University of

"1l Kent Academic Repository

Smaus, Jan-Georg, Hill, Pat and King, Andy (1998) Termination of Logic

Programs with block Declarations Running in Several Modes. In: Palamidessi,
Catuscia, ed. International Symposium on Programming Languages: Implementatior
Logics and Programs. Lecture Notes in Computer Science, 1490 . Springer-Verlag,
see also http://www.springer.de/comp/Incs/index.html, pp. 182-196. ISBN
3-540-65012-1.

Downloaded from
https://kar.kent.ac.uk/21647/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21647/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Termination of Logic Programs with block
Declarations Running in Several Modes

Jan-Georg Smaus!, Pat Hill?, and Andy King!

! University of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom,
{j.g.smaus, a.m.king}@ukc.ac.uk
2 University of Leeds, Leeds, LS2 9JT, United Kingdom, hill@scs.leeds.ac.uk

Abstract We show how termination of logic programs with delay dec-
larations can be proven. Three features are distinctive of this work: (a)
we assume that predicates can be used in several modes; (b) we show
that block declarations, which are a very simple delay construct, are
sufficient; (c) we take the selection rule into account, assuming it to be
as in most Prolog implementations. Our method is based on identifying
the so-called robust predicates, for which the textual position of an atom
using this predicate is irrelevant. The method can be used to verify ex-
isting programs, and to assist in writing new programs. As a byproduct,
we also show how programs can be proven to be free from occur-check
and floundering.

1 Introduction

Delay declarations are provided in several logic programming languages to allow
for more user-defined control [7,8,18] as opposed to the standard left-to-right
selection rule. An atom in a query is selected for resolution only if its arguments
are instantiated to a specified degree.

In this paper we present a method of ensuring termination of programs with
delay declarations. As far as possible, we translate the problem to showing ter-
mination for a corresponding program with ordinary left-to-right execution. We
assume that for the corresponding program, termination has been shown using
some existing technique [1].

Three distinctive features of this work make its contribution: (a) it is assumed
that procedures may run in more than one mode; (b) we concentrate on block
declarations, which are a particularly simple and efficient delay construct; (c)
the selection rule is taken into account.

(a) Apart from the test-and-generate paradigm (coroutining) [15], allowing
procedures to run in more than one mode is probably the most important appli-
cation of delay declarations. Although other authors have not explicitly assumed
multiple modes, their theory and examples only become fully relevant under that
assumption. Whether this is a better approach than generating multiple versions
of each predicate [18] is an ongoing discussion [6].

(b) The block declarations declare that certain arguments of an atom must
be non-variable before that atom can be selected. Insufficiently instantiated

atoms are delayed. As demonstrated in SICStus [8], block declarations can be
efficiently implemented; the test whether the arguments are non-variable has
negligible impact on performance. Termination clearly depends on the instan-
tiation of the arguments of the query. For example, the append predicate has
infinitely many answers when called with uninstantiated arguments and there-
fore does not terminate, but it terminates when either the first or the third
argument is a list of bounded length. Although it cannot be tested in a single
step which of these arguments is a list of bounded length, block declarations are
still sufficient.

(c¢) The property of termination may critically depend on the selection rule,
that is the rule which determines, for a derivation, the order in which atoms
are selected. We assume that derivations are left-based, which are derivations
where (allowing for some exceptions, concerning the execution order of two
literals woken up simultaneously) the left-most non-delayed atom is selected.
This is intended to model derivations in the common implementations of Prolog
with block declarations. Other authors have avoided the issue by abstracting
from a particular selection rule [2,10]; considering left-based selection rules on a
heuristic basis [15]; or making the very restrictive assumption of local selection
rules [11].

Circular modes (when a predicate uses its own output as input) and specu-
lative output bindings (bindings made before it is known that a solution exists)
are known sources of loops [15]. We develop this explanation further by iden-
tifying predicates which have the undesirable property of looping when they
are called with insufficient (that is, non-variable but still insufficiently instan-
tiated) input. For instance, the query permute(A, [11B]) loops, although the
query permute(A, [1,2]) terminates. The idea of our method for proving ter-
mination is that, for such predicates, calls with insufficient input should never
arise. This can be ensured by appropriate ordering of atoms in the clause bodies.
This actually works in several modes, provided not too many predicates have
this undesirable property.

This paper is organised as follows. The next section defines some essential
concepts and notations. Sect. 3 introduces some concepts needed later, which are
also useful for proving programs free from occur-check and floundering. Sect. 4
is about termination. Sect. 5 investigates related work. Sect. 6 concludes with a
summary and a look at ongoing and future work.

2 Essential Concepts and Notations

We base the notation on [2,9]. For the examples we use SICStus notation [8].
The set of variables in a syntactic object o is denoted by vars(o). A syntactic
object is linear if every variable occurs in it at most once. A flat term is a
variable or a term f(x1,...,x,), where n > 0 and the x; are distinct variables.
The domain of a substitution o is dom(o) = {z | zo # z}.

For a predicate p/n, a mode is an atom p(my,...,m,), where m; € {I, O}
for i € {1,...,n}. Positions with I are called input positions, and positions

with O are called output positions of p. A mode of a program is a set of
modes, one mode for each of its predicates. A program can have several modes, so
whenever we refer to the input and output positions, this is always with respect
to the particular mode which is clear from the context. To simplify the notation,
an atom written as p(s,t) means: s and t are the vectors of terms filling the
input and output positions, respectively.

A type is a set of terms closed under substitution. A type is called variable
type if it contains variables and non-variable type otherwise. In the examples,
we use the following types: any is the type containing all terms, list is the type of
all (nil-terminated) lists, int the type of integers, and il is the type of all integer
lists. We write ¢ : T for “t is in type 77. It is assumed that each argument
position of each predicate p/n has a type associated with it. These types are
indicated by writing the atom p(Ti,...,T,) where Ty,...,T, are types. The
type of a program is a set of such atoms, one for each predicate. A term ¢ is
typeable wrt. T if there is a substitution € such that t6 : T'. A term ¢ occurring
in an atom in some position is typeable if it is typeable wrt. the type of that
position.

A block declaration [8] for a predicate p/n is a set of atoms of the form
p(b1,...,by), where b; € {?,—} for i € {1,...,n}. A program consists of a set
of clauses and a set of block declarations, one for each predicate defined by the
clauses. If P is a program, an atom p(t1,...,t,) is selectable in P if for each
atom p(by,...,b,) in the block declaration for p, there is some i € {1,...,n}
such that t; is non-variable and b; = —.

A query is a finite sequence of atoms. A derivation step for a program
P is a pair (@, 0); (R,00), where Q = Q1,a,Q2 and R = @1, B, (> are queries;
6 is a substitution; a an atom; h < B (a variant of) a clause in P and o the
most general unifier of af and h. We call af the selected atom and Rfo the
resolvent of Q0 and h + B.

A derivation ¢ for a program P is a sequence (Qo,6o); (Q1,61);- .., where
6o = 0 and each successive pair (Q;,0;); (Qit1,0i+1) in € is a derivation step.
Alternatively, we also say that £ is a derivation of P U {Qo}. We also denote &
by Qo; Q161; A derivation is an LD-derivation if the selected atom is always
the leftmost atom in a query. A delay-respecting derivation for a program
P is a derivation where the selected atom is always selectable in P. We say that
it flounders if it ends with a non-empty query where no atom is selectable.

If Q,a,R; (Q,B,R)0 is a step in a derivation, then each atom in B is a
direct descendant of a, and b6 is a direct descendant of b for all b € @), R.
We say b is a descendant of a if (b, a) is in the reflexive, transitive closure of
the relation is a direct descendant. The descendants of a set of atoms are defined
in the obvious way. If, for a derivation ... Q;...;Q'; Q" ..., the selected atom in
Q'; Q" is a descendant of an atom « in @, then Q'; Q" is called an a-step.

Consider a delay-respecting derivation Qp;...;®@;Qi+1, where
Q; = Ry,a, Ry, and R; contains no selectable atom, and a is not the selected
atom in Q;; Q;+1.- Then a is delayed in Q;; Q;41. An atom is waiting if it is the
descendant of a delayed atom. A delay-respecting derivation Qq; Q1 - .. is left-

based if in each);, a non-waiting atom is selected only if there is no selectable
atom to the left of it in @;.

3 Permutations and Modes

In [2], the concepts of nicely moded and well typed are introduced, assuming that
each predicate has a single mode. They are used to show that the occur-check
can safely be omitted and that derivations do not flounder. The idea is that
in a query, every piece of data is produced (i.e. output) before it is consumed
(i.e. input), and every piece of data is produced only once. Here “before” refers
to the textual position in a query.

We generalise these concepts and results by considering a permutation of
the atoms in each clause body in a program (and in each query), such that
an LD-derivation for the reordered program is automatically delay-respecting,
and thus, block declarations are effectively unnecessary. These permutations
are used to compare a program with the (theoretically) reordered program; it is
not intended that the program is actually changed. Since the permutations are
different in each mode, this would commit the program to a particular mode.

3.1 Permutation Nicely Moded Programs

In a nicely moded query, a variable occurring in an input position does not occur
later in an output position, and each variable in an output position occurs only
once. We generalise this to permutation nicely moded.

Definition 3.1 (permutation nicely moded). Let @ = pi(s1,t1),...,
Dn(Sn, ty) be a query and 7 a permutation on {1,...,n}. @ is 7-nicely moded
if t1,...,t, is a linear vector of terms and for all s € {1,...,n}

vars(s;) N U vars(t;) = 0.

w(j) 27 (4)

The query! 7(Q) is a nicely moded query corresponding to Q.

The clause C = p(tog,sp+1) < @ is m-nicely moded if @) is 7-nicely moded
and to,...,t, is a linear vector of terms. The clause p(to,sn+1) ¢ 7(Q) is a
nicely moded clause corresponding to C.

A query (clause) is permutation nicely moded if it is 7-nicely moded for
some 7. A program P is permutation nicely moded if all of its clauses are.
A nicely moded program corresponding to P is a program obtained from
P by replacing every clause C in P with a nicely moded clause corresponding
to C.

Note that in the clause head, the letter ¢ is used for input and s is used for
output, whereas in the body atoms it is vice versa.

! Given a sequence oy, ..., 0., we write w(o1,...,0,) for On—1(1),+++»0r—1(y), i.€. the
sequence obtained by applying 7 to 01,...,0p.

Ezample 3.1.

:- block permute(-,-).

permute([1, [1).

permute([U | XI, Y) :-
permute(X, Z),
delete(U, Y, Z).

:- block delete(?,-,-).
delete(X,[X1Z1,2).
delete(X, [U|Y], [U|Z]) :- delete(X,Y,Z).

In mode {permute(l, 0),delete(l, O,I)}, this program is nicely moded. In
mode {permute(0,I),delete(O,I, 0)}, it is permutation nicely moded, since
the second clause for permute is (2, 1)-nicely moded, and the other clauses are
nicely moded.

Note that the problem of finding a mode for a program so that it is nicely moded
is considered in [4]. We are not concerned with this here.

We show that there is a persistence property for permutation nicely-moded-
ness similar to that for nicely-modedness in [2].

Lemma 3.1. Every resolvent of a permutation nicely moded query ¢ and a per-
mutation nicely moded clause C, where vars(Q) Nwvars(C) = (), is permutation
nicely moded.

Proof. Let @ = aq,-..,a, be a m-nicely moded query and h < by,...,b,, be a
p-nicely moded clause, and suppose for some k € {1,...,n}, h and a; are unifi-
able with unifier §. By Def. 3.1, Qr=1(1), -+, Qr=1(n) and h < bp—1(1), cee bp—l(m)
are nicely moded. Thus by [2, Lemma 11]?

Ar—=1(1)5--+ 7a7T_1(7T(1€)71)7bp_1(1)7 vey bp_l(m)aaﬂ'_l(ﬂ'(k)+1)7 sy Qp=1(p) 0

is nicely moded. This implies that ai,...,ax—1,b1,...,0m,ak41,-..,an 6 is
o-nicely moded, where o(7) is defined as:

() ifti <k, m(i) < n(k)
w(i) +m—1 ifi <k, w(i) > n(k)
ak)—1+pli—k+1) fk<i<k+m-—1
w(i—m+1) ifk+m<i<n+m-1,7(i—m+1)<n(k)
m(i—m+1)+m-—1 iftk+m<i<n+m-1,7(i—m+1)> (k)

a

Fig. 1 illustrates ¢ when Q = a1, a2,a3,a4, 7 = (4,3,1,2), C = h + by,ba,
p=1(2,1),and k = 2. Thus ¢ = (5,4, 3,1,2). The following corollary generalises
this from a single derivation step to derivations.

2 Unlike [2], we included the condition that to is linear in Def. 3.1.

X X

ar |1 by n b2 1| a3 || a4
. .

resolve SoETmha

_—

N

as || a4 || az || a1 Vb by az || a4 |} b 1 b1 1| a1

Figurel. The permutation g for the resolvent

Corollary 3.2. Let P be a permutation nicely moded program, @ = a1, ...,a,
be a m-nicely moded query and i,j € {1,...,n} such that n(i) < w(j). Let
Q;...; R be a derivation for P and suppose R = by, ..., b,, is p-nicely moded. If
for some k,l € {1,...,m}, by is a descendant of a; and b; is a descendant of a;,
then p(k) < p(1). (Proof [17])

As an aside, we now use permutation nicely-modedness to show when the occur-
check can safely be omitted.

Definition 3.2. A derivation is called occur-check free [2, 3] if no execution of
the Martelli-Montanari unification algorithm [13] performed during this deriva-
tion ends with a system of term equations including an equation z = ¢, where z
is not ¢, but x occurs in t.

If P and @ are nicely moded, then all derivations of P U {Q} are occur-check
free [2, Thm. 13]. The following theorem is a trivial consequence of this and
Lemma 3.1.

Theorem 3.3 (occur check). Let P and () be permutation nicely moded.
Then all derivations of P U {Q} are occur-check free.

3.2 Permutation Well Typed Programs

To show that derivations do not flounder, [2] defines well-typedness, which is a
generalisation of a simpler concept called well-modedness. The idea is that given
a query H,a, F, if H is resolved away, then a becomes sufficiently instantiated
to be selected. As with the modes, we assume that the types are given. In the
examples, they will be the obvious ones.

Definition 3.3 (permutation well typed). Let n > 0 and 7 be a permuta-
tion such that 7(¢) = 7 wheneveri ¢ {1,...,n}. Let Q@ = p1(s1,t1),...,Pn(Sn, tn)
be a query, where p;(S;, T;)? is the type of p; for all i € {1,...,n}. Then Q is
m-well typed if for all i € {1,...,n} and every substitution o

E(/\ tjo:T;)=s;0:8S;. (*)

w(j)<m (i)

'8;, T; are the vectors of types of the input and output arguments, respectively.

The clause C' = p(to, sp+1) < @, where p(To,S,+1) is the type of p, is 7-well
typed if (x) holds for all ¢ € {1,...,n + 1} and every substitution o.

A permutation well typed query (clause, program) and a well typed
query (clause, program) corresponding to a query (clause, program) are de-
fined in analogy to Def. 3.1.

Ezample 3.2. Consider Ex. 3.1 and assume the type {permute(list,list),
delete(any,list,list)}. The program is well typed for mode {permute(I, O),
delete(l, O,I)}, and permutation well typed for mode {permute(O,I),
delete(O, I, 0)}, with the same permutations as in Ex. 3.1. The same holds
assuming type {permute(il,il), delete(int,il,il)}.

We now give a statement analogous to Lemma 3.1. The proof is like that of
Lemma 3.1, using Lemma 23 instead of 11 in [2].

Lemma 3.4. Every resolvent of a permutation well typed query @ and a per-
mutation well typed clause C, where vars(Q) Nvars(C) =), is permutation well
typed.

Theorem 3.5. Let P be a permutation well typed program and @ be a permu-
tation well typed query. Assume that an atom is selectable if it is non-variable
in all input positions of non-variable type. Then no delay-respecting derivation

of PU{Q} flounders. (Proof [17])

For the program in Ex. 3.2, the above lemma shows that no permutation well
typed query can flounder.

4 Termination

So far we have introduced two useful concepts of “modedness” and “typedness”.
In this section, we will build on these to show termination.

We are interested in termination in the sense that all derivations of a query
are finite. Therefore the clause order in a program is irrelevant. Furthermore,
we are concerned with how delay declarations can affect the termination of a
program. Thus it is assumed that termination for the corresponding nicely moded
and well typed programs has been shown by some existing method for LD-
derivations [1]. We first give some examples to illustrate the issues.

Ezample 4.1. The permute predicate (Ex. 3.1) loops for the query
permute (V, [1]) because delete produces a speculative output binding [15]: The
output variable Y is bound before it is known that this binding will never have
to be undone. Assuming left-based derivations, termination in both modes can
be ensured by replacing the second clause with

permute([U | X11, Y) :-
delete(U, Y, Z),
permute (X1, Z).

This heuristic is called putting recursive calls last [14]. The example suggests
that one cannot give reasonable termination guarantees without making such
strong assumptions about the selection rule.

However, the heuristic of putting recursive calls last cannot explain the appro-
priate atom order in the following example.

Example 4.2. This program for the n-queens problem shows an application of
block declarations other than enabling multiple modes: implementing the test-
and-generate paradigm. Here permute is defined as in Ex. 4.1.

nqueens (N,Sol) :-
sequence(N,Seq) ,
safe(Sol),

permute (Sol,Seq) . :- block safe_aux(-,?,?), safe_aux(?,-,7),

safe_aux(?,7,-).
:- block sequence(-,?). safe_aux([],_,).
sequence (0, [1). safe_aux([M|Ms],Dist,N) :-

sequence (N, [N|Seq]) :- no_diag(N,M,Dist),
0 < N, Dist2 is Dist+1,
N1 is N-1, safe_aux(Ms,Dist2,N).

sequence(N1,Seq) .
:- block no_diag(-,7,7), no_diag(?,-,7).

:- block safe(-). no_diag(N,M,Dist) :-
safe([1). Dist =\= N-M,
safe([N|Ns]) :- Dist =\= M-N.
safe_aux(Ns,1,N),
safe(Ns).

With the mode {nqueens(I,O),safe(]),sequence(l, O),permute(0,I),
is(0,I),<(I,I)} and the type {nqueens(int,il),sequence(int,il),safe(il),
permute(il,il)}, the first clause is (1,3, 2)-nicely moded and (1, 3, 2)-well typed.
Moreover, the query nqueens (4,Sol) terminates.

However, if in the first clause, the atom order is changed by moving
sequence (N, Seq) to the end, then nqueens(4,So0l) loops. This is because re-
solving sequence(4,Seq) with the second clause for sequence makes a (not
speculative!) binding which triggers the call permute(Sol, [4|T]). This call
results in a loop. Note that [4]T], although non-variable, is insufficiently in-
stantiated for permute (Sol, [4|T]) to be correctly typed in its input position:
permute is called with insufficient input.

To ensure termination, atoms in a clause body that loop when called with in-
sufficient input should be placed so that all atoms which produce the input for
these atoms occur textually earlier.

In the following three subsections, we first define permutation robustly typed,
which is an elementary property a program must have for our method to be
applicable. We then identify the robust predicates, which terminate for every
delay-respecting selection rule. Finally, we show how predicates which are not
robust must be placed in clause bodies to ensure termination.

4.1 Preventing Instantiation of Own Input

A prerequisite of our formalism is that no call arising in a derivation can ever
instantiate its own input arguments.

Example 4.3. Consider the following version* of delete(O, I, O).

:- block delete(?,-,-).
delete (X, [U|[HITI],[UIZ]) :-

delete(X, [H|T],Z).
delete(A, [A|B],B).

Consider the query delete(A,L,R), delete(B,[1,2],L). The second atom
produces L, which is used by the first atom as input. The query loops, since
the second atom partially binds L, which wakes up the first atom, which then
instantiates L further (i.e. the call instantiates its own input), resulting in a
recursive call to delete, and so forth.

To prevent a call from instantiating its input, the block declarations must en-
force that an atom is only selected if all input positions of non-variable type are
non-variable. As the previous example shows, this is not enough. It also has to
be ensured that each input argument in the clause head is flat (which the clause
head delete (X, [U| [H|T]1, [UIZ]) violates). The next example shows that even
that is not enough.

Ezample 4.4. Consider the following program in mode p(I, O).

:= block p(-,7).
p(g(M,Y).

A call to p(g(X),3) instantiates X to 3, and thus instantiates its own input.

The easiest solution seems to be to require that the output positions in a query
are always filled by variables. In mode p(Z, O), the query p(g(X) ,3) should not
arise, since its output is already instantiated. This is considered in [2] (simply-
modedness). However, it is often too restrictive.

Example 4.5. The following is an excerpt from a version of quicksort.

:- block gs(-,-).
gqs([1,01).
gs([XIXs],Ys) :-
append (As2, [X|Bs2],Ys),
partition(Xs,X,As,Bs),
gs (As,As2),
gs(Bs,Bs2).

For the mode {qs(O,I),append(0, O,I),partition(0,I,I,I)}, the non-
variable term [X|Bs2] occurs in an output position.
Y It is part of the most specific program [12] corresponding to Ex. 3.1, proposed

in [15] to prevent looping for permute(O, I). However, it does not work. The query
permute (A, [1]) indeed terminates, but permute (4, [1,2]) still loops.

In the sequel, we assume that a label free or bound is associated with each output
position of each predicate. Non-variable terms in output positions in a query are
allowed only in bound positions. The bound positions must be of non-variable
type. As with assigning the mode and the type to a predicate, we do not propose
a method of deciding which positions should be free or bound. In the examples
however, an output position of a predicate p is bound if and only if there is
a clause body with an atom using p, which has a non-variable term in that
position.

For notational convenience, we use the notion of free and bound positions
also for input positions. An input position is free if and only if it is of variable
type. We denote the projection of a vector of arguments r onto its free positions

as rf, and the projection onto its bound positions as r®.

Definition 4.1 (permutation robustly typed). Let = be a permutation such
that 7(¢) = ¢ whenever i ¢ {1,...,n}. A query Q = p1(s1,t1),...,Pn(Sn,tn) is
m-robustly typed if it is 7-nicely moded and 7-well typed, tf, ..., tf is a vector
of variables, and t2, ... t2 is a vector of flat typeable terms.

The clause p(tg, s,+1) + @ is 7-robustly typed if it is w-nicely moded and
m-well typed, and

1. tf,...,tf is a vector of variables, and t§,...,t> is a vector of flat typeable
terms.

2. if a position in sb_; of type 7 is filled with a variable z, then z also fills a
position of type 7 in t},...,t5.

A permutation robustly typed query (clause, program) and a robustly
typed query (clause, program) corresponding to a query (clause, program)
are defined in analogy to Def. 3.1.

Example 4.6. The permute-program of Ex. 4.1, for any of the types in Ex. 3.2,
assuming all output positions are free, is robustly typed in mode permute(O, I')
and permutation robustly typed in mode permute(/, O).

Consider Ex. 4.5 with the usual definition for the missing clauses, with type
{as(il,il), append(il,il,il), partition(il,int,dl,il)}. This program is permuta-
tion robustly typed in mode gs(0, I), assuming the second position of append is
the only bound output position. It is also permutation robustly typed in mode
qs(I, O), assuming that all output positions are free.

Definition 4.2 (input selectability). Let P be a permutation robustly typed
program. P has input selectability if for every permutation robustly typed
query @, an atom in @ is selectable in P if and only if it is non-variable in all
input positions of non-variable type.

Ezample 4.7. Consider append(O, O, I) where the second position is the only
bound output position (Exs. 4.5, 4.6), and the block declaration is

:- block append(-,7,-), append(?,-,-).

This program has input selectability. () = append (A, [B|Bs], [1]) is a permuta-
tion robustly typed query, and its only atom is selectable. The atom
append ([1, [1,C) is also selectable, although its input position is variable. This
does not contradict Def. 4.2, since this atom cannot be an atom in a permutation
robustly typed query with respect to mode append(O, O, I).

Looking at Def. 4.1, one is tempted to think that it is best to associate the
label bound with all output positions, because that would make the definition
less restrictive. However, we require a program to have input selectability in
each of its modes. Since input selectability is defined with respect to atoms in
permutation robustly typed queries, and permutation robustly typed queries
are defined with respect to given free and bound positions, it turns out that
the choice of free and bound positions constrains the possible set of modes.
For reasons of space, we cannot explain this in detail. Anyway, we have not
encountered a case where a “natural” mode of a program was ruled out.

The following lemma shows a persistence property of permutation robustly
typedness, and shows furthermore that a derivation step cannot instantiate the
input arguments of the selected atom.

Lemma 4.1. Let P be a permutation robustly typed program with input se-
lectability, @ = p1(s1,t1),...,DPn(Sn, t,) be a permutation robustly typed query
and C = p(vo, um+1) ¢ q1(a1,v1), ..., @m (W, Vi) be a clause in P such that
vars(Q) Nvars(C) = (). Suppose (@, 0); (R, o) is a derivation step with clause C
and selected atom pg (s, tx)-

Then Ro is permutation robustly typed, and dom(s) N vars(sg) = 0 and
vars(sg) Nvars((vi,...,vm)o) = 0. (Proof [17])

4.2 Robust Predicates

In this subsection, derivations are not required to be left-based. Therefore we
do not need to consider arbitrary permutations and we can, without loss of
generality, assume that the programs and queries are robustly typed (rather
than permutation robustly typed). This simplifies the notation. In Subsect. 4.3,
we go back to allowing for arbitrary permutations.

Definition 4.3 (robust). A predicate p in a robustly typed program P is ro-
bust if, for each robustly typed query p(s,t), any delay-respecting derivation of
P U {p(s,t)} is finite. An atom is robust if its predicate is.

This means that for queries consisting of robust atoms, termination does not
depend on left-based derivations. Thus the position of a robust atom in a clause
body or query does not affect termination. The following lemma says that a
robust atom cannot proceed indefinitely unless it is repeatedly “fed” by some
other atom.

Lemma 4.2. Let P be a robustly typed program with input selectability and
F,a,H a robustly typed query where a is a robust atom. A delay-respecting
derivation of PU{F),a, H} can have infinitely many a-steps only if it has infinitely
many b-steps, for some b € F. (Proof [17])

The following lemma is a simple consequence and states that the robust atoms
in a query on their own cannot produce an infinite derivation.

Lemma 4.3. Let P be a robustly typed program with input selectability and @
a robustly typed query. A delay-respecting derivation of PU{Q} can be infinite
only if there are infinitely many steps where a non-robust atom is resolved.

(Proof [17])

For LD-derivations, termination proofs usually rely on some norm to measure
the size of a term or atom [1,5]. For a query F,a, H, the query F is resolved
away before a is resolved, and thus a is sufficiently instantiated to be bounded
with respect to the norm. In contrast, for arbitrary derivations, the decrease in
argument size must be independent of the order in which atoms are selected.
We assume a simple norm where a term is smaller than another term if it is a
proper subterm. This method could be enhanced by considering other norms.

Example 4.8. Consider Ex. 4.2, where all arguments are input, and the type
is {safe(il), safe_aux(il,int,int), no_diag(int,int,int)}. All delay-respecting
derivations of a permutation robustly typed query safe_aux(l,n,m) terminate,
because in the first argument of safe_aux, there is a strict decrease with respect
to the “subterm” norm.

The following definition is adapted from [1].

Definition 4.4 (depends on). Let p,q be predicates in a program P. We say
that p refers to ¢ if there is a clause in P with p in its head and ¢ in its body,
and p depends on ¢ (written p 3 q) if (p, ¢) is in the reflexive, transitive closure
of refers to. We write p Jqif p Jgand ¢ 2 p, and p~qif p Jqand ¢ I p.

To show robustness, one has to find argument positions, one for each predicate,
such that there is a decrease in argument size in that position.

Definition 4.5 (decreasing clause). Assume that for each predicate p in a
program P, there is a designated position called decreasing position. Let
C = q(vo,ums1) < q1(u1,v1),...,¢m(Wm, v,) be a clause in P. Suppose that
for each pp € {1,...,m} where q, = ¢, q.(u,,v,) has a variable in its decreasing
position which is a proper subterm of the term in the decreasing position of
q(vo,um41). Then C is decreasing.

To show that a predicate p is robust, we assume that all predicates ¢ with p 1 q
have already been shown to be robust.

Lemma 4.4. Let P be a robustly typed program with input selectability and
p a predicate in P. Suppose that for each predicate ¢, where p 1 g, either:

1. p O q and q is robust.
2. p = q and each clause defining ¢ is decreasing.

Then p is robust. (Proof [17])

Of course, a predicate in a permutation robustly typed program is not always
robust, and so the technique given by the above lemma cannot always be applied.
Often there is no decreasing position for a predicate.

Ezample 4.9. We demonstrate for Ex. 4.8 how Lemma 4.4 is used. Given that
the built-in =\= terminates, it follows that no_diag is robust. We show that
the second clause for safe_aux meets assumption 2 of Lemma 4.4. With the
first position of safe_aux as decreasing position, the recursive call to safe_aux
has Ms in the decreasing position, which is a proper subterm of [M|Ms]. Similar
arguments can be applied for the other clauses, showing that safe and safe_aux
are robust.

4.3 Well Fed Programs

So far we have shown for some predicates that all delay-respecting derivations of
queries with these predicates terminate. As permute(O, I) shows, this does not
work for all predicates. In a program which uses such predicates, the selection
rule must be taken into account. We assume left-based derivations. Consequently
we now also give up the assumption, made to simplify the notation, that the
clauses and query are robustly typed, rather than just permutation robustly
typed. All statements from the previous subsection generalise in the obvious
way.

A query is called well fed if each atom has been shown to be robust or occurs
in such a position that all atoms which “feed” the atom occur earlier. Of course,
since robustness is undecidable, we must assume a predicate to be non-robust if
it has not been shown to be robust.

Definition 4.6 (well fed). Let P be a permutation robustly typed program.
For a w-robustly typed query p;(s1,t1),...,Pn(Sn, tn), an atom p;(s;, t;) is well
fed if it is robust, or 7(j) < m(i) implies j < i for all j. A m-robustly typed
query (clause) is well fed if all of its (body) atoms are. P is well fed if all of
its clauses are well fed and it has input selectability.

Ezxample 4.10. The programs mentioned in Ex. 4.6 are well fed in the given
modes. The program in Ex. 4.2 is well fed in the given mode. It is not well
fed in mode {nqueens(O, I'), permute(/, O), sequence(O,I),< (I,I),is(0,I)},
because it is not permutation nicely moded in this mode: in the second clause
for sequence, N1 occurs twice in an output position.

Lemma 4.5. Every resolvent of a well fed query @ and a well fed clause C,
where vars(Q) Nvars(C) = 0, is well fed.

Proof. By obvious analogy, Corollary 3.2 also holds if nicely moded is replaced
with robustly typed. The result then follows from Lemma 4.1. O

The following theorem reduces the problem of showing termination of left-based
derivations for well fed programs to showing termination of LD-derivations for
the corresponding robustly typed program.

Theorem 4.6. Let P and @ be a well fed program and query, and P’ and Q'
a robustly typed program and query corresponding to P and Q. If every LD-
derivation of P’ U {Q'} is finite, then every left-based derivation of P U {Q} is
finite. (Proof [17])

Given that for the programs of Ex. 4.10, the corresponding robustly typed pro-
grams terminate for robustly typed queries, it follows from the above theorem
that the former programs terminate for well fed queries.

5 Related Work

In using “modedness” and “typedness”, we follow Apt and Luitjes [2], and also
adopt their notation. Our results on occur-check freedom and non-floundering
are straightforward variations of their results. For termination, they propose a
method limited to deterministic programs.

Naish [15] gives excellent intuitive explanations why programs loop, which
directed our own search for further ideas and their formalisation. To ensure
termination, he proposes some heuristics, without any formal proof.

Predicates are assumed to have a single mode. Naish suggests that alternative
modes should be achieved by multiple versions of a predicate.® However, under
that assumption, why have delay declarations in the first place? For instance,
in the mentioned example permute, if we only consider permute(O,), then
Ex. 4.1 does not loop for the plain reason that no atom ever delays, and thus
the program behaves as if there were no delay declarations. In this case, the
interpretation that one should “put recursive calls last” is misleading. If we only
consider permute(/, O), then the version of Ex. 4.1 is much less efficient than
Ex. 3.1. In short, the whole discussion on delay declarations makes little sense
when only one mode is assumed.

Liittringhaus-Kappel [10] proposes a method of generating control auto-
matically, and has applied it successfully to many programs. However, rather
than pursuing a formalisation of some intuitive understanding of why programs
loop, and imposing appropriate restrictions on programs, he attempts a high
degree of generality. This has certain disadvantages.

The method only finds acceptable delay declarations, ensuring that the most
general selectable atoms have finite SLD-trees. What is required however are
safe delay declarations, ensuring that instances of most general selectable atoms
have finite SLD-trees. A safe program is a program for which every acceptable
delay declaration is safe. No hint is given as to how it is shown that a program
is safe. This is a missing link.

The delay declarations for some programs such as quicksort require an argu-
ment to be a nil-terminated list before an atom can be selected. As Liittringhaus-
Kappel points out himself, “in NU-Prolog [or SICStus] it is not possible to ex-
press such conditions”. We have shown here that, with a knowledge of modes
and types, block declarations are sufficient.

® This is also the approach taken in Mercury [18], where these versions are generated
by the compiler.

Floundering cannot be ruled out systematically, but only be avoided on a
heuristic basis. Thus in principle, the method sometimes enforces termination
by floundering. This lies in the nature of the weak assumptions made, and thus is
sometimes unavoidable, but there is no way of knowing whether for a particular
program, it was unavoidable or not.

Marchiori and Teusink [11] base termination on norms and the covering
relation between subqueries of a query. This is loosely related to well-typedness.
However, their results are not comparable to ours because they assume a local
selection rule, that is a rule which always selects an atom which was introduced
in the most recent step. We are not aware of an existing language that uses a
local selection rule. The authors state that programs that do not use speculative
bindings deserve further investigation, and that they expect any method for
proving termination with full coroutining either to be very complex, or very
restrictive in its applications.

6 Discussion and Future Work

We have presented a method of proving termination for programs with block
declarations. This was both a refinement and a formalisation of the heuristics
presented in [15].

We required programs to be permutation robustly typed, a property which
ensured that no call instantiates its own input. In the next step, we identified
when a predicate is robust, which means that every delay-respecting derivation
for a query using the predicate terminates. Robust atoms could be placed in
clause bodies arbitrarily. Non-robust atoms had to be placed such that their
input is sufficient when they are called.

The main purpose of this work is software development, and it is envisaged
that an implementation should take the form of a program development tool.
The programmer would provide mode and type information for the predicates
in the program. The tool would then generate the block declarations and try to
reorder the atoms in clause bodies so that the program is well fed with respect
to these modes and types. Finding the free and bound positions, as well as the
decreasing position used to prove robustness, should be done by the tool. As
already indicated, these choices are very constrained anyway, which suggests
that this should be feasible.

In [16] we discuss how to prevent errors related to built-ins, in particular
arithmetic built-ins. Another interesting issue is how achieving multiple modes
using block declarations affects the efficiency of programs.

Acknowledgements

We thank the anonymous referees for their helpful suggestions and comments.
Jan-Georg Smaus was supported by EPSRC Grant No. GR/K79635.

References

1.
2.

3.

11.

12.

13.

14.

15.

16.

17.

18.

K. R. Apt. From Logic Programming to Prolog, chapter 6. Prentice Hall, 1997.
K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations.
In AMAST’95, LNCS, Berlin, 1995. Springer Verlag. Invited Lecture.

K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. ACM
Toplas, 16(3):687—-726, 1994.

R. Chadha and D.A. Plaisted. Correctness of unification without occur check in
Prolog. Technical report, University of North Carolina, 1991.

Stefaan Decorte and Danny De Schreye. Automatic inference of norms: a missing
link in automatic termination analysis. In D. Miller, editor, Proceedings of ILPS,
pages 420-436. MIT Press, 1993.

P. M. Hill, editor. ALP Newsletter, http://www-1p.doc.ic.ac.uk/alp/, February
1998. Pages 17,18.

P. M. Hill and J. W. Lloyd. The Godel Programming Language. MIT Press, 1994.
Intelligent Systems Laboratory, SICS, PO Box 1263, S-164 29
Kista, Sweden. SICStus Prolog User’s Manual, 1997.
http://www.sics.se/isl/sicstus/sicstus_toc.html.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

. S. Luttringhaus-Kappel. Control generation for logic programs. In D. Warren,

editor, Proceedings of ICLP, pages 478-495. MIT Press, 1993.

E. Marchiori and F. Teusink. Proving termination of logic programs with delay
declarations. In J. Lloyd, editor, Proceedings of ILPS, pages 447-461. MIT Press,
1995.

K. Marriott, L. Naish, and J. L. Lassez. Most specific logic programs. Annals of
mathematics and artificial intelligence, 1(2), 1990. Also in proceedings of the Fifth
JICSLP.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4:258-282, 1982.

L. Naish. Automatic control of logic programs. Journal of Logic Programming,
2(3):167-183, 1985.

L. Naish. Coroutining and the construction of terminating logic programs. Tech-
nical Report 92/5, University of Melbourne, 1992.

J.-G. Smaus, P. M. Hill, and A. King. Preventing instantiation errors and loops
for logic programs with several modes using block declarations. In Pierre Flener,
editor, Pre-proceedings of LOPSTR. University of Manchester, 1998. Extended
abstract.

J.-G. Smaus, P. M. Hill, and A. King. Verification of logic programs with block
declarations running in several modes. Technical Report 7-98, University of Kent
at Canterbury, Canterbury, CT2 7NF, United Kingdom, July 1998.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, November 1996.

