
Thompson, Simon (1998) A Functional Reactive Animation of a Lift using
Fran. Technical report. Cambridge University Press

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21663/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21663/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Functional Reactive Animationof a Lift using FranSimon ThompsonComputing Laboratory, University of KentCanterbury, Kent, CT2 7NF, UKS.J.Thompson@ukc.ac.ukMay 1998AbstractThis paper uses the Functional Reactive Animation system, Fran, togive a simulation of a simple two
oor lift (or elevator). We introducethose aspects of Fran relevant to the simulation, thus making the paperself-contained. We show how to extend the design to one for a lift with anarbitrary number of
oors, and we conclude the paper with a discussionof how the Fran simulation can be veri�ed in an informal temporal logic.1 IntroductionThis paper uses the Functional Reactive Animation system { Fran { [EH97,PEL97] to give a simulation of a simple lift (or elevator). Fran is a substantiallibrary extending the Haskell [PH97] functional programming language on Win-dows platforms. The work discussed here has been developed using the Hugsinterpreter [Hug98]; compiled support is available using the Glasgow HaskellCompiler [Gla98]. The main architect of the Fran system is Conal Elliott ofMicrosoft Research, whose previous work has used C++ as a vehicle for similarideas [E+94].The functional approach of Fran is justi�ed by the fact that the authoringmedium for animations ought to \: : : give the author complete freedom of ex-pression to say what an animation is, while invisibly handling details of discrete,sequential presentation. In other words [it] must be declarative : : : "[PEL97].This approach is familiar to the functional programmer; one can see it in in-
uential work on `functional graphics' [Hen82] some �fteen years ago as well asin more recent approaches to describing music in a declarative form [H+96], toname but two examples.Fran provides two complementary modelling abstractions. First, BehaviorX is the type of time-dependent values of type X. A time-dependent image is agraphical animation, for instance. On their own these behaviours are e�ectivelystatic: once initiated they evolve autonomously. In order to react to internalor external events of various sorts, Fran provides the Event types, which canmodel, for instance, user input, timers, and a form of concurrency betweencomponents of an animation. 1

In this paper the Fran system is introduced in stages, and this is interleavedwith a description of a version of the lift problem in Section 3.1 together witha top-down description of the lift simulation itself in Sections 3.3, 4.2, 5.2, 6.2and 6.3. After completing the two
oor case study, we examine in Section 7 howthe system is extended to accommodate an arbitrary number of
oors, and alsogive an overview of the animation of various graphical aspects of the system.This is followed in Section 8 by a brief `look under the bonnet' to see some ofthe primitives used to de�ne the operators used in the case study; this is followedby an evaluation of Fran and how it might be developed. We also investigatein Section 10 how the temporal properties of the system can be described ina temporal logic framework, and how a veri�cation of these properties mightproceed.The introduction to Fran given here is intended to make the paper self-contained; a more comprehensive introduction is available in the papers citedabove and in animated form at [Ell97].It is interesting to observe the positive bene�ts of embedding Fran in thedeclarative framework of the Haskell programming language. Beyond providinga natural home for a declarative modelling tool, the library is able to exploitfeatures such as polymorphism and type classes. In writing this simulation wealso have been able to exploit the power of the language in building general`terminating' simulations (Section 9) and in writing general building-blocks forgraphical interface components (Section 7.1).It is also interesting to observe the bene�cial e�ect of working in a typedenvironment: particularly when working with the libraries for Events, it wasoften possible to �nd the right component of the library by its type. Moreover,in nearly all cases, if a piece of code passed the type checker it was correct. Itis all too easy to imagine what would happen in an untyped or weakly- typedlanguage.I am very grateful indeed to Conal Elliott who has answered my numerousquestions, made suggestions about improvements to programming style andgenerally encouraged me in this enterprise. Erik Poll has made a number of veryuseful comments on the presentation of the material, and �nally I would like tothank Howard Bowman, Helen Cameron and Peter King for their collaborationin our work on describing multimedia artifacts which has led to my looking atFran.2 BehavioursThis section looks at the way that continuously-evolving behaviours can bedescribed in Fran.2.1 Time-dependent values: BehaviorsBehaviours or time-dependent values of type X are given by the type BehaviorX. These can be thought of as functions of typeTime -> Xwhere Time is the domain of real numbers.In fact, the representation of Behaviorwill be more complex for two reasons.First, the domain Time is more complicated than simply the reals in order to2

support a more e�ective implementation of event-detection algorithms. Furtherdetails are given in the paper [EH97] which provides a denotational semanticsfor Fran. Secondly, it can be more e�ective to work with representations offunctions rather than with functions themselves. In both cases, however, thesimpli�ed model of behaviour su�ces for our purposes here.How are the Behaviors implemented? The system uses sampling to �ndvalues at various points, so that the animation produced is a sequence of distinctimages generated at the sampling points. A discussion of the subtleties of someaspects of the implementation can be found in [EH97] as well as in the generalliterature on animation.Among the types we shall use in our solution aretype RealB = Behavior Doubleand ImageB. An example value of type RealB is the wiggle illustrated here:
which is de�ned bywiggle = sin (pi * time)using the built in time :: RealB which can be thought of as the identityfunction.1Primitive graphical objects include circles, rectangles, polylines, polygonsand so forth. Pure graphical animations can be built from these and variouslibrary functions, some of which are discussed now.moveXY :: RealB -> RealB -> ImageB -> ImageB 2 The �rst two argumentsgive the x and y coordinates of the position that the ImageB should takeat each time. Note that it is not simply an image that is moved; it is anImageB that can itself be moving, changing shape or colour and so on.over :: ImageB -> ImageB -> ImageB This supports the super-impositionof the �rst image over the second, giving one form of concurrency | wediscuss this further in Section 5.3.stretch :: RealB -> ImageB -> ImageB This scales an ImageB accordingto a RealB, so allowing the size of animated objects to vary with time.withColor :: ColorB -> ImageB -> ImageB The e�ect of this function isto change the colour of an ImageB according to the time-dependent coloursupplied.1Note here how the type class mechanism of Haskell supports overloading and in this casethe use of sin and pi over RealB rather than Double. This overloading makes Fran programssubstantially more readable.2The double colon, ::, should be read `is of type', and the type here is a function takingthree arguments. Functions in Haskell are in fact `Curried' so that strictly moveXY takes asingle argument and returns a function as result.3

An example behaviour is given bymoveXY wiggle 0 pic1`over`moveXY 0 waggle pic2in which pic1 \wiggles" from left to right, pic2 \waggles" (cosine) up and downand `over` is the in�x form of the function over, and so superimposes the twoImageBs, which may themselves move, be composite, change colour and so forth.Using these functions it is possible to build graphical animations of the non-reactive aspects of a lift simulation, such as graphics of a lift whose doors areopening, a lift whose doors are closing, a lift in motion and so forth, since theseare built from blocks of colour of changing size and position.2.2 Rate-based animationSuppose we want a numerical quantity f to change with time as part of ananimation. One way of doing this is to specify f as a function of time, as indeedwe did with wiggle above. Fran provides an alternative, by which we specifythe rate of change (or derivative) of the quantity, f' say, and using the atRatefunction f can be given as the integral of f'.A simple example is given by position and velocity: a linear change in po-sition is given by a constant velocity, for instance. This example re
ects thegeneral observation that it is often easier to describe the derivative of a functionrather than the function itself, and we shall see an example of this in our liftsimulation.3 The case study: lift simulationThis paper addresses the �rst of the problems set for the `Challenges for Ex-ecutable Temporal Logics' workshop, June 1998 [Exe98], namely that of sim-ulating the operation of a lift (or elevator). The problem as originally statedrequires an arbitrary number of
oors; in this paper we approach the problemby giving the full solution for the two
oor case, and then by giving the top-level design for the general case. We have also stripped down the graphics toconcentrate on the control aspects of the problem, which in the case of Fran arethe aspects demanding the most e�ort to implement.In our �rst attempt we control the operation of the lift using the mouse but-tons. We show how to modify our solution to include a more general graphicalcontrol scheme in Section 7.1.3.1 The two
oor problemThe aim is to provide a graphical animation of the operation of a lift betweentwo
oors of a building. The lift can be called from the upper
oor to requesttravel downwards; a call from the lower
oor is taken to be a request to travelupwards. Because of this interpretation, there is no need to have buttons insidethe lift itself, and input is taken from the mouse buttons: a left button clickgenerates an `up' request and the right a `down'. In the solution presented, thelift is represented by a red blob, rather than any more complicated an animation.4

There is a twist to the problem which makes its solution more complex thanmight �rst be envisaged. This is the fact that while the lift is travelling upwardsthere can be a further request to travel upwards, which can only be discharged bya journey back down and then back up again. In other words, some \memory"is required to solve even the case of a two-
oor simulation, and shows that oursimpli�cation contains the essential elements of the original problem.3.2 The User argumentAny animation which uses time information in a non-trivial way, or which in-teracts with the user will be de�ned as a function which takes a User argumentand, on the basis of this argument, returns a Behaviour of some sort. The Userargument consists of a timed stream of mouse button presses, key presses, mousepositions and other user data. It also gives the time at which the animationbegins and other real-time information.In order to exhibit such a user-driven animation in action we use the functiondisplayU :: (User -> ImageB) -> IO ()which `runs' an animation, by supplying it with the user input stream as itsUser argument, and produces primitive Haskell IO as a result.3.3 Case study part 1: the top-level solutionWe shall give the solution to the lift problem top-down, with the full code forthe solution appearing in the Appendix. At the top level we de�ne a functionover a User argument, as explained in Section 3.2.liftSim :: User -> ImageBThe simulation consists of a moving image of a lift,liftSim u= moveXY xPos yPos imagewhere xPos and image are constants.3 The de�nition of yPos and the auxiliarybehaviours and events which determine it are local to the de�nition of the func-tion and thus appear in a where clause. Note that the result depends upon theUser argument u which will be used in a number of the de�nitions which follow.As we explained in Section 2.2 it is often simpler to model phenomena byderivative rather than directly, and this we do here for the yPos:yPos = lower + atRate dy uwhere the velocity { dy { is piecewise constant and can take one of three values:zero, making the lift stationary; upRate, signifying that the lift is ascending anddownRate for descent. We have to look at how events are modelled to see howdy is de�ned and this we do in the next section.Observe also that the User argument u is passed to the atRate function toprovide the timing information { such as when the animation begins { neededby the integration.3In a more complex simulation image would itself evolve, depending upon the values ofcertain parameters just as the position of the lift does. Its de�nition would follow the patternof that for yPos. 5

4 EventsWe have seen in Section 2 how certain simple time-dependent behaviours can bede�ned, but in order to de�ne behaviours which respond to internal conditionsor external events the model needs to be extended by the Event type.An Event X is a sequence of timed occurrences, each of which is associatedwith a value of type X, so it is possible to think of Event X as a list of type[(Time,X)]sorted on its �rst components. Each of the elements, (t,x) say, is called anevent occurrence, with the whole structure being the event.4 (As was thecase for behaviours, the implementation is somewhat more complicated thanthis, but for the purposes of this paper this will su�ce.)4.1 Handling eventsThe system provides substantial support for handling and modifying occurrencesof events. In our model we only perform simple transformations on events.Each event occurrence in a stream str of type Event a will have the form(t,x), where t::Time and x::a. In every case we are interested in as a partof the case study, our aim will be to convert the value x to a �xed value c::w,thus converting the pair to (t,c). The resulting stream will be writtenstr -=> c :: Event wThe e�ect on a stream [(t0,x0),(t1,x1),: : :,(tn,xn),: : :] is therefore toproduce the result[(t0,c),(t1,c),: : :,(tn,c),: : :]In the general case, the event occurrence produced by the event handler corre-sponding to (t,x) may depend upon x,5, t and the remaining part of the Event(after the expired event occurrences are removed). Further details of the eventhandling mechanism handleE can be found in Section 8 and [PEL97].Streams of event occurrences can be merged, time-wise, using the operation.|. :: Event a -> Event a -> Event aThese two capabilities allow us to proceed further with our lift case study.4.2 Case study part 2: top-level eventsThe movement of the lift is controlled by a number of Events generated inter-nallystop, goUp, goDown :: Event ()which are intended to give the obvious values to the velocity of the lift, dy. () isthe trivial type, whose only member is also denoted (); it is used in a situationwhere the value contained in the Event occurrence is of no signi�cance and only4This terminology appears to be in con
ict with the more usual `event' (for `event occur-rence') and `(event) stream' (for `event'); we will use the Fran terminology in this account.5In which case the operation is similar to the map function over lists.6

the Time value is relevant, as is the case here. The Events will themselves bede�ned in Section 6.3.The de�nition of dy uses setRate :: Event Double given bysetRate = stop -=> 0.|.goUp -=> upRate.|.goDown -=> -downRateThe e�ect here is to convert all occurrences of stop to occurrences with thevalue 0; all occurrences of goUp to event occurrences with the value upRate andso on. These are merged, and so give an Event Double of the form[(2.3 , upRate) , (4.9 , 0) ,(8.6 , downRate) ...]in which upRate is the value returned at the occurrence at time 2.3 and soforth. In order to de�ne dy this timed stream of values needs to be convertedto a behaviour of the form
and this we investigate now.4.3 Converting Events to BehaviorsBehaviours evolve continuously in time, while (occurrences of) events take placeat discrete points in time. The power of the Fran model lies in the way inwhich these two types are linked. This section addresses one simple way inwhich Events can be converted to Behaviors; other more complex (and morefundamental) ways are examined elsewhere [PEL97]. We need to convert theevent setRate to a behaviour. This is done by the Fran functionstepper :: a -> Event a -> Behavior awhich is parametrised by a starting value and an Event, and builds a piecewiseconstant Behavior from these inputs. With the starting value 0 and the eventas above we have

7

so we de�nedy = stepper 0 setRateThis shows the mechanism by which we convert streams of `internal messages'{ goUp and so forth { into a behaviour, and completes the top-level loop of thesimulation. We now need to look at how these messages are themselves de�ned,but before that we investigate how to model system states.5 States5.1 Modelling states in FranAs we mentioned in Section 3.1, the implementation of the lift will need tocontain some element of memory to keep track of requests for travel that arestill to be ful�lled. In an earlier version of the solution, a state monad [Wad95]was used to model the state, but this caused complications, particularly inconjunction with handling a User argument (which could itself be seen as givingrise to a monad).There is a much more straightforward view of a state variable of type X, andthat is as a Behavior X { an X value which varies with time. We thus get adeclarative model of state in Fran.5.2 Case study part 3: pending requests as `variables'Our model contains three `Boolean variables'upPending, downPending,pending :: Behavior Boolwhich keep track of whether there is pending a request to travel up, down orin either direction. pending is the pointwise disjunction of upPending anddownPendingpending = upPending ||* downPendingHere ||* is the lifting of the Boolean disjunction operation || to BehaviorBool, other operations such as == are lifted to behaviours in a similar waybelow.The state upPending is de�ned from an Event using stepper as above.upPending = stepper False (setUp .|. resetUp)The initial value of the variable is False; it is set to True by a request to travelupwards, and reset to False by the lift starting an upward journey, as signalledby goUp:setUp = upButton -=> TrueresetUp = goUp -=> FalseThe variable downPending is de�ned in a similar way.8

5.3 Concurrency in the Fran modelThe model presented thus far appears to contain elements which evolve concur-rently, in some sense at least. This section attempts to explain the nature ofthe concurrency in the system.Animations { including sound as well as images { can be combined usingthe `over` function which places one animation on top of another, so we havea form of concurrency here.Examining the implementation developed thus far, we appear to have Behaviorsevolving in parallel in the lift simulation: the system contains state variableswhich are controlled by messages from other parts of the system, for instance.The concurrency here is completely implicit: various interdependent values {both Behaviors and Events { are de�ned in a single scope, and so can bethought of as evolving concurrently. This concurrency is clearly supported bythe sample/display model which underlies Fran.6 PredicatesLooking at the case study thus far, we have a model of the lift in which externalstimuli are provided by mouse button presses. We need, however, to �nd away of generating the `control' messages, goUp and so forth, which are of typeEvent () from the Behaviors in the system. The way in which we convertfrom behaviours to events gives the last piece of the Fran model used here.
6.1 The predicate functionIn order to complete the simulation, the crucial pieces of information whichwe need are when we have arrived at the top or the bottom of lift shaft. Wecould keep an internal record of the time of departure and calculate o�sets fromthat, but here we choose instead to check when we have arrived by means of alogical condition on behaviours. This Behavior Bool can be made to generatean event by means of the functionpredicate :: BoolB -> User -> Event ()which takes a Boolean behaviour and the User argument (for timing informa-tion) and returns an Event. We have to look for an appropriate BoolB withwhich to test having arrived at the top. Candidates includeyPos ==* constantB upper Given the sampling model, it is possible that thesystem will miss the point at which the condition is True. A fuller discus-9

sion of this issue can be found in [EH97], which makes it plain that im-plementations of predicate have changed with di�erent releases of Fran.yPos >=* constantB upper This condition will possibly be True over an in-terval of time, or in a more problematic way may become True arbitrarilyoften over a short period of time, giving rise to \event burst" as it were.This was indeed a problem in an early version of the solution.yPos >=* constantB upper &&* dy >* 0 Adding the condition that the liftis in motion { dy >* 0 { gives this condition a transitory property: weshall see in Section 6.3 that the Event to which it gives rise will ensure thatit becomes False immediately afterwards, thus avoiding the problems ofthe previous possibility.We can now put together the �nal parts of the solution of the case study.6.2 Case study part 4: conditions and predicatesThe conditions of being at the top, and waiting stationary (at the top) are givenbyatTop, stopped, waitingTop :: BoolBatTop = (yPos >=* upper)stopped = (dy ==* 0)waitingTop = atTop &&* stoppedThe Event of arriving at the top is de�ned byarriveTop :: Event ()arriveTop = predicate (atTop &&* dy >* 0) uand similar de�nitions can be found for the bottom case.6.3 Case study part 5: control EventsRecall that the top level of the simulation is driven by the `control' EventsgoUp, stop and goDown. Now that we have a de�nition of the Event generatedby arriving at the top (and bottom) we can de�ne the control events.We have seen earlier that button presses have an indirect e�ect on the op-eration of the lift by setting the pending variables; they can also have a directe�ect by setting it into motion when it is stationary. We therefore de�neupButton, downButton, eitherButton :: Event ()upButton = lbp udownButton = rbp ueitherButton = upButton .|. downButtonso that the eitherButton event corresponds to the press of either button.When should the lift go down; that is, when should there be occurrences ofthe goDown event? There are two cases.� The lift can arrive at the top (arriveTop) when there is a request pendingfor travel in either direction (pending), or,10

� either button can be pressed (eitherButton) while the lift is waiting atthe top (waitingTop).In both cases there is a condition on the event occurrences. Using the functionwhenE :: Event a -> BoolB -> Event athe expressionev `whenE` condselects from ev precisely those occurrences at which the condition cond is True.6The de�nitions of goDown and stop are thengoDown = arriveTop `whenE` pending.|.eitherButton `whenE` waitingTopstop = (arriveTop .|. arriveBottom)`whenE` notB pendingIt is not hard to see that the lift will stop in the situation of arriving either atthe top or the bottom when no request is pending. goUp is de�ned by analogywith goDown.This completes the de�nition of the Fran lift simulation for a two
oor lift.The full code is contained in the Appendix.7 Extending the implementationThis section outlines the way in which the implementation can be given angraphical interface and how it can be extended to implement an n-
oor lift.7.1 Graphical interfaceThe lift is controlled by the mouse buttons in the solution presented thus far.We can modify this to include two on-screen buttons, as in the illustration

which shows the lift in motion with a pending request for travel downwards.This modi�cation is made with minimal changes to the code presented thus far.As well as having to modify the code already written, we have to add to thecode a block of buttons and for this we use a function buttonBlock of type6whenE acts rather like the standard function filter over lists.11

Geom ->[(String,Event (),a)] ->(User -> Event ()) ->User ->(ImageB,Event a)where the arguments consist of� The geometry of the buttons.� Information for each button: its textual form, the event which resets itand the value identifying it in the Event for the button block.� The event which presses the button.� The User input.The result consists of the image of the block paired with the Event which itgenerates.This function is not part of the Fran library, and it is noteworthy that it canbe implemented from scratch in about a hundred lines of code. This is a bene�tof embedding the Fran library in a general purpose, higher-order language likeHaskell.Taking input from on-screen buttons is obviously a way of animating theinput for the n-
oor problem, to which we turn now.7.2 The n-
oor problemThe top-level design of the n-
oor lift is similar to the two
oor design givenhere.� As in the two
oor design, the lift is modelled using its velocity, dy. Thiswill be controlled using the stepper function as here.� The state of the system is more complex than in the two
oor case. It canbe modelled by two state variables which will be lists:{ the �rst represents the requests pending from inside the lift, and{ the second represents the requests pending from the
oors of thebuilding.In the two
oor solution, the state variables such as upPending have only twovalues. This means that when they are reset the new value is independent ofthe current value of the state variable. This will not be the case for the statevariables here, and so we need to de�ne a functionstateStepper :: (a -> b -> a) -> a -> Event b -> Behavior ato manage the states. In the result ofstateStepper f x0 evthe �rst value for the behaviour will be x0; subsequent values will be generatedfrom the values in ev { y0, y1, : : : say { thus: f x0 y0 (call this x1), f x1 y1and so forth, with the n+2nd value being f xn yn where xn is the n+1st valueof the variable and yn the n+1st value in ev.77The function stateStepper is analogous to the scanl of the Haskell prelude.12

8 A glimpse under the bonnetUp to this point we have used a high-level and proper subset of the facilitiesprovided by Fran. Behaviours which evolve have been de�ned using stepper,which turns an Event a { that is a timed sequence of values from type a { intoa piecewise-constant Behavior a. We have also handled event occurrences in asimple-minded way, using the -=> operator to transform occurrences (t,v) ofthe event ev into occurrences (t,c) of the event ev -=> c.How in general can the occurrence of an event cause a change in behaviour;how in general are events handled? In this section we describe the two opera-tions handleE and untilB which provide a primitive interface to behaviors andevents, and we see as examples how to de�ne stepper and ev -=> c from theseprimitives.88.1 Handling EventsRecall from Section 4 that an Event a is a sequence of timed occurrences, eachof which has associated with it a value of type a. In general, three valuescharacterise an event occurrence:� the time of the occurrence;� the value of the occurrence, and� the remainder of the Event, after removing the occurrences up to andincluding the occurrence in question.To handle an event occurrence, we transform these three values to a value, oftype b, say. This is accomplished by a function of typeTime -> a -> Event a -> band we can apply such a function to each occurrence in a stream of occurrencesto give a stream of occurrences of type b, that is an Event b. That is the e�ectof the general event handler,handleE :: Event a -> (Time -> a -> Event a -> b) -> Event bAs a special case of handleE in which the handler function is constant we de�ne-=> thus:(-=>) :: Event a -> b -> Event bev -=> c = ev `handleE` (_ _ _ -> c)Also of interest is the Event-equivalent of map,(==>) :: Event a -> (a -> b) -> Event bev ==> f = ev `handleE` (_ v _ -> f v)which when applied to the timed stream [(t0,x0),(t1,x1),: : :,(tn,xn),: : :and the function f gives the result [(t0,f x0),(t1,f x1),: : :,(tn,f xn),: : : .8This section is included for completeness of exposition, but obviously owes much to[PEL97]. 13

8.2 Modifying BehaviorsHow can one sequence behaviours, so that one follows another? A simple solu-tion is provided byseqB :: Behavior bv => bv -> Event () -> bv -> bvso that seqB bh1 ev bh2 behaves as bh1 until the �rst occurrence of ev, andafter that behaves as bh2. One can also lift this sequencing to operate overbehaviours dependent upon a User argument to giveseqUB :: Behavior bv => (User -> bv) -> (User -> Event ()) ->(User -> bv) -> (User -> bv)and so forth. In fact, Fran provides a di�erent primitive, untilB, which gener-alises these. It is, however, instructive, to see how seqB is de�ned from untilB.The function untilB has the typeBehavior bv => bv -> Event bv -> bvand the e�ect of bh `untilB` ev is to behave as bh until the �rst occurrenceof the event ev; after that the behaviour is whatever value is returned by that�rst event occurrence, which does indeed return a value of type bv. We canthen see thatseqB bh1 ev bh2 = bh1 `untilB` (ev -=> bh2)so that seqB separates the event and the continuation behaviour which arecombined in the second argument to untilB. In a similar way, we de�neseqUB ub1 uev ub2= \u -> ub1 u `untilB` (nextUser_ uev u ==> ub2)where the expression nextUser_ uev u of type Event User gives a stream ofUsers each aged to contain only those occurrences which follow the occurrencein question. The e�ect of nextUser_ uev u ==> ub2 is thus to pass the agedUser to the User-lifted behaviour ub2, and so to continue the computation asrequired.8.3 Using handleE and untilB to de�ne the stepperThe stepper produces piecewise constant behaviour from a stream of values oftype a and a starting value of that type.stepper :: a -> Event a -> Behavior aIn what follows we build the result stepper start ev in stages. Initially, thebehaviour will be the constant behaviour with value start, that isconstantB startIf we think of ev as an in�nite list, we then want recursively to call stepper on(head ev) and (tail ev). We cannot do this directly, but we can indirectlyusing handleE. The functionwithRestE :: Event a -> Event (a,Event a)withRestE ev = ev `handleE` (_ head tail -> (head,tail))14

returns the stream of `head,tail' pairs from the event occurrences in ev. Toapply stepper to each of these pairs, we `map' it along withRestE ev usingthe ==> operator, as followswithRestE ev ==> uncurry stepperwhere note that we have to uncurry the stepper function to accept its argumentas a pair rather than ans two separate arguments. Putting all the parts together,we havestepper start ev= (constantB start) `untilB` (withRestE ev ==> uncurry stepper)This example shows how the exception handling mechanism of hamdleE gives a
exible way of dealing with Events { as timed streams of event occurrences {and also how the primitive untilB turns a stream of Behaviors into a singlebehaviour.As we have seen, using the primitives handleE and untilB together withvarious of their derivatives and a number of other utility programs such asnextUser_ it is possible to de�ne a variety of powerful programs; in the sectionwhich follows we re
ect on other aspects of using Fran.9 Re
ectionThe solution presented in this paper is the result of a number of iterations whichre
ect a growing understanding of the capabilities of the Fran library as well asdi�erent approaches to the design of the simulation itself.For instance, in an earlier design the components of the solution were rep-resented as terminating behaviours, which were sequenced together to form theoverall simulation { a `monadic' approach. Embedding Fran in a functionallanguage with general-purpose capabilities makes modelling these terminatingbehaviours as pairs(bv , Time -> User -> Event ())a straightforward matter: the second components of these pairs are used tosignal the termination of the behaviour in the �rst component. Such behavioursare sequenced using the analogue of seqUB from the previous section. This`monadic' approach can be used in situations in which behaviours are builtfrom components which are not piecewise continuous, for example.The solution we have presented here relies heavily on recursion. For example,goUp depends upon pending and pending depends upon upPending which inturn depends upon goUp. The implementation of Fran uses lazy evaluationheavily, so the recursive de�nition of structures is possible (we have done ithere), but some recursions can lead to non-termination, and others to the systemlocking up. This re
ects a general phenomenon for which evidence is apparentin earlier approaches to functional I/O (see, for example, [Tho90]) and whichled to the de�nition of sets of (monadic) combinators to handle I/O in a moredisciplined manner [Tho90, PH97]. 15

10 Towards a veri�ed lift implementationThis section sketches work in progress { namely giving a logical rendering ofaspects of Fran { by means of a discussion of the veri�cation of the lift casestudy.10.1 FoundationsThe Fran model addresses both continuous behaviour { by means of Behaviours{ and also discrete behaviour, through its Event types. Moreover, the discreteand continuous behaviours will in general be mutually dependent, as illustratedby the �gure in Section 6. How can we describe the system we have built here,and systems implemented in Fran in general?An obvious candidate is a temporal logic [Eme90], either in a non-timed orreal- time form. A variant of interval temporal logic which addresses continuousvariation is the duration calculus [Zho94], and the mean-value duration calculus[ZX94] also includes discrete events. In general it remains to be seen whether thisis the form of calculus most suited to reasoning about Fran systems, or whethera calculus based on functions and lists of event occurrences or indeed some otherfoundation is the most suitable. Certainly the function-based approach wouldbe closer to the denotational semantics of Fran [EH97].10.2 Towards a temporal logic for FranWe assume here a standard dense-time temporal logic with the usual connectivesof predicate logic and the modalities 2, 3 and U (for `Until'), as well as addingthe modality 4 for `valid on some open interval beginning at the current timepoint'.9 All these modalities can be indexed with real-number bounds to give atimed variant of the logic.How are Fran-de�ned values to be rendered in the logic? We shall take theview that Boolean behaviours are atomic temporal formulas10 and we will alsoread Events as propositions which are true exactly at their occurrence points.10.3 Veri�cation conditionsThe top level requirement of the lift can be stated as2(upButton) 3goUp) ^2(downButton) 3goDown) (P0)that is `a request to travel is eventually discharged'. By indexing the 3 modali-ties one also can put a constraint on the time taken for a request to be satis�ed.How can we argue for the validity of this requirement? As a �rst step wecan state an invariant which is a direct consequence of the de�nition of stepperand (i):119Because the interval is open, the current time point will not be included in it.10This neglects the issues of termination; see [Tho95] for a general discussion of the axioma-tisation of a functional programming language.11We refer to the program text in the Appendix by means of the labels (i), (ii) and soon. 16

2(dy ==* 0 _ dy ==* upRate _dy ==* -DownRate) (P1)with upRate > 0 and -DownRate < 0, so2(dy ==* 0 _ dy >* 0 _ dy <* 0) (P2)We can also state an invariant on the position of the lift:2(lower <=* yPos ^ yPos <=* upper) (P3)which is true initially since yPos starts at lower. How can we show that it isvalid? Consider a general time point up to which the constraint holds. By (P2)and (ii) the yPos is either static, thus preserving the invariant, or changing.Suppose that dy >* 0; now yPos is increasing and dy stays constant, withthe consequence that(lower <=* yPos ^ yPos <=* upper ^ dy >* 0)U arriveTop (P4)by (iii).We now need to verify that arriving at the top has the e�ect of stopping thelift. How can this be stated? By the de�nitions of goDown and stop (at (iv))one of these two will happen at the arrival point, so setting the rate to 0 or-downRate. We have to be careful about a statement of when the rate is set12 {it is here that we use the 4 operator which states that the rate is non-positiveonly after the time point in question:2(arriveTop) 4(dy <=* 0)) (P5)This is enough to ensure that the lift then descends, and so ful�lls the invariant(P3) in the case that dy >* 0. A symmetrical argument ensures the result inthe negative case, and so shows that (P3) is always the case.13A similar argument will show the validity of2(waitingBottom _ waitingTop _3arriveBottom _ 3arriveTop) (P6)Now, we can justify the validity of (P0). We show that2(upButton) 3goUp)with an argument by cases according to which of the cases in the disjunction of(P6) holds at the current point. The other conjunct of (P0) follows in a similarway. The cases are as follows.� In the case that waitingBottom holds at the current point, then by thede�nition of goUp, this event holds immediately.� Suppose that waitingTop holds. Motion of the lift downwards will beginby the de�nition of goDown, and by the downward analogue of (P4) wecan infer that 3arriveBottom. This is the case that we consider next.12A naive statement has the gradient being both positive and non-positive simultaneously.13The argument here should be formalised as an induction of some sort; the duration calculussuggests such principles for piecewise-constant functions like those de�ned by stepper.17

� The e�ect of the upButton will have been to set upPending to True { by(v) and properties of the stepper function { and so on arrival there willbe a pending request, so that goUp will be generated by the de�nition ofgoUp in (iv).� Finally, we consider the case that 3arriveTop. The upButton will setupPending to True. On arrival at the top this means that there is apending request, and so downward motion will begin. We can then argueas in the previous case.The arguments in this section can be bounded using the parameters of the liftsimulation; for instance, a journey will take (upper-lower)/upRate time unitsto complete.10.4 CommentaryThe argument given in Section 10.3 is informal, but can be formalised. The mainnovelty is the way in which predicate is handled, giving an Event when the liftarrives at the top or bottom. The event occurrences in turn a�ect behavioursthrough the stepper, and in formalising this we have used the 4 operator,which implicitly gives the stepper graph the following form
where a `(' denotes an open end of an interval and a `]` a closed end, since, aswas explained earlier, we only expect the change in the stepped value to holdafter the step point.It remains to be seen how veri�cation for the general model will proceed.11 ConclusionIn this paper we have shown that Fran can be used to give a simulation of a lift,and we have argued that it is well suited to the task both because of its declar-ative model of the system and also because it is embedded in a general-purposefunctional programming language, namely Haskell. This allows extensions ofthe library to be constructed with relatively small e�ort, and also allows thoseextensions to use features of Haskell { such as higher-order functions, polymor-phism and type classes (for overloading) { in an essential way.We have also sketched a veri�cation of the code using a temporal logic;we expect to extend this work with a more thoroughgoing investigation of thelogical foundations of the Fran model.

18

References[E+94] Conal Elliott et al. TBAG: A high-level framework for interactive,animated 3D graphics applications. In Proceedings of SIGGRAPH '94.ACM Press, 1994.[EH97] Conal Elliott and Paul Hudak. Functional Reactive Animation. InProceedings of the 1997 ACM SIGPLAN International Conference onFunctional Programming (ICFP97). ACM Press, 1997.[Ell97] Conal Elliott. Composing Reactive Animations. Available fromwww.research.microsoft.com/~conal/fran, 1997.[Eme90] E Allen Emerson. Temporal and Modal Logic. In Jan van Leeuwen,editor, Handbook of Theoretical Computer Science, Volume B: FormalModels and Semantics. Elsevier/MIT Press, 1990.[Exe98] Challenges for Executable Temporal Logics. Further details atwww.cs.waikato.ac.nz/~dsmith/CHALLENGES/, 1998.[Gla98] The Glasgow Haskell Compiler. Available fromwww.dcs.glasgow.ac.uk/fp/software/ghc/, 1998.[H+96] Paul Hudak et al. Haskore music notation { An algebra of music.Journal of Functional Programming, 6, 1996.[Hen82] Peter Henderson. Functional Geometry. In Proceedings of the 1982ACM Symposium on LISP and Functional Programming. ACM Press,1982.[Hug98] The Hugs System, Version 1.4. Available fromwww.haskell.org/hugs14, 1998.[PEL97] John Peterson, Conal Elliott, and Gary Shu Ling. Fran Users' Manual.Available from www.haskell.org/fran, 1997.[PH97] John Peterson and Kevin Hammond, editors. Report on the Program-ming Language Haskell, Version 1.4. www.haskell.org/report, 1997.[Tho90] Simon Thompson. Interactive functional programs: a method and aformal semantics. In D.A. Turner, editor, Research Topics in FunctionalProgramming, pages 249{285. Addison-Wesley, 1990.[Tho95] Simon Thompson. A Logic for Miranda, Revisited. Formal Aspects ofComputing, 7, 1995.[Wad95] Philip Wadler. Monads for functional programming. In Johan Jeuringand Erik Meijer, editors, Advanced Functional Programming. Springer-Verlag, Lecture Notes in Computer Science, 925, 1995.[Zho94] Zhou Chaochen. Duration Calculi: An Overview. In Dines Bj�rneret al., editors, Formal methods in programming and their applications.Springer-Verlag, Lecture Notes in Computer Science, 735, 1994.[ZX94] Zhou Chaochen and Li Xiaoshan. A Mean Value Calculus of Durations.In A. ~W. Roscoe, editor, A Classical Mind. Prentice-Hall, 1994.19

Appendix: The complete program for the two
oor liftliftSim :: User -> ImageBliftSim u= moveXY xPos yPos imagewhereimage :: ImageBimage = stretch 0.3 circlexPos,yPos,dy :: RealBxPos = constantB 0yPos = lower + atRate dy u (ii)dy = stepper 0 setRate (i)setRate :: Event DoublesetRate = stop -=> 0.|.goUp -=> upRate.|.goDown -=> -downRateatBottom, atTop, stopped, waitingBottom, waitingTop :: BoolBatBottom = yPos <=* loweratTop = yPos >=* upperstopped = (dy ==* 0)waitingBottom = atBottom &&* stoppedwaitingTop = atTop &&* stoppedarriveBottom, arriveTop :: Event ()arriveBottom = predicate (atBottom &&* dy <* 0) uarriveTop = predicate (atTop &&* dy >* 0) u (iii)
20

upButton, downButton, eitherButton :: Event ()upButton = lbp udownButton = rbp ueitherButton = upButton .|. downButtonupPending, downPending, pending :: Behavior Boolpending = upPending ||* downPending (v)upPending = stepper False (setUp .|. resetUp)downPending = stepper False (setDown .|. resetDown)setUp, setDown :: Event BoolsetUp = upButton -=> TruesetDown = downButton -=> TrueresetUp, resetDown :: Event BoolresetUp = goUp -=> FalseresetDown = goDown -=> FalsegoDown, goUp, stop :: Event () (iv)goDown = arriveTop `whenE` pending.|.eitherButton `whenE` waitingTopgoUp = arriveBottom `whenE` pending.|.eitherButton `whenE` waitingBottomstop = (arriveTop .|. arriveBottom) `whenE` notB pending

21

