
Smaus, Jan-Georg, Hill, Pat and King, Andy (1998) Preventing Instantiation
Errors and Loops for Logic Programs with Several Modes Using block
Declarations. In: Flener, Pierre, ed. Logic Programming, Synthesis and
Transformation. Lecture Notes in Computer Science, 1559 . Springer, pp.
182-196. ISBN 3-540-65765-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21649/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Extended abstract. Accepted for presentation at the LOPSTR 98 workshop.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21649/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Preventing Instantiation Errors and Loops for Logic Programswith Several Modes Using block DeclarationsJan{Georg Smaus�y Pat Hill Andy KingExtended abstract
1 IntroductionDelay declarations are provided in logic programming languages to allow for more
exiblecontrol, as opposed to the left-to-right selection rule of Prolog. An atom in a query is selectedfor resolution only when its arguments are instantiated to a speci�ed degree. This is essential toprevent run-time errors produced by built-in predicates (e.g. >/2), and to ensure termination.We assume that delay declarations are used to enable programs to run in several modes.Other authors have not explicitly made this assumption, but their work only becomes fullyrelevant under it, since assuming single-moded predicates, there is often no reason for usingdelay declarations in the �rst place.Our contributions are: showing how type and instantiation errors related to built-in predi-cates (built-ins) can be prevented; showing when delay declarations for built-ins can be omittedcompletely; and proving termination.For all of the above, we show that under realistic assumptions, block declarations, whichdeclare that certain arguments of an atom must be at least non-variable before that atom canbe selected, are su�cient. In SICStus [2], block declarations are e�ciently implemented; theinstantiation test has hardly any impact on performance. Thus such constructs are the mostfrequently used delay declarations in practice.For arithmetic built-ins, we exploit that for numbers, being non-variable implies beingground, and show how to prevent instantiation and type errors. Sometimes, it is not evennecessary to have any delay declarations at all for arithmetic built-ins.Preventing a predicate from using its own output as input (circular modes) is crucial fortermination [6]. We generalise this to multi-moded predicates.Another source of loops [6] is speculative output bindings, i.e. bindings made before it isknown that a solution exists. We propose two methods for dealing with this problem andthus proving (or ensuring) termination. Which method must be applied will depend on theprogram and on the mode being considered. The �rst method exploits that a program doesnot make any speculative bindings. The second method exploits that a program does not useany speculative bindings, by ensuring that no atom ever delays. In this latter case, any methodfor showing termination for programs without delay declarations can be applied.2 PreliminariesWe use the notation of [1, 3]. For the examples we use SICStus [2] notation. We recall someimportant notions. A syntactic object is called linear if every variable occurs in it at most�University of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom, j.g.smaus@ukc.ac.uk, telephonexx44/1227/827553, fax xx44/1227/762811.yJan{Georg Smaus was supported by EPSRC Grant No. GR/K79635.

once. A
at term is a variable or a term of the form f(x1; : : : ; xn), where n � 0 and the xi aredistinct variables. Atoms are denoted by h, queries by B;Q;R.A block declaration for a predicate p=n is a set of atoms each of which has the formp(b1; : : : ; bn) where bi 2 f?;�g for i 2 f1; : : : ; ng. A program consists of a set of clauses and aset of block declarations, one for each predicate de�ned by the clauses. If P is a program, anatom p(t1; : : : ; tn) is selectable in P if for each atom p(b1; : : : ; bn) in the block declarationfor p, there is some i 2 f1; : : : ; ng such that ti is non-variable and bi = �.A derivation step for a program P is a pair Q;R, where Q and R are queries, Q isnon-empty, and R is obtained by resolving Q (using an atom in Q, called the selected atom)with a clause in P . A derivation is a (possibly in�nite) sequence Q0;Q1;Q2; : : :, where eachsuccessive pair Qi;Qi+1 is a derivation step.An LD-derivation is a derivation where the selected atom is always the leftmost atom ina query. A delay-respecting derivation for a program P is a derivation where the selectedatom is always selectable in P . A derivation Q0;Q1;Q2; : : : is left-based if the following holdsfor all i � 0 where Qi is non-empty: If Q0; : : : ;Qi is an LD-derivation and the leftmost atomin Qi is selectable, then it is selected in Qi;Qi+1. To the best of our knowledge, derivations inmost Prolog implementations meet this requirement.For a predicate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2 fI ;Og for i 2f1; : : : ; ng. Positions with I are called input positions, and positions with O are calledoutput positions of p. A mode of a program is a set containing one mode for each of itspredicates. A program can have several modes, so whenever we refer to the input and outputpositions, this is always with respect to the particular mode which is clear from the context.To simplify the notation, an atom written as p(s; t) means: s is the vector of terms �lling theinput positions, and t is the vector of terms �lling the output positions.A type is a set of terms closed under substitution. A type is called variable type if itcontains variables and non-variable type otherwise (there is only one variable type, contain-ing all terms). A type is called constant type if it contains only (possibly in�nitely many)constants. We write t : T for \t is in type T". A type is associated with each predicate p=nand each of its argument positions, by writing p(T1; : : : ; Tn) where T1; : : : ; Tn are types. In theexamples, we use the following types: any is the type containing all terms, list is the type ofall (nil-terminated) lists, num the (constant) type of numbers, and numlist is the type of allnumber lists.3 Permutations and ModesThis section de�nes some concepts needed in Sects. 4 and 5. In [1], each predicate has a singlemode. The idea is that in a query, every piece of data is produced (i.e. output) before it isconsumed (i.e. input), and every piece of data is produced only once. \Before" refers to thetextual position.We generalise this by associating, with each query and each clause in a program, a per-mutation � of the (body) atoms, such that the \reordered" program meets the requirementsin [1]. For a di�erent mode, the permutations would be di�erent.1 In examples, an actualpermutation is written in the form h�(1); : : : ; �(n)i. Given a sequence o1; : : : ; on and a permu-tation �, we write �(o1; : : : ; on) for o��1(1); : : : ; o��1(n), i.e. the sequence obtained by applying� to o1; : : : ; on. These permutations are used to compare a program with the (theoretically)\reordered" program; it is not intended that the clauses in a programs are actually changed sothat delay declarations are not required, since this would commit us to a single mode.1This explicit treatment of several modes becomes relevant in Subsec. 5.2, where the result depends onderivations being left-based. Elsewhere, we would not lose generality if we assumed, merely for notationalsimplicity, that the permutations are always the identity.

In a nicely moded query, a variable in an input position does not occur (textually) later inan output position, and each variable in an output position occurs only once.De�nition 3.1 [permutation nicely moded] Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a query and� a permutation on f1; : : : ; ng. Q is �-nicely moded if t1; : : : ; tn is a linear vector of termsand for all i 2 f1; : : : ; ng vars(si) \ [�(j)��(i) vars(tj) = ;:The query �(Q) is a nicely moded query corresponding to Q.The clause C = p(t0; sn+1) Q is �-nicely moded if Q is �-nicely moded and t0; : : : ; tnis a linear vector of terms. The clause p(t0; sn+1) �(Q) is a nicely moded clause corre-sponding to C.A query (clause) is permutation nicely moded if it is �-nicely moded for some �. Aprogram P is permutation nicely moded if all of its clauses are. A nicely moded programcorresponding to P is a program obtained from P by replacing every clause C in P with anicely moded clause corresponding to C.Example 3.1:- block permute(-,-).permute([], []).permute([U | X], Y) :-permute(X, Z),delete(U, Y, Z).:- block delete(?,-,-).delete(X,[X|Z],Z).delete(X,[U|Y],[U|Z]) :- delete(X,Y,Z).This program is nicely moded in mode fpermute(I ;O); delete(I ;O ; I)g, and permutationnicely moded in fpermute(O ; I); delete(O ; I ;O)g (the second clause is h2; 1i-nicely moded).Following [1], we show a persistence property of permutation nicely-modedness.Lemma 3.1 Every SLD-resolvent of a permutation nicely moded query Q and a permutationnicely moded clause C is permutation nicely moded.Proof sketch: For Q and C = h B, there are permutations � and � such that �(Q) andh �(B) are nicely moded. By [1, Lemma 11] every resolvent of �(Q) and h �(B) is nicelymoded. Thus it follows that every resolvent of Q and C is permutation nicely moded.Permutation nicely-modedness could be used to show that the occur-check can be omitted.Example 3.2length(L,N) :- len_aux(L,0,N).len_aux([],N,N).len_aux([_|Xs],M,N) :-less(M,N),M2 is M + 1,len_aux(Xs,M2,N).:- block less(?,-), less(-,?).less(A,B) :- A < B.

This program is permutation nicely moded for mode flength(I ;O); len aux(I ; I ;O)g (thethird clause is h3; 1; 2i-nicely moded). For mode flength(O ; I); len aux(O ; I ; I)g, it is notpermutation nicely moded, since the input in len_aux([],N,N) is not linear.The second concept we generalise from [1] is well-typedness. As with modes, we assume thatthe types are given. In the examples, they will be the obvious ones.De�nition 3.2 [permutation well typed] Let n � 0 and � be a permutation such that �(i) = iwhenever i =2 f1; : : : ; ng. Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a query. Suppose that pi(Si;Ti)2is the type of pi for all i 2 f1; : : : ; ng. Then Q is �-well typed if for all i 2 f1; : : : ; ng andevery substitution � (^�(j)<�(i) tj� : Tj)) si� : Si: (�)The clause C = p(t0; sn+1) Q, where p(T0;Sn+1) is the type of p, is �-well typed if (�)holds for all i 2 f1; : : : ; n+ 1g and every substitution �.A permutation well typed query (clause, program) and a well typed query (clause,program) corresponding to a query (clause, program) are de�ned in analogy to Def. 3.1.Example 3.3 Assume the types permute(list; list), delete(any; list; list). The program inEx. 3.1 is well typed for mode fpermute(I ;O); delete(I ;O ; I)g, and permutation well typedfor mode fpermute(O ; I); delete(O ; I ;O)g, with the same permutations as Ex. 3.1. The sameholds assuming types permute(numlist; numlist), delete(num;numlist; numlist).The following lemma is shown as Lemma 3.1, using [1, Lemma 23].Lemma 3.2 Every SLD-resolvent of a permutation well typed query and a permutation welltyped clause is permutation well typed.Permutation well-typedness could be used to show that no derivation
ounders.4 Errors related to built-insSome built-ins produce an error if an argument has a wrong type. E.g. X is foo results in atype error. Some built-ins produce an error if certain arguments are insu�ciently instantiated.E.g. X is V results in an instantiation error. We take two approaches to ensure freedom frominstantiation errors and type errors. Under certain circumstances, we even show that no delaydeclarations are needed at all. For di�erent programs, di�erent approaches are applicable.4.1 Exploiting constant typesThe �rst approach aims at preventing instantiation and type errors for built-ins which re-quire arguments to be ground, in particular arithmetic built-ins. It is proposed in [1] toequip these predicates with delay declarations such that they are only executed when the in-put is ground. The advantage is that one can reason about arbitrary arithmetic expressions,e.g. quicksort([1+1,3-8],M). The disadvantage is that block declarations cannot be used. Incontrast, we assume that the type of arithmetic built-ins is the constant type num, rather thanarithmetic expressions. Then we show that block declarations are su�cient. The followinglemma is a straightforward variation of [1, Lemma 27].2Si and Ti are the vectors of types of the input and output arguments, respectively.

Lemma 4.1 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-well typed query, where pi(Si;Ti) is thetype of pi for all i 2 f1; : : : ; ng. Assume for some i 2 f1; : : : ; ng, Si is a vector of constanttypes, si is a vector of non-variable terms, and there is a substitution � such that tj� : Tj forall j with �(j) < �(i). Then si is correctly typed (and thus ground).Proof: By Def. 3.2, si� is correctly typed, and thus a vector of constants. Since si is already avector of non-variable terms, it follows that si is a vector of constants and thus si� = si. Thussi is ground and correctly typed.We de�ne permutation simply-typedness. In a permutation simply typed query, it isalways possible to instantiate the output arguments so they are correctly typed.De�nition 4.1 [permutation simply typed] A query p1(s1; t1); : : : ; pn(sn; tn) is permutationsimply typed if for some permutation �, it is �-nicely moded and �-well typed, and t1; : : : ; tnis a vector of variables.A clause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is permutation simply typed if for somepermutation �, it is �-nicely moded and �-well typed, t1; : : : ; tn is a vector of variables, and t0has a variable in each position of variable type and a
at term in each position of non-variabletype.A program is permutation simply typed if all its clauses are. A simply typed query(clause, program) corresponding to a query (clause, program) is de�ned in analogy toDef. 3.1.Lemma 4.2 Every SLD-resolvent of a permutation simply typed query and a permutationsimply typed clause, where the selected atom is non-variable in all input positions of non-variable type3, is permutation simply typed.Proof idea: By Lemmas 3.1 and 3.2, the resolvent is permutation nicely moded and permu-tation well typed. The linearity of the output positions in the query and the input positions inthe clause implies that unifying the clause head with an atom in the query does not instantiateany output positions, except the output positions in the selected atom. This implies that theoutput arguments in the resolvent are again a linear vector of variables.By Def. 4.1, for every permutation simply typed query Q, there is a � such that Q� is correctlytyped in its output positions. Thus by Lemma 4.1, if a program is permutation simply typed,where the arithmetic built-ins have type num in all input positions, then it is enough to haveblock declarations such that these built-ins are only selected when the input positions arenon-variable. Groundness is implied.Example 4.1 The following is an excerpt of a version of quicksort, where the missing clausesare de�ned as usual, and leq is de�ned in analogy to Ex. 3.2.:- block qs(-,-).qs([X|Xs],Ys) :-append(As2,[X|Bs2],Ys),part(Xs,X,As,Bs),qs(As,As2),qs(Bs,Bs2).:- block part(?,-,?,?), part(-,?,-,?), part(-,?,?,-).part([X|Xs],C,[X|As],Bs):-leq(X,C),part(Xs,C,As,Bs).The program is permutation simply typed wrt. to the obvious types for fqs(I ;O);append(I ; I ;O); part(I ; I ;O ;O)g, and thus there are no instantiation errors. The programis not permutation simply typed for fqs(O ; I); append(O ;O ; I); part(O ; I ; I ; I)g, because of[X|Bs2] in an output position.3This is similar to \the delay declarations imply matching" [1].

4.2 Atomic positionsSometimes, when the above method does not work because a program is not permutation simplytyped, it is still possible to show absence of instantiation errors for arithmetic predicates. Theidea is to declare certain argument positions to be atomic, which means that they can onlybe ground or free, but not partially instantiated. For atomic positions, it is su�cient to havea block declaration such that a predicate delays until the argument in this position is non-variable. It is then automatically ground. Typically one would declare that the atomic positionsare the positions of type num.De�nition 4.2 [respects atomic positions] A query (clause) respects atomic positions ifeach term in an atomic position is ground or a variable which only occurs in atomic positions.Sometimes we have to interpret the argument positions of a built-in in an unconventionalway for a program to respect atomic positions. E.g. in Ex. 3.2, we have to regard the atomM2 is M + 1 as an atom with three arguments: M2, M, and 1.Lemma 4.3 Every SLD-resolvent between a clause C and a query Q that both respect atomicpositions, respects atomic positions.Proof idea: Since atomic and non-atomic positions do not share variables, an atomic positioncan never be instantiated to a term other than a variable or constant.This works for programs where the arithmetic arguments are variable-disjoint from any otherarguments, such as Ex. 3.2. Declaring all arithmetic arguments to be atomic, the programrespects atomic positions. The block declaration on the built-in < is realised with an auxiliarypredicate less. Note that no auxiliary predicate, and thus no block declaration, is introducedfor is. Since in all modes, the input for is comes from the clause head rather than fromanother body atom, it is su�cient to have a block declaration for the predicate of the head.This is formalised in the following lemma.Lemma 4.4 Let P be a program which respects atomic positions, B a set of built-ins whoseinput positions are all atomic, and P the set of all other predicates used in P . Suppose an atomusing a predicate in P is selectable only if it is non-variable in its atomic input positions, andthat for each clause C = p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn), if pi 2 B, then the variablesin si are a subset of the variables in the atomic positions in t0. Let Q be a query respectingatomic positions, where each atom using a predicate in B has constants in its input positions.Let � be a delay-respecting derivation for Q. Then in all queries in �, an atom using apredicate in B is always ground in its input positions.5 TerminationWe always assume that termination for the corresponding nicely moded (or well typed) pro-grams has been shown by some existing method for LD-derivations. Our approach is simple,and the conditions are easy to check. Termination can be proven for Ex. 5.1, but not forEx. 4.1. There is a more sophisticated method [7], but it requires more complex checks.Example 5.1 The query permute(V,[1]) (Ex. 3.1) loops because delete produces a specu-lative output binding [6]: The output variable Y is bound before it is known that this bindingwill never have to be undone. Assuming left-based derivations, termination in both modes canbe ensured by replacing the second clause withpermute([U | X1], Y) :-delete(U, Y, Z),permute(X1, Z).

This technique can be described as putting recursive calls last [6]. To explain termination, wehave to apply a di�erent reasoning for the di�erent modes. In mode permute(I,O), delete isused in mode delete(I ;O ; I), and in this mode it does not make speculative bindings.In mode permute(O,I), the speculative output is produced textually before it is con-sumed (used as input). This means that the consumer has to wait until the producer hascompleted (undone the speculative binding). The program does not use speculative bindings.5.1 Termination by not making speculative bindingsDe�nition 5.1 [non-speculative] A permutation simply typed program P is non-speculativeif (a) every permutation simply typed atom (i.e. query of length 1) using a predicate in P isuni�able with some clause head in P , and(b) an atom in a permutation simply typed query is selectable in P if and only if all inputpositions of non-variable type are non-variable.Example 5.2 Both versions of the permute program, assuming any type given in Ex. 3.3,are non-speculative in mode fpermute(I ;O); delete(I ;O ; I)g, but are not non-speculative inmode fpermute(O ; I); delete(O ; I ;O)g, because the atom delete(A,[],B) is not uni�ablewith any clause head.A delay-respecting derivation for a non-speculative program P and a permutation simply typedquery can neither
ounder nor fail. However it could still be in�nite. The following lemmasays that this can only happen if the simply typed program corresponding to P (Def. 4.1) alsohas an in�nite (LD) derivation for this query.Lemma 5.1 Let P be a non-speculative program and P 0 the simply typed program corre-sponding to P . Let Q be a permutation simply typed query and Q0 the simply typed querycorresponding to Q. If there is an in�nite delay-respecting derivation for P [fQg, then thereis an in�nite LD-derivation for P 0 [fQ0g.Proof sketch: Let � be an in�nite delay-respecting derivation for P [fQg. Construct an LD-derivation �0 for P 0 [fQ0g which uses the \same" clauses as � where possible, and an arbitraryclause otherwise. Since every selected atom matches at least one clause head, the only reasonwhy it might not always be possible is that in �, an atom might never be resolved. It turns outthat by this construction, �0 is in�nite.Lemma 5.1 says that for non-speculative programs, atom order in clause bodies is irrelevantfor termination.5.2 Termination by not using speculative bindingsIn LD-derivations, speculative bindings are never used [6]. Assuming left-based derivations,all derivations are LD-derivations, provided the leftmost atom in a query is always selectable.This immediately implies the following lemma.Lemma 5.2 Assume left-based derivations, and let Q be a well typed query and P a welltyped program such that an atom is selectable if its input positions of non-variable type arenon-variable. Then every derivation for P [fQg is an LD-derivation.By the above lemma, all derivations for permute(O ; I) are �nite. A comparison of Exs. 3.1and 5.1 makes it clear that no termination guarantees can be given without such strong as-sumptions about the selection rule.

6 Discussion and Related WorkWe have shown methods of preventing instantiation and type errors related to built-ins, andensuring termination, for logic programs with block declarations.It is often justi�ed not to have any delay declarations for (arithmetic) built-ins, and even ifdelay declarations are required, block declarations are often su�cient. This is useful becauseit aims at the way arithmetic built-ins are used in practice: it is awkward having to introduceauxiliary predicates to implement delay declarations for built-ins.For proving termination, we have presented two methods based on not making and notusing speculative bindings, respectively. For Ex. 5.1, it turns out that in one mode, the �rstmethod applies, and in the second mode, the other method applies. We envisage a programdevelopment tool which would help a programmer to verify the conditions and to reorder atomsin clause bodies to ensure that one of the methods applies for each mode.This work was inspired by [1]. For arithmetic built-ins, [1] requires declarations which delayan atom until the arguments are ground. Such declarations are usually implemented not ase�ciently as block declarations. Little attention is given to termination, proposing a methodlimited to deterministic programs.The good intuitive explanations for loops in [6] guided our search for further ideas andtheir formalisation. To ensure termination, some heuristics are proposed, without formal proof.Predicates have a single mode, suggesting that multiple modes, if required, should be achievedby having several versions of a predicate.4 This bears the question: Why, for the mentionedexamples permute and quicksort, if only one mode is considered, would one want to usedelay declarations? In our opinion, the discussion on termination and delay declarations onlybecomes fully relevant when several modes are assumed.In [4], a method is proposed to generate control automatically to ensure termination, givingpractical evidence that control declarations were generated for many programs. The methodassumes arbitrary delay-respecting derivations and hence does not work for programs wheretermination depends on left-based derivations.The results of [5] are not comparable to ours because they assume a local selection rule(always selects an atom which was introduced in the most recent resolution step).References[1] K. R. Apt and I. Luitjes. Veri�cation of logic programs with delay declarations. In AMAST'95,LNCS, Berlin, 1995. Springer Verlag. Invited Lecture.[2] Intelligent Systems Laboratory, SICS, PO Box 1263, S-164 28 Kista, Sweden. SICStus Prolog User'sManual, 1995.[3] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.[4] S. L�uttringhaus-Kappel. Control generation for logic programs. In D. Warren, editor, Proceedingsof ICLP, pages 478{495. MIT Press, 1993.[5] E. Marchiori and F. Teusink. Proving termination of logic programs with delay declarations. InJ. Lloyd, editor, Proceedings of ILPS, pages 447{461. MIT Press, 1995.[6] L. Naish. Coroutining and the construction of terminating logic programs. Technical Report 92/5,University of Melbourne, 1992.[7] J.-G. Smaus, P. M. Hill, and A. King. Termination of logic programs with block declarationsrunning in several modes. Submitted to PLILP/ALP '98.[8] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an e�cient purelydeclarative logic programming language. Journal of Logic Programming, November 1996.4Mercury [8] takes the same approach, and the versions are all generated by the compiler.

