University of

"1l Kent Academic Repository

Smaus, Jan-Georg, Hill, Pat and King, Andy (1998) Preventing Instantiation
Errors and Loops for Logic Programs with Several Modes Using block
Declarations. In: Flener, Pierre, ed. Logic Programming, Synthesis and
Transformation. Lecture Notes in Computer Science, 1559 . Springer, pp.
182-196. ISBN 3-540-65765-7.

Downloaded from
https://kar.kent.ac.uk/21649/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Extended abstract. Accepted for presentation at the LOPSTR 98 workshop.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21649/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Preventing Instantiation Errors and Loops for Logic Programs
with Several Modes Using block Declarations

Jan-Georg Smaus*' Pat Hill Andy King

Extended abstract

1 Introduction

Delay declarations are provided in logic programming languages to allow for more flexible
control, as opposed to the left-to-right selection rule of Prolog. An atom in a query is selected
for resolution only when its arguments are instantiated to a specified degree. This is essential to
prevent run-time errors produced by built-in predicates (e.g. >/2), and to ensure termination.

We assume that delay declarations are used to enable programs to run in several modes.
Other authors have not explicitly made this assumption, but their work only becomes fully
relevant under it, since assuming single-moded predicates, there is often no reason for using
delay declarations in the first place.

Our contributions are: showing how type and instantiation errors related to built-in predi-
cates (built-ins) can be prevented; showing when delay declarations for built-ins can be omitted
completely; and proving termination.

For all of the above, we show that under realistic assumptions, block declarations, which
declare that certain arguments of an atom must be at least non-variable before that atom can
be selected, are sufficient. In SICStus [2], block declarations are efficiently implemented; the
instantiation test has hardly any impact on performance. Thus such constructs are the most
frequently used delay declarations in practice.

For arithmetic built-ins, we exploit that for numbers, being non-variable implies being
ground, and show how to prevent instantiation and type errors. Sometimes, it is not even
necessary to have any delay declarations at all for arithmetic built-ins.

Preventing a predicate from using its own output as input (circular modes) is crucial for
termination [6]. We generalise this to multi-moded predicates.

Another source of loops [6] is speculative output bindings, i.e. bindings made before it is
known that a solution exists. We propose two methods for dealing with this problem and
thus proving (or ensuring) termination. Which method must be applied will depend on the
program and on the mode being considered. The first method exploits that a program does
not make any speculative bindings. The second method exploits that a program does not use
any speculative bindings, by ensuring that no atom ever delays. In this latter case, any method
for showing termination for programs without delay declarations can be applied.

2 Preliminaries

We use the notation of [1, 3]. For the examples we use SICStus [2] notation. We recall some
important notions. A syntactic object is called linear if every variable occurs in it at most

“University of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom, j.g.smausQukc.ac.uk, telephone
xx44/1227/827553, fax xx44/1227/762811.
fJan-Georg Smaus was supported by EPSRC Grant No. GR/K79635.

once. A flat term is a variable or a term of the form f(x1,...,z,), where n > 0 and the z; are
distinct variables. Atoms are denoted by h, queries by B, @, R.

A block declaration for a predicate p/n is a set of atoms each of which has the form
p(by,...,b,) where b; € {7, —} fori € {1,...,n}. A program consists of a set of clauses and a
set of block declarations, one for each predicate defined by the clauses. If P is a program, an
atom p(ty,...,t,) is selectable in P if for each atom p(by,...,b,) in the block declaration
for p, there is some 7 € {1,...,n} such that ¢; is non-variable and b; = —.

A derivation step for a program P is a pair @; R, where () and R are queries, () is
non-empty, and R is obtained by resolving @) (using an atom in @, called the selected atom)
with a clause in P. A derivation is a (possibly infinite) sequence Qg; Q1; Q2; - . ., where each
successive pair Q;; Q;+1 is a derivation step.

An LD-derivation is a derivation where the selected atom is always the leftmost atom in
a query. A delay-respecting derivation for a program P is a derivation where the selected
atom is always selectable in P. A derivation Qg; Q1; Q2;. .. is left-based if the following holds
for all 4 > 0 where Q; is non-empty: If Qq;...;Q; is an LD-derivation and the leftmost atom
in @); is selectable, then it is selected in Q;; Q;41. To the best of our knowledge, derivations in
most Prolog implementations meet this requirement.

For a predicate p/n, a mode is an atom p(mi,...,m,), where m; € {I,0} for i €
{1,...,n}. Positions with I are called input positions, and positions with O are called
output positions of p. A mode of a program is a set containing one mode for each of its
predicates. A program can have several modes, so whenever we refer to the input and output
positions, this is always with respect to the particular mode which is clear from the context.
To simplify the notation, an atom written as p(s,t) means: s is the vector of terms filling the
input positions, and t is the vector of terms filling the output positions.

A type is a set of terms closed under substitution. A type is called variable type if it
contains variables and non-variable type otherwise (there is only one variable type, contain-
ing all terms). A type is called constant type if it contains only (possibly infinitely many)
constants. We write ¢ : T for “¢ is in type T”. A type is associated with each predicate p/n
and each of its argument positions, by writing p(T},...,T),) where Ty, ..., T, are types. In the
examples, we use the following types: any is the type containing all terms, [ist is the type of
all (nil-terminated) lists, num the (constant) type of numbers, and numlist is the type of all
number lists.

3 Permutations and Modes

This section defines some concepts needed in Sects. 4 and 5. In [1], each predicate has a single
mode. The idea is that in a query, every piece of data is produced (i.e. output) before it is
consumed (i.e. input), and every piece of data is produced only once. “Before” refers to the
textual position.

We generalise this by associating, with each query and each clause in a program, a per-
mutation 7 of the (body) atoms, such that the “reordered” program meets the requirements
in [1]. For a different mode, the permutations would be different.! In examples, an actual

permutation is written in the form (7 (1),...,m(n)). Given a sequence o0y,...,0, and a permu-
tation 7, we write m(o1,...,0,) for oz-1(1),...,0-1(n), i.e. the sequence obtained by applying
7 t0 01,...,0,. These permutations are used to compare a program with the (theoretically)

“reordered” program; it is not intended that the clauses in a programs are actually changed so
that delay declarations are not required, since this would commit us to a single mode.

'This explicit treatment of several modes becomes relevant in Subsec. 5.2, where the result depends on
derivations being left-based. Elsewhere, we would not lose generality if we assumed, merely for notational
simplicity, that the permutations are always the identity.

In a nicely moded query, a variable in an input position does not occur (textually) later in
an output position, and each variable in an output position occurs only once.

Definition 3.1 [permutation nicely moded] Let = pi(s1,t1),...,pn(Sn, t,) be a query and
7 a permutation on {1,...,n}. @ is m-nicely moded if ty,...,t, is a linear vector of terms
and for all 7 € {1,...,n}

vars(s;) N U vars(t;) = 0.

m(j) > (i)
The query 7(Q) is a nicely moded query corresponding to Q.
The clause C' = p(tg,sSp+1) < @ is m-nicely moded if @ is w-nicely moded and tg, ..., t,

is a linear vector of terms. The clause p(tg,s,+1) < 7(Q) is a nicely moded clause corre-
sponding to C.

A query (clause) is permutation nicely moded if it is m-nicely moded for some w. A
program P is permutation nicely moded if all of its clauses are. A nicely moded program
corresponding to P is a program obtained from P by replacing every clause C' in P with a
nicely moded clause corresponding to C.

Example 3.1

:- block permute(-,-).

permute([]1, [1).

permute([U | X], Y) :-
permute (X, Z),
delete(U, Y, Z).

:— block delete(?,-,-).
delete(X, [X|Z],Z).
delete(X,[U|Y],[UIZ]) :- delete(X,Y,Z).

This program is nicely moded in mode {permute(l, 0),delete(l,0,I)}, and permutation
nicely moded in {permute(O, I),delete(O,I, O)} (the second clause is (2, 1)-nicely moded).

Following [1], we show a persistence property of permutation nicely-modedness.

Lemma 3.1 Every SLD-resolvent of a permutation nicely moded query) and a permutation
nicely moded clause C' is permutation nicely moded.

Proof sketch: For (Q and C' = h < B, there are permutations 7 and p such that 7(Q) and
h < p(B) are nicely moded. By [1, Lemma 11] every resolvent of 7(Q) and h < p(B) is nicely
moded. Thus it follows that every resolvent of () and C' is permutation nicely moded.]

Permutation nicely-modedness could be used to show that the occur-check can be omitted.

Example 3.2

length(L,N) :- len_aux(L,0,N).

len_aux([],N,N).
len_aux([_|Xs],M,N) :-
less(M,N),
M2 is M + 1,
len_aux (Xs,M2,N).

:— block less(?,-), less(-,7).
less(A,B) :- A < B.

This program is permutation nicely moded for mode {length(I, O),len aux(l,I,0)} (the
third clause is (3,1, 2)-nicely moded). For mode {length(O,I),len aux(0,I,I)}, it is not
permutation nicely moded, since the input in len_aux([],N,N) is not linear.

The second concept we generalise from [1] is well-typedness. As with modes, we assume that
the types are given. In the examples, they will be the obvious ones.

Definition 3.2 [permutation well typed] Let n > 0 and 7 be a permutation such that 7 (i) = ¢
whenever i ¢ {1,...,n}. Let Q = p1(s1,t1),...,Pn(Sn, tn) be a query. Suppose that p;(S;, T;)?
is the type of p; for all ¢ € {1,...,n}. Then @ is w-well typed if for all i € {1,...,n} and
every substitution o

(/\ tjU : Tj) = S0 . Si- (*)
m(j)<m(i)

The clause C' = p(to,sp+1) + Q, where p(Ty, S, +1) is the type of p, is m-well typed if (x)
holds for all s € {1,...,n+ 1} and every substitution o.

A permutation well typed query (clause, program) and a well typed query (clause,
program) corresponding to a query (clause, program) are defined in analogy to Def. 3.1.

Example 3.3 Assume the types permute(list,list), delete(any,list,list). The program in
Ex. 3.1 is well typed for mode {permute(I, O),delete(l, O,)}, and permutation well typed
for mode {permute(O0,I),delete(0,I, O)}, with the same permutations as Ex. 3.1. The same
holds assuming types permute(numlist, numlist), delete(num,numlist, numlist).

The following lemma is shown as Lemma 3.1, using [1, Lemma 23].

Lemma 3.2 Every SLD-resolvent of a permutation well typed query and a permutation well
typed clause is permutation well typed.

Permutation well-typedness could be used to show that no derivation flounders.

4 FErrors related to built-ins

Some built-ins produce an error if an argument has a wrong type. E.g. X is foo results in a
type error. Some built-ins produce an error if certain arguments are insufficiently instantiated.
E.g. X is V results in an instantiation error. We take two approaches to ensure freedom from
instantiation errors and type errors. Under certain circumstances, we even show that no delay
declarations are needed at all. For different programs, different approaches are applicable.

4.1 Exploiting constant types

The first approach aims at preventing instantiation and type errors for built-ins which re-
quire arguments to be ground, in particular arithmetic built-ins. It is proposed in [1] to
equip these predicates with delay declarations such that they are only executed when the in-
put is ground. The advantage is that one can reason about arbitrary arithmetic expressions,
e.g. quicksort ([1+1,3-8],M). The disadvantage is that block declarations cannot be used. In
contrast, we assume that the type of arithmetic built-ins is the constant type num, rather than
arithmetic ezpressions. Then we show that block declarations are sufficient. The following
lemma is a straightforward variation of [1, Lemma 27].

28, and T; are the vectors of types of the input and output arguments, respectively.

Lemma 4.1 Let Q = p1(s1,t1),...,pn(Sn, tyn) be a m-well typed query, where p;(S;, T;) is the
type of p; for all i € {1,...,n}. Assume for some 7 € {1,...,n}, S; is a vector of constant
types, s; is a vector of non-variable terms, and there is a substitution 6 such that t;0 : T; for
all j with w(j) < m(¢). Then s; is correctly typed (and thus ground).

Proof: By Def. 3.2, s;0 is correctly typed, and thus a vector of constants. Since s; is already a
vector of non-variable terms, it follows that s; is a vector of constants and thus s;0 = s;. Thus
s; is ground and correctly typed. n

We define permutation simply-typedness. In a permutation simply typed query, it is
always possible to instantiate the output arguments so they are correctly typed.

Definition 4.1 [permutation simply typed] A query pi(s1,t1),...,pn(Sn, t,) is permutation
simply typed if for some permutation =, it is m-nicely moded and w-well typed, and tq,...,t,
is a vector of variables.

A clause p(to, sp+1) < p1(s1,t1),...,0n(Sn, tp) is permutation simply typed if for some
permutation 7, it is m-nicely moded and w-well typed, ti,...,t, is a vector of variables, and tg
has a variable in each position of variable type and a flat term in each position of non-variable
type.

A program is permutation simply typed if all its clauses are. A simply typed query
(clause, program) corresponding to a query (clause, program) is defined in analogy to
Def. 3.1.

Lemma 4.2 Every SLD-resolvent of a permutation simply typed query and a permutation
simply typed clause, where the selected atom is non-variable in all input positions of non-
variable type3, is permutation simply typed.

Proof idea: By Lemmas 3.1 and 3.2, the resolvent is permutation nicely moded and permu-
tation well typed. The linearity of the output positions in the query and the input positions in
the clause implies that unifying the clause head with an atom in the query does not instantiate
any output positions, except the output positions in the selected atom. This implies that the
output arguments in the resolvent are again a linear vector of variables. m

By Def. 4.1, for every permutation simply typed query @, there is a 6 such that Q8 is correctly
typed in its output positions. Thus by Lemma 4.1, if a program is permutation simply typed,
where the arithmetic built-ins have type num in all input positions, then it is enough to have
block declarations such that these built-ins are only selected when the input positions are
non-variable. Groundness is implied.

Example 4.1 The following is an excerpt of a version of quicksort, where the missing clauses
are defined as usual, and leq is defined in analogy to Ex. 3.2.

:- block gs(-,-).
gs([X|Xs],Ys) :-
append (As2, [X|Bs2],Ys),
part (Xs,X,As,Bs),
gs(As,As2),
gs(Bs,Bs2).

:- block part(?,-,7,7), part(-,7,-,7), part(-,7,7,-).
part([X|Xs],C, [X|As],Bs):-

leq(X,0),

part(Xs,C,As,Bs).

The program is permutation simply typed wrt. to the obvious types for {qs(I, O),
append(I, I, O),part(I,I, 0, 0)}, and thus there are no instantiation errors. The program
is not permutation simply typed for {qs(0O,I),append(0, O,I),part(0,1,1,I)}, because of
[XIBs2] in an output position.

3This is similar to “the delay declarations imply matching” [1].

4.2 Atomic positions

Sometimes, when the above method does not work because a program is not permutation simply
typed, it is still possible to show absence of instantiation errors for arithmetic predicates. The
idea is to declare certain argument positions to be atomic, which means that they can only
be ground or free, but not partially instantiated. For atomic positions, it is sufficient to have
a block declaration such that a predicate delays until the argument in this position is non-
variable. It is then automatically ground. Typically one would declare that the atomic positions
are the positions of type num.

Definition 4.2 [respects atomic positions] A query (clause) respects atomic positions if
each term in an atomic position is ground or a variable which only occurs in atomic positions.

Sometimes we have to interpret the argument positions of a built-in in an unconventional
way for a program to respect atomic positions. E.g. in Ex. 3.2, we have to regard the atom
M2 is M + 1 as an atom with three arguments: M2, M, and 1.

Lemma 4.3 Every SLD-resolvent between a clause C' and a query) that both respect atomic
positions, respects atomic positions.

Proof idea: Since atomic and non-atomic positions do not share variables, an atomic position
can never be instantiated to a term other than a variable or constant.]

This works for programs where the arithmetic arguments are variable-disjoint from any other
arguments, such as Ex. 3.2. Declaring all arithmetic arguments to be atomic, the program
respects atomic positions. The block declaration on the built-in < is realised with an auxiliary
predicate less. Note that no auxiliary predicate, and thus no block declaration, is introduced
for is. Since in all modes, the input for is comes from the clause head rather than from
another body atom, it is sufficient to have a block declaration for the predicate of the head.
This is formalised in the following lemma.

Lemma 4.4 Let P be a program which respects atomic positions, B a set of built-ins whose
input positions are all atomic, and P the set of all other predicates used in P. Suppose an atom
using a predicate in P is selectable only if it is non-variable in its atomic input positions, and
that for each clause C' = p(to,sp+1) < p1(S1,61),...,Pn(Sn,tn), if p; € B, then the variables
in s; are a subset of the variables in the atomic positions in tg. Let) be a query respecting
atomic positions, where each atom using a predicate in B has constants in its input positions.

Let £ be a delay-respecting derivation for). Then in all queries in &, an atom using a
predicate in B is always ground in its input positions.

5 Termination

We always assume that termination for the corresponding nicely moded (or well typed) pro-
grams has been shown by some existing method for LD-derivations. Our approach is simple,
and the conditions are easy to check. Termination can be proven for Ex. 5.1, but not for
Ex. 4.1. There is a more sophisticated method [7], but it requires more complex checks.

Example 5.1 The query permute(V,[1]) (Ex. 3.1) loops because delete produces a specu-
lative output binding [6]: The output variable Y is bound before it is known that this binding
will never have to be undone. Assuming left-based derivations, termination in both modes can
be ensured by replacing the second clause with

permute([U | X1], Y) :-
delete(U, Y, Z),
permute (X1, Z).

This technique can be described as putting recursive calls last [6]. To explain termination, we
have to apply a different reasoning for the different modes. In mode permute (I, O), delete is
used in mode delete(I, O,), and in this mode it does not make speculative bindings.

In mode permute (O, D), the speculative output is produced textually before it is con-
sumed (used as input). This means that the consumer has to wait until the producer has
completed (undone the speculative binding). The program does not use speculative bindings.

5.1 Termination by not making speculative bindings

Definition 5.1 [non-speculative] A permutation simply typed program P is non-speculative
if

(a) every permutation simply typed atom (i.e. query of length 1) using a predicate in P is
unifiable with some clause head in P, and

(b) an atom in a permutation simply typed query is selectable in P if and only if all input
positions of non-variable type are non-variable.

Example 5.2 Both versions of the permute program, assuming any type given in Ex. 3.3,
are non-speculative in mode {permute(I, O),delete(I, O,)}, but are not non-speculative in
mode {permute(O0,I),delete(O,I, O)}, because the atom delete(A,[]1,B) is not unifiable
with any clause head.

A delay-respecting derivation for a non-speculative program P and a permutation simply typed
query can neither flounder nor fail. However it could still be infinite. The following lemma
says that this can only happen if the simply typed program corresponding to P (Def. 4.1) also
has an infinite (LD) derivation for this query.

Lemma 5.1 Let P be a non-speculative program and P’ the simply typed program corre-
sponding to P. Let () be a permutation simply typed query and Q' the simply typed query
corresponding to Q. If there is an infinite delay-respecting derivation for P U {@}, then there
is an infinite LD-derivation for P’ U {Q'}.

Proof sketch: Let £ be an infinite delay-respecting derivation for PU{Q}. Construct an LD-
derivation &' for P'U{Q'} which uses the “same” clauses as £ where possible, and an arbitrary
clause otherwise. Since every selected atom matches at least one clause head, the only reason
why it might not always be possible is that in £, an atom might never be resolved. It turns out
that by this construction, ¢’ is infinite. "

Lemma 5.1 says that for non-speculative programs, atom order in clause bodies is irrelevant
for termination.

5.2 Termination by not using speculative bindings

In LD-derivations, speculative bindings are never used [6]. Assuming left-based derivations,
all derivations are LD-derivations, provided the leftmost atom in a query is always selectable.
This immediately implies the following lemma.

Lemma 5.2 Assume left-based derivations, and let () be a well typed query and P a well
typed program such that an atom is selectable if its input positions of non-variable type are
non-variable. Then every derivation for P U {Q} is an LD-derivation.

By the above lemma, all derivations for permute(O,) are finite. A comparison of Exs. 3.1
and 5.1 makes it clear that no termination guarantees can be given without such strong as-
sumptions about the selection rule.

6 Discussion and Related Work

We have shown methods of preventing instantiation and type errors related to built-ins, and
ensuring termination, for logic programs with block declarations.

It is often justified not to have any delay declarations for (arithmetic) built-ins, and even if
delay declarations are required, block declarations are often sufficient. This is useful because
it aims at the way arithmetic built-ins are used in practice: it is awkward having to introduce
auxiliary predicates to implement delay declarations for built-ins.

For proving termination, we have presented two methods based on not making and not
using speculative bindings, respectively. For Ex. 5.1, it turns out that in one mode, the first
method applies, and in the second mode, the other method applies. We envisage a program
development tool which would help a programmer to verify the conditions and to reorder atoms
in clause bodies to ensure that one of the methods applies for each mode.

This work was inspired by [1]. For arithmetic built-ins, [1] requires declarations which delay
an atom until the arguments are ground. Such declarations are usually implemented not as
efficiently as block declarations. Little attention is given to termination, proposing a method
limited to deterministic programs.

The good intuitive explanations for loops in [6] guided our search for further ideas and
their formalisation. To ensure termination, some heuristics are proposed, without formal proof.
Predicates have a single mode, suggesting that multiple modes, if required, should be achieved
by having several versions of a predicate.* This bears the question: Why, for the mentioned
examples permute and quicksort, if only one mode is considered, would one want to use
delay declarations? In our opinion, the discussion on termination and delay declarations only
becomes fully relevant when several modes are assumed.

In [4], a method is proposed to generate control automatically to ensure termination, giving
practical evidence that control declarations were generated for many programs. The method
assumes arbitrary delay-respecting derivations and hence does not work for programs where
termination depends on left-based derivations.

The results of [5] are not comparable to ours because they assume a local selection rule
(always selects an atom which was introduced in the most recent resolution step).

References

[1] K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations. In AMAST’95,
LNCS, Berlin, 1995. Springer Verlag. Invited Lecture.

[2] Intelligent Systems Laboratory, SICS, PO Box 1263, S-164 28 Kista, Sweden. SICStus Prolog User’s
Manual, 1995.

[3] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[4] S. Liittringhaus-Kappel. Control generation for logic programs. In D. Warren, editor, Proceedings
of ICLP, pages 478-495. MIT Press, 1993.

[5] E. Marchiori and F. Teusink. Proving termination of logic programs with delay declarations. In
J. Lloyd, editor, Proceedings of ILPS, pages 447-461. MIT Press, 1995.

[6] L. Naish. Coroutining and the construction of terminating logic programs. Technical Report 92/5,
University of Melbourne, 1992.

[7] J.-G. Smaus, P. M. Hill, and A. King. Termination of logic programs with block declarations
running in several modes. Submitted to PLILP /ALP ’98.

[8] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an efficient purely
declarative logic programming language. Journal of Logic Programming, November 1996.

“Mercury [8] takes the same approach, and the versions are all generated by the compiler.

