University of

"1l Kent Academic Repository

Thompson, Simon (1998) A Functional Reactive Animation of a Lift using
Fran. Technical report. Cambridge University Press

Downloaded from
https://kar.kent.ac.uk/21663/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21663/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Functional Reactive Animation
of a Lift using Fran

Simon Thompson
Computing Laboratory, University of Kent
Canterbury, Kent, CT2 7NF, UK
S.J.Thompson@ukc.ac.uk

May 1998

Abstract

This paper uses the Functional Reactive Animation system, Fran, to
give a simulation of a simple two floor lift (or elevator). We introduce
those aspects of Fran relevant to the simulation, thus making the paper
self-contained. We show how to extend the design to one for a lift with an
arbitrary number of floors, and we conclude the paper with a discussion
of how the Fran simulation can be verified in an informal temporal logic.

1 Introduction

This paper uses the Functional Reactive Animation system — Fran — [EH97,
PEL97] to give a simulation of a simple lift (or elevator). Fran is a substantial
library extending the Haskell [PH97] functional programming language on Win-
dows platforms. The work discussed here has been developed using the Hugs
interpreter [Hug98]; compiled support is available using the Glasgow Haskell
Compiler [Gla98]. The main architect of the Fran system is Conal Elliott of
Microsoft Research, whose previous work has used C++ as a vehicle for similar
ideas [ET94].

The functional approach of Fran is justified by the fact that the authoring
medium for animations ought to “... give the author complete freedom of ex-
pression to say what an animation is, while invisibly handling details of discrete,
sequential presentation. In other words [it] must be declarative ...” [PEL9T].
This approach is familiar to the functional programmer; one can see it in in-
fluential work on ‘functional graphics’ [Hen82] some fifteen years ago as well as
in more recent approaches to describing music in a declarative form [H*96], to
name but two examples.

Fran provides two complementary modelling abstractions. First, Behavior
X is the type of time-dependent values of type X. A time-dependent image is a
graphical animation, for instance. On their own these behaviours are effectively
static: once initiated they evolve autonomously. In order to react to internal
or external events of various sorts, Fran provides the Event types, which can
model, for instance, user input, timers, and a form of concurrency between
components of an animation.

In this paper the Fran system is introduced in stages, and this is interleaved
with a description of a version of the lift problem in Section 3.1 together with
a top-down description of the lift simulation itself in Sections 3.3, 4.2, 5.2, 6.2
and 6.3. After completing the two floor case study, we examine in Section 7 how
the system is extended to accommodate an arbitrary number of floors, and also
give an overview of the animation of various graphical aspects of the system.

This is followed in Section 8 by a brief ‘look under the bonnet’ to see some of
the primitives used to define the operators used in the case study; this is followed
by an evaluation of Fran and how it might be developed. We also investigate
in Section 10 how the temporal properties of the system can be described in
a temporal logic framework, and how a verification of these properties might
proceed.

The introduction to Fran given here is intended to make the paper self-
contained; a more comprehensive introduction is available in the papers cited
above and in animated form at [EL97].

It is interesting to observe the positive benefits of embedding Fran in the
declarative framework of the Haskell programming language. Beyond providing
a natural home for a declarative modelling tool, the library is able to exploit
features such as polymorphism and type classes. In writing this simulation we
also have been able to exploit the power of the language in building general
‘terminating’ simulations (Section 9) and in writing general building-blocks for
graphical interface components (Section 7.1).

It is also interesting to observe the beneficial effect of working in a typed
environment: particularly when working with the libraries for Events, it was
often possible to find the right component of the library by its type. Moreover,
in nearly all cases, if a piece of code passed the type checker it was correct. It
is all too easy to imagine what would happen in an untyped or weakly- typed
language.

I am very grateful indeed to Conal Elliott who has answered my numerous
questions, made suggestions about improvements to programming style and
generally encouraged me in this enterprise. Erik Poll has made a number of very
useful comments on the presentation of the material, and finally I would like to
thank Howard Bowman, Helen Cameron and Peter King for their collaboration
in our work on describing multimedia artifacts which has led to my looking at
Fran.

2 Behaviours

This section looks at the way that continuously-evolving behaviours can be
described in Fran.

2.1 Time-dependent values: Behaviors

Behaviours or time-dependent values of type X are given by the type Behavior
X. These can be thought of as functions of type

Time -> X

where Time is the domain of real numbers.

In fact, the representation of Behavior will be more complex for two reasons.
First, the domain Time is more complicated than simply the reals in order to

support a more effective implementation of event-detection algorithms. Further
details are given in the paper [EH97] which provides a denotational semantics
for Fran. Secondly, it can be more effective to work with representations of
functions rather than with functions themselves. In both cases, however, the
simplified model of behaviour suffices for our purposes here.

How are the Behaviors implemented? The system uses sampling to find
values at various points, so that the animation produced is a sequence of distinct
images generated at the sampling points. A discussion of the subtleties of some
aspects of the implementation can be found in [EH97] as well as in the general
literature on animation.

Among the types we shall use in our solution are

type RealB = Behavior Double

and ImageB. An example value of type RealB is the wiggle illustrated here:

which is defined by
wiggle = sin (pi * time)

using the built in time :: RealB which can be thought of as the identity
function.!

Primitive graphical objects include circles, rectangles, polylines, polygons
and so forth. Pure graphical animations can be built from these and various
library functions, some of which are discussed now.

moveXY :: RealB -> RealB -> ImageB —-> ImageB 2 The first two arguments
give the x and y coordinates of the position that the ImageB should take
at each time. Note that it is not simply an image that is moved; it is an
ImageB that can itself be moving, changing shape or colour and so on.

over :: ImageB -> ImageB -> ImageB This supports the super-imposition
of the first image over the second, giving one form of concurrency — we
discuss this further in Section 5.3.

stretch :: RealB -> ImageB -> ImageB This scales an ImageB according
to a RealB, so allowing the size of animated objects to vary with time.

withColor :: ColorB -> ImageB -> ImageB The effect of this function is
to change the colour of an ImageB according to the time-dependent colour
supplied.

INote here how the type class mechanism of Haskell supports overloading and in this case
the use of sin and pi over RealB rather than Double. This overloading makes Fran programs
substantially more readable.

2The double colon, ::, should be read ‘is of type’, and the type here is a function taking
three arguments. Functions in Haskell are in fact ‘Curried’ so that strictly moveXY takes a
single argument and returns a function as result.

An example behaviour is given by

moveXY wiggle O picl
‘over*
moveXY O waggle pic2

in which picl “wiggles” from left to right, pic2 “waggles” (cosine) up and down
and ‘over* is the infix form of the function over, and so superimposes the two
ImageBs, which may themselves move, be composite, change colour and so forth.

Using these functions it is possible to build graphical animations of the non-
reactive aspects of a lift simulation, such as graphics of a lift whose doors are
opening, a lift whose doors are closing, a lift in motion and so forth, since these
are built from blocks of colour of changing size and position.

2.2 Rate-based animation

Suppose we want a numerical quantity £ to change with time as part of an
animation. One way of doing this is to specify f as a function of time, as indeed
we did with wiggle above. Fran provides an alternative, by which we specify
the rate of change (or derivative) of the quantity, £’ say, and using the atRate
function £ can be given as the integral of £’.

A simple example is given by position and velocity: a linear change in po-
sition is given by a constant velocity, for instance. This example reflects the
general observation that it is often easier to describe the derivative of a function
rather than the function itself, and we shall see an example of this in our lift
simulation.

3 The case study: lift simulation

This paper addresses the first of the problems set for the ‘Challenges for Ex-
ecutable Temporal Logics’ workshop, June 1998 [Exe98], namely that of sim-
ulating the operation of a lift (or elevator). The problem as originally stated
requires an arbitrary number of floors; in this paper we approach the problem
by giving the full solution for the two floor case, and then by giving the top-
level design for the general case. We have also stripped down the graphics to
concentrate on the control aspects of the problem, which in the case of Fran are
the aspects demanding the most effort to implement.

In our first attempt we control the operation of the lift using the mouse but-
tons. We show how to modify our solution to include a more general graphical
control scheme in Section 7.1.

3.1 The two floor problem

The aim is to provide a graphical animation of the operation of a lift between
two floors of a building. The lift can be called from the upper floor to request
travel downwards; a call from the lower floor is taken to be a request to travel
upwards. Because of this interpretation, there is no need to have buttons inside
the lift itself, and input is taken from the mouse buttons: a left button click
generates an ‘up’ request and the right a ‘down’. In the solution presented, the
lift is represented by a red blob, rather than any more complicated an animation.

There is a twist to the problem which makes its solution more complex than
might first be envisaged. This is the fact that while the lift is travelling upwards
there can be a further request to travel upwards, which can only be discharged by
a journey back down and then back up again. In other words, some “memory”
is required to solve even the case of a two-floor simulation, and shows that our
simplification contains the essential elements of the original problem.

3.2 The User argument

Any animation which uses time information in a non-trivial way, or which in-
teracts with the user will be defined as a function which takes a User argument
and, on the basis of this argument, returns a Behaviour of some sort. The User
argument consists of a timed stream of mouse button presses, key presses, mouse
positions and other user data. It also gives the time at which the animation
begins and other real-time information.

In order to exhibit such a user-driven animation in action we use the function

displayU :: (User -> ImageB) -> I0 ()

which ‘runs’ an animation, by supplying it with the user input stream as its
User argument, and produces primitive Haskell IO as a result.

3.3 Case study part 1: the top-level solution

We shall give the solution to the lift problem top-down, with the full code for
the solution appearing in the Appendix. At the top level we define a function
over a User argument, as explained in Section 3.2.

liftSim :: User -> ImageB
The simulation consists of a moving image of a lift,

liftSim u
= moveXY xPos yPos image

where xPos and image are constants.®> The definition of yPos and the auxiliary
behaviours and events which determine it are local to the definition of the func-
tion and thus appear in a where clause. Note that the result depends upon the
User argument u which will be used in a number of the definitions which follow.

As we explained in Section 2.2 it is often simpler to model phenomena by
derivative rather than directly, and this we do here for the yPos:

yPos = lower + atRate dy u

where the velocity — dy — is piecewise constant and can take one of three values:
zero, making the lift stationary; upRate, signifying that the lift is ascending and
downRate for descent. We have to look at how events are modelled to see how
dy is defined and this we do in the next section.

Observe also that the User argument u is passed to the atRate function to
provide the timing information — such as when the animation begins — needed
by the integration.

3In a more complex simulation image would itself evolve, depending upon the values of
certain parameters just as the position of the lift does. Its definition would follow the pattern
of that for yPos.

4 Events

We have seen in Section 2 how certain simple time-dependent behaviours can be
defined, but in order to define behaviours which respond to internal conditions
or external events the model needs to be extended by the Event type.

An Event X is a sequence of timed occurrences, each of which is associated
with a value of type X, so it is possible to think of Event X as a list of type

[(Time,X)]

sorted on its first components. Each of the elements, (t,x) say, is called an
event occurrence, with the whole structure being the event.* (As was the
case for behaviours, the implementation is somewhat more complicated than
this, but for the purposes of this paper this will suffice.)

4.1 Handling events

The system provides substantial support for handling and modifying occurrences
of events. In our model we only perform simple transformations on events.

Each event occurrence in a stream str of type Event a will have the form
(t,x), where t::Time and x::a. In every case we are interested in as a part
of the case study, our aim will be to convert the value x to a fixed value c: :w,
thus converting the pair to (t,c). The resulting stream will be written

str -=> ¢ :: Event w

The effect on a stream [(t0,x0),(t1,x1),...,(tn,xn),...] is therefore to
produce the result

[(t0,c),(t1l,c),...,(tn,c),...]

In the general case, the event occurrence produced by the event handler corre-
sponding to (t,x) may depend upon x,%, t and the remaining part of the Event
(after the expired event occurrences are removed). Further details of the event
handling mechanism handleE can be found in Section 8 and [PEL9T].

Streams of event occurrences can be merged, time-wise, using the operation

.l. :: Event a -> Event a -> Event a

These two capabilities allow us to proceed further with our lift case study.

4.2 Case study part 2: top-level events

The movement of the lift is controlled by a number of Events generated inter-
nally

stop, goUp, goDown :: Event ()

which are intended to give the obvious values to the velocity of the lift, dy. () is
the trivial type, whose only member is also denoted (); it is used in a situation
where the value contained in the Event occurrence is of no significance and only

4This terminology appears to be in conflict with the more usual ‘event’ (for ‘event occur-
rence’) and ‘(event) stream’ (for ‘event’); we will use the Fran terminology in this account.
5In which case the operation is similar to the map function over lists.

the Time value is relevant, as is the case here. The Events will themselves be
defined in Section 6.3.
The definition of dy uses setRate :: Event Double given by

setRate = stop -=> 0
.
goUp —-=> upRate
.

goDown -=> -downRate

The effect here is to convert all occurrences of stop to occurrences with the
value 0; all occurrences of goUp to event occurrences with the value upRate and
so on. These are merged, and so give an Event Double of the form

[(2.3 , upRate) , (4.9, 0) ,
(8.6 , downRate) ... 1]

in which upRate is the value returned at the occurrence at time 2.3 and so
forth. In order to define dy this timed stream of values needs to be converted
to a behaviour of the form

upRate ——

0

—-downRate —

and this we investigate now.

4.3 Converting Events to Behaviors

Behaviours evolve continuously in time, while (occurrences of) events take place
at discrete points in time. The power of the Fran model lies in the way in
which these two types are linked. This section addresses one simple way in
which Events can be converted to Behaviors; other more complex (and more
fundamental) ways are examined elsewhere [PEL97]. We need to convert the
event setRate to a behaviour. This is done by the Fran function

stepper :: a -> Event a -> Behavior a

which is parametrised by a starting value and an Event, and builds a piecewise
constant Behavior from these inputs. With the starting value 0 and the event
as above we have

upRate ——

0

-downRate —

so we define
dy = stepper O setRate

This shows the mechanism by which we convert streams of ‘internal messages’
— goUp and so forth — into a behaviour, and completes the top-level loop of the
simulation. We now need to look at how these messages are themselves defined,
but before that we investigate how to model system states.

5 States

5.1 Modelling states in Fran

As we mentioned in Section 3.1, the implementation of the lift will need to
contain some element of memory to keep track of requests for travel that are
still to be fulfilled. In an earlier version of the solution, a state monad [Wad95]
was used to model the state, but this caused complications, particularly in
conjunction with handling a User argument (which could itself be seen as giving
rise to a monad).

There is a much more straightforward view of a state variable of type X, and
that is as a Behavior X — an X value which varies with time. We thus get a
declarative model of state in Fran.

5.2 Case study part 3: pending requests as ‘variables’

Our model contains three ‘Boolean variables’

upPending, downPending,
pending :: Behavior Bool

which keep track of whether there is pending a request to travel up, down or
in either direction. pending is the pointwise disjunction of upPending and
downPending

pending = upPending ||* downPending

Here | |* is the lifting of the Boolean disjunction operation || to Behavior
Bool, other operations such as == are lifted to behaviours in a similar way
below.

The state upPending is defined from an Event using stepper as above.

upPending = stepper False (setUp .|. resetUp)

The initial value of the variable is False; it is set to True by a request to travel
upwards, and reset to False by the lift starting an upward journey, as signalled

by goUp:

setUp
resetUp

upButton -=> True
goUp -=> False

The variable downPending is defined in a similar way.

5.3 Concurrency in the Fran model

The model presented thus far appears to contain elements which evolve concur-
rently, in some sense at least. This section attempts to explain the nature of
the concurrency in the system.

Animations — including sound as well as images — can be combined using
the ‘over‘ function which places one animation on top of another, so we have
a form of concurrency here.

Examining the implementation developed thus far, we appear to have Behaviors
evolving in parallel in the lift simulation: the system contains state variables
which are controlled by messages from other parts of the system, for instance.
The concurrency here is completely implicit: various interdependent values —
both Behaviors and Events — are defined in a single scope, and so can be
thought of as evolving concurrently. This concurrency is clearly supported by
the sample/display model which underlies Fran.

6 Predicates

Looking at the case study thus far, we have a model of the lift in which external
stimuli are provided by mouse button presses. We need, however, to find a
way of generating the ‘control’ messages, goUp and so forth, which are of type
Event () from the Behaviors in the system. The way in which we convert
from behaviours to events gives the last piece of the Fran model used here.

predicate
Behavior Event

stepper

6.1 The predicate function

In order to complete the simulation, the crucial pieces of information which
we need are when we have arrived at the top or the bottom of lift shaft. We
could keep an internal record of the time of departure and calculate offsets from
that, but here we choose instead to check when we have arrived by means of a
logical condition on behaviours. This Behavior Bool can be made to generate
an event by means of the function

predicate :: BoolB -> User -> Event ()

which takes a Boolean behaviour and the User argument (for timing informa-
tion) and returns an Event. We have to look for an appropriate BoolB with
which to test having arrived at the top. Candidates include

yPos ==* constantB upper Given the sampling model, it is possible that the
system will miss the point at which the condition is True. A fuller discus-

sion of this issue can be found in [EH97], which makes it plain that im-
plementations of predicate have changed with different releases of Fran.

yPos >=* constantB upper This condition will possibly be True over an in-
terval of time, or in a more problematic way may become True arbitrarily
often over a short period of time, giving rise to “event burst” as it were.
This was indeed a problem in an early version of the solution.

yPos >=* constantB upper &&* dy >* 0 Adding the condition that the lift
is in motion — dy >* 0 — gives this condition a transitory property: we
shall see in Section 6.3 that the Event to which it gives rise will ensure that
it becomes False immediately afterwards, thus avoiding the problems of
the previous possibility.

We can now put together the final parts of the solution of the case study.

6.2 Case study part 4: conditions and predicates

The conditions of being at the top, and waiting stationary (at the top) are given
by

atTop, stopped, waitingTop :: BoolB
atTop = (yPos >=* upper)
stopped = (dy ==x 0)

waitingTop = atTop &&* stopped

The Event of arriving at the top is defined by

arriveTop :: Event ()
arriveTop = predicate (atTop &&* dy >x 0) u

and similar definitions can be found for the bottom case.

6.3 Case study part 5: control Events

Recall that the top level of the simulation is driven by the ‘control’ Events
goUp, stop and goDown. Now that we have a definition of the Event generated
by arriving at the top (and bottom) we can define the control events.

We have seen earlier that button presses have an indirect effect on the op-
eration of the lift by setting the pending variables; they can also have a direct
effect by setting it into motion when it is stationary. We therefore define

upButton, downButton, eitherButton :: Event ()

upButton = lbp u
downButton = rbp u
eitherButton = upButton .|. downButton

so that the eitherButton event corresponds to the press of either button.
When should the lift go down; that is, when should there be occurrences of
the goDown event? There are two cases.

e The lift can arrive at the top (arriveTop) when there is a request pending
for travel in either direction (pending), or,

10

e cither button can be pressed (eitherButton) while the lift is waiting at
the top (waitingTop).

In both cases there is a condition on the event occurrences. Using the function
whenE :: Event a -> BoolB -> Event a
the expression

ev ‘whenE‘ cond

selects from ev precisely those occurrences at which the condition cond is True.®

The definitions of goDown and stop are then

goDown = arriveTop ‘whenE‘ pending
.

eitherButton ‘whenE‘ waitingTop

stop = (arriveTop .|. arriveBottom)
‘whenE‘ notB pending

It is not hard to see that the lift will stop in the situation of arriving either at
the top or the bottom when no request is pending. goUp is defined by analogy
with goDown.

This completes the definition of the Fran lift simulation for a two floor lift.
The full code is contained in the Appendix.

7 Extending the implementation

This section outlines the way in which the implementation can be given an
graphical interface and how it can be extended to implement an n-floor lift.

7.1 Graphical interface

The lift is controlled by the mouse buttons in the solution presented thus far.
We can modify this to include two on-screen buttons, as in the illustration

= Fran =

Do

Up

which shows the lift in motion with a pending request for travel downwards.
This modification is made with minimal changes to the code presented thus far.
As well as having to modify the code already written, we have to add to the
code a block of buttons and for this we use a function buttonBlock of type

6whenE acts rather like the standard function filter over lists.

11

Geom ->

[(String,Event (),a)] ->
(User -> Event ()) —>
User ->

(ImageB,Event a)

where the arguments consist of

e The geometry of the buttons.

e Information for each button: its textual form, the event which resets it
and the value identifying it in the Event for the button block.

e The event which presses the button.
e The User input.

The result consists of the image of the block paired with the Event which it
generates.

This function is not part of the Fran library, and it is noteworthy that it can
be implemented from scratch in about a hundred lines of code. This is a benefit
of embedding the Fran library in a general purpose, higher-order language like
Haskell.

Taking input from on-screen buttons is obviously a way of animating the
input for the n-floor problem, to which we turn now.

7.2 The n-floor problem

The top-level design of the n-floor lift is similar to the two floor design given
here.

e Asin the two floor design, the lift is modelled using its velocity, dy. This
will be controlled using the stepper function as here.

e The state of the system is more complex than in the two floor case. It can
be modelled by two state variables which will be lists:

— the first represents the requests pending from inside the lift, and
— the second represents the requests pending from the floors of the
building.

In the two floor solution, the state variables such as upPending have only two
values. This means that when they are reset the new value is independent of
the current value of the state variable. This will not be the case for the state
variables here, and so we need to define a function

stateStepper :: (a -> b -> a) -> a -> Event b -> Behavior a
to manage the states. In the result of
stateStepper f x0 ev

the first value for the behaviour will be x0; subsequent values will be generated
from the values in ev — yO0, y1, ... say — thus: £ x0 yO (call this x1), £ x1 y1
and so forth, with the n+2nd value being £ xn yn where xn is the n+1st value
of the variable and yn the n+1st value in ev.”

"The function stateStepper is analogous to the scanl of the Haskell prelude.

12

8 A glimpse under the bonnet

Up to this point we have used a high-level and proper subset of the facilities
provided by Fran. Behaviours which evolve have been defined using stepper,
which turns an Event a — that is a timed sequence of values from type a — into
a piecewise-constant Behavior a. We have also handled event occurrences in a
simple-minded way, using the -=> operator to transform occurrences (t,v) of
the event ev into occurrences (t,c) of the event ev -=> c.

How in general can the occurrence of an event cause a change in behaviour;
how in general are events handled? In this section we describe the two opera-
tions handleE and untilB which provide a primitive interface to behaviors and
events, and we see as examples how to define stepper and ev -=> c from these
primitives.®

8.1 Handling Events

Recall from Section 4 that an Event a is a sequence of timed occurrences, each
of which has associated with it a value of type a. In general, three values
characterise an event occurrence:

e the time of the occurrence;
e the value of the occurrence, and

e the remainder of the Event, after removing the occurrences up to and
including the occurrence in question.

To handle an event occurrence, we transform these three values to a value, of
type b, say. This is accomplished by a function of type

Time -> a -> Event a -> b

and we can apply such a function to each occurrence in a stream of occurrences
to give a stream of occurrences of type b, that is an Event b. That is the effect
of the general event handler,

handleE :: Event a -> (Time -> a -> Event a -> b) -> Event b

As a special case of handleE in which the handler function is constant we define
-=> thus:

(-=>) :: Event a -> b -> Event b
ev -=> ¢ = ev ‘handleE‘ (_ _ _ -> c)

Also of interest is the Event-equivalent of map,

(==>) :: Event a -> (a -> b) -> Event b
ev ==> f = ev ‘handleE‘ (_ v _ -> f v)

which when applied to the timed stream [(t0,x0),(t1,x1),...,(tn,xn),...
and the function f gives the result [(t0,f x0),(t1,f x1),...,(tn,f xn),....

8This section is included for completeness of exposition, but obviously owes much to
[PEL9T].

13

8.2 Modifying Behaviors

How can one sequence behaviours, so that one follows another? A simple solu-
tion is provided by

seqB :: Behavior bv => bv -> Event () -> bv -> bv

so that seqB bhl ev bh2 behaves as bhl until the first occurrence of ev, and
after that behaves as bh2. One can also lift this sequencing to operate over
behaviours dependent upon a User argument to give

seqUB :: Behavior bv => (User -> bv) -> (User -> Event ()) ->
(User -> bv) -> (User —> bv)

and so forth. In fact, Fran provides a different primitive, untilB, which gener-
alises these. It is, however, instructive, to see how seqB is defined from untilB.
The function untilB has the type

Behavior bv => bv -> Event bv -> bv

and the effect of bh ‘untilB‘ ev is to behave as bh until the first occurrence
of the event ev; after that the behaviour is whatever value is returned by that
first event occurrence, which does indeed return a value of type bv. We can
then see that

seqB bhl ev bh2 = bhl ‘untilB‘ (ev -=> bh2)

so that seqB separates the event and the continuation behaviour which are
combined in the second argument to untilB. In a similar way, we define

seqUB ubl uev ub2
= \u -> ubl u ‘untilB‘ (nextUser_ uev u ==> ub?2)

where the expression nextUser_ uev u of type Event User gives a stream of
Users each aged to contain only those occurrences which follow the occurrence
in question. The effect of nextUser_ uev u ==> ub2 is thus to pass the aged
User to the User-lifted behaviour ub2, and so to continue the computation as
required.

8.3 Using handleE and untilB to define the stepper

The stepper produces piecewise constant behaviour from a stream of values of
type a and a starting value of that type.

stepper :: a -> Event a -> Behavior a

In what follows we build the result stepper start ev in stages. Initially, the
behaviour will be the constant behaviour with value start, that is

constantB start

If we think of ev as an infinite list, we then want recursively to call stepper on
(head ev) and (tail ev). We cannot do this directly, but we can indirectly
using handleE. The function

withRestE :: Event a -> Event (a,Event a)
withRestE ev = ev ‘handleE‘ (_ head tail -> (head,tail))

14

returns the stream of ‘head,tail’ pairs from the event occurrences in ev. To
apply stepper to each of these pairs, we ‘map’ it along withRestE ev using
the ==> operator, as follows

withRestE ev ==> uncurry stepper

where note that we have to uncurry the stepper function to accept its argument
as a pair rather than ans two separate arguments. Putting all the parts together,
we have

stepper start ev
= (constantB start) ‘untilB¢ (withRestE ev ==> uncurry stepper)

This example shows how the exception handling mechanism of hamdleE gives a
flexible way of dealing with Events — as timed streams of event occurrences —
and also how the primitive untilB turns a stream of Behaviors into a single
behaviour.

As we have seen, using the primitives handleE and untilB together with
various of their derivatives and a number of other utility programs such as
nextUser_ it is possible to define a variety of powerful programs; in the section
which follows we reflect on other aspects of using Fran.

9 Reflection

The solution presented in this paper is the result of a number of iterations which
reflect a growing understanding of the capabilities of the Fran library as well as
different approaches to the design of the simulation itself.

For instance, in an earlier design the components of the solution were rep-
resented as terminating behaviours, which were sequenced together to form the
overall simulation — a ‘monadic’ approach. Embedding Fran in a functional
language with general-purpose capabilities makes modelling these terminating
behaviours as pairs

(bv , Time -> User -> Event ())

a straightforward matter: the second components of these pairs are used to
signal the termination of the behaviour in the first component. Such behaviours
are sequenced using the analogue of seqUB from the previous section. This
‘monadic’ approach can be used in situations in which behaviours are built
from components which are not piecewise continuous, for example.

The solution we have presented here relies heavily on recursion. For example,
goUp depends upon pending and pending depends upon upPending which in
turn depends upon goUp. The implementation of Fran uses lazy evaluation
heavily, so the recursive definition of structures is possible (we have done it
here), but some recursions can lead to non-termination, and others to the system
locking up. This reflects a general phenomenon for which evidence is apparent
in earlier approaches to functional I/O (see, for example, [Tho90]) and which
led to the definition of sets of (monadic) combinators to handle I/O in a more
disciplined manner [Tho90, PH97].

15

10 Towards a verified lift implementation

This section sketches work in progress — namely giving a logical rendering of
aspects of Fran — by means of a discussion of the verification of the lift case
study.

10.1 Foundations

The Fran model addresses both continuous behaviour — by means of Behaviours
— and also discrete behaviour, through its Event types. Moreover, the discrete
and continuous behaviours will in general be mutually dependent, as illustrated
by the figure in Section 6. How can we describe the system we have built here,
and systems implemented in Fran in general?

An obvious candidate is a temporal logic [Eme90], either in a non-timed or
real- time form. A variant of interval temporal logic which addresses continuous
variation is the duration calculus [Zho94], and the mean-value duration calculus
[ZX94] also includes discrete events. In general it remains to be seen whether this
is the form of calculus most suited to reasoning about Fran systems, or whether
a calculus based on functions and lists of event occurrences or indeed some other
foundation is the most suitable. Certainly the function-based approach would
be closer to the denotational semantics of Fran [EH97].

10.2 Towards a temporal logic for Fran

We assume here a standard dense-time temporal logic with the usual connectives
of predicate logic and the modalities O, & and U (for ‘Until’), as well as adding
the modality A for ‘valid on some open interval beginning at the current time
point’.? All these modalities can be indexed with real-number bounds to give a
timed variant of the logic.

How are Fran-defined values to be rendered in the logic? We shall take the
view that Boolean behaviours are atomic temporal formulas!® and we will also
read Events as propositions which are true exactly at their occurrence points.

10.3 Verification conditions

The top level requirement of the lift can be stated as

O(upButton = <OgolUp) A
O(downButton = <$goDown) (PO)

that is ‘a request to travel is eventually discharged’. By indexing the & modali-
ties one also can put a constraint on the time taken for a request to be satisfied.

How can we argue for the validity of this requirement? As a first step we
can state an invariant which is a direct consequence of the definition of stepper
and (i):'!

9Because the interval is open, the current time point will not be included in it.

10This neglects the issues of termination; see [Tho95] for a general discussion of the axioma-
tisation of a functional programming language.

HWe refer to the program text in the Appendix by means of the labels (i), (ii) and so
on.

16

O(dy ==+ 0 V dy == upRate V
dy ==+ -DownRate) (P1)

with upRate > 0 and -DownRate < 0, so

O(dy ==+ 0 V dy >* 0 V dy <x 0) (P2)
We can also state an invariant on the position of the lift:

O(lower <= yPos A yPos <=% upper) (P3)

which is true initially since yPos starts at lower. How can we show that it is
valid? Consider a general time point up to which the constraint holds. By (P2)
and (ii) the yPos is either static, thus preserving the invariant, or changing.

Suppose that dy >* 0; now yPos is increasing and dy stays constant, with
the consequence that

(lower <=x yPos A yPos <=* upper A dy >* 0)
U arriveTop (P4)

by (iii).

We now need to verify that arriving at the top has the effect of stopping the
lift. How can this be stated? By the definitions of goDown and stop (at (iv))
one of these two will happen at the arrival point, so setting the rate to 0 or
-downRate. We have to be careful about a statement of when the rate is set'? —
it is here that we use the A operator which states that the rate is non-positive
only after the time point in question:

O(arriveTop = A(dy <=x 0)) (P5)

This is enough to ensure that the lift then descends, and so fulfills the invariant
(P3) in the case that dy >* 0. A symmetrical argument ensures the result in
the negative case, and so shows that (P3) is always the case.'®

A similar argument will show the validity of

O(waitingBottom V waitingTop V
QarriveBottom V OarriveTop) (P6)

Now, we can justify the validity of (P0). We show that
O(upButton = <goUp)

with an argument by cases according to which of the cases in the disjunction of
(P6) holds at the current point. The other conjunct of (P0) follows in a similar
way. The cases are as follows.

e In the case that waitingBottom holds at the current point, then by the
definition of goUp, this event holds immediately.

e Suppose that waitingTop holds. Motion of the lift downwards will begin
by the definition of goDown, and by the downward analogue of (P4) we
can infer that CGarriveBottom. This is the case that we consider next.

12 A naive statement has the gradient being both positive and non-positive simultaneously.
13 The argument here should be formalised as an induction of some sort; the duration calculus
suggests such principles for piecewise-constant functions like those defined by stepper.

17

e The effect of the upButton will have been to set upPending to True — by
(v) and properties of the stepper function — and so on arrival there will
be a pending request, so that goUp will be generated by the definition of
goUp in (iv).

e Finally, we consider the case that CarriveTop. The upButton will set
upPending to True. On arrival at the top this means that there is a
pending request, and so downward motion will begin. We can then argue
as in the previous case.

The arguments in this section can be bounded using the parameters of the lift
simulation; for instance, a journey will take (upper-lower)/upRate time units
to complete.

10.4 Commentary

The argument given in Section 10.3 is informal, but can be formalised. The main
novelty is the way in which predicate is handled, giving an Event when the lift
arrives at the top or bottom. The event occurrences in turn affect behaviours
through the stepper, and in formalising this we have used the A operator,
which implicitly gives the stepper graph the following form

upRate H

0

-downRate H

where a ‘(’ denotes an open end of an interval and a ‘]* a closed end, since, as
was explained earlier, we only expect the change in the stepped value to hold
after the step point.

It remains to be seen how verification for the general model will proceed.

—

[
/
(-

11 Conclusion

In this paper we have shown that Fran can be used to give a simulation of a lift,
and we have argued that it is well suited to the task both because of its declar-
ative model of the system and also because it is embedded in a general-purpose
functional programming language, namely Haskell. This allows extensions of
the library to be constructed with relatively small effort, and also allows those
extensions to use features of Haskell — such as higher-order functions, polymor-
phism and type classes (for overloading) — in an essential way.

We have also sketched a verification of the code using a temporal logic;
we expect to extend this work with a more thoroughgoing investigation of the
logical foundations of the Fran model.

18

References

[E*94] Conal Elliott et al. TBAG: A high-level framework for interactive,
animated 3D graphics applications. In Proceedings of SIGGRAPH ’9j.
ACM Press, 1994.

[EH97] Conal Elliott and Paul Hudak. Functional Reactive Animation. In
Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP97). ACM Press, 1997.

[ENI97] Conal Elliott. Composing Reactive Animations. Available from
www.research.microsoft.com/~conal/fran, 1997.

[Eme90] E Allen Emerson. Temporal and Modal Logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics. Elsevier/MIT Press, 1990.

[Exe98] Challenges for Executable Temporal Logics. Further details at
www.cs.waikato.ac.nz/~dsmith/CHALLENGES/, 1998.

[Gla98] The Glasgow Haskell — Compiler. Available from
www.dcs.glasgow.ac.uk/fp/software/ghc/, 1998.

[Ht96] Paul Hudak et al. Haskore music notation — An algebra of music.
Journal of Functional Programming, 6, 1996.

[Hen82] Peter Henderson. Functional Geometry. In Proceedings of the 1982
ACM Symposium on LISP and Functional Programming. ACM Press,
1982.

[Hug98] The Hugs System, Version 1.4. Available from
www.haskell.org/hugsi14, 1998.

[PEL97] John Peterson, Conal Elliott, and Gary Shu Ling. Fran Users’ Manual.
Available from www.haskell.org/fran, 1997.

[PHI97] John Peterson and Kevin Hammond, editors. Report on the Program-
ming Language Haskell, Version 1.4. www.haskell.org/report, 1997.

[Tho90] Simon Thompson. Interactive functional programs: a method and a
formal semantics. In D.A. Turner, editor, Research Topics in Functional
Programming, pages 249-285. Addison-Wesley, 1990.

[Tho95] Simon Thompson. A Logic for Miranda, Revisited. Formal Aspects of
Computing, 7, 1995.

[Wad95] Philip Wadler. Monads for functional programming. In Johan Jeuring
and Erik Meijer, editors, Advanced Functional Programming. Springer-
Verlag, Lecture Notes in Computer Science, 925, 1995.

[Zho94] Zhou Chaochen. Duration Calculi: An Overview. In Dines Bjgrner
et al., editors, Formal methods in programming and their applications.
Springer-Verlag, Lecture Notes in Computer Science, 735, 1994.

[2X94] Zhou Chaochen and Li Xiaoshan. A Mean Value Calculus of Durations.
In A.W. Roscoe, editor, A Classical Mind. Prentice-Hall, 1994.

19

Appendix: The complete program for the
floor lift

liftSim :: User -> ImageB
liftSim u
= moveXY xPos yPos image

where
image :: ImageB
image = stretch 0.3 circle
xPos,yPos,dy :: RealB
xPos = constantB 0

yPos = lower + atRate dy u
dy stepper O setRate

setRate :: Event Double

setRate = stop -=>0
.
goUp -=> upRate
.
goDown -=> -downRate

two

(ii)
(1)

atBottom, atTop, stopped, waitingBottom, waitingTop :: BoolB

atBottom = yPos <=% lower
atTop = yPos >=* upper
(dy ==x 0)

stopped

waitingBottom = atBottom &&* stopped
waitingTop = atTop &&* stopped

arriveBottom, arriveTop :: Event ()

arriveBottom = predicate (atBottom &&* dy <* 0) u
arriveTop predicate (atTop &&* dy >x 0) u

20

(iii)

upButton, downButton, eitherButton :: Event ()

upButton = 1lbp u
downButton = rbp u
eitherButton = upButton .|. downButton
upPending, downPending, pending :: Behavior Bool
pending = upPending | |* downPending
()

upPending = stepper False (setUp .|. resetUp)
downPending = stepper False (setDown .|. resetDown)
setUp, setDown :: Event Bool
setUp = upButton -=> True
setDown = downButton -=> True
resetUp, resetDown :: Event Bool
resetUp = goUp -=> False
resetDown = goDown -=> False
goDown, goUp, stop :: Event () (iv)
goDown = arriveTop ‘whenE‘ pending

.

eitherButton ‘whenE‘ waitingTop
goUp = arriveBottom ‘whenE‘ pending

.

eitherButton ‘whenE‘ waitingBottom
stop = (arriveTop .|. arriveBottom) ‘whenE‘ notB pending

21

