
Smaus, Jan-Georg, Hill, Pat and King, Andy (1998) Termination of Logic
Programs with block Declarations Running in Several Modes. In: Palamidessi,
Catuscia, ed. International Symposium on Programming Languages: Implementations,
Logics and Programs. Lecture Notes in Computer Science, 1490 . Springer-Verlag,
see also http://www.springer.de/comp/lncs/index.html, pp. 182-196. ISBN
3-540-65012-1.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21647/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21647/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Termination of Logic Programs with blockDeclarations Running in Several ModesJan{Georg Smaus1, Pat Hill2, and Andy King11 University of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom,fj.g.smaus, a.m.kingg@ukc.ac.uk2 University of Leeds, Leeds, LS2 9JT, United Kingdom, hill@scs.leeds.ac.ukAbstract We show how termination of logic programs with delay dec-larations can be proven. Three features are distinctive of this work: (a)we assume that predicates can be used in several modes; (b) we showthat block declarations, which are a very simple delay construct, aresu�cient; (c) we take the selection rule into account, assuming it to beas in most Prolog implementations. Our method is based on identifyingthe so-called robust predicates, for which the textual position of an atomusing this predicate is irrelevant. The method can be used to verify ex-isting programs, and to assist in writing new programs. As a byproduct,we also show how programs can be proven to be free from occur-checkand
oundering.1 IntroductionDelay declarations are provided in several logic programming languages to allowfor more user-de�ned control [7, 8, 18] as opposed to the standard left-to-rightselection rule. An atom in a query is selected for resolution only if its argumentsare instantiated to a speci�ed degree.In this paper we present a method of ensuring termination of programs withdelay declarations. As far as possible, we translate the problem to showing ter-mination for a corresponding program with ordinary left-to-right execution. Weassume that for the corresponding program, termination has been shown usingsome existing technique [1].Three distinctive features of this work make its contribution: (a) it is assumedthat procedures may run in more than one mode; (b) we concentrate on blockdeclarations, which are a particularly simple and e�cient delay construct; (c)the selection rule is taken into account.(a) Apart from the test-and-generate paradigm (coroutining) [15], allowingprocedures to run in more than one mode is probably the most important appli-cation of delay declarations. Although other authors have not explicitly assumedmultiple modes, their theory and examples only become fully relevant under thatassumption. Whether this is a better approach than generating multiple versionsof each predicate [18] is an ongoing discussion [6].(b) The block declarations declare that certain arguments of an atom mustbe non-variable before that atom can be selected. Insu�ciently instantiated

atoms are delayed. As demonstrated in SICStus [8], block declarations can bee�ciently implemented; the test whether the arguments are non-variable hasnegligible impact on performance. Termination clearly depends on the instan-tiation of the arguments of the query. For example, the append predicate hasin�nitely many answers when called with uninstantiated arguments and there-fore does not terminate, but it terminates when either the �rst or the thirdargument is a list of bounded length. Although it cannot be tested in a singlestep which of these arguments is a list of bounded length, block declarations arestill su�cient.(c) The property of termination may critically depend on the selection rule,that is the rule which determines, for a derivation, the order in which atomsare selected. We assume that derivations are left-based, which are derivationswhere (allowing for some exceptions, concerning the execution order of twoliterals woken up simultaneously) the left-most non-delayed atom is selected.This is intended to model derivations in the common implementations of Prologwith block declarations. Other authors have avoided the issue by abstractingfrom a particular selection rule [2, 10]; considering left-based selection rules on aheuristic basis [15]; or making the very restrictive assumption of local selectionrules [11].Circular modes (when a predicate uses its own output as input) and specu-lative output bindings (bindings made before it is known that a solution exists)are known sources of loops [15]. We develop this explanation further by iden-tifying predicates which have the undesirable property of looping when theyare called with insu�cient (that is, non-variable but still insu�ciently instan-tiated) input. For instance, the query permute(A,[1|B]) loops, although thequery permute(A,[1,2]) terminates. The idea of our method for proving ter-mination is that, for such predicates, calls with insu�cient input should neverarise. This can be ensured by appropriate ordering of atoms in the clause bodies.This actually works in several modes, provided not too many predicates havethis undesirable property.This paper is organised as follows. The next section de�nes some essentialconcepts and notations. Sect. 3 introduces some concepts needed later, which arealso useful for proving programs free from occur-check and
oundering. Sect. 4is about termination. Sect. 5 investigates related work. Sect. 6 concludes with asummary and a look at ongoing and future work.2 Essential Concepts and NotationsWe base the notation on [2, 9]. For the examples we use SICStus notation [8].The set of variables in a syntactic object o is denoted by vars(o). A syntacticobject is linear if every variable occurs in it at most once. A
at term is avariable or a term f(x1; : : : ; xn), where n � 0 and the xi are distinct variables.The domain of a substitution � is dom(�) = fx j x� 6= xg.For a predicate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2 fI ;Ogfor i 2 f1; : : : ; ng. Positions with I are called input positions, and positions

with O are called output positions of p. A mode of a program is a set ofmodes, one mode for each of its predicates. A program can have several modes, sowhenever we refer to the input and output positions, this is always with respectto the particular mode which is clear from the context. To simplify the notation,an atom written as p(s; t) means: s and t are the vectors of terms �lling theinput and output positions, respectively.A type is a set of terms closed under substitution. A type is called variabletype if it contains variables and non-variable type otherwise. In the examples,we use the following types: any is the type containing all terms, list is the type ofall (nil-terminated) lists, int the type of integers, and il is the type of all integerlists. We write t : T for \t is in type T". It is assumed that each argumentposition of each predicate p=n has a type associated with it. These types areindicated by writing the atom p(T1; : : : ; Tn) where T1; : : : ; Tn are types. Thetype of a program is a set of such atoms, one for each predicate. A term t istypeable wrt. T if there is a substitution � such that t� : T . A term t occurringin an atom in some position is typeable if it is typeable wrt. the type of thatposition.A block declaration [8] for a predicate p=n is a set of atoms of the formp(b1; : : : ; bn), where bi 2 f?;�g for i 2 f1; : : : ; ng. A program consists of a setof clauses and a set of block declarations, one for each predicate de�ned by theclauses. If P is a program, an atom p(t1; : : : ; tn) is selectable in P if for eachatom p(b1; : : : ; bn) in the block declaration for p, there is some i 2 f1; : : : ; ngsuch that ti is non-variable and bi = �.A query is a �nite sequence of atoms. A derivation step for a programP is a pair hQ; �i; hR; ��i, where Q = Q1; a;Q2 and R = Q1; B;Q2 are queries;� is a substitution; a an atom; h B (a variant of) a clause in P and � themost general uni�er of a� and h. We call a� the selected atom and R�� theresolvent of Q� and h B.A derivation � for a program P is a sequence hQ0; �0i; hQ1; �1i; : : :, where�0 = ; and each successive pair hQi; �ii; hQi+1; �i+1i in � is a derivation step.Alternatively, we also say that � is a derivation of P [fQ0g. We also denote �by Q0;Q1�1; : : :. A derivation is an LD-derivation if the selected atom is alwaysthe leftmost atom in a query. A delay-respecting derivation for a programP is a derivation where the selected atom is always selectable in P . We say thatit
ounders if it ends with a non-empty query where no atom is selectable.If Q; a;R; (Q;B;R)� is a step in a derivation, then each atom in B� is adirect descendant of a, and b� is a direct descendant of b for all b 2 Q;R.We say b is a descendant of a if (b; a) is in the re
exive, transitive closure ofthe relation is a direct descendant. The descendants of a set of atoms are de�nedin the obvious way. If, for a derivation : : : Q; : : : ;Q0;Q00 : : :, the selected atom inQ0;Q00 is a descendant of an atom a in Q, then Q0;Q00 is called an a-step.Consider a delay-respecting derivation Q0; : : : ;Qi;Qi+1, whereQi = R1; a; R2, and R1 contains no selectable atom, and a is not the selectedatom in Qi;Qi+1. Then a is delayed in Qi;Qi+1. An atom is waiting if it is thedescendant of a delayed atom. A delay-respecting derivation Q0;Q1 : : : is left-

based if in each Qi, a non-waiting atom is selected only if there is no selectableatom to the left of it in Qi.3 Permutations and ModesIn [2], the concepts of nicely moded and well typed are introduced, assuming thateach predicate has a single mode. They are used to show that the occur-checkcan safely be omitted and that derivations do not
ounder. The idea is thatin a query, every piece of data is produced (i.e. output) before it is consumed(i.e. input), and every piece of data is produced only once. Here \before" refersto the textual position in a query.We generalise these concepts and results by considering a permutation ofthe atoms in each clause body in a program (and in each query), such thatan LD-derivation for the reordered program is automatically delay-respecting,and thus, block declarations are e�ectively unnecessary. These permutationsare used to compare a program with the (theoretically) reordered program; it isnot intended that the program is actually changed. Since the permutations aredi�erent in each mode, this would commit the program to a particular mode.3.1 Permutation Nicely Moded ProgramsIn a nicely moded query, a variable occurring in an input position does not occurlater in an output position, and each variable in an output position occurs onlyonce. We generalise this to permutation nicely moded.De�nition 3.1 (permutation nicely moded). Let Q = p1(s1; t1); : : : ;pn(sn; tn) be a query and � a permutation on f1; : : : ; ng. Q is �-nicely modedif t1; : : : ; tn is a linear vector of terms and for all i 2 f1; : : : ; ngvars(si) \ [�(j)��(i) vars(tj) = ;:The query1 �(Q) is a nicely moded query corresponding to Q.The clause C = p(t0; sn+1) Q is �-nicely moded if Q is �-nicely modedand t0; : : : ; tn is a linear vector of terms. The clause p(t0; sn+1) �(Q) is anicely moded clause corresponding to C.A query (clause) is permutation nicely moded if it is �-nicely moded forsome �. A program P is permutation nicely moded if all of its clauses are.A nicely moded program corresponding to P is a program obtained fromP by replacing every clause C in P with a nicely moded clause correspondingto C.Note that in the clause head, the letter t is used for input and s is used foroutput, whereas in the body atoms it is vice versa.1 Given a sequence o1; : : : ; on, we write �(o1; : : : ; on) for o��1(1); : : : ; o��1(n), i.e. thesequence obtained by applying � to o1; : : : ; on.

Example 3.1.:- block permute(-,-).permute([], []).permute([U | X], Y) :-permute(X, Z),delete(U, Y, Z).:- block delete(?,-,-).delete(X,[X|Z],Z).delete(X,[U|Y],[U|Z]) :- delete(X,Y,Z).In mode fpermute(I ;O); delete(I ;O ; I)g, this program is nicely moded. Inmode fpermute(O ; I); delete(O ; I ;O)g, it is permutation nicely moded, sincethe second clause for permute is h2; 1i-nicely moded, and the other clauses arenicely moded.Note that the problem of �nding a mode for a program so that it is nicely modedis considered in [4]. We are not concerned with this here.We show that there is a persistence property for permutation nicely-moded-ness similar to that for nicely-modedness in [2].Lemma 3.1. Every resolvent of a permutation nicely moded query Q and a per-mutation nicely moded clause C, where vars(Q) \ vars(C) = ;, is permutationnicely moded.Proof. Let Q = a1; : : : ; an be a �-nicely moded query and h b1; : : : ; bm be a�-nicely moded clause, and suppose for some k 2 f1; : : : ; ng, h and ak are uni�-able with uni�er �. By Def. 3.1, a��1(1); : : : ; a��1(n) and h b��1(1); : : : ; b��1(m)are nicely moded. Thus by [2, Lemma 11]2a��1(1); : : : ; a��1(�(k)�1); b��1(1); : : : ; b��1(m); a��1(�(k)+1); : : : ; a��1(n) �is nicely moded. This implies that a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an � is%-nicely moded, where %(i) is de�ned as:�(i) if i < k; �(i) < �(k)�(i) +m� 1 if i < k; �(i) > �(k)�(k)� 1 + �(i� k + 1) if k � i � k +m� 1�(i�m+ 1) if k +m � i � n+m� 1; �(i�m+ 1) < �(k)�(i�m+ 1) +m� 1 if k +m � i � n+m� 1; �(i�m+ 1) > �(k) utFig. 1 illustrates % when Q = a1; a2; a3; a4 , � = h4; 3; 1; 2i , C = h b1; b2 ,� = h2; 1i , and k = 2. Thus % = h5; 4; 3; 1; 2i. The following corollary generalisesthis from a single derivation step to derivations.2 Unlike [2], we included the condition that t0 is linear in Def. 3.1.

a1 a2 a3 a4a3 a4 a2 a1PPPPPPP@@@����� ����� b1 b2b2 b1 a1 b1 b2 a3 a4resolve- a3 a4 b2 b1 a1XXXXXXXXX������� �������Figure1. The permutation % for the resolventCorollary 3.2. Let P be a permutation nicely moded program, Q = a1; : : : ; anbe a �-nicely moded query and i; j 2 f1; : : : ; ng such that �(i) < �(j). LetQ; : : : ;R be a derivation for P and suppose R = b1; : : : ; bm is �-nicely moded. Iffor some k; l 2 f1; : : : ;mg, bk is a descendant of ai and bl is a descendant of aj ,then �(k) < �(l). (Proof [17])As an aside, we now use permutation nicely-modedness to show when the occur-check can safely be omitted.De�nition 3.2. A derivation is called occur-check free [2, 3] if no execution ofthe Martelli-Montanari uni�cation algorithm [13] performed during this deriva-tion ends with a system of term equations including an equation x = t, where xis not t, but x occurs in t.If P and Q are nicely moded, then all derivations of P [fQg are occur-checkfree [2, Thm. 13]. The following theorem is a trivial consequence of this andLemma 3.1.Theorem 3.3 (occur check). Let P and Q be permutation nicely moded.Then all derivations of P [fQg are occur-check free.3.2 Permutation Well Typed ProgramsTo show that derivations do not
ounder, [2] de�nes well-typedness, which is ageneralisation of a simpler concept called well-modedness. The idea is that givena query H; a; F , if H is resolved away, then a becomes su�ciently instantiatedto be selected. As with the modes, we assume that the types are given. In theexamples, they will be the obvious ones.De�nition 3.3 (permutation well typed). Let n � 0 and � be a permuta-tion such that �(i) = iwhenever i =2 f1; : : : ; ng. LetQ = p1(s1; t1); : : : ; pn(sn; tn)be a query, where pi(Si;Ti)3 is the type of pi for all i 2 f1; : : : ; ng. Then Q is�-well typed if for all i 2 f1; : : : ; ng and every substitution �j= (^�(j)<�(i) tj� : Tj)) si� : Si: (�)3 Si, Ti are the vectors of types of the input and output arguments, respectively.

The clause C = p(t0; sn+1) Q, where p(T0;Sn+1) is the type of p, is �-welltyped if (�) holds for all i 2 f1; : : : ; n+ 1g and every substitution �.A permutation well typed query (clause, program) and a well typedquery (clause, program) corresponding to a query (clause, program) are de-�ned in analogy to Def. 3.1.Example 3.2. Consider Ex. 3.1 and assume the type fpermute(list; list),delete(any; list; list)g. The program is well typed for mode fpermute(I ;O);delete(I ;O ; I)g, and permutation well typed for mode fpermute(O ; I);delete(O ; I ;O)g, with the same permutations as in Ex. 3.1. The same holdsassuming type fpermute(il; il), delete(int; il; il)g.We now give a statement analogous to Lemma 3.1. The proof is like that ofLemma 3.1, using Lemma 23 instead of 11 in [2].Lemma 3.4. Every resolvent of a permutation well typed query Q and a per-mutation well typed clause C, where vars(Q)\vars(C) = ;, is permutation welltyped.Theorem 3.5. Let P be a permutation well typed program and Q be a permu-tation well typed query. Assume that an atom is selectable if it is non-variablein all input positions of non-variable type. Then no delay-respecting derivationof P [fQg
ounders. (Proof [17])For the program in Ex. 3.2, the above lemma shows that no permutation welltyped query can
ounder.4 TerminationSo far we have introduced two useful concepts of \modedness" and \typedness".In this section, we will build on these to show termination.We are interested in termination in the sense that all derivations of a queryare �nite. Therefore the clause order in a program is irrelevant. Furthermore,we are concerned with how delay declarations can a�ect the termination of aprogram. Thus it is assumed that termination for the corresponding nicely modedand well typed programs has been shown by some existing method for LD-derivations [1]. We �rst give some examples to illustrate the issues.Example 4.1. The permute predicate (Ex. 3.1) loops for the querypermute(V,[1]) because delete produces a speculative output binding [15]: Theoutput variable Y is bound before it is known that this binding will never haveto be undone. Assuming left-based derivations, termination in both modes canbe ensured by replacing the second clause withpermute([U | X1], Y) :-delete(U, Y, Z),permute(X1, Z).

This heuristic is called putting recursive calls last [14]. The example suggeststhat one cannot give reasonable termination guarantees without making suchstrong assumptions about the selection rule.However, the heuristic of putting recursive calls last cannot explain the appro-priate atom order in the following example.Example 4.2. This program for the n-queens problem shows an application ofblock declarations other than enabling multiple modes: implementing the test-and-generate paradigm. Here permute is de�ned as in Ex. 4.1.nqueens(N,Sol) :-sequence(N,Seq),safe(Sol),permute(Sol,Seq).:- block sequence(-,?).sequence(0,[]).sequence(N,[N|Seq]):-0 < N,N1 is N-1,sequence(N1,Seq).:- block safe(-).safe([]).safe([N|Ns]) :-safe_aux(Ns,1,N),safe(Ns).
:- block safe_aux(-,?,?), safe_aux(?,-,?),safe_aux(?,?,-).safe_aux([],_,_).safe_aux([M|Ms],Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).:- block no_diag(-,?,?), no_diag(?,-,?).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.With the mode fnqueens(I ;O); safe(I); sequence(I ;O); permute(O ; I);is(O ; I); <(I ; I)g and the type fnqueens(int; il); sequence(int; il); safe(il);permute(il; il)g, the �rst clause is h1; 3; 2i-nicely moded and h1; 3; 2i-well typed.Moreover, the query nqueens(4,Sol) terminates.However, if in the �rst clause, the atom order is changed by movingsequence(N,Seq) to the end, then nqueens(4,Sol) loops. This is because re-solving sequence(4,Seq) with the second clause for sequence makes a (notspeculative!) binding which triggers the call permute(Sol,[4|T]). This callresults in a loop. Note that [4|T], although non-variable, is insu�ciently in-stantiated for permute(Sol,[4|T]) to be correctly typed in its input position:permute is called with insu�cient input.To ensure termination, atoms in a clause body that loop when called with in-su�cient input should be placed so that all atoms which produce the input forthese atoms occur textually earlier.In the following three subsections, we �rst de�ne permutation robustly typed,which is an elementary property a program must have for our method to beapplicable. We then identify the robust predicates, which terminate for everydelay-respecting selection rule. Finally, we show how predicates which are notrobust must be placed in clause bodies to ensure termination.

4.1 Preventing Instantiation of Own InputA prerequisite of our formalism is that no call arising in a derivation can everinstantiate its own input arguments.Example 4.3. Consider the following version4 of delete(O ; I ;O).:- block delete(?,-,-).delete(X,[U|[H|T]],[U|Z]) :-delete(X,[H|T],Z).delete(A,[A|B],B).Consider the query delete(A,L,R), delete(B,[1,2],L). The second atomproduces L, which is used by the �rst atom as input. The query loops, sincethe second atom partially binds L, which wakes up the �rst atom, which theninstantiates L further (i.e. the call instantiates its own input), resulting in arecursive call to delete, and so forth.To prevent a call from instantiating its input, the block declarations must en-force that an atom is only selected if all input positions of non-variable type arenon-variable. As the previous example shows, this is not enough. It also has tobe ensured that each input argument in the clause head is
at (which the clausehead delete(X,[U|[H|T]],[U|Z]) violates). The next example shows that eventhat is not enough.Example 4.4. Consider the following program in mode p(I ;O).:- block p(-,?).p(g(Y),Y).A call to p(g(X),3) instantiates X to 3, and thus instantiates its own input.The easiest solution seems to be to require that the output positions in a queryare always �lled by variables. In mode p(I ;O), the query p(g(X),3) should notarise, since its output is already instantiated. This is considered in [2] (simply-modedness). However, it is often too restrictive.Example 4.5. The following is an excerpt from a version of quicksort.:- block qs(-,-).qs([],[]).qs([X|Xs],Ys) :-append(As2,[X|Bs2],Ys),partition(Xs,X,As,Bs),qs(As,As2),qs(Bs,Bs2).For the mode fqs(O ; I); append(O ;O ; I); partition(O ; I ; I ; I)g, the non-variable term [X|Bs2] occurs in an output position.4 It is part of the most speci�c program [12] corresponding to Ex. 3.1, proposedin [15] to prevent looping for permute(O ; I). However, it does not work. The querypermute(A,[1]) indeed terminates, but permute(A,[1,2]) still loops.

In the sequel, we assume that a label free or bound is associated with each outputposition of each predicate. Non-variable terms in output positions in a query areallowed only in bound positions. The bound positions must be of non-variabletype. As with assigning the mode and the type to a predicate, we do not proposea method of deciding which positions should be free or bound. In the exampleshowever, an output position of a predicate p is bound if and only if there isa clause body with an atom using p, which has a non-variable term in thatposition.For notational convenience, we use the notion of free and bound positionsalso for input positions. An input position is free if and only if it is of variabletype. We denote the projection of a vector of arguments r onto its free positionsas rf , and the projection onto its bound positions as rb.De�nition 4.1 (permutation robustly typed). Let � be a permutation suchthat �(i) = i whenever i =2 f1; : : : ; ng. A query Q = p1(s1; t1); : : : ; pn(sn; tn) is�-robustly typed if it is �-nicely moded and �-well typed, tf1; : : : ; tfn is a vectorof variables, and tb1; : : : ; tbn is a vector of
at typeable terms.The clause p(t0; sn+1) Q is �-robustly typed if it is �-nicely moded and�-well typed, and1. tf0; : : : ; tfn is a vector of variables, and tb0; : : : ; tbn is a vector of
at typeableterms.2. if a position in sbn+1 of type � is �lled with a variable x, then x also �lls aposition of type � in tb0; : : : ; tbn.A permutation robustly typed query (clause, program) and a robustlytyped query (clause, program) corresponding to a query (clause, program)are de�ned in analogy to Def. 3.1.Example 4.6. The permute-program of Ex. 4.1, for any of the types in Ex. 3.2,assuming all output positions are free, is robustly typed in mode permute(O ; I)and permutation robustly typed in mode permute(I ;O).Consider Ex. 4.5 with the usual de�nition for the missing clauses, with typefqs(il; il); append(il; il; il); partition(il; int; il; il)g. This program is permuta-tion robustly typed in mode qs(O ; I), assuming the second position of append isthe only bound output position. It is also permutation robustly typed in modeqs(I ;O), assuming that all output positions are free.De�nition 4.2 (input selectability). Let P be a permutation robustly typedprogram. P has input selectability if for every permutation robustly typedquery Q, an atom in Q is selectable in P if and only if it is non-variable in allinput positions of non-variable type.Example 4.7. Consider append(O ;O ; I) where the second position is the onlybound output position (Exs. 4.5, 4.6), and the block declaration is:- block append(-,?,-), append(?,-,-).

This program has input selectability. Q = append(A,[B|Bs],[1]) is a permuta-tion robustly typed query, and its only atom is selectable. The atomappend([],[],C) is also selectable, although its input position is variable. Thisdoes not contradict Def. 4.2, since this atom cannot be an atom in a permutationrobustly typed query with respect to mode append(O ;O ; I).Looking at Def. 4.1, one is tempted to think that it is best to associate thelabel bound with all output positions, because that would make the de�nitionless restrictive. However, we require a program to have input selectability ineach of its modes. Since input selectability is de�ned with respect to atoms inpermutation robustly typed queries, and permutation robustly typed queriesare de�ned with respect to given free and bound positions, it turns out thatthe choice of free and bound positions constrains the possible set of modes.For reasons of space, we cannot explain this in detail. Anyway, we have notencountered a case where a \natural" mode of a program was ruled out.The following lemma shows a persistence property of permutation robustlytypedness, and shows furthermore that a derivation step cannot instantiate theinput arguments of the selected atom.Lemma 4.1. Let P be a permutation robustly typed program with input se-lectability, Q = p1(s1; t1); : : : ; pn(sn; tn) be a permutation robustly typed queryand C = pk(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) be a clause in P such thatvars(Q)\ vars(C) = ;. Suppose hQ; ;i; hR; �i is a derivation step with clause Cand selected atom pk(sk; tk).Then R� is permutation robustly typed, and dom(�) \ vars(sk) = ; andvars(sk) \ vars((v1; : : : ;vm)�) = ;. (Proof [17])4.2 Robust PredicatesIn this subsection, derivations are not required to be left-based. Therefore wedo not need to consider arbitrary permutations and we can, without loss ofgenerality, assume that the programs and queries are robustly typed (ratherthan permutation robustly typed). This simpli�es the notation. In Subsect. 4.3,we go back to allowing for arbitrary permutations.De�nition 4.3 (robust). A predicate p in a robustly typed program P is ro-bust if, for each robustly typed query p(s; t), any delay-respecting derivation ofP [fp(s; t)g is �nite. An atom is robust if its predicate is.This means that for queries consisting of robust atoms, termination does notdepend on left-based derivations. Thus the position of a robust atom in a clausebody or query does not a�ect termination. The following lemma says that arobust atom cannot proceed inde�nitely unless it is repeatedly \fed" by someother atom.Lemma 4.2. Let P be a robustly typed program with input selectability andF; a;H a robustly typed query where a is a robust atom. A delay-respectingderivation of P[fF; a;Hg can have in�nitely many a-steps only if it has in�nitelymany b-steps, for some b 2 F . (Proof [17])

The following lemma is a simple consequence and states that the robust atomsin a query on their own cannot produce an in�nite derivation.Lemma 4.3. Let P be a robustly typed program with input selectability and Qa robustly typed query. A delay-respecting derivation of P [fQg can be in�niteonly if there are in�nitely many steps where a non-robust atom is resolved.(Proof [17])For LD-derivations, termination proofs usually rely on some norm to measurethe size of a term or atom [1, 5]. For a query F; a;H , the query F is resolvedaway before a is resolved, and thus a is su�ciently instantiated to be boundedwith respect to the norm. In contrast, for arbitrary derivations, the decrease inargument size must be independent of the order in which atoms are selected.We assume a simple norm where a term is smaller than another term if it is aproper subterm. This method could be enhanced by considering other norms.Example 4.8. Consider Ex. 4.2, where all arguments are input, and the typeis fsafe(il); safe aux(il; int; int); no diag(int; int; int)g. All delay-respectingderivations of a permutation robustly typed query safe aux(l; n;m) terminate,because in the �rst argument of safe_aux, there is a strict decrease with respectto the \subterm" norm.The following de�nition is adapted from [1].De�nition 4.4 (depends on). Let p; q be predicates in a program P . We saythat p refers to q if there is a clause in P with p in its head and q in its body,and p depends on q (written p w q) if (p; q) is in the re
exive, transitive closureof refers to. We write p = q if p w q and q 6w p, and p � q if p w q and q w p.To show robustness, one has to �nd argument positions, one for each predicate,such that there is a decrease in argument size in that position.De�nition 4.5 (decreasing clause). Assume that for each predicate p in aprogram P , there is a designated position called decreasing position. LetC = q(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) be a clause in P . Suppose thatfor each � 2 f1; : : : ;mg where q� � q, q�(u�;v�) has a variable in its decreasingposition which is a proper subterm of the term in the decreasing position ofq(v0;um+1). Then C is decreasing.To show that a predicate p is robust, we assume that all predicates q with p = qhave already been shown to be robust.Lemma 4.4. Let P be a robustly typed program with input selectability andp a predicate in P . Suppose that for each predicate q, where p w q, either:1. p = q and q is robust.2. p � q and each clause de�ning q is decreasing.Then p is robust. (Proof [17])

Of course, a predicate in a permutation robustly typed program is not alwaysrobust, and so the technique given by the above lemma cannot always be applied.Often there is no decreasing position for a predicate.Example 4.9. We demonstrate for Ex. 4.8 how Lemma 4.4 is used. Given thatthe built-in =\= terminates, it follows that no diag is robust. We show thatthe second clause for safe_aux meets assumption 2 of Lemma 4.4. With the�rst position of safe_aux as decreasing position, the recursive call to safe_auxhas Ms in the decreasing position, which is a proper subterm of [M|Ms]. Similararguments can be applied for the other clauses, showing that safe and safe_auxare robust.4.3 Well Fed ProgramsSo far we have shown for some predicates that all delay-respecting derivations ofqueries with these predicates terminate. As permute(O ; I) shows, this does notwork for all predicates. In a program which uses such predicates, the selectionrule must be taken into account. We assume left-based derivations. Consequentlywe now also give up the assumption, made to simplify the notation, that theclauses and query are robustly typed, rather than just permutation robustlytyped. All statements from the previous subsection generalise in the obviousway.A query is called well fed if each atom has been shown to be robust or occursin such a position that all atoms which \feed" the atom occur earlier. Of course,since robustness is undecidable, we must assume a predicate to be non-robust ifit has not been shown to be robust.De�nition 4.6 (well fed). Let P be a permutation robustly typed program.For a �-robustly typed query p1(s1; t1); : : : ; pn(sn; tn), an atom pi(si; ti) is wellfed if it is robust, or �(j) < �(i) implies j < i for all j. A �-robustly typedquery (clause) is well fed if all of its (body) atoms are. P is well fed if all ofits clauses are well fed and it has input selectability.Example 4.10. The programs mentioned in Ex. 4.6 are well fed in the givenmodes. The program in Ex. 4.2 is well fed in the given mode. It is not wellfed in mode fnqueens(O ; I); permute(I ;O); sequence(O ; I); < (I ; I); is(O ; I)g,because it is not permutation nicely moded in this mode: in the second clausefor sequence, N1 occurs twice in an output position.Lemma 4.5. Every resolvent of a well fed query Q and a well fed clause C,where vars(Q) \ vars(C) = ;, is well fed.Proof. By obvious analogy, Corollary 3.2 also holds if nicely moded is replacedwith robustly typed. The result then follows from Lemma 4.1. utThe following theorem reduces the problem of showing termination of left-basedderivations for well fed programs to showing termination of LD-derivations forthe corresponding robustly typed program.

Theorem 4.6. Let P and Q be a well fed program and query, and P 0 and Q0a robustly typed program and query corresponding to P and Q. If every LD-derivation of P 0 [fQ0g is �nite, then every left-based derivation of P [fQg is�nite. (Proof [17])Given that for the programs of Ex. 4.10, the corresponding robustly typed pro-grams terminate for robustly typed queries, it follows from the above theoremthat the former programs terminate for well fed queries.5 Related WorkIn using \modedness" and \typedness", we follow Apt and Luitjes [2], and alsoadopt their notation. Our results on occur-check freedom and non-
ounderingare straightforward variations of their results. For termination, they propose amethod limited to deterministic programs.Naish [15] gives excellent intuitive explanations why programs loop, whichdirected our own search for further ideas and their formalisation. To ensuretermination, he proposes some heuristics, without any formal proof.Predicates are assumed to have a single mode. Naish suggests that alternativemodes should be achieved by multiple versions of a predicate.5 However, underthat assumption, why have delay declarations in the �rst place? For instance,in the mentioned example permute, if we only consider permute(O ; I), thenEx. 4.1 does not loop for the plain reason that no atom ever delays, and thusthe program behaves as if there were no delay declarations. In this case, theinterpretation that one should \put recursive calls last" is misleading. If we onlyconsider permute(I ;O), then the version of Ex. 4.1 is much less e�cient thanEx. 3.1. In short, the whole discussion on delay declarations makes little sensewhen only one mode is assumed.L�uttringhaus-Kappel [10] proposes a method of generating control auto-matically, and has applied it successfully to many programs. However, ratherthan pursuing a formalisation of some intuitive understanding of why programsloop, and imposing appropriate restrictions on programs, he attempts a highdegree of generality. This has certain disadvantages.The method only �nds acceptable delay declarations, ensuring that the mostgeneral selectable atoms have �nite SLD-trees. What is required however aresafe delay declarations, ensuring that instances of most general selectable atomshave �nite SLD-trees. A safe program is a program for which every acceptabledelay declaration is safe. No hint is given as to how it is shown that a programis safe. This is a missing link.The delay declarations for some programs such as quicksort require an argu-ment to be a nil-terminated list before an atom can be selected. As L�uttringhaus-Kappel points out himself, \in NU-Prolog [or SICStus] it is not possible to ex-press such conditions". We have shown here that, with a knowledge of modesand types, block declarations are su�cient.5 This is also the approach taken in Mercury [18], where these versions are generatedby the compiler.

Floundering cannot be ruled out systematically, but only be avoided on aheuristic basis. Thus in principle, the method sometimes enforces terminationby
oundering. This lies in the nature of the weak assumptions made, and thus issometimes unavoidable, but there is no way of knowing whether for a particularprogram, it was unavoidable or not.Marchiori and Teusink [11] base termination on norms and the coveringrelation between subqueries of a query. This is loosely related to well-typedness.However, their results are not comparable to ours because they assume a localselection rule, that is a rule which always selects an atom which was introducedin the most recent step. We are not aware of an existing language that uses alocal selection rule. The authors state that programs that do not use speculativebindings deserve further investigation, and that they expect any method forproving termination with full coroutining either to be very complex, or veryrestrictive in its applications.6 Discussion and Future WorkWe have presented a method of proving termination for programs with blockdeclarations. This was both a re�nement and a formalisation of the heuristicspresented in [15].We required programs to be permutation robustly typed, a property whichensured that no call instantiates its own input. In the next step, we identi�edwhen a predicate is robust, which means that every delay-respecting derivationfor a query using the predicate terminates. Robust atoms could be placed inclause bodies arbitrarily. Non-robust atoms had to be placed such that theirinput is su�cient when they are called.The main purpose of this work is software development, and it is envisagedthat an implementation should take the form of a program development tool.The programmer would provide mode and type information for the predicatesin the program. The tool would then generate the block declarations and try toreorder the atoms in clause bodies so that the program is well fed with respectto these modes and types. Finding the free and bound positions, as well as thedecreasing position used to prove robustness, should be done by the tool. Asalready indicated, these choices are very constrained anyway, which suggeststhat this should be feasible.In [16] we discuss how to prevent errors related to built-ins, in particulararithmetic built-ins. Another interesting issue is how achieving multiple modesusing block declarations a�ects the e�ciency of programs.AcknowledgementsWe thank the anonymous referees for their helpful suggestions and comments.Jan-Georg Smaus was supported by EPSRC Grant No. GR/K79635.

References1. K. R. Apt. From Logic Programming to Prolog, chapter 6. Prentice Hall, 1997.2. K. R. Apt and I. Luitjes. Veri�cation of logic programs with delay declarations.In AMAST'95, LNCS, Berlin, 1995. Springer Verlag. Invited Lecture.3. K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. ACMToplas, 16(3):687{726, 1994.4. R. Chadha and D.A. Plaisted. Correctness of uni�cation without occur check inProlog. Technical report, University of North Carolina, 1991.5. Stefaan Decorte and Danny De Schreye. Automatic inference of norms: a missinglink in automatic termination analysis. In D. Miller, editor, Proceedings of ILPS,pages 420{436. MIT Press, 1993.6. P. M. Hill, editor. ALP Newsletter, http://www-lp.doc.ic.ac.uk/alp/, February1998. Pages 17,18.7. P. M. Hill and J. W. Lloyd. The G�odel Programming Language. MIT Press, 1994.8. Intelligent Systems Laboratory, SICS, PO Box 1263, S-164 29Kista, Sweden. SICStus Prolog User's Manual, 1997.http://www.sics.se/isl/sicstus/sicstus toc.html.9. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.10. S. L�uttringhaus-Kappel. Control generation for logic programs. In D. Warren,editor, Proceedings of ICLP, pages 478{495. MIT Press, 1993.11. E. Marchiori and F. Teusink. Proving termination of logic programs with delaydeclarations. In J. Lloyd, editor, Proceedings of ILPS, pages 447{461. MIT Press,1995.12. K. Marriott, L. Naish, and J. L. Lassez. Most speci�c logic programs. Annals ofmathematics and arti�cial intelligence, 1(2), 1990. Also in proceedings of the FifthJICSLP.13. A. Martelli and U. Montanari. An e�cient uni�cation algorithm. ACM Transac-tions on Programming Languages and Systems, 4:258{282, 1982.14. L. Naish. Automatic control of logic programs. Journal of Logic Programming,2(3):167{183, 1985.15. L. Naish. Coroutining and the construction of terminating logic programs. Tech-nical Report 92/5, University of Melbourne, 1992.16. J.-G. Smaus, P. M. Hill, and A. King. Preventing instantiation errors and loopsfor logic programs with several modes using block declarations. In Pierre Flener,editor, Pre-proceedings of LOPSTR. University of Manchester, 1998. Extendedabstract.17. J.-G. Smaus, P. M. Hill, and A. King. Veri�cation of logic programs with blockdeclarations running in several modes. Technical Report 7-98, University of Kentat Canterbury, Canterbury, CT2 7NF, United Kingdom, July 1998.18. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,an e�cient purely declarative logic programming language. Journal of Logic Pro-gramming, November 1996.

