of the framework and states that the consistency level
required by an application can be determined compo-
sitionally (Theorem 1) when systems are compared by
using weak bisimulation.

We proceed as follows: we give one abstract (§ 2.1) and
one operational (§ 2.2) characterisation of stores, strong and
weak consistency, and an approach (§ 4) that allows us to
model and compare applications on stores. This approach is
based on the value-passing CCS and on the operational char-
acterisation of stores given in § 2.2, and uses a behavioural
preorder that takes into account both the behaviour of the ap-
plications, modelled as processes, and the levels of consis-
tency of the stores they use. In § 3 we provide three examples
of stores with replicas, and analyse the consistency proper-
ties they provide using weak bisimulation. More precisely,
in § 3.1 we present a weak store that guarantees eventual
consistency, in § 3.2 we introduce an asynchronous version
of the store in § 3.1 that cannot rely on an absolute (time) or-
dering between versions and does not to guarantee eventual
consistency, and in § 3.3 we introduce a strong store. These
stores are also used to illustrate the proposed approach in
§4.1In § 5 we discuss on the applicability our framework and
show that the consistency level required by an application
can be checked compositionally (when taking weak bisim-

On the behaviour of general-purpose applications on cloud storages

ulation as the observational equivalence). Related work and
conclusion are given in § 6 and § 7, respectively.

2 Strong and Weak consistency

This section presents a formal approach to modelling cloud
storages, which we will simply refer to as stores. Firstly,
§ 2.1 presents stores as abstract data types, whose operations
come equipped with a denotational semantics, while § 2.2
presents the operational characterisation of stores that will
be useful in the rest of this paper.

2.1 Stores as abstract data types

Let K be the set of names, ranged over by 0, 0’, 01, . . ., used
to uniquely identify the objects in a store (e.g., URIs). We
interpret any state o of a store as a total function that as-
sociates keys o € K to values v in some domain V, i.e.,
o : K — V. Write X for the set of all possible states and
assume V to include L, which denotes an undefined value.
Hereafter, we assume that any store contains a distinguished
initial state o.

Stores are characterised in terms of their operations (i.e.,
queries). A store is defined in terms of a set O = WU R,
where the elements in V denote write operations and those
in R stand for read operations. We require W N R = () and
assume any operation to be equipped with an interpretation
function I. In particular:

1. a € W is interpreted as a function from states to states,
ie,I(a): (K—=V) = (K—-V).

2. « € Ris interpreted as a function from states to boolean
values, i.e., I(a) : (K — V) — {true,false}. We
model in this way the fact that an action actually reads
the value that is stored for that key.

The following examples illustrate the specification of
three different stores. Example 1 introduces a strongly con-
sistent store providing the operations write and read that
atomically change and read the state of the store. Examples 2
and 3 define two weakly consistent stores providing a mono-
tonic set datatype [10] whose values can be read (operation
read) and modified by inserting a new element (operation
add).

Example 1 A memory containing values in V can be mod-
elled as follows, assuming that o associates L to all names.

1. W= {write(o,v)|o€e KAv eV}

2. R ={read(o,v) |oe KAv eV}

3. I(write(o,v))o = oo — v] (with _[] is the usual up-
date operator)

4. I(read(o,v))o = {

true ifo(o)=v

false otherwise

Example 2 A store o handling data of type set can be de-
fined as follows, assuming that o is defined such that o (0) =
() for all o.

1. W={add(o,v) |oec KAv eV}

2. R ={read(o,V) |oe KAV €2}

3. I(add(o,v))o = oo — o(0) U {v}]
) true ifo(o) =V

4. I(read(o,V))o =)
otherwise

false

Example 3 An alternative characterisation for sets can ob-
tained by changing the interpretation of action read as fol-
lows:

true if VCo(o)

otherwise

I(read(o,V))o = {

false

Definition 1 Let & € W and 0o € K. We say a modifies o
iff there exists o such that (o) # (I(«a)o)(0), i.e., when «
may modify the value associated with o. Similarly, « € R
reads o € Kiff 3v € V,0 € X s.t. I(a)o # I(a)(o]o —
v]), i.e., when « actually depends on the value of 0. We let
objects(c) to be the objects read or written by the action «,
ie.,

{o] a modifies o} if & € W

objects() = {{0 |areads o} if a€R

Example 4 Consider W, R and I defined in Example 1.
Then, the operation write(o, v) modifies o’ iff o = o’. Sim-
ilarly, the operation read(o, v) reads o' iff o = o’. Also,
objects(read(o,v)) = objects(write(o, v)) = {o}.

Definition 2 (Valid read) Given a read action « and a state
o, a is a valid read of o, written o <1 «, when I(a)o =
true. We write o < to denote the set of all valid reads of o,
ie,ox={a|oxal.

The following definition gives a characterisation for weak
specifications, namely an access to a weak store may not re-
turn the most recently written value. Formally, the specifica-
tion of a weak store admits any read action to be valid also
after some store modifications. In other words, the specifica-
tion of a weak store does not require modifications to have
immediate effects.

Definition 3 (weakly consistent specification) An interpre-
tation I is weakly consistent iff Voo € R, 5 € W,o € X :
oxia = [(f)o = a.

Example 5 The specification in Example 3 is a weakly con-
sistent specification. In fact, we take @ = read(o, V) and
B = add(o’,v'). If 0 < «, then V C o(0). In addition,
o' =1(B)o = oo — (o) U{v'}]. It is straightforward
to check that Vv C o(0) = V C o¢'(0). Hence, ¢’ < .
Differently, the specifications in Examples 1 and 2 are not

Laura Bocchi, Herndn Melgratti

weakly consistent specifications. In fact, the interpretations
for the read actions in both specifications require the store to
return exactly the last written value in the store. Intuitively,
this means that each update needs to be immediate and can-
not be deferred.

The following two definitions are instrumental to the for-
malisation of strongly consistent specifications.

Definition 4 (Last changed value) Given a state o, a write
action « € W writes o with v, written o 977, whenever
o(0) # vand (I(a)o)(0) = v.

Definition 5 (Read a particular value) Given a state 0 =
o'[o — V], aread action « € R reads the value v for o in o,
written o 1977, if 0 € objects(a) implies

(0’0 v]) # (o' <) = a € (0'[o > v])\(0)

The above definition requires that whenever the update
[0 — v] of o alters the set of valid reads, then « is valid
only with the modification [0 — V], i.e., a is enabled by the
modification [0 — v].

Definition 6 (Strongly consistent specification) An inter-
pretation I is strongly consistent if

VaoeR,eW, 00X o0eK:
(BI™ NI(B)obaa) = a 123y,

In words, a specification is strongly consistent when it
requires every read action « of an object o corresponds to
the last changed value of o.

Example 6 1t is easy to check that the specification in Ex-
ample 1 is strongly consistent. For any pair of actions o =
read(o, v) and 8 = write(o’,v'),if 8 19" thenI(8)o =
olo’ — V']. Then, o[o’ — v'| > « implies either (1)
o # o and hence o' ¢ objects(a) or (2) o = o and
a € (oo = v'] 1)\ (o). In both cases, « Tf(/ﬁ'_)’;’l Anal-
ogously, it can be shown that the store in Example 2 is also
a strongly consistent specification. Differently, the store in
Example 3 is not a strongly consistent specification. Con-
sider & = read(o,), 3 = add(o,v) and o = gglo — 0].
It is straightforward to check that 8 1275 and I(8)o ™ «.
However, it is not the case that « Tﬁ(gﬁ‘v} because o € o <.

We remark that Definitions 3 and 6 give an abstract char-
acterisation of the consistency provided/expected from a store.
Note that such notions are incomparable. Firstly, a strongly
consistent specification is not a weakly consistent specifica-
tion because the first requires updates to be immediate while
the second may defer them. Analogously, a weakly consis-
tent specification is not a strongly consistent specification.

2.2 Stores as Labelled Transition Systems

In what follows we will find it useful to rely on an opera-
tional characterisation of stores in terms of labelled transi-
tions systems. The operational characterisation of a store,
or simply store, is a triple £ = (L£,1,—,) where L is a
set of labels, I is an interpretation function, and — is a la-
belled transition relation on store states defined on labels L.
L = O US is the union of read/write actions O and internal
or silent actions S. We use 7,7/, . .. to range over S.

We can think of a store (O U S, I, —,) as an operational
implementation of the specification (O,). The implemen-
tation defines the precise mechanisms of interactions with
the store, by transitions with labels in O, as well as mecha-
nisms for preserving or restoring consistency, synchronising
distributed replicas, etc., by transitions with labels in S.

Definition 7 (Reachable states) We say that o is a reach-
able state of £, or simply a state of /, if 09 —} o, with o
being the initial state of £.

Given a sequence of actions ¢ € L£* and a set of labels
A C L, we write t | 4 to denote the projection that removes
from ¢ all labels not in A. For a sequence t = ag. .. ak...,
we will use the standard subindex notation, i.e., t[j] = a;,
and t[i..j] = «;...«a;. Given a finite sequence of labels
ag ... o5 € YW*, its interpretation is the function accounting
for the composition of all aj, i.e., I(ag ... ;) = I(;) o
...ol(ap). As usual, for t = oy ...y and o state of £, we
will write ¢ ==, o’ if 300, ..., 01 SL 05 5y i1,
o9 = o and o1 = o’. Moreover, for t € O* we also
write o :t>[o’ if there exists ' € L* sit. o ég o’ and
t=t"]0.

Definition 8 (Trace) Let £ = (£,1, —;) be a store and o a
state of /. A sequencet € L* s.t. o :t>g o' is a trace from
o satisfying (O,) when t[i] € R implies I(¢]0..i] {w)o <
t[i], i.e., any read is valid with respect to the store obtained
after applying (in order) all preceding operations in WW. We
write ¢r(o) for the set of all traces from o.

The above definition provides an operational character-
isation of the consistency criterion given by Definition 2.
In order to handle strongly consistent stores, we introduce
a finer notion that captures the dependencies between read
and write operations.

Definition 9 (Read-write dependency) The read-write de-
pendency relation <+C R x W, is defined as follows

a > Biff objects(a) N objects(B) # 0.

Example 7 For the stores introduced in Examples 1-3, we
have o <+ S iff « = read(o, v) and 8 = write(o, v').

On the behaviour of general-purpose applications on cloud storages

Definition 10 (Read follows a write) Given a trace ¢, aread
action o = t[j] € R and a write action 5 = t[i] € W s.t.
a < B, we say « follows (3, written 8 ~» « € t,iff ¢ < j
andVi < k < jtlk] e W = a ¢ t[k].

Now, we are ready to formalise the definition of strongly
consistency given in [27], that is: ‘Every read on a data item
x returns a value corresponding to the result of the most
recent write on x’.

Definition 11 (strongly consistent trace and store) A trace
t is strongly consistent if for all 5 ~» « € t, § 197 im-
plies « T]?(?)"U. A store is strongly consistent if every trace is

strongly consistent.

Lemma 1 establishes a correspondence between Defini-
tion 6 and the operational definition of strongly consistent
trace/store in Definition 11.

Lemma 1 Let (O,1) be a strongly consistent specification
(by Definition 6). If t is a trace satisfying (O, 1), then t is a
strongly consistent trace.

Proof Consider ¢ € tr(op) and 5 ~ « € t. Then 3, j s.t.
i<j.t)j] =a€eRandtli] = B € W.Leto = I(t[0..i —
1] Jw)og and o’ = I(¢[0..5 — 1] lw)og. Since ¢ satisfies
(O,T), we have ¢’ 1 . Moreover, 8 ~» « € t implies
Vi < k < j.tlk] € W = objects(t[j]) N objects(t[k]) = O
and hence I(¢[0..¢] L)oo < a. Consequently,

I(8)(o) > (D
Additionally, by Definition 6, it holds that

Blg™" A I(B)(o) xa) = altig), 2
Finally, from (1) and (2) we conclude that 5 |97V —
« Tﬁ’(’;)"g O

Now we take advantage of the operational characterisa-
tion of stores to state our notion of eventual consistency.

Consider a scenario in which information is replicated,
hence an older value may be read for a key due to the tem-
porary lack of synchronisation of some replicas. A widely
(e.g., [5,28]) used formulation of eventual consistency is the
one in [28]: ‘if no new updates are made (...), eventually all
accesses will return the last updated value’. We consider
here a slightly different notion (on the lines of [25]) which
does not require absence of updates, namely: ‘given a write
operation on a store, eventually all accesses will return that
or a more recent value’. We prefer this notion as it allows
a more natural testing of composition of an application with
a store (e.g., not imposing that the application stops writ-
ing on the store at a certain point in time allows us to test
non-terminating applications). In other words, we do not re-
quire that the store will stabilise, but we require a progress
in the synchronisation of the replicas. Notably, this property
entails that if no writes are done then all replicas will even-
tually be synchronised.

Definition 12 (Eventual consistency) A store ¢ with initial
state oy is eventually consistent if V¢ € ¢r(og) the following
holds: Let t[i] € W then 3k > i.Vj > k.t[j] > t[i] implies:

L. t[d] 1577 and t[5] 157,15, i.e., t[j] reads the value writ-
ten by t[é], or

2. 3i < h < jstotlh] 1570 and t[j] 1500 ie.]
reads a newer value.

The above definition of eventual consistency assumes a
total order of write actions. For the sake of simplicity, we
avoid the definition of even weaker notions as the ones in
which events are not globally ordered [11], which could also
be recast into this framework.

3 Two Weak and One Strong Store

In this section we consider three examples of stores, two
weak stores with replicas and distributed control as, e.g.,
Amazon S3 [15] (although our model has a quite simplified
API), and one strong store. In the weak stores we assume
that, after a write, the ‘synchronisation’ of the replicas hap-
pens asynchronously and without locks.

In a replicated store, the ensemble of replicas can store
different object versions for the same key. Given a key o
and a state o, o(0) is the set of versions of o in o. We
model each version as a pair (v,n) where v is the object
content (e.g., blob, record, etc) and n is a version vector.
The set of version vectors W is a poset with minimal el-
ement ng. We let version vectors range over n, n' sy e ee
We write n > n’ when n is a successive version of n’, and
we write n <> n’ when neither n > n/ nor n’ > n (ie.,
n and n’ are conflicting versions). We say that n is fresh in
o(o) if V(v,n’) € o(0), n # n'. We write n + 1 to de-
note a fresh version vector such that n + 1 > n. Similarly,
given a set of version vectors {ni, .., n,, } we use the nota-
tion {n1, .., n,, + 1 to denote a fresh version vector n’ such
that n’ > n; for all i € {1,..,m}. Note that there is more
than one vector n + 1 for a given n, and that if two replicas
create two (fresh) next version numbers n; = n + 1 and
no = n + 1 we have nqy <> ns.

3.1 Weak Store

We first model a weak store semantics in which replicas
rely on a synchronisation mechanism that enables them to
choose, when handling a write action, a version vector that
is certainly greater than all version vectors associated to the
same object. Such a mechanism could be implemented, for
instance, using timestamps as version vectors, assuming that
replicas have a global notion of time which is precise enough
to always distinguish between the timestamp of a couple of

Laura Bocchi, Herndn Melgratti

events (i.e., actions happen at different times). The assump-
tion of a global notion of time is reasonable in some scenar-
ios. For instance, as discussed in [3], multiprocessors like
Alpha [1] and Sun [26] rely on a global timeline. In cloud
systems, an approximated global timeline can be obtained
by synchronising the local clocks using, for instance, the
Precision Time Protocol (PTP) [2], or by means of an ini-
tial synchronisation when one can guarantee that time flows
at the same pace for all local clocks. These are approximate
solutions allowing some time discrepancy among the local
clocks; their applicability depends on whether this discrep-
ancy is negligible with respect to the expected temporal dis-
tance between pairs of subsequent write operations on store.

Definition 13 (Weak store) A (replicated, distributedly con-
trolled) weak store is defined as w = WURU{7}, 1, =)
where:

1. W= {write(o,v)|o e KAv €V}

2. R ={read(o,(v,n))|]oe KAveVAnecW}

3. I(write(o,v))o = olo + (o) U {(v,n)}] (with n
fresh)

4. I(read(o, (v,n)))o = (v,n) € o(0)

and the LTS —,, is given by the rules in Fig. 1. The initial
state is 0 s.t. og(0) = {(L, ng)} for any o € K.

A read operation non-deteministically returns one ver-
sion of an object, not necessarily the most recent update with
the greater version vector (rule [WREAD]). A write is mod-
elled by rule [WWRITE] that adds a new version associated
with a newly created version vector, which is greater than all
version vectors of the existing versions of the same object.
A propagation [WPRO] models the asynchronous commu-
nication among the replicas to achieve a consistent view of
the data.

3.1.1 Weak store and strong consistency

Proposition 1 shows that the weak store w is not strongly
consistent as it does not satisfy Definition 11.

Proposition 1 The weak store w is not strongly consistent.

Proof We recall that in the initial state 0, 0(0) = {(L, n)}
for any o. Then, tr(oy) includes

t = write(o, 10), read(o, (L, ng))

obtained by applying, in sequence, rules [WWRITE] and
[WREAD] to 0, i.e.,

write(0,10) read(o,(L,no))
0o w 01 w 01

where o1 (0) = {(L,no), (10,n1)} for ny = ng + 1. Then
t[0] = write(o,10) € W, t[1] = read(o, (L, ng)) € R,
£[0] ~ t[1], and ¢[0] Jo5 {0010} ‘However, it is not

the case that ¢[1] 15, {Em0)-(10m0} pecause oy b # o b

but t[1] € ((o1 ™) \ 0p). Namely, the read action ¢[1]
does not ensure to get only the most recent written version
(10, n4) if it takes place too early to allow the synchroniza-
tion that restores the consistency of the replicas. O

3.1.2 Weak store and eventual consistency

We show below that w ensures eventual consistency (Defi-
nition 12), after a few auxiliary lemmas and assuming that
all o, 0j, ... are states of w. First we observe that all version
vectors for the same object in a state o are distinguished.

Lemma 2 Vo € K. (vy,n1), (va,n2) € o(0) and (v1,n1) #
(v2,n2) == n1 # na.

In fact, oy only has one value for each object, and the only
transition rule that increments the number of version num-
bers for the same object is [W WRITE] that choses n+1 > m
(hence fresh) for each stored version vector m.

Lemma 3 Vo € K. (vy,n1), (vo,n2) € (o) and (v1,n1) #
(VQ,TLQ) —— _\(Tll <> 712).

In fact, the only rule that creates new version vectors is
[WWRITE] and it introduces a new value n that is compa-
rable with all the existing vectors associated with the same
object.

Next we observe that the number of versions associ-
ated with an object o in subsequent states is monotonically
non-increasing (Lemma 4) and will eventually be just one
(Lemma 5) when there are no write actions on o. Below we
use the following notation: given a set O € K we write Wp
for {a| @ € W A objects(a) N O # (}.

Lemma 4 Consider the trace t = t'[i..00[Lc\w,,,) With
Ujmw 0jt1 for all j > i. Then, Vj > i. |oj(0)] >
|7j+1(0)]-

Proof Assume |o;(0)| = m, for some j > i, m, > 1. Since
by hypothesis ;1 ¢ Wiy, then either

- tj+1 € W but writes o' # o, hence by [WWRITE]

loj(0)] = loj1(0)] = mo
- tj+1 € R hence, by [WREAD] |O'j(0)| = ‘O’jJrl(O)‘ =
mo

- tj1+1 € Shence, by [WPRO] either |0 (0)| = |0j41(0)]
m,, or, if one version of o is removed, |0, 11(0)| = m, —
1.

Lemma S Consider the trace t = t'[i..00[(c\w,,) With

o, Y, oo forall § > i Then, 3j > i. |o;(0)] = 1,

assuming strong fairness ' in the LTS in Fig. 1.

I We rely on the following notion of fairness: “If any of the actions
ai, ..., ar is ever enabled infinitely often, then a step satistying one of
those actions must eventually occur” (for a formal definition see[16]).

On the behaviour of general-purpose applications on cloud storages

(v,n) € o(o)

[WREAD]

o' =clo— o(o)U{(v,n)}]

n={m|(v',m)€ao(o)}+ [WWRITE]

read(o,(v,n)) o

(vi,ni) € o(o) 1€{1,2} ni>na

write(o,v) ,
w O

o' = olo > o(0) \ {(v2,n2)]]

T ’
O—w O

Fig. 1 Labelled transition relation for weak store w

Proof Consider any j > i, we have two cases: either |0 ;(0)| =

1, or |oj(0)] > 1. In the first case, by Lemma 4, VI >
Jj. lou(o)] = 1. In the second case, 0;(0) > (vi,n1) #
(va,n2). By Lemma 2 ny # ng and by Lemma 3 it is never
the case that n; <> nso, hence either ny < ng or ny < nq.
If ny < ng (resp. ny < n1) then transition [WPRO] is en-
abled and hence, by fairness, it will eventually execute so to
decrease the number of versions (which, again will not, in
the meanwhile, increase by Lemma 4). O

Proposition 2 The weak store w is eventually consistent (by
Definition 12) assuming strong fairness in the LTS in Fig. 1.

Proof Let t be an infinite trace and let ¢[i] € W. By Def-
inition 13, ¢[¢] has the form write(o, v) for some o, v. By
Lemma 5, if we apply the actions in ¢[i..0o[Lc\w,,) to
a state o we obtain a trace ¢’ and there is a k such that
|ok(0)| = 1. Let k&’ be the position occupied in ¢ by the ac-
tion ¢'[k]. If there is no write action « € t[k’..co[such that
t[¢] +> « then the proposition is trivially true. If such « exists
we let n be the version vector introduced by « and assume,
by contradiction, that (1) w # v (case 2 of Definition 12),
and (2) that there is no write action 8 = t[h] € t[i, k'] such
that 8 |g°*". Then either v = L or there is a write ac-
tion ¢[j] ig?w such that j < 4. In both cases, by rulename
[WWRITE] the version vector associated with w is smaller
than n. By [WPRO] the smaller version numbers are elimi-
nated, hence the read in &’ must return only one value, which
is the one written by t[i], namely v. O

3.2 An Asynchronous Weak Store

We define an asynchronous weak store where keys are as-
sociated with sets of versioned objects. In this case repli-
cas cannot rely on an absolute ordering of versions w.r.t. the
global timeline. This is reflected in the rule for writing new
versions, [AWRITE] in Figure 2: the version vector of the
newly introduced value is greater than the version vector of
one replica but possibly incomparable with the version vec-
tors in other replicas.

The asynchronous weak store is defined as a = (VW U
R U{7},I,—,) using the interpretation and labels in Defi-
nition 13. The transition rules are shown in Fig. 2; they are
as the rules for weak stores in Fig. 1 except the writing rule

[WPRO]

[AWRITE] (which is different from [WWRITE]) and a new
rule [ASOL] which is necessary to resolve conflicts arising
during replicas synchronisation when two version vectors
are incomparable.

With a similar argument as in Proposition 1 one can
show that the asynchronous weak store a is not strongly
consistent. Furthermore, the asynchronous weak store is not
eventually consistent, according to Definition 12.

Proposition 3 The asynchronous weak store a is not even-
tually consistent.

Consider the initial state o for a such that (o) = {(L,no)},
then traces(oy) includes the following family of traces

write(o, 10), write(o, 5), 7, ', read (o, (10,n1))

with ¢/ iw(o} = (). Any trace t in the family of traces above
can be obtained as follows:

1. By [AWRITE], o —riee(e:10)

01(0) = {(J-a TLo), (107 nl)}
write(0,5)

2. By [AWRITE], 0y ———=, 02 Where
o2(0) = {(5,n2),(10,n1)} and ny <> no.

3. By [ASOL], 02—, 03 where 03(0) = {(10,n3)} with
n3 > ni, ny.

o 01 Where

Any read of o over o3 will return (10, ng). This violates Def-
inition 12 because there is no k after which every read will
return the value written either by write(o, 5) or by a more
recent write operation.

However, the properties expressed by Lemmas 4 and 5
hold also for the asynchronous store a. Despite not ensuring
eventual consistency, the weak asynchronous store still en-
sures the convergence of the replicas to a consistent value if
no new updates are made. In fact, in absence of write opera-
tions, rule AWRITE is not applied and hence the size of o (0)
is not increasing for every o and, by repeatedly applying rule
APRO or ASOL, the store will eventually converge to a state
o’ such that |o’(0)| = 1 for all o, as shown by the following
two results.

Lemma 6 Consider the trace t = t'[i..00[L(c\w,,) With

O'jM)a ojt1 for all j > 4. Then, Vj > i. |oj(0)| >

|7j+1(0)]-

Laura Bocchi, Herndn Melgratti

(v,n) € o(o) (v',n)

€o(0) o' =clo—olo)Uu{(v,n)}] n=n"+1

read(o,(v,n)) o [AREAD]

(vi,ni) €o(0) i€{1,2} ni<>no

write(o,v) o [AWRITE]

nz = {ni,n2} o =ofo (0(0) \ {(vi,ni) |7 € {1,2}} U{(vi,n3)})] +1

= [ASoL]
o—>4 0’
(vi,ni) €c(o) 1€ {1,2} ni >n2 o =oclo— d(o)\{(vi,n1)}]
— [APRO]
o—>4 0’
Fig. 2 Labelled transition relation for asynchronous weak store a
Proof Assume |o;(0)| = m,, for some j > i, m, > 1. Since
by h hesi W h ith (v,n) = (o)
y hypothesis ;.1 ¢ {o}» then either read(o. (7)) [SREAD]
- tj+1 € Whutwrites o’ # o, hence by [AWRITE] |0 (0)| = :
. _ /7 ’ ’ — — , — / 1
|j+1(0)] = mo (o) €olo) o' =oloms (rml m=nTH Lo

- tj+1 € R hence, by [AREAD] |o;(0)| = |oj4+1(0)| =

Mo
— tj+1 € S hence, by [APRO] or [ASOL] either |o;(0)| =
loj+1(0)] = m, or, if one version of o is removed,

0741(0)] = my — L.

Lemma 7 Consider the trace t = t'[i..00 Lc\w,,) With

UjMa Ojy1 forall j > i. Then, 3j > i. |oj(0)] = 1,

assuming strong fairness in the LTS in Fig. 2.

Proof Consider any j > i, we have two cases: either |0 (0)| =
1, or |oj(0)] > 1. In the first case, by Lemma 6, VI >
J. lo1(0)] = 1. In the second case, oj(0) > (vi,n1) #
(va,ng). If n; <> ng then transition [ASOL] is enabled
and hence, by fairness, it will eventually execute so to de-
crease the number of versions (which will not, in the mean-
while, increase by Lemma 6). Similarly, if n; < nq (resp.
no < np) then transition [APRO] is enabled and hence it
will eventually decrease the number of versions. a

3.3 Strong Store

We now model a strong store s (with version vectors) that
satisfies strong consistency (Definition 11). The values as-
sociated with objects are pairs (v, n) where v is the value of
the object and n is the corresponding version vector.

Definition 14 (Strong store) A strong store is defined as
s = (WUR,I,—;) where:

1. W= {write(o,v)|o e KAv €V}

2. R ={read(o,(v,n))|]oe KAveVAnecW}

3. I(write(o,v))o = olo — (v,n + 1)] with o(0)
(v, n)

I(read(o,v))o = o(0)

4.

and — is defined by the rules in Fig. 3. The initial state is
09 s.t. with o¢(0) = (L, ng) forall 0 € K.

write(o,v) ,
s O

Fig. 3 Labelled transition relation for strong store s

Proposition 4 The strong store s is strongly consistent.

Proof Lett € traces(og) with og(0) = (L, ng) forall o €
K. Let t[i] € W and t[j] € R with ¢[i] ~ t[j] (hence t[i] <>
t[j]) with ¢ < j. By t[i] <> t[j] and by the form of reads and
writes (which are defined on single objects) we have that
objects(t[i]) = objects(t[j]) = {o} for some o € K. The
proof is by induction on the distance j — ¢ between the write
and read actions.

Base case (7 = i + 1). The only possible transition from
0i—1 to g; is by [SWRITE]

write(o,v)

Oi—1 s 0p =010 — (v,n)]

Hence the only possible read action of o in state o; is, by
rule [SREAD]:

ai(0) = (v,n)
read(o,(v,n))
_—

g; s 05 = 04

o—(v,n)

hence t[i] o, ;" and t[j] Z?(V’n).

Inductive case (j > i1 4+ 1). We proceed by case analysis
on the action ¢[j — 1]: (1) if ¢[j — 1] is a read action that it
will not affect the store (by [SREAD]) hence 0;,_1 = o;. By
induction we have that reading o in position j — 1 returns
(v, n) hence it will return (v, n) also in ;. (2) if t[j — 1] is
a write, then it writes o’ # o because t[i] ~ t[j]. This case
is similar to (1) observing that writing an object o’ does not
affect the values read in o; for o. O

On the behaviour of general-purpose applications on cloud storages

4 Programs accessing stores

We now focus on the model of programs that operate over
stores. Our programs are distributed applications that are
able to perform read and write operations over a shared store,
as well as communicate through message passing a la value-
passing CCS [18].

Memory-sharing and message passing are usually con-
sidered as alternative programming paradigms; for what con-
cerns expressiveness, we could have provided an equivalent
model that uses only one of them. We chose to include both
memory-sharing and message passing primitives to provide
a realistic model for cloud systems, where memory and net-
work are distinct and possibly competing facilities (e.g., a
user can decide when to pay for memory or for network fa-
cilities). Featuring both paradigms enables us to reason on
the relationship between store properties and the communi-
cating behaviour of processes.

4.1 Syntax

As usual, we let communication channel names be ranged
over by x,2’,y, ..., and variables by v, v’, As in previ-
ous sections, values in V are ranged over by v,v’,... and
keys in K by 0, o', We also assume that variables, values
and objects can be combined into larger expressions whose
syntax is left unspecified. We use e, €/, . . . to range over ex-
pressions and var(e) to denote the set of variables occurring
in e. The syntax of programs is just an extension of value-
passing CCS with prefixes accounting for the ability of pro-
grams to interact with the store. We do not restrict such pre-
fixes to be just the actions @ € W U R, because these are
ground terms and we would like to be able to write pro-
grams such as x(v).read (v, w).P that reads from the store
the value w associated with the key v, which has been previ-
ously received over the channel z. Similarly, we would like
to consider programs such as z(v).y(w).write(o,v + w),
which updates the value associated to the key o with the re-
sult of evaluating an expression. For this reason, we con-
sider program actions over stores with the following shape
operation_name(es, ..., e,). By abusing the notation, we
will write operation_name(es, ..., e,) € R (respectively,
operation_name(ey,...,e,) € W) when there exists a
ground substitution over the variables in eq, ..., e,, which
applied to operation_name(ey,...,e,) gives an opera-
tion in R (resp., V). In what follows we assume that pro-
grams use the right arities in store operations. Although we
do not fix a particular set of store operations, we require read
operations to satisfy the well-formedness conditions in Def-
inition 15, e.g., preventing the use of pattern matching over
read values.

Definition 15 (Well-formedness of read operations) The

following prefix
JER

operation_name(ey, ..., e,

is well-formed if it satisfies the following two conditions:

1. {e1,...,entNK| =1;
2. ({e1,...,ent \K) CV;
3. Her,.- e} \K|=n—1.

In Definition 15: (1) requires that each read operation ac-
cesses just one object, e.g., read (o1, 02, v1,v2) is not well-
formed whereas read (o1, v1) is well-formed; (2) requires
that all parameters except the object read are variables, e.g.,
read (o1, v) is not well-formed whereas read (o1, v) is well-
formed; by (3) all the variables must be different, e.g., op-
eration read (o, v, v) is not well-formed whereas operation
read(o, vy, v9) is well formed.

We use A for the set of program actions over stores, and
let p, p’ range over A. Then, the syntax of programs acting
over stores is given by the grammar.

P:=7Te | z(v).P | p.P | if ethen Pelse P |
ve.P | PI|P|!P |0

Process Te asynchronously sends along channel z the
value obtained by evaluating expression e. Dually, z(v).P
receives along channel x a value, used to instantiate variable
v in the continuation P. Process p.P stands for a process
that performs an action p over the store and then continues
as P. Processes if e then P else P,vx.P, P||P,!P and 0
are standard conditional statement, name restriction, paral-
lel composition, replicated process and idle process, respec-
tively. We will write fn(P) to denote the set of free (channel
and variable) names of P, which is defined as follows

n(Te) = {a} Uvar(e)

2(v).P) = {z}u (fn(P)\{v})

fn(@
fn(
fn(op(ey,...,en).P) = fn(P) \var(ey,...,en)
fn(if e then P; else Py) =wvar(e) U fn(Py) U fn(Py)
fn(ve.P) = fn(P) \ {z}
fn(Py||P) = fn(P1) U fn(P)
fn('P) = [n(P)
fn(0) =0
As usual, we will restrict ourselves to consider closed pro-

grams.
A program P interacting with a store £ in state o is called
a system and it is denoted by [P]%.

4.2 Operational Semantics

The labelled transition relation for systems uses the follow-
ing labels:

pu=1|Tv|z() |«

10

Laura Bocchi, Herndn Melgratti

In addition to the standard labels for CCS (7, Zv, z(v)), we
also consider the ground store operations a € W U R as
labels, i.e., programs perform concrete operations over the
store. Given a label p, subj(u) denotes the subject of the
action (defined as usual for CCS labels while it is undefined
for).

We rely on a reduction relation on expressions —¢ that
evaluates expressions to values (omitted). For any program
action p = a(ey, . .., e,) over the store and any ground sub-
stitution 0, we will write p —§ « if Vi.e;,6 —¢ g, and
a(g1,-..,9n) = @, i.e., it denotes that p can be properly in-
stantiated with 6 to obtain a ground action «. For instance,
write(o,v) —¢,_,, write(o, v). We also rely on the LTS
for stores, also denoted with —=, with e.g.l €{w,a,s}as
defined in the previous sections.

The LTS for systems is defined by the inference rules
in Fig. 4. All rules for processes but [STORE] are standard.
Rule [STORE] models a program P that performs a store
action. The substitution # models the values read from the
store. Rules for networks model the interactions of the pro-
gram with the store: [STORE-INT] stands for a program P
that writes to or read from the store ¢ which is in state o;
[PROC] stands for the computational steps of a program that
do not involve any interaction with the store, while [SYNC]
accounts for the synchronisation (internal) steps of the store.

4.3 Reasoning about programs

In this section we address the problem of characterising the
consistency levels offered by different stores in terms of
the behaviour of the programs using them. For instance, we
would like to conclude that the consistency level provided by
the store w in Definition 13 is weaker than the consistency
level provided by the store s in Definition 14, by comparing
the behaviour of programs running over w and s. Consider
the program

= write(o,v);read(o, (v',n)); show(o,v")

and the stores s and w with the initial state o, and o, such
that 0,,(0) = 05(0) = (vo,n) with v # vq. It is easy to
observe that P running over w may exhibit more traces than
P running over s. In fact,

T T show(o,vo)
[P]w —w ——w > w

Ow

but this behaviour cannot be mimicked by the system [P]? ,

which can only show the value v. On the contrary, all traces
of P over s can be simulated by P running over w.

In the rest of this section we provide the formal tools
that enables the comparison among the consistency levels
provided by different stores. We rely on some behavioural

preorder on systems (e.g., standard weak simulation), de-
noted by 3 (and ~ for the associated equivalence). We char-
acterise the consistency level provided by a store ¢ with
semantics —» relatively to the consistency level of other
store ¢/ with semantics —>, by comparing the traces of
the systems [P]% and [P]%,, where o and o’ are required to
be ‘compatible’ states (instead of, for instance, comparing ¢
and ¢’ using the same state).

The notion of compatibility between states is needed for
two reasons. The first reason is that £ and ¢/ may associate
different types of values to the keys, hence it may not be
possible to analyse the behaviour £ and ¢’ with respect to the
same state (e.g., w in § 3.1 associates keys to pairs (v, n) of
value and version vector and we may want to compare its
behaviour with a store that associates keys to values v). The
second reason is that when we compare £ and ¢’ it may be too
restrictive (e.g., if using a weak simulation) to require that ¢
and ¢’ produce the same states from a o after each transition.
For instance, despite [P]4 - [P']%, and [P)Y 50 [P']%,
with ¢/ # ¢, P/ may have the same observable behaviour
in the two stores. Therefore, we allow ¢ and ¢’ to be verified
in different states o and o’ (e.g., [P]% < [P]%,) as long as
they are compatible, that is obtained by applying the same
set of write actions to the initial states of ¢ and ¢’, respec-

tively.

Definition 16 (Compatible states) Consider two stores /1

and (o with initial states o} and o3, respectively. We say

that states o' and o2 are compatible with respect to ¢; and

0o, written o’ 01 ~0, o2, if there exists a process Py such
¢ ¢ ¢ 12

that [PW];é —* [0] 4 and [PW];[? —* [0] 2.

Definition 17 We say / is stronger than ¢/, written £ < £/,
whenever [P]¢ < [P]%, for all P and o g~y o’. We write

o

{20 whent < ¢ and ¢/ < ¢.

In practice, it is not necessary to show [P]4 =< [P]%, for
all possible states; by the following result it is sufficient to
show the same result by only considering the initial states of
£ and ¢’ respectively.
Proposition 5 [P]¢ =

agg v

[P)Y, for all P and o y~y o'

g~

[P]f;/é for all P implies [P]’ =

Proof Let o y~y o'. Then, there exists [Pyy]5 —* [0]%
and [PW}?(,) —* [0]%2. Consider the program P’ = Pyy; P
with _; _being a suitable encoding of the sequential compo-
sition of two programs. By hypothesis, [P]¢ = [P] f;(/] for all

oo ~

P and, in particular, for P’. Then, [Py; P]’ = [Pw; P]

oo~

(with Py; P). Consequently, [P)4 < [P]Y..

[ea

Z(
’
90

The different consistency levels can be thought as the
equivalence classes of 2. We write [¢]~ for the representa-
tive of the equivalence class of £.

On the behaviour of general-purpose applications on cloud storages

e ey 2(0) p—5a PP @ X g
——=— [OuT] z(v).P —= P [IN] EE— [STORE] = [CoM]
Te — 0 p.P— PO P||Q — P'||Q'[v/v]
PSP bn(p) N fn(Q) =0 P P P P x # subj(p)
" [PAR] —— [REC] [NEW]
PllQ — P'||Q 1Pt PP vae.P 25 v P!
e —€true P — P| e —° false Py —3 P}
m [IF-THEN] [IF-ELSE]
if e then P; else P, — P} if ¢ then P; else P, LN P}
o2, P2 p P p ugc c-3,0 ae8
YR " [STORE-INT] [ProC] [SYNC]
[Ple — [P']5 [PIS == [P']% [P]5 — [P]4,
Fig. 4 Labelled Transitions for processes (top) and systems (bottom).
Example 8 1f we fix = to be the weak simulation 3, then - Vp = ople1,...,e,) € R there exists 6 s.t. p —§ «

we can show that the strongly consistent store s (§ 3.3) is
stronger than both the weakly consistent store w (§ 3.1) and
the asynchronous weakly consistent store a (§ 3.2). This can
be done by showing that the following relations are weak
simulations:

Ssw = {(084,0w;) | Yo.os;(0) € ow;(0)}
Ss.a = {(0s4,0a;) | Vo.os;(0) € 0a;(0)}

Therefore 0sg Sws owp and 0sg Zws 0ag. Since Sws
is a precongruence w.r.t. parallel composition, we conclude
that [P]frs() 5WS [P}gwo and [P]ieo erS [P]gao for all P

Analogously, it can be shown that w < a by using the fol-
lowing relation.

Sw,a = {(ow;, 0a;) | Vo.ow;(0) C oa;(0)}

Additionally, it is easy to check that w X s. It is enough to
consider the trace shown in proof of Proposition 1, which
cannot be mimicked by s. Similarly, it can be shown that
a A sand a £ w.

Let O be the store providing no operation. When consid-
ering 3 as weak simulation 3,s, we have 0 =, £ for all £.
Hence, [P]9, Zws [P for all P, o and (. This means that
0 is the strongest consistent store. More generally, all stores
weak bisimilar to 0 are the smallest elements in the preorder
=, and hence the ones providing the strongest notion of con-
sistency. However, these stores are non-available services,
because they are unable to perform any read or write op-
eration. Hence, in what follows we will focus on available
stores, i.e., stores in which write and read operations are en-
abled in every reachable state.

Definition 18 / is available in state o whenever the follow-
ing two conditions hold:

- YaeW:o in , the store in state o allows any write
operation at any time.

and o i)g o', i.e., the store allows any well-formed
read at any time.

We call { available if it is available in every reachable state
of £.

Example 9 The three stores in § 3 provide availability. In
fact, from the LTSs, we can conclude that for any pair of
write(o,v)

object o and value v, the transition 0 ——————, (with £ €

{w, a, s}) can be derived for any state o. Similarly, for any

. . . d(o,(v,
object o there is always a pair (v,n) s.t. o Mm

can be performed.

The following result states that the strong store in § 3.3
is minimal w.r.t. < when restricting to available services.

Lemma 8 Ler s the strong store defined by the transition
rules in Fig. 3. Then { < s and ¢ available imply s < ¢
when assuming < to be Sys.

Proof By showing that the following relation is a weak sim-
ulation where os; denote states of s and o; denote states of
L

S ={(084,0;) | s Zws 08i N o; available}
We proceed by case analysis on 0s; — os)

- «a = read(o, (v,n)): Since o; is available, there exists
~<

o = read(o, (v/,n')), s.t. 0; —; /. Since 0; Zws
osi, it holds that os; =, s/ with 0’ Z,s 0s!/. By
definition of os;, it holds that Vo there exists a unique

read(o,(v',n))
(v,n) s.t. 08; ————— 0. Therefore, v = v/,

n=mn'and os; = os;. Hence, (cs},0}) € S.
. . . . «@
a = write(o,v): Since o; is available, 0; —¢ o
Since, 0; Zws 0si, there exists o5 o
nce, o; Jws 0S;, there exists os; s.t. 0s; —>5 08,
and o} Zws 0s). Since os; is deterministic, os] = os

Therefore, (os},0;) € S.

S
N

SO

O

Laura Bocchi, Herndn Melgratti

Finally, we can define the consistency level supported by
a given program.

Definition 19 A program P supports the consistency level
[0~ iff [P]2 = [P]%, forall o g~y o and £ < .

The above definition states that a program P supports a
particular consistency level [¢]~ when the traces of P run-
ning against ¢ are at most the traces that can obtained when
running P against any store ¢’ providing stronger consis-
tency property. We remark that the above definition implies
to consider just the minimal ¢’ s.t. ¢/ < £. In fact, for all
other ¢ s.t. ¢ < (" < { it holds that [P]%, 3 [P]%, for

~

all P, o’ y ~p o' and therefore [P]. < [P]%, implies

g ~ g

[P]: = [P]%,. Thanks to Lemma 8, we need just to com-

g ~

pare a particular consistency level ¢ against the strong store
in § 3.

Example 10 Consider the program P 2 vz(Pp||Pc) where

Pp 2 write(o,v); T

Pe é!a:.read(o7 (v,v")); show(o, (v,v"))

Consider the state o s.t. o(0) = (vg,n1) and o(0’) =
(L, ng) for o’ # o. Note that o can be taken as state of both
s and w. Moreover, it is immediate to show that o ;~,, 0.

When running P over the strong store s defined in § 3.3,
the only possible execution trace is the following
h (v,
(P25, s, Ty, Shovolom),
Differently, the program P produces two additional traces
over w
h (v,

(P12 Ty oy Ty T, ShOO0RD,

show(o,(vo,no))

[P}g);)w ;>w ;>w — 7w
The second trace models the case in which the process is
reading a data that has not yet been propagated to all repli-
cas.

In Example 11 this problem is solved by adding extra com-
munication in the processes.

Example 11 Consider the following variant of the program
P in Example 10: P’ 2 va(Pp||PL)

Py, 2 read(o, (v',n)).write(o, v); Zn
P/, 2 7 || z(v).ly.read(o, (v',v"));
if v < v” then show(o, (v',v")) else Y

Now, it is easy to check that [P']Y Zws [P']5 (note

* sh (v,
that all traces have the shape — M). Thanks
to the synchronization between producer and consumer on
x and about the last versioning number n, process P has

the same behaviour both in the weak and in strong memory
model. This is not the case if we execute P’ in the asyn-
chronous weak store a in Figure 2, since [P’]% allows trace

show(©.(70:)), hich is not allowed by [P']5 (i.¢. [P']% Zws
[P’]%). Example 12 shows a process that, instead, supports
the consistency level provided by a.

Example 12 Consider the following variant of the program
P’ in Example 11 where the keys in the store have values of
the form (v, T), that is pairs of values and their sorts. For in-
stance, the store could be used for video-sharing, with v be-
ing a video file and its sort T being “cooking a cherry pie”.

P" £ va (|| PL|| PL)
P}y 2 twrite(o, (newvideo(), T))
Pl 2 lz.read(o, (v, v"));

if v” = T then show(o,v”) else T

Process P, models a user repeatedly uploading videos of
type T (assuming that newvideo() is a function locally im-
plemented by Pj, that returns the next video of type T to
upload), whereas process P(: is a user interested in down-
loading any file of type T. By making only v observable, in
show(o0,v"), we model the fact that P/ is interested in the
type of the downloaded video (i.e., “cooking a cherry pie”)
and not in a specific video. One can easily check that both
[P"]2 and [P"]2 exhibit traces with the following shape

[ea

* sh T
T L(O)> The fact that the asynchronous store even-

tually reaches consistency ensures that a message of type
T will eventually be read by P/, which yields [P"”]% Zws
[P]5.

In this section we have given a few examples of pro-
cesses that can be safely run using weak stores. Example 11
illustrates how one can guarantee strong consistency proper-
ties by introducing synchronisation actions in the processes.
This approach is similar to applying memory fences (i.e.,
barriers located in the code) when using weak memory mod-
els [4]. Example 12 underlines that, instead, in some other
scenarios strong consistency can be guaranteed by relaxing
or adapting the notion of observation.

5 Compositionality and Applicability of the Framework

Consider again the process Pp|| Pc from Example 10, which
does not support consistency level w (as shown in § 3.3). No-
ticeably, whereas Pp alone supports consistency level w as it

always produces the traces ———, the process Pc does not
support consistency level w. In fact, executing Pr in w will
potentially introduce additional traces w.r.t. s as the weak
store can return different values (when replicas still need to
synchronise in order to resolve inconsistencies). These ad-
ditional traces are produced even without the presence of

On the behaviour of general-purpose applications on cloud storages

the writer Pp (executing in parallel with Po over the store)
as Definition 19 universally quantifies over all the possible
contents of the store (hence, it implicitly includes the store
obtained after the write operation of Pp).

Consider now Pp||P{ from Example 11, which sup-
ports consistency level w. Adding another writer such as
P}, or Pp in parallel to Pp|| P/, does not change the con-
sistency level of the whole system, e.g., both Pp||P/||Pp
and Pp||P,||Pp support consistency level w.

In general, the consistency level supported by a process
P is not affected by other processes running in parallel (if we
rely on a behavioural preorder that is a precongruence with
respect to parallel composition). This holds as long as the
added process supports at least the same consistency levels
supported by P (e.g., Pp|| P/ ||Pc does not support w as Pe
does not).

As a second observation, if we add a parallel process that
interferes with P and adds visible actions, this interference
would be observable both using store w and s.

Theorem 1 If P and Q) support consistency level ¢ defined
in terms of the preorder J.s, then P||Q supports consis-
tency level (.

Proof The proof follows by showing that the following re-
lation is a simulation

R ={([PIIQI, [PIQI) | €2 <1, 01 ¢,~e, 02,
P supports £1,Q supports 1}

We proceed by case analysis on the last applied rule in the
derivation [P||Q]% - S

— [STORE-INT] Therefore 01 —,, o}, P||Q - R and
S = [R]f;li. By rule analysis, we conclude that either (i)
P -2 Pand R = P'||Qor (i) Q = @ and R =
P||@’. Case (i) is as follows: Since £y < {1, 01 ¢,~¢, 02,
we have 01 =, o implies 0y =54, o’. Moreover,
Ui 017l 0/2
(because o is reachable from o with action « and o
is reachable from o5 with the same action). From P ——
P’ and 0y %5, oy, we conclude

[PlQlg, = [P'llQlg, =5

,and (S, S") € R. Case (ii) follows analogously.

— [Proc] Follows straightforwardly because the store is
not involved in the transition.

— [SYNC] Therefore 0y —¢, 0}, a €S ,8 = [PHQ]?i.
Then, o1 ¢, ~¢, 02 implies o} ¢, ~g, o2. Therefore
(S, [PllQ)5,) € R. 0

6 Related Work

There is an extensive literature on hardware weak memory
models (e.g., TSO-x86 [24] and POWER [17]) and the prop-
erties that can be ensured, for instance, via reordering of
memory operations made by the processor. Within this re-
search thread, [22,23] focus on the correctness of x86 as-
sembly code via verified compilers, [20] presents a proof
system for x86 assembly code based on a rely-guarantee as-
sertion method, [17] proposes an axiomatic model for the
memory model of POWER multiprocessors, equivalent to
the operational specification given in [21], and illustrates
how it can be used for verification using a SAT constraint
solver. A general account of weak memory models is given
in [4], together with a mechanism based on memory fences
that preserve properties such as sequential consistency, and
an automatic generation of tests for processors implementa-
tions. With respect to the work on hardware memory mod-
els, we consider a higher level of abstraction, focusing on
consistency of replicated cloud stores.

Existing work on memory models also addresses higher
levels of abstraction. For instance, [14] provides a static typ-
ing framework to reason on weak memory models in Java,
and in particular on the property happens-before.

A thread of research investigates criteria and data types
for the correct implementation of eventually consistent stor-
ages. The work in [11] studies a similar notion of store to
the one we consider; it defines sufficient rules for the correct
implementation of transactions in a server using revision
diagrams. [9] proposes data types to ensure eventual con-
sistency over cloud systems. [10] specifies replicated data
types using relations over events and proposes a framework
for verifying store implementations. On another line of re-
search, the work in [7] focuses on criteria for decidable check-
ing of eventual consistency of systems.

The main difference with this work is in the aim of our
paper: albeit we provide a characterisation of weak and strong
storages, our aim is not to ensure that a store (or a system)
provides specific properties (e.g., strong consistency) but to
check that a general purpose application will execute cor-
rectly when composed with a store offering a given level of
consistency. Our notion of correctness depends on the spe-
cific applications.

A similar approach to ours is followed in [8]: a charac-
terisation of weak stores is given together with a parametric
operational semantics for Core ML (an imperative call-by-
value A-calculus). In [8], the focus is on ensuring properties
such as race-freedom on shared memory with buffers using a
precise operational characterisation of weak store. The focus
of our work is rather on the interplay of asynchronous com-
munication of processes and usage of cloud storages with
several degrees of consistency.

14

Laura Bocchi, Herndn Melgratti

7 Conclusions and future work

In this paper we address the formal study of database con-
sistency levels. We start by proposing a general declarative
way for specifying stores in terms of the operations they pro-
vide. We show that we can characterise some basic prop-
erties of stores at this abstract level and that we can relate
these specifications with concrete operational implementa-
tions in terms of LTS. We also illustrate how to provide a
more fine grained specification of properties, e.g., eventual
consistency. For simplicity, we just consider eventual con-
sistency under the assumption of total ordering of events.
A more general model of computation in which actions are
just partially ordered could be more naturally represented by
substituting traces with partially ordered sets of actions. We
leave this extension, and the formalisation of weaker mod-
els of consistency, such as the Revision Diagrams studied
in [11,29], as a future work. We also analyse some con-
crete implementations of stores with different consistency
levels, by using idealised operational models. The study of
concrete real implementations such as Amazon key-value
store called Dynamo [12], Amazon SimpleDB or Apache
CouchDB (which solves conflicts non-deterministically, in-
cremental Map Reduce) is left as future work.

Finally, we propose an approach for analysing the inter-
action between programs and stores, in particular, to under-
stand the consistency requirements of programs. Firstly, we
defined a preorder relation < over stores in terms of their
behaviour when interacting with applications. The equiva-
lence classes induced by the equivalence relation associated
with < corresponds exactly to the consistency levels. Then,
we classify programs in terms of the consistency levels they
may allow. We use this classification to reason about correct-
ness or programs running over a particular store. Basically,
the classification can be used to show that an application
supports weaker consistency levels; this is done by showing
that the observable behaviour of the application is the same
as when this application interacts with a strongly consistent
store.

The compositionality of process calculi enables one to
define/verify middleware-services (interfacing the weak data
storage with the application) to provide strong properties in
a transparent way to the application. Namely, it may be use-
ful for understanding how to “fix”” an application that is sup-
posed to run over a weak store but need stronger properties.
A practical example of this is given in [15] where architec-
tures are built to interface applications with weak stores to
provide properties not originally satisfied by these stores.
Our framework is aimed at allowing the formal analysis of
such proposals by exploiting the compositional reasoning
enabled by process calculi standard notions. More precisely,
one can assume having a taxonomy of stores (e.g., ordered
according to < in 4.3). The proposed framework can be ap-

plied to the problem of verifying a specific application P,
for which a given known level of consistency ¢ is required.
In case level of consistency ¢ is not supported by P but a
weaker one is supported, say ¢, two interesting problems
arise. The first one is whether we can automatically derive
an interface P’ such that P|| P’ supports level of consistency
£. The second one is whether, given a taxonomy of stores,
one can create a set of reusable services P(’ 0.0 that “fix’ the
level of consistency of ¢/ and simulate the level of consis-
tency ¢, i.e., such that for all P supporting consistency level
¢, P |P(’ 4,0 Supports consistency level /.

References

1. Alpha architecture reference manual, 4th edn, 2002.

2. Ieee 1588 precision time protocol (ptp) version 2, 2008.

3. J. Alglave. A formal hierarchy of weak memory models. Form.
Methods Syst. Des., 41(2):178-210, Oct. 2012.

4. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak
memory models (extended version). Formal Methods in System
Design, 40(2):170-205, 2012.

5. P. Bailis and A. Ghodsi. Eventual consistency today: limitations,
extensions, and beyond. Commun. ACM, 56(5):55-63, 2013.

6. L. Bocchi and H. C. Melgratti. On the behaviour of general-
purpose applications on cloud storages. In E. Tuosto and
C. Ouyang, editors, WS-FM, volume 8379 of Lecture Notes in
Computer Science, pages 29-47. Springer, 2013.

7. A. Bouajjani, C. Enea, and J. Hamza. Verifying eventual con-
sistency of optimistic replication systems. In S. Jagannathan and
P. Sewell, editors, POPL, pages 285-296. ACM, 2014.

8. G. Boudol and G. Petri. Relaxed memory models: an operational
approach. In Z. Shao and B. C. Pierce, editors, POPL, pages 392—
403. ACM, 2009.

9. S. Burckhardt, M. Fihndrich, D. Leijen, and B. P. Wood. Cloud
types for eventual consistency. In Proceedings of the 26th Euro-
pean conference on Object-Oriented Programming, ECOOP’12,
pages 283-307, Berlin, Heidelberg, 2012. Springer-Verlag.

10. S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Repli-
cated data types: specification, verification, optimality. In S. Ja-
gannathan and P. Sewell, editors, POPL, pages 271-284. ACM,
2014.

11. S. Burckhardt, D. Leijen, M. Féhndrich, and M. Sagiv. Eventually
consistent transactions. In H. Seidl, editor, ESOP, volume 7211 of
Lecture Notes in Computer Science, pages 67-86. Springer, 2012.

12. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6):205-220, Oct. 2007.

13. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT
News, 33(2):51-59, June 2002.

14. M. Goto, R. Jagadeesan, C. Ptcher, and J. Riely. Types for relaxed
memory models. In Proceedings of the Sth ACM SIGPLAN work-
shop on Types in language design and implementation, TLDI *12,
pages 25-38, New York, NY, USA, 2012. ACM.

15. D. Kossmann, T. Kraska, and S. Loesing. An evaluation of al-
ternative architectures for transaction processing in the cloud. In
A. K. Elmagarmid and D. Agrawal, editors, SIGMOD Conference,
pages 579-590. ACM, 2010.

16. L. Lamport. Fairness and hyperfairness. Distributed Computing,
13(4):239-245, 2000.

On the behaviour of general-purpose applications on cloud storages

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. K. Martin, P. Sewell, and D. Williams.
An axiomatic memory model for power multiprocessors. In
P. Madhusudan and S. A. Seshia, editors, CAV, volume 7358 of
Lecture Notes in Computer Science, pages 495-512. Springer,
2012.

. R. Milner. A Calculus of Communicating Systems. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1982.

. D. Pritchett. Base: An acid alternative. Queue, 6(3):48-55, May

2008.

T. Ridge. A rely-guarantee proof system for x86-tso. In Proceed-
ings of the Third international conference on Verified software:
theories, tools, experiments, VSTTE 10, pages 55-70, Berlin,
Heidelberg, 2010. Springer-Verlag.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.
Understanding power multiprocessors. In M. W. Hall and D. A.
Padua, editors, PLDI, pages 175-186. ACM, 2011.

J. Sevcik, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and
P. Sewell. Relaxed-memory concurrency and verified compila-
tion. In T. Ball and M. Sagiv, editors, POPL, pages 43-54. ACM,
2011.

J. Sevcik, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and
P. Sewell. Compcerttso: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22, 2013.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-tso: a rigorous and usable programmer’s model for x86 mul-
tiprocessors. Commun. ACM, 53(7):89-97, 2010.

M. Shapiro and B. Kemme. Eventual consistency. In M. T. Ozsu
and L. Liu, editors, Encyclopedia of Database Systems (online and
print). Springer, Oct. 2009.

C. SPARC International, Inc. The sparc architecture manual: Ver-
sion 8 and 9, 1992.

A. S. Tanenbaum and M. van Steen. Distributed systems - princi-
ples and paradigms (2. ed.). Pearson Education, 2007.

W. Vogels. Eventually consistent. Commun. ACM, 52(1):40-44,
Jan. 2009.

K. von Gleissenthall and A. Rybalchenko. An epistemic per-
spective on consistency of concurrent computations. CoRR,
abs/1305.2295, 2013.

