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Abstract. The natural world is certainly not organised through a cen-

tral thread of control. Things happen as the result of the actions and

interactions of unimaginably large numbers of independent agents, oper-

ating at all levels of scale from nuclear to astronomic. Computer systems

aiming to be of real use in this real world need to model, at the appro-

priate level of abstraction, that part of it for which it is to be of service.

If that modelling can re
ect the natural concurrency in the system, it

ought to be much simpler

Yet, traditionally, concurrent programming is considered to be an ad-

vanced and diÆcult topic { certainly much harder than serial computing

which, therefore, needs to be mastered �rst. But this tradition is wrong.

This talk presents an intuitive, sound and practical model of parallel

computing that can be mastered by undergraduate students in the �rst

year of a computing (major) degree. It is based upon Hoare's mathe-

matical theory of Communicating Sequential Processes (CSP), but does

not require mathematical maturity from the students { that maturity is

pre-engineered in the model. Fluency can be quickly developed in both

message-passing and shared-memory concurrency, whilst learning to cope

with key issues such as race hazards, deadlock, livelock, process starva-

tion and the eÆcient use of resources. Practical work can be hosted on

commodity PCs or UNIX workstations using either Java or the occam

multiprocessing language. Armed with this maturity, students are well-

prepared for coping with real problems on real parallel architectures that

have, possibly, less robust mathematical foundations.

1 Introduction

At Kent, we have been teaching parallel computing at the undergraduate level

for the past ten years. Originally, this was presented to �rst-year students before

they became too set in the ways of serial logic. When this course was expanded

into a full unit (about 30 hours of teaching), timetable pressure moved it into

the second year. Either way, the material is easy to absorb and, after only a

few (around 5) hours of teaching, students have no diÆculty in grappling with

the interactions of 25 (say) threads of control, appreciating and eliminating race

hazards and deadlock.



Parallel computing is still an immature discipline with many con
icting cul-

tures. Our approach to educating people into successful exploitation of parallel

mechanisms is based upon focusing on parallelism as a powerful tool for simpli-

fying the description of systems, rather than simply as a means for improving

their performance. We never start with an existing serial algorithm and say:

`OK, let's parallelise that!'. And we work solely with a model of concurrency

that has a semantics that is compositional { a fancy word for WYSIWYG { since,

without that property, combinatorial explosions of complexity always get us as

soon as we step away from simple examples. In our view, this rules out low-level

concurrency mechanisms, such as spin-locks, mutexes and semaphores, as well

as some of the higher-level ones (like monitors).

Communicating Sequential Processes (CSP)[1{3] is a mathematical theory for

specifying and verifying complex patterns of behaviour arising from interactions

between concurrent objects. Developed by Tony Hoare in the light of earlier

work on monitors, CSP has a compositional semantics that greatly simpli�es

the design and engineering of such systems { so much so, that parallel design

often becomes easier to manage than its serial counterpart. CSP primitives have

also proven to be extremely lightweight, with overheads in the order of a few

hundred nanoseconds for channel synchronisation (including context-switch) on

current microprocessors [4, 5].

Recently, the CSP model has been introduced into the Java programming

language [6{10]. Implemented as a library of packages [11, 12], JavaPP[10] en-

ables multithreaded systems to be designed, implemented and reasoned about

entirely in terms of CSP synchronisation primitives (channels, events, etc.) and

constructors (parallel, choice, etc.). This allows 20 years of theory, design pat-

terns (with formally proven good properties { such as the absence of race hazards,

deadlock, livelock and thread starvation), tools supporting those design patterns,

education and experience to be deployed in support of Java-based multithreaded

applications.

2 Processes, Channels and Message Passing

This section describes a simple and structured multiprocessing model derived

from CSP. It is easy to teach and can describe arbitrarily complex systems. No

formal mathematics need be presented { we rely on an intuitive understanding

of how the world works.

2.1 Processes

A process is a component that encapsulates some data structures and algorithms

for manipulating that data. Both its data and algorithms are private. The outside

world can neither see that data nor execute those algorithms. Each process is

alive, executing its own algorithms on its own data. Because those algorithms are

executed by the component in its own thread (or threads) of control, they express
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the behaviour of the component from its own point of view1. This considerably

simpli�es that expression.

A sequential process is simply a process whose algorithms execute in a single

thread of control. A network is a collection of processes (and is, itself, a process).

Note that recursive hierarchies of structure are part of this model: a network is

a collection of processes, each of which may be a sub-network or a sequential

process.

But how do the processes within a network interact to achieve the behaviour

required from the network? They can't see each other's data nor execute each

other's algorithms { at least, not if they abide by the rules.

2.2 Synchronising Channels

The simplest form of interaction is synchronised message-passing along channels.

The simplest form of channel is zero-bu�ered and point-to-point. Such channels

correspond very closely to our intuitive understanding of a wire connecting two

(hardware) components.

A
c

B

Fig. 1. A simple network

In Figure 1, A and B are processes and c is a channel connecting them. A wire

has no capacity to hold data and is only a medium for transmission. To avoid

undetected loss of data, channel communication is synchronised. This means

that if A transmits before B is ready to receive, then A will block. Similarly, if

B tries to receive before A transmits, B will block. When both are ready, a data

packet is transferred { directly from the state space of A into the state space of

B. We have a synchronised distributed assignment.

2.3 Legoland

Much can be done, or simpli�ed, just with this basic model { for example the de-

sign and simulation of self-timed digital logic, multiprocessor embedded control

systems (for which occam[13{16] was orignally designed), GUIs etc.

Here are some simple examples to build up 
uency. First we introduce some

elementary components from our `teaching' catalogue { see Figure 2. All pro-

cesses are cyclic and all transmit and receive just numbers. The Id process cycles

1 This is in contrast with simple `objects' and their `methods'. A method body nor-

mally executes in the thread of control of the invoking object. Consequently, object

behaviour is expressed from the point of view of its environment rather than the

object itself. This is a slightly confusing property of traditional `object-oriented'

programming.
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through waiting for a number to arrive and, then, sending it on. Although in-

serting an Id process in a wire will clearly not a�ect the data 
owing through

it, it does make a di�erence. A bare wire has no bu�ering capacity. A wire con-

taining an Id process gives us a one-place FIFO. Connect 20 in series and we

get a 20-place FIFO { sophisticated function from a trivial design.

Id
in out

Id (in, out)

in out
Succ

Succ (in, out)

+ out
in0

in1

Plus (in0, in1, out)

in
out0

out1

Delta (in, out0, out1)

in out
Tail

Tail (in, out)Prefix (n, in, out)

in out
n

Fig. 2. Extract from a component catalogue

Succ is like Id, but increments each number as it 
ows through. The Plus

component waits until a number arrives on each input line (accepting their arrival

in either order) and outputs their sum. Delta waits for a number to arrive and,

then, broadcasts it in parallel on its two output lines { both those outputs must

complete (in either order) before it cycles round to accept further input. Prefix

�rst outputs the number stamped on it and then behaves like Id. Tail swallows

its �rst input without passing it on and then, also, behaves like Id. Prefix

and Tail are so named because they perform, respectively, pre�xing and tail

operations on the streams of data 
owing through them.

It's essential to provide a practical environment in which students can develop

executable versions of these components and play with them (by plugging them

together and seeing what happens). This is easy to do in occam and now, with

the JCSP library[11], in Java. Appendices A and B give some of the details. Here

we only give some CSP pseudo-code for our catalogue (because that's shorter

than the real code):

Id (in, out) = in ? x --> out ! x --> Id (in, out)

Succ (in, out) = in ? x --> out ! (x+1) --> Succ (in, out)
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Plus (in0, in1, out)

= ((in0 ? x0 --> SKIP) || (inl ? x1 --> SKIP));

out ! (x0 + x1) --> Plus (in0, in1, out)

Delta (in, out0, out1)

= in ? x --> ((out0 ! x --> SKIP) || (out1 ! x --> SKIP));

Delta (in, out0, out1)

Prefix (n, in, out) = out ! n --> Id (in, out)

Tail (in, out) = in ? x --> Id (in, out)

[Notes: `free' variables used in these pseudo-codes are assumed to be locally

declared and hidden from outside view. All these components are sequential pro-

cesses. The process (in ? x --> P (...)) means: \wait until you can engage

in the input event (in ? x) and, then, become the process P (...)". The input

operator (?) and output operator (!) bind more tightly than the -->.]

2.4 Plug and Play

Plugging these components together and reasoning about the resulting behaviour

is easy. Thanks to the rules on process privacy2, race hazards leading to unpre-

dictable internal state do not arise. Thanks to the rules on channel synchronisa-

tion, data loss or corruption during communication cannot occur3. What makes

the reasoning simple is that the parallel constructor and channel primitives are

deterministic. Non-determinism has to be explicitly designed into a process and

coded { it can't sneak in by accident!

Figure 3 shows a simple example of reasoning about network composition.

Connect a Prefix and a Tail and we get two Ids:

(Prefix (in, c) || Tail (c, out)) = (Id (in, c) || Id (c, out))

Equivalence means that no environment (i.e. external network in which they

are placed) can tell them apart. In this case, both circuit fragments implement a

2-place FIFO. The only place where anything di�erent happens is on the internal

wire and that's undetectable from outside. The formal proof is a one-liner from

the de�nition of the parallel (||), communications (!, ?) and and-then-becomes

(-->) operators in CSP. But the good thing about CSP is that the mathematics

engineered into its design and semantics cleanly re
ects an intuitive human feel

for the model. We can see the equivalence at a glance and this quickly builds

con�dence both for us and our students.

2 No external access to internal data. No external execution of internal algorithms

(methods).
3 Unreliable communications over a distributed network can be accommodated in this

model { the unreliable network being another active process (or set of processes)

that happens not to guarantee to pass things through correctly.
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c outin
n Tail

c outin
Id Id

=

Fig. 3. A simple equivalence

out

Succ

0

c

a

b

Numbers (out)

outin
+

0

c

a

b

Integrate (in, out)

Pairs (in, out)

outin
+

a

Tailb c

Fig. 4. Some more interesting circuits
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Figure 4 shows some more interesting circuits with the �rst two incorporating

feedback. What do they do? Ask the students! Here are some CSP pseudo-codes

for these circuits:

Numbers (out)

= Prefix (0, c, a) || Delta (a, out, b) || Succ (b, c)

Integrate (in, out)

= Plus (in, c, a) || Delta (a, out, b) || Prefix (0, b, c)

Pairs (in, out)

= Delta (in, a, b) || Tail (b, c) || Plus (a, c, out)

Again, our rule for these pseudo-codes means that a, b and c are locally

declared channels (hidden, in the CSP sense, from the outside world). Appendices

A and B list occam and Java executables { notice how closely they re
ect the

CSP.

Back to what these circuits do: Numbers generates the sequence of natural

numbers, Integrate computes running sums of its inputs and Pairs outputs

the sum of its last two inputs. If we wish to be more formal, let c<i> represent

the i'th element that passes through channel c { i.e. the �rst element through

is c<1>. Then, for any i >= 1:

Numbers: out<i> = i - 1

Integrate: out<i> = Sum {in<j> | j = 1..i}

Pairs: out<i> = in<i> + in<i + 1>

Be careful that the above details only part of the speci�cation of these circuits:

how the values in their output stream(s) relate to the values in their input

stream(s). We also have to be aware of how 
exible they are in synchronising

with their environments, as they generate and consume those streams. The base

level components Id, Succ, Plus and Delta each demand one input (or pair of

inputs) before generating one output (or pair of outputs). Tail demands two

inputs before its �rst output, but thereafter gives one output for each input.

This e�ect carries over into Pairs. Integrate adds 2-place bu�ering between

its input and output channels (ignoring the transformation in the actual values

passed). Numbers will always deliver to anything trying to take input from it.

If necessary, we can make these synchronisation properties mathematically

precise. That is, after all, one of the reasons for which CSP was designed.

2.5 Deadlock { First Contact

Consider the circuit in Figure 5. A simple stream analysis would indicate that:

Pairs2: a<i> = in<i>

Pairs2: b<i> = in<i>

Pairs2: c<i> = b<i + 1> = in<i + 1>

Pairs2: d<i> = c<i + 1> = in<i + 2>

Pairs2: out<i> = a<i> + d<i> = in<i> + in<i + 2>
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Pairs2 (in, out)

in out
+

a

b

c
dTail Tail

Fig. 5. A dangerous circuit

But this analysis only shows what would be generated if anything were gen-

erated. In this case, nothing is generated since the system deadlocks. The two

Tail processes demand three items from Delta before delivering anything to

Plus. But Delta can't deliver a third item to the Tails until it's got rid of its

second item to Plus. But Plus won't accept a second item from Delta until it's

had its �rst item from the Tails. Deadlock!

In this case, deadlock can be designed out by inserting an Id process on

the upper (a) channel. Id processes (and FIFOs in general) have no impact on

stream contents analysis but, by allowing a more decoupled synchronisation, can

impact on whether streams actually 
ow. Beware, though, that adding bu�ering

to channels is not a general cure for deadlock.

So, there are always two questions to answer: what data 
ows through the

channels, assuming data does 
ow, and are the circuits deadlock-free? Deadlock

is a monster that must { and can { be vanquished. In CSP, deadlock only occurs

from a cycle of committed attempts to communicate (input or output): each pro-

cess in the cycle refusing its predecessor's call as it tries to contact its successor.

Deadlock potential is very visible { we even have a deadlock primitive (STOP) to

represent it, on the grounds that it is a good idea to know your enemy!

In practice, there now exist a wealth of design rules that provide formally

proven guarantees of deadlock freedom[17{22]. Design tools supporting these

rules { both constructive and analytical { have been researched[23,24]. Deadlock,

together with related problems such as livelock and starvation, need threaten us

no longer { even in the most complex of parallel system.

2.6 Structured Plug and Play

Consider the circuits of Figure 6. They are similar to the previous circuits,

but contain components other than those from our base catalogue { they use

components we have just constructed. Here is the CSP:

Fibonacci (out)

= Prefix (1, d, a) || Prefix (0, a, b) ||

Delta (b, out, c) || Pairs (c, d)

Squares (out)

= Numbers (a) || Integrate (a, b) || Pairs (b, out)
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Demo (out)

= Numbers (a) || Fibonacci (b) || Squares (c) ||

Tabulate3 (a, b, c, out)

IntegrateNumbers
out

Pairs

Squares (out)

a b

Numbers

Fibonacci Tabulate3

Squares

out

Demo (out)

a

b

c

Fibonacci (out)

out

Pairs

a b

cd

1 0

Fig. 6. Circuits of circuits

One of the powers of CSP is that its semantics obey simple composition rules.

To understand the behaviour implemented by a network, we only need to know

the behaviour of its nodes { not their implementations.

For example, Fibonacci is a feedback loop of four components. At this level,

we can remain happily ignorant of the fact that its Pairs node contains another

three. We only need to know that Pairs requires two numbers before it outputs

anything and that, thereafter, it outputs once for every input. The two Prefixes

initially inject two numbers (0 and 1) into the circuit. Both go into Pairs, but
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only one (their sum) emerges. After this, the feedback loop just contains a single

circulating packet of information (successive elements of the Fibonacci sequence).

The Delta process taps this circuit to provide external output.

Squares is a simple pipeline of three components. It's best not to think of

the nine processes actually involved. Clearly, for i >= 1:

Squares: a<i> = i - 1

Squares: b<i> = Sum {j - 1 | j = 1..i} = Sum {j | j = 0..(i - 1)}

Squares: out<i> = Sum {j | j = 0..(i - 1)} + Sum {j | j = 0..i} = i * i

So, Squares outputs the increasing sequence of squared natural numbers. It

doesn't deadlock because Integrate and Pairs only add bu�ering properties

and it's safe to connect bu�ers in series.

Tabulate3 is from our base catalogue. Like the others, it is cyclic. In each

cycle, it inputs in parallel one number from each of its three input channels and,

then, generates a line of text on its output channel consisting of a tabulated

(15-wide, in this example) decimal representation of those numbers.

Tabulate3 (in0, in1, in2, out)

= ((in0 ? x0 - SKIP) || (in1 ? x1 - SKIP) || (in2 ? x2 - SKIP));

print (x0, 15, out); print (x1, 15, out); println (x2, 15, out);

Tabulate3 (in0, in1, in2, out)

Connecting the output channel from Demo to a text window displays three

columns of numbers: the natural numbers, the Fibonacci sequence and perfect

squares.

It's easy to understand all this { thanks to the structuring. In fact, Demo

consists of 27 threads of control, 19 of them permanent with the other 8 being

repeatedly created and destroyed by the low-level parallel inputs and outputs

in the Delta, Plus and Tabulate3 components. If we tried to understand it on

those terms, however, we would get nowhere.

Please note that we are not advocating designing at such a �ne level of gran-

ularity as normal practice! These are only exercises and demonstrations to build

up 
uency and con�dence in concurrent logic. Having said that, the process

management overheads for the occam Demo executables are only around 30 mi-

croseconds per output line of text (i.e. too low to see) and three milliseconds

for the Java (still too low to see). And, of course, if we are using these tech-

niques for designing real hardware[25], we will be working at much �ner levels

of granularity than this.

2.7 Coping with the Real World { Making Choices

The model we have considered so far { parallel processes communicating through

dedicated (point-to-point) channels { is deterministic. If we input the same data

in repeated runs, we will always receive the same results. This is true regardless

of how the processes are scheduled or distributed. This provides a very stable

base from which to explore the real world, which doesn't always behave like this.
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Any machine with externally operatable controls that in
uence its internal

operation, but whose internal operations will continue to run in the absence of

that external control, is not deterministic in the above sense. The scheduling of

that external control will make a di�erence. Consider a car and its driver heading

for a brick wall. Depending on when the driver applies the brakes, they will end

up in very di�erent states!

CSP provides operators for internal and external choice. An external choice

is when a process waits for its environment to engage in one of several events {

what happens next is something the environment can determine (e.g. a driver

can press the accelerator or brake pedal to make the car go faster or slower).

An internal choice is when a process changes state for reasons its environment

cannot determine (e.g. a self-clocked timeout or the car runs out of petrol). Note

that for the combined (parallel) system of car-and-driver, the accelerating and

braking become internal choices so far as the rest of the world is concerned.

occam provides a constructor (ALT) that lets a process wait for one of many

events. These events are restricted to channel input, timeouts and SKIP (a null

event that has always happened). We can also set pre-conditions { run-time tests

on internal state { that mask whether a listed event should be included in any

particular execution of the ALT. This allows very 
exible internal choice within a

component as to whether it is prepared to accept an external communication4.

The JavaPP libraries provide an exact analogue (Alternative.select) for these

choice mechanisms.

If several events are pending at an ALT, an internal choice is normally made

between them. However, occam allows a PRI ALT which resolves the choice be-

tween pending events in order of their listing. This returns control of the opera-

tion to the environment, since the reaction of the PRI ALTing process to multiple

communications is now predictable. This control is crucial for the provision of

real-time guarantees in multi-process systems and for the design of hardware.

Recently, extensions to CSP to provide a formal treatment of these mechanisms

have been made[26, 27].

in out

inject

Replace (in, out, inject)

in out

inject

*m

Scale (in, out, inject)

Fig. 7. Two control processes

4 This is in contrast to monitors, whose methods cannot refuse an external call when

they are unlocked and have to wait on condition variables should their state prevent

them from servicing the call. The close coupling necessary between sibling monitor

methods to undo the resulting mess is not WYSIWYG[9].

11



Figure 7 shows two simple components with this kind of control. Replace

listens for incoming data on its in and inject lines. Most of the time, data

arrives from in and is immediately copied to its out line. Occasionally, a signal

from the inject line occurs. When this happens, the signal is copied out but,

at the same time, the next input from in is waited for and discarded. In case

both inject and in communications are on o�er, priority is given to the (less

frequently occurring) inject:

Replace (in, inject, out)

= (inject ? signal --> ((in ? x --> SKIP) || (out ! signal --> SKIP))

[PRI]

in ? x --> out ! x --> SKIP

);

Replace (in, inject, out)

Replace is something that can be spliced into any channel. If we don't use

the inject line, all it does is add a one-place bu�er to the circuit. If we send

something down the inject line, it gets injected into the circuit { replacing the

next piece of data that would have travelled through that channel.

outin
+

0

reset

RIntegrate (in, out, reset)

out

Succ

0

reset

RNumbers (out, reset)

Fig. 8. Two controllable processes
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Figure 8 shows RNumbers and RIntegrate, which are just Numbers and

Integrate with an added Replace component. We now have components that

are resettable by their environments. RNumbers can be reset at any time to

continue its output sequence from any chosen value. RIntegrate can have its

internal running sum rede�ned.

Like Replace, Scale (�gure 7) normally copies numbers straight through,

but scales them by its factor m. An inject signal resets the scale factor:

Scale (m, in, inject, out)

= (inject ? m --> SKIP

[PRI]

in ? x --> out ! m*x --> SKIP

);

Scale (m, in, inject, out)

Figure 9 shows RPairs, which is Pairs with the Scale control component

added. If we send just +1 or -1 down the reset line of RPairs, we control whether

it's adding or subtracting successive pairs of inputs. When it's subtracting, its

behaviour changes to that of a di�erentiator { in the sense that it undoes the

e�ect of Integrate.

outin
+

Tail

*1

reset

RPairs (in, out, reset)

Fig. 9. Sometimes Pairs, sometimes Differentiate

This allows a nice control demonstration. Figure 10 shows a circuit whose

core is a resettable version of the Squares pipeline. The Monitor process reacts

to characters from the keyboard channel. Depending on its value, it outputs an

appropriate signal down an appropriate reset channel:

Monitor (keyboard, resetN, resetI, resetP)

= (keyboard ? ch -->

CASE ch

`N': resetN ! 0 --> SKIP

`I': resetI ! 0 --> SKIP

`+': resetP ! +1 --> SKIP

`-': resetP ! -1 --> SKIP

);

Monitor (keyboard, resetN, resetI, resetP)
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Demo2 (keyboard, screen)

Tabulate3

Monitor

RNumbers RIntegrate Rpairs

keyboard

screen

Fig. 10. A user controllable machine

When Demo2 runs and we don't type anything, we see the inner workings of

the Squares pipeline tabulated in three columns of output. Keying in an `N',

`I', `+' or `-' character allows the user some control over those workings5. Note

that after a `-', the output from RPairs should be the same as that taken from

RNumbers.

2.8 A Nastier Deadlock

One last exercise should be done. Modify the system so that output freezes if an

`F' is typed and unfreezes following the next character.

Two `solutions' o�er themselves and Figure 11 shows the wrong one (Demo3).

This feeds the output from Tabulate3 back to a modi�ed Monitor2 and then on

to the screen. The Monitor2 process PRI ALTs between the keyboard channel

and this feedback:

Monitor2 (keyboard, feedback, resetN, resetI, resetP, screen)

= (keyboard ? ch -->

CASE ch

... deal with `N', `I', `+', `-' as before

`F': keyboard ? ch --> SKIP

[PRI]

feedback ? x --> screen ! x --> SKIP

);

Monitor2 (keyboard, feedback, resetN, resetI, resetP, screen)

5 In practice, we need to add another process after Tabulate3 to slow down the rate of

output to around 10 lines per second. Otherwise, the user cannot properly appreciate

the immediacy of control that has been obtained.
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Demo3 (keyboard, screen)

keyboard

screen

Tabulate3

RNumbers RIntegrate Rpairs

Monitor2

feedback

Fig. 11. A machine over which we may lose control

TraÆc will normally be 
owing along the feedback-screen route, inter-

rupted only when Monitor2 services the keyboard. The attraction is that if

an `F' arrives, Monitor2 simply waits for the next character (and discards it).

As a side-e�ect of this waiting, the screen traÆc is frozen.

But if we implement this, we get some worrying behaviour. The freeze oper-

ation works �ne and so, probably, do the `N' and `I' resets. Sometimes, however,

a `+' or `-' reset deadlocks the whole system { the screen freezes and all further

keyboard events are refused!

The problem is that one of the rules for deadlock-free design has been broken:

any data-
ow circuit must control the number of packets circulating! If this num-

ber rises to the number of sequential (i.e. lowest level) processes in the circuit,

deadlock always results. Each node will be trying to output to its successor and

refusing input from its predecessor.

The Numbers, RNumbers, Integrate, RIntegrate and Fibonacci networks

all contain data-
ow loops, but the number of packets concurrently in 
ight is

kept at one6.

In Demo3 however, packets are continually being generated within RNumbers,


owing through several paths to Monitor2 and, then, to the screen. Whenever

Monitor2 feeds a reset back into the circuit, deadlock is possible { although not

certain. It depends on the scheduling. RNumbers is always pressing new packets

into the system, so the circuits are likely to be fairly full. If Monitor2 generates

a reset when they are full, the system deadlocks. The shortest feedback loop is

from Monitor2, RPairs, Tabulate3 and back to Monitor2 { hence, it is the `+'

and `-' inputs from keyboard that are most likely to trigger the deadlock.

6 Initially, Fibonacci has two packets, but they combine into one before the end of

their �rst circuit.
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Demo4 (keyboard, screen)

Tabulate3

RNumbers RIntegrate Rpairs

keyboard

screen

Freeze

Monitor3

Fig. 12. A machine over which we will not lose control

The design is simply �xed by removing that feedback at this level { see Demo4

in Figure 12. We have abstracted the freezing operation into its own component

(and catalogued it). It's never a good idea to try and do too many functions in

one sequential process. That needlessly constrains the synchronisation freedom

of the network and heightens the risk of deadlock. Note that the idea being

pushed here is that, unless there are special circumstances, parallel design is

safer and simpler than its serial counterpart!

Demo4 obeys another golden rule: every device should be driven from its own

separate process. The keyboard and screen channels interface to separate de-

vices and should be operated concurrently (in Demo3, both were driven from one

sequential process { Monitor2). Here are the driver processes from Demo4:

Freeze (in, freeze, out)

= (freeze ? x --> freeze ? x --> SKIP

[PRI]

(in ? x --> out ! x --> SKIP

);

Freeze (in, freeze, out)

Monitor3 (keyboard, resetN, resetI, resetP, freeze)

= (keyboard ? ch -->

CASE ch

... deal with `N', `I', `+', `-' as before

`F': freeze ! ch --> keyboard ? ch --> freeze ! ch --> SKIP

);

Monitor3 (keyboard, resetN, resetI, resetP, freeze)
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2.9 Bu�ered and Asynchronous Communications

We have seen how �xed capacity FIFO bu�ers can be added as active processes

to CSP channels. For the occam binding, the overheads for such extra processes

are negligible.

With the JavaPP libraries, the same technique may be used, but the channel

objects can be directly con�gured to support bu�ered communications { which

saves a couple of context switches. The user may supply objects supporting any

bu�ering strategy for channel con�guration, including normal blocking bu�ers,

overwrite-when-full bu�ers, in�nite bu�ers and black-hole bu�ers (channels that

can be written to but not read from { useful for masking o� unwanted outputs

from components that, otherwise, we wish to reuse intact). However, the user

had better stay aware of the semantics of the channels thus created!

Asynchronous communication is commonly found in libraries supporting inter-

processor message-passing (such as PVM and MPI). However, the concurrency

model usually supported is one for which there is only one thread of control on

each processor. Asynchronous communication lets that thread of control launch

an external communication and continue with its computation. At some point,

that computation may need to block until that communication has completed.

These mechanisms are easy to obtain from the concurrency model we are

teaching (and which we claim to be general). We don't need anything new.

Asynchronous sends are what happen when we output to a bu�er (or bu�ered

channel). If we are worried about being blocked when the bu�er is full or if we

need to block at some later point (should the communication still be un�nished),

we can simply spawn o� another process7 to do the send:

(out ! packet --> SKIP |PRI| someMoreComputation (...));

continue (...)

The continue process only starts when both the packet has been sent

and someMoreComputation has �nished. someMoreComputation and sending the

packet proceed concurrently. We have used the priority version of the parallel

operator (|PRI|, which gives priority to its left operand), to ensure that the send-

ing process initiates the transfer before the someMoreComputation is scheduled.

Asynchronous receives are implemented in the same way:

(in ? packet --> SKIP |PRI| someMoreComputation (...));

continue (...)

2.10 Shared Channels

CSP channels are strictly point-to-point. occam3[28] introduced the notion of

(securely) shared channels and channel structures. These are further extended

in the KRoC occam[29] and JavaPP libraries and are included in the teaching

model.

7 The occam overheads for doing this are less than half a microsecond.
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A channel structure is just a record (or object) holding two or more CSP

channels. Usually, there would be just two channels { one for each direction of

communication. The channel structure is used to conduct a two-way conversation

between two processes. To avoid deadlock, of course, they will have to understand

protocols for using the channel structure { such as who speaks �rst and when the

conversation �nishes. We call the process that opens the conversation a client

and the process that listens for that call a server8.

clients servers

Fig. 13. A many-many shared channel

The CSP model is extended by allowing multiple clients and servers to share

the same channel (or channel structure) { see Figure 13. Sanity is preserved

by ensuring that only one client and one server use the shared object at any

one time. Clients wishing to use the channel queue up �rst on a client-queue

(associated with the shared channel) { servers on a server-queue (also associated

with the shared channel). A client only completes its actions on the shared

channel when it gets to the front of its queue, �nds a server (for which it may

have to wait if business is good) and completes its transaction. A server only

completes when it reaches the front of its queue, �nds a client (for which it may

have to wait in times of recession) and completes its transaction.

Note that shared channels { like the choice operator between multiple events

{ introduce scheduling dependent non-determinism. The order in which processes

are granted access to the shared channel depends on the order in which they join

the queues.

Shared channels provide a very eÆcient mechanism for a common form of

choice. Any server that o�ers a non-discriminatory service9 to multiple clients

should use a shared channel, rather than ALTing between individual channels

from those clients. The shared channel has a constant time overhead { ALTing

is linear on the number of clients. However, if the server needs to discriminate

between its clients (e.g. to refuse service to some, depending upon its internal

state), ALTing gives us that 
exibility. The mechanisms can be eÆciently com-

bined. Clients can be grouped into equal-treatment partitions, with each group

clustered on its own shared channel and the server ALTing between them.

8 In fact, the client/server relationship is with respect to the channel structure. A

process may be both a server on one interface and a client on another.
9 Examples for such servers include window managers for multiple animation processes,

data loggers for recording traces from multiple components from some machine, etc.
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For deadlock freedom, each server must guarantee to respond to a client call

within some bounded time. During its transaction with the client, it must follow

the protocols for communication de�ned for the channel structure and it may

engage in separate client transactions with other servers. A client may open a

transaction at any time but may not interleave its communications with the

server with any other synchronisation (e.g. with another server). These rules

have been formalised as CSP speci�cations[21]. Client-server networks may have

plenty of data-
ow feedback but, so long as no cycle of client-server relations

exist, [21] gives formal proof that the system is deadlock, livelock and starvation

free.

Shared channel structures may be stretched across distributed memory (e.g.

networked) multiprocessors[15]. Channels may carry all kinds of object { includ-

ing channels and processes themselves. A shared channel is an excellent means for

a client and server to �nd each other, pass over a private channel and communi-

cate independently of the shared one. Processes will drag pre-attached channels

with them as they are moved and can have local channels dynamically (and

temporarily) attached when they arrive. See David May's work on Icarus[30, 31]

for a consistent, simple and practical realisation of this model for distributed

and mobile computing.

3 Events and Shared Memory

Shared memory concurrency is often described as being `easier' than message

passing. But great care must be taken to synchronise concurrent access to shared

data, else we will be plagued with race hazards and our systems will be useless.

CSP primitives provide a sharp set of tools for exercising this control.

3.1 Symmetric Multi-Processing (SMP)

The private memory/algorithm principles of the underlying model { and the

security guarantees that go with them { are a powerful way of programming

shared memory multiprocessors. Processes can be automatically and dynami-

cally scheduled between available processors (one object code �ts all). So long

as there is an excess of (runnable) processes over processors and the scheduling

overheads are suÆciently low, high multiprocessor eÆciency can be achieved {

with guaranteed no race hazards. With the design methods we have been de-

scribing, it's very easy to generate lots of processes with most of them runnable

most of the time.

3.2 Token Passing and Dynamic CREW

Taking advantage of shared memory to communicate between processes is an

extension to this model and must be synchronised. The shared data does not

belong to any of the sharing processes, but must be globally visible to them {

either on the stack (for occam) or heap (for Java).
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The JavaPP channels in previous examples were only used to send data values

between processes { but they can also be used to send objects. This steps outside

the automatic guarantees against race hazard since, unconstrained, it allows

parallel access to the same data. One common and useful constraint is only to

send immutable objects. Another design pattern treats the sent object as a token

conferring permission to use it { the sending process losing the token as a side-

e�ect of the communication. The trick is to ensure that only one copy of the

token ever exists for each sharable object.

Dynamic CREW (Concurrent Read Exclusive Write) operations are also pos-

sible with shared memory. Shared channels give us an eÆcient, elegant and easily

provable way to construct an active guardian process with which application pro-

cesses synchronise to e�ect CREW access to the shared data. Guarantees against

starvation of writers by readers { and vice-versa { are made. Details will appear

in a later report (available from [32]).

3.3 Structured Barrier Synchronisation and SPMD

Point-to-point channels are just a specialised form of the general CSP multi-

process synchronising event. The CSP parallel operator binds processes together

with events. When one process synchronises on an event, all processes registered

for that event must synchronise on it before that �rst process may continue.

Events give us structured multiway barrier synchronisation[29].

P

M

D

b1 b1b0 b0 b0 b0b2 b2

Fig. 14. Multiple barriers to three processes

We can have many event barriers in a system, with di�erent (and not neces-

sarily disjoint) subsets of processes registered for each barrier. Figure 14 shows

the execution traces for three processes (P, M and D) with time 
owing horizon-

tally. They do not all progress at the same { or even constant { speed. From

time to time, tha faster ones will have to wait for their slower partners to reach

an agreed barrier before all of them can proceed. We can wrap up the system in

typical SPMD form as:

|| <i = 0 FOR 3>

S (i, ..., b0, b1, b2)
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where b0, b1 and b2 are events. The replicated parallel operator runs 3 instances

of S in parallel (with i taking the values 0, 1 and 2 respectively in the di�erent

instances). The S process simply switches into the required form:

S (i, ..., b0, b1, b2)

= CASE i

0 : P (..., b0, b1)

1 : M (..., b0, b1, b2)

2 : D (..., b1, b2)

and where P, M and D are registered only for the events in their parameters. The

code for P has the form:

P (..., b0, b1)

= someWork (...); b0 --> SKIP;

moreWork (...); b0 --> SKIP;

lastBitOfWork (...); b1 --> SKIP;

P (..., b0, b1)

3.4 Non-Blocking Barrier Synchronisation

In the same way that asynchronous communications can be expressed (section

2.9), we can also achieve the somewhat contradictory sounding, but potentially

useful, non-blocking barrier synchronisation.

In terms of serial programming, this is a two-phase commitment to the bar-

rier. The �rst phase declares that we have done everything we need to do this

side of the barrier, but does not block us. We can then continue for a while, doing

things that do not disturb what we have set up for our partners in the barrier

and do not need whatever it is that they have to set. When we need their work,

we enter the second phase of our synchronisation on the barrier. This blocks us

only if there is one, or more, of our partners who has not reached the �rst phase

of its synchronisation. With luck, this window on the barrier will enable most

processes most of the time to pass through without blocking:

doOurWorkNeededByOthers (...);

barrier.firstPhase ();

privateWork (...);

barrier.secondPhase ();

useSharedResourcesProtectedByTheBarrier (...);

With our lightweight CSP processes, we do not need these special phases to

get the same e�ect:

doOurWorkNeededByOthers (...);

(barrier --> SKIP |PRI| privateWork (...));

useSharedResourcesProtectedByTheBarrier (...);

The explanation as to why this works is just the same as for the asynchronous

sends and receives.
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3.5 Bucket Synchronisation

Although CSP allows choice over general events, the occam and Java bindings

do not. The reasons are practical { a concern for run-time overheads10. So,

synchronising on an event commits a process to wait until everyone registered for

the event has synchronised. These multi-way events, therefore, do not introduce

non-determinism into a system and provide a stable platform for much scienti�c

and engineering modelling.

Buckets[15] provide a non-deterministic version of events that are useful for

when the system being modelled is irregular and dynamic (e.g. motor vehicle

traÆc[33]). Buckets have just two operations: jump and kick. There is no limit

to the number of processes that can jump into a bucket { where they all block.

Usually, there will only be one process with responsibility for kicking over the

bucket. This can be done at any time of its own (internal) choosing { hence the

non-determinism. The result of kicking over a bucket is the unblocking of all the

processes that had jumped into it11.

4 Conclusions

A simple model for parallel computing has been presented that is easy to learn,

teach and use. Based upon the mathematically sound framework of Hoare's CSP,

it has a compositional semantics that corresponds well with out intuition about

how the world is constructed. The basic model encompasses object-oriented de-

sign with active processes (i.e. objects whose methods are exclusively under their

own thread of control) communicating via passive, but synchronising, wires. Sys-

tems can be composed through natural layers of communicating components so

that an understanding of each layer does not depend on an understanding of the

inner ones. In this way, systems with arbitrarily complex behaviour can be safely

constructed { free from race hazard, deadlock, livelock and process starvation.

A small extension to the model addresses fundamental issues and paradigms

for shared memory concurrency (such as token passing, CREW dynamics and

bulk synchronisation). We can explore with equal 
uency serial, message-passing

and shared-memory logic and strike whatever balance between them is appro-

priate for the problem under study. Applications include hardware design (e.g.

FPGAs and ASICs), real-time control systems, animation, GUIs, regular and

irregular modelling, distributed and mobile computing.

occam and Java bindings for the model are available to support practical

work on commodity PCs and workstations. Currently, the occam bindings are

10 Synchronising on an event in occam has a unit time overhead, regardless of the num-

ber of processes registered. This includes being the last process to synchronise, when

all blocked processes are released. These overheads are well below a microsecond for

modern microprocessors.
11 As for events, the jump and kick operations have constant time overhead, regardless

of the number of processes involved. The bucket overheads are slightly lower than

those for events.
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the fastest (context-switch times under 300 nano-seconds), lightest (in terms

of memory demands), most secure (in terms of guaranteed thread safety) and

quickest to learn. But Java has the libraries (e.g. for GUIs and graphics) and

will get faster. Java thread safety, in this context, depends on following the CSP

design patterns { and these are easy to acquire12.

The JavaPP JCSP library[11] also includes an extension to the Java AWT

package that drops channel interfaces on all GUI components13. Each item (e.g.

a Button) is a process with a configure and action channel interface. These are

connected to separate internal handler processes. To change the text or colour

of a Button, an application process outputs to its configure channel. If some-

one presses the Button, it outputs down its action channel to an application

process (which can accept or refuse the communication as it chooses). Exam-

ple demonstrations of the use of this package may be found at [11]. Whether

GUI programming through the process-channel design pattern is simpler than

the listener-callback pattern o�ered by the underlying AWT, we leave for the

interested reader to experiment and decide.

All the primitives described in this paper are available for KRoC occam and

Java. Multiprocessor versions of the KRoC kernel targeting NoWs and SMPs will

be available later this year. SMP versions of the JCSP[11] and CJT[12] libraries

are automatic if your JVM supports SMP threads. Hooks are provided in the

channel libraries to allow user-de�ned network drivers to be installed. Research

is continuing on portable/faster kernels and language/tool design for enforcing

higher level aspects of CSP design patterns (e.g. for shared memory safety and

deadlock freedom) that currently rely on self-discipline.

Finally, we stress that this is undergraduate material. The concepts are ma-

ture and fundamental { not advanced { and the earlier they are introduced the

better. For developing 
uency in concurrent design and implementation, no spe-

cial hardware is needed. Students can graduate to real parallel systems once they

have mastered this 
uency. The CSP model is neutral with respect to parallel

architecture so that coping with a change in language or paradigm is straight-

forward. However, even for uni-processor applications, the ability to do safe and

lightweight multithreading is becoming crucial both to improve response times

and simplify their design.

The experience at Kent is that students absorb these ideas very quickly and

become very creative14. Now that they can apply them in the context of Java,

they are smiling indeed.

12 Java active objects (processes) do not invoke each other's methods, but commu-

nicate only through shared passive objects with carefully designed synchronisation

properties (e.g. channels and events). Shared use of user-de�ned passive objects will

be automatically thread-safe so long as the usage patterns outlined in Section 3 are

kept { their methods should not be synchronized (in the sense of Java monitors).
13 We believe that the new Swing GUI libraries from Sun (that will replace the AWT)

can also be extended through a channel interface for secure use in parallel designs {

despite the warnings concerning the use of Swing and multithreading[34].
14 The JCSP libraries used in Appendix B were produced by Paul Austin, an under-

graduate student at Kent.
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Appendix A: occam Executables

Space only permits a sample of the examples to be shown here. This �rst group are

from the `Legoland' catalogue (Section 2.3):

PROC Id (CHAN OF INT in, out) PROC Succ (CHAN OF INT in, out)

WHILE TRUE WHILE TRUE

INT x: INT x:

SEQ SEQ

in ? x in ? x

out ! x out ! x PLUS 1

: :

PROC Plus (CHAN OF INT in0, in1, out)

WHILE TRUE

INT x0, x1:

SEQ

PAR

in0 ? x0

in1 ? x1

out ! x0 PLUS x1

:

PROC Prefix (VAL INT n, CHAN OF INT in, out)

SEQ

out ! n

Id (in, out)

:

Next come four of the `Plug and Play' examples from Sections 2.4 and 2.6:

PROC Numbers (CHAN OF INT out) PROC Integrate (CHAN OF INT in, out)

CHAN OF INT a, b, c: CHAN OF INT a, b, c:

PAR PAR

Prefix (0, c, a) Plus (in, c, a)

Delta (a, out, b) Delta (a, out, b)

Succ (b, c) Prefix (0, b, c)

: :

PROC Pairs (CHAN OF INT in, out) PROC Squares (CHAN OF INT out)

CHAN OF INT a, b, c: CHAN OF INT a, b:

PAR PAR

Delta (in, a, b) Numbers (a)

Tail (b, c) Integrate (a, b)

Plus (a, c, out) Pairs (b, out)

: :
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Here is one of the controllers from Section 2.7:

PROC Replace (CHAN OF INT in, inject, out)

WHILE TRUE

PRI ALT

INT x:

inject ? x

PAR

INT discard:

in ? discard

out ! x

INT x:

in ? x

out ! x

:

Asynchronous receive from Section 2.9:

SEQ

PRI PAR

in ? packet

someMoreComputation (...)

continue (...)

Barrier synchronisation from Section 3.3:

PROC P (..., EVENT b0, b2)

... local state declarations

SEQ

... initialise local state

WHILE TRUE

SEQ

someWork (...)

synchronise.event (b0)

moreWork (...)

synchronise.event (b0)

lastBitOfWork (...)

synchronise.event (b1)

:

Finally, non-blocking barrier synchronisation from Section 3.4:

SEQ

doOurWorkNeededByOthers (...)

PRI PAR

synchronise.event (barrier)

privateWork (...)

useSharedResourcesProtectedByTheBarrier (...)
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Appendix B: Java Executables

These examples use the JCSP library for processes and channels[11]. A process is an

instance of a class that implements the CSProcess interface. This is similar to, but

di�erent from, the standard Runable interface:

package jcsp.lang;

public interface CSProcess {

public void run ();

}

For example, from the `Legoland' catalogue (Section 2.3):

import jcsp.lang.*; // processes and object carrying channels

import jcsp.lang.ints.*; // integer versions of channels

class Succ implements CSProcess {

private ChannelInputInt in;

private ChannelOutputInt out;

public Succ (ChannelInputInt in, ChannelOutputInt out) {

this.in = in;

this.out = out;

}

public void run () {

while (true) {

int x = in.read ();

out.write (x + 1);

}

}

}

class Prefix implements CSProcess {

private int n;

private ChannelInputInt in;

private ChannelOutputInt out;

public Prefix (int n, ChannelInputInt in, ChannelOutputInt out) {

this.n = n;

this.in = in;

this.out = out;

}
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public void run () {

out.write (n);

new Id (in, out).run ();

}

}

JCSP provides a Parallel class that combines an array of CSProcesses into a CSProcess.

It's execution is the parallel composition of that array. For example, here are two of

the `Plug and Play' examples from Sections 2.4 and 2.6:

class Numbers implements CSProcess {

private ChannelOutputInt out;

public Numbers (ChannelOutputInt out) {

this.out = out;

}

public void run () {

One2OneChannelInt a = new One2OneChannelInt ();

One2OneChannelInt b = new One2OneChannelInt ();

One2OneChannelInt c = new One2OneChannelInt ();

new Parallel (

new CSProcess[] {

new Delta (a, out, b),

new Succ (b, c),

new Prefix (0, c, a),

}

).run ();

}

}

class Squares implements CSProcess {

private ChannelOutputInt out;

public Squares (ChannelOutputInt out) {

this.out = out;

}

public void run () {

One2OneChannelInt a = new One2OneChannelInt ();

One2OneChannelInt b = new One2OneChannelInt ();

new Parallel (

new CSProcess[] {

new Numbers (a),

new Integrate (a, b),

new Pairs (b, out),

}

).run ();

}

}
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Here is one of the controllers from Section 2.7. The processes ProcessReadInt and

ProcessWriteInt just read and write a single integer (into and from a public value

�eld) and, then, terminate:

class Replace implements CSProcess {

private AltingChannelInputInt in;

private AltingChannelInputInt inject;

private ChannelOutputInt out;

public Replace (AltingChannelInputInt in,

AltingChannelInputInt inject,

ChannelOutputInt out) {

this.in = in;

this.inject = inject;

this.out = out;

}

public void run () {

Alternative alt = new Alternative (new Guard[] {inject, in});

final int INJECT = 0, IN = 1; // Guard indices (prioritised)

ProcessWriteInt forward = new ProcessWriteInt (out); // a CSProcess

ProcessReadInt discard = new ProcessReadInt (in); // a CSProcess

CSProcess parIO = new Parallel (new CSProcess[] {discard, forward});

while (true) {

switch (alt.priSelect ()) {

case INJECT:

forward.value = inject.read ();

parIO.run ();

break;

case IN:

out.write (in.read ());

break;

}

}

}

}

JCSP also has channels for sending and receiving arbitrary Objects. Here is an asyn-

chronous receive (from Section 2.9) of an expected Packet:

// set up processes once (before we start looping ...)

ProcessRead readObj = new ProcessRead (in); // a CSProcess

CSProcess someMore = new someMoreComputation (...);

CSProcess async = new PriParallel (new CSProcess[] {readObj, someMore});

while (looping) {

async.run ();

Packet packet = (Packet) readObj.value

continue (...);

}
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