
Adding the axioms to AxiomTowards a system of automated reasoning in AldorErik Poll & Simon ThompsonComputing Laboratory, University of KentCanterbury, Kent, CT2 7NF, UKfE.Poll,S.J.Thompsong@ukc.ac.ukAbstractA number of combinations of theorem proving and computer alge-bra systems have been proposed; in this paper we describe another,namely a way to incorporate a logic in the computer algebra systemAxiom. We examine the type system of Aldor { the Axiom LibraryCompiler { and show that with some modi�cations we can use the de-pendent types of the system to model a logic, under the Curry-Howardisomorphism. We give a number of example applications of the logicwe construct.1 IntroductionSymbolic mathematical { or computer algebra { systems, such as Axiom[JS92], Maple and Mathematica, are in everyday use by scientists, engineersand indeed mathematicians, because they provide a user with techniquesof, say, integration which far exceed those of the person themselves, andmake routine many calculations which would have been impossible someyears ago. These systems are, moreover, taught as standard tools withinmany university undergraduate programmes and are used in support of bothacademic and commercial research.There are, however, drawbacks to the widespread use of automated sup-port of complex mathematical tasks, which has been widely noted: Fateman[Fat96] gives the graphic example of systems which will assume that a 6= 0on the basis that a = 0 has not been established. This can have poten-tially disastrous consequences for the naive user of the system or indeed, ifit occurs within a su�ciently complicated context, any user.Symbolic mathematics systems are also limited by their reliance on al-gebraic techniques. As Martin [Mar98] remarks, in performing operationsof analysis it might be a precondition that a function be continuous; such aproperty cannot be guaranteed by a computer algebra system alone.1

All this makes the combination of computer algebra with theorem prov-ing a topic of considerable interest: the logical capabilities of a theoremprover could be used to express the assumptions upon which an answer rests,and in critical cases be used to establish the truth of those assumptions.The literature contains a number of di�erent strategies proposed forcombining computer algebra and theorem proving; see, for instance, [Buc96,CH96, BCZ96]. This paper examines another proposal: that of using thetype system of the Axiom [JS92] computer algebra system to represent alogic, and thus to use the constructions of Axiom to handle the logic andrepresent proofs and propositions, in the same way as is done in theoremprovers based on type theory such as Nuprl [C+86] or Coq [Cor95].This paper particularly explores the recent Axiom Library Compiler,Aldor [W+95], which is unusual among computer algebra systems in be-ing strongly typed, and moreover in having a very powerful type system,including dependent types.The implementation of dependent types in Aldor is without evaluationof type expressions { so each type expression is its own normal form { andwe show how this limits the expressivity of the dependent types. We pro-pose a modi�cation of the Aldor system which allow the types to representthe propositions of a constructive logic, under the Curry-Howard correspon-dence. We argue that this integrates a logic into the Aldor system, and thuspermits a variety of logical extensions to Aldor, including adding pre- andpost-conditions to function speci�cations, axiomatisations to categories ofmathematical objects as well as the ability to reason about the objects inAxiom.The structure of the paper is as follows. Section 2 introduces Aldor, andmore details of Aldor dependent types appear in Section 3. We show howa logic can be de�ned in (a variant of) the Aldor system in Section 4 andSection 5 gives some example applications. We conclude with a discussionof related and future work.2 An introduction to AldorThe Axiom Library Compiler, Aldor [W+95] (previously known as AXIOM-XL or A]), provides the user with a powerful, general-purpose programminglanguage in which to model the structures of mathematics. This languageis functionally based and provides higher order-functions, generators (whichbear a strong relationship to list comprehensions) and other features of mod-ern functional languages like Standard ML [MTH90] and Haskell [PH97], aswell as being strongly typed.
2

2.1 The type system of AldorUnusually among languages for computer algebra, but in keeping with thefunctional school, Aldor is strongly typed, and each declaration of a bindingis accompanied by a declaration of the type of the value bound, as in theexamplea : Integer == 23;This contrasts with languages like Haskell in which types need not be de-clared explicitly since they can be deduced by the system.1 In Aldor typeshave to be declared explicitly since the type system has a variety of complexfeatures including the following.Overloading A single identi�er can be used to denote values of di�erenttype, such as Int -> Int and Int -> Bool -> Int.2 Some supportis provided for users to resolve overloading when that proves to benecessary.Coercions Some `courtesy' coercions are provided by the system automat-ically: these convert between multiple values (�a la LISP), cross prod-ucts and tuples. It is also possible to make explicit conversions { bymeans of the coerce function { from integers to
oating point numbersand so forth.Types as values The type Type is itself a type; it is by this means thatthe system supports functions over types, such asidType (ty : Type) : Type == ty; (1)and explicit polymorphism, as inid (ty : Type, x : ty) : ty == x; (2)This resembles the quanti�cation in System F in which functions candepend on type parameters, and in F! where functions can be de�nedfrom types to types. This is investigated further in Section 3.1.Dependent types Aldor permits functions to have dependent types, inwhich the type of a function result depends upon the value of a pa-rameter. An example is the function1Most Haskell programmers would, however, tend to give type declarations for theirde�nitions, since they serve both as an important check on the programmer's intention aswell as providing crucial documentation.2Note that this is a much more powerful overloading facility than that provided byHaskell type classes [PH97] in which overloaded functions have to be of the same arity.3

vectorSum : (n:Integer) -> Vector(n) -> Doublein which the result of a function application, sayvectorSum(34)has the type Vector(34) -> Double because its argument has thevalue 34. In a similar way, when the id function of de�nition (2) isapplied, its result type is determined by the type which is passed asits �rst argument.We discuss this aspect of the language in more detail in Section 3.Variables The system is not fully functional, containing as it does variableswhich denote storage locations. The presence of updatable variablesinside expressions can cause side-e�ects which make the elucidation oftypes considerably more di�cult.There is a separate question about the role of `mathematical' variablesin equations and the like, and the role that they play in the type systemof Axiom.Categories and domains These features which provide a form of dataabstraction are addressed in more detail in Section 2.2.The Aldor type system can thus be seen to be highly complex and we shallindeed see that other features such as macros (see Section 2.2) complicatethe picture further; one of the aspects of our work is to try to reach a moreformal description of (substantial parts of) the typing mechanism of Aldor.2.2 Categories and domainsAxiom is designed to be a system in which to represent and manipulatemathematical objects of various kinds, and support for this is given by theAldor type system. One can specify what it is to be a monoid, say, byde�ning the Category 3 called Monoid, thusMonoid : Category == BasicType with f (3)* : (%,%) -> %;1 : %; gThis states that for a structure over a type `%' to be a monoid it has tosupply two bindings; in other words a Category describes a signature. The�rst name in the signature is `*' and is a binary operation over the type `%';the second is an element of `%'.3There is no relation between Axiom's notion of category and the notion from categorytheory! 4

In fact we have stated slightly more than this, as Monoid extends the cat-egory BasicType which requires that the underlying type carries an equalityoperation.BasicType : Category == with f= : (%,%) -> Boolean; gWe should observe that this Monoid category does not impose any con-straints on bindings to `*' and `1': we shall revisit this example in Section5.2 below.Implementations of a category are abstract data types which are knownin Axiom as domains, and are de�ned as was the value a aboveIntegerAdditiveMonoid : Monoid == add f (4)Rep == Integer;import from Integer;(x:%) * (y:%) : % == per((rep x) + (rep y));1 : % == per 0; gThe category of the object being de�ned { Monoid { is the type of the domainwhich we are de�ning, IntegerAdditiveMonoid. The de�nition identi�esa representation type, Rep, and also uses the conversion functions rep andper which have the typesrep : % -> Rep per : Rep -> %In fact, Rep, rep and per are implemented using the macro mechanismof Aldor, and so are eliminated before type checking. Another aspect ofAldor which we intend to explore are ways in which the macro system canbe eliminated in favour of a properly type checked mechanism, and so inparticular support the type abstraction machinery introduced here.We have seen already that one category can extend another; this can beseen as a form of inheritance. Other operations are available on categories,including the Join operation which joins two categories, thus allowing aform of multiple inheritance.Categories provide a powerful abstraction mechanism which allows func-tions to be written which depend on the bindings in a category, and whichcan therefore be used over any domain which implements the category; thatis any abstract data type which implements the signature in question. Cat-egories resemble existential types [MP88, San95] but are implemented in asimilar way to Haskell classes in that the type of the operands in an appli-cation determine which implementation of the operation is used.One of the advantages of the Haskell type class mechanism is that it ispossible to declare a type as an instance of di�erent classes at di�erentpoints in a program. In the �rst version of Axiom this was not allowed, so5

that an Axiom domain would have a signature (this is category) �xed atthe point of de�nition and could not be extended to become an instanceof a newly-de�ned category; this is possible in Aldor, using a post factoextension. Details of this and other features can be found in [W+95].Categories can also be parametric, and depend upon value or type pa-rameters. We shall see an example of this in Section 3.1 below. We continueto explore the Aldor type system in the following section where we look inmore detail at the dependent types of the system.3 Dependent typesThe Aldor language contains dependent types, so that one can de�ne func-tions such as vectorSumwhich de�nes a sum function for vectors of arbitrarylength, of typevectorSum : (n:Integer) -> Vector(n) -> Doubleand a function append to join two vectors togetherappend : (n:Integer,m:Integer,Vector(n),Vector(m)) -> Vector(n+m)Given vectors of length two and three, vec2 and vec3, we can join themthusappend(2,3,vec2,vec3) : Vector(2+3)and we would expect to be able to �nd the sum of this vector by applyingvectorSum 5, thus(vectorSum 5) append(2,3,vec2,vec3)but this will fail to type check, since the argument is of type Vector(2+3),which is not equal to the expected type, namely Vector(5). This is becauseno evaluation takes place in type expressions in Aldor (nor indeed in theearlier version of Axiom).In Section 3.2 we discuss how the Aldor type mechanism can be modi�edto accommodate a more liberal evaluation strategy within the type checker.Before doing that we look at another example of the problems caused bythe failure of Aldor to evaluate type expressions.3.1 Types as valuesAnother example is provided by trying to formalise the notion from (math-ematical) category theory [Mac72], namely that of a functor. Speci�callywe are thinking of the types of the language as forming a category, whoseobjects are the types themselves, and an arrow from A to B is a function oftype A->B. What is a functor from type to itself? It has two components6

� a mapping F, say, from Type to Type; that is the object part of thefunctor; and� a mapping on functions which respects their types, so that the imageof an arrow a->a is an arrow (F a)->(F b).(There are also some logical constraints on the behaviour of the these map-pings; we cannot formalise these in Aldor.) How can this be formalised inAldor? We sayFunctor (F : Type -> Type) : Category == with f (5)map : (a:Type) -> (b:Type) -> (a->b) -> (F a) -> (F b)g;and we can show that the List functor, which builds the type List(a) fromthe type a, is an instance of Functor thus:listFunctor : Functor(List) == add f (6)map (a:Type)(b:Type)(f:a->b)(x:List(a)) : List(b)== if x=nil then nilelse cons (f (first(x)),(((map a) b) f) rest(x))g;which is the standard de�nition of map over lists.In a similar vein we can try to make idType (as de�ned in Section 2.1above) into an instance of Functor,Ident : Functor(idType) == add f (7)map (a:Type)(b:Type)(f:a->b)(x:idType(a)) : idType(b)== f xg;but this will fail to be type correct since the types idType(a) and a willnot be identi�ed as would be required for the application of f to x to bewell-typed.Observe, however, that (6) does type check. This is because List is aconstructor of types, that is the application List(a) is already fully evalu-ated, and so there is no problem in identifying it with other Type expressions.In the next section we examine possible modi�cations to the Aldor typemechanism to accommodate evaluation within type expressions.3.2 Investigating the Aldor dependent type mechanismWe are currently investigating ways in which the Aldor dependent typemechanism can be modi�ed to allow evaluation within type contexts as wellas within value contexts. A number of possibilities suggest themselves.7

� The type system provides the pretend conversion routine which con-verts or (type) casts any type to any other type,4 so that one canrewrite (7) as followsIdent : Functor(idType) == add f (8)map (a:Type)(b:Type)(f:a->b)(x:idType(a)) : idType(b)== (f (x pretend a) pretend idType(b))g;This achieves a result, but at some cost. Wherever we expect to needsome degree of evaluation, that has to be shadowed by a type cast;these casts are also potentially completely unsafe.� Another possibility is to suggest that the system is modi�ed to includecoercion functions which would provide conversion between type pairssuch as idType(a) and a. This suggestion could be implemented butwe envisage two di�culties with it.{ In all but the simplest of situations we will need to supply uniformly-de�ned families of coercions rather than single coercions. Thiswill substantially complicate an already complex mechanism.{ Coercions are currently not applied transitively: the e�ect of thisis to allow us to model single steps of evaluation but not to taketheir transitive closure.Putting these two facts together force us to conclude that e�ectivelymimicking the evaluation process as coercions is not a reasonable so-lution to the problem to hand.Instead of pursuing either of these solutions we are currently investigatingthe possibility of performing some evaluation during type checking. Clearlythis can cause the type checker to diverge in general, since in, for instance,an application of the form vectorSum(e) an arbitrary expression e:Nat willhave to be evaluated. We therefore intend to use current work on terminatingsystems of recursion [MA96] as well as restrictions on the types of expressionchosen for evaluation (as heuristics at least) to guide the form of evaluationthat is supported.4 Logic within AldorIn this section we discuss the Curry-Howard isomorphism between propo-sitions and types, and show that it allows us to embed a logic within theAldor type system, if dependent types are implemented to allow evaluationwithin type contexts.4The pretend function is used in the de�nition of rep and per in the current versionof Aldor; a more secure mechanism would be preferable.8

4.1 The Curry-Howard correspondenceUnder the Curry-Howard correspondence, logical propositions can be seenas types, and proofs can be seen as members of these types. Accountsof constructive type theories can be found in notes by Martin-L�of [ML84]amongst others [NPS90, Tho91]. Central to this correspondence are depen-dent types, which allow the representation of predicates and quanti�cation.We can summarise the correspondence in a tableProgramming LogicType FormulaProgram ProofProduct/record type (...,...) ConjunctionSum/union type \/ DisjunctionFunction type -> ImplicationDependent function type (x:A) -> B(x) Universal quanti�erDependent product type (x:A,B(x)) Existential quanti�erEmpty type Exit Contradictory propositionOne element type Triv True proposition: : : : : :Predicates (that is dependent types) can be constructed in a number ofdi�erent ways. We look at the example of the `less than' predicate over thenatural numbers.� A �rst approach is to give an explicit (primitive recursive) de�nitionof the type, which in Aldor might take the formlessThan(n:Nat,m:Nat) : Type == (9)if m=0 then Exitelse (if n=0 then Trivelse lessThan(n-1,m-1));� A second approach introduces them inductively as a generalisation ofthe algebraic types which appear in Haskell and SML. We might de�nethe less than predicate `<' of type Nat -> Nat -> Type by saying thatthere are two constructors for the type of the following signatureZeroLess : (n:Nat)(O < S n)SuccLess : (m:Nat)(n:Nat)((m < n) -> (S m < S n))This approach leads to a powerful style of proof in which inductions areperformed over the form of proof objects, that is the elements of typeslike (m < n), rather than over (say) the natural numbers, and such amethod makes much more manageable a proof of the transitivity of `<'over Nat, say. Inductive types have been used extensively in the typetheory community, see, for instance, [PM93].9

4.2 A logic within AldorWe need to examine whether the outline given in Section 4.1 amounts to aproper embedding of a logic within Aldor. We shall see that it places certainrequirements on the de�nition and the system.Most importantly, for a de�nition of the form (9) to work properly as ade�nition of a predicate we need an application like lessThan(9,3) to bereduced to Exit, hence we need to have evaluation of type expressions. Thisis a modi�cation of Aldor which we are currently investigating, as outlinedin Section 3. In the case of (9) the evaluation can be limited, since thescheme used is recognisable as terminating by, for instance, the algorithmof [MA96].The restriction to terminating (well-founded) recursions is also necessaryfor consistency of the logic. For the logic to be consistent, we need to requirethat not all types are inhabited, which is clearly related to the power of therecursion schemes allowed in Aldor. One approach is to expect users tocheck this for themselves: this has a long history, beginning with Hoare'saxiomatisation of the function in Pascal, but we would expect this to besupported with some automated checking of termination, which ensures thatpartially or totally unde�ned proofs are not permitted.Consistency also depends on the strength of the type system itself; asu�ciently powerful type system will be inconsistent as shown by Girard'sparadox [Gir72].5 Applications of an integrated logicIf we identify a logic within Aldor, how can it be used? There are variousapplications possible; we outline some here and for others one can refer to thenumber of implementations of type theories which already exist, includingNuprl [C+86] and Coq [Cor95].5.1 Pre- and Post-conditionsA more expressive type system allows programmers to give more accuratetypes to common functions, such as the function which indexes the elementsof a list.index : (l:List(t))(n:Nat)((n < length l) -> t)An application of index has three arguments: a list l and a natural numbern | as for the standard index function | and a third argument which isof type (n < length l), that is a proof that n is a legitimate index for thelist in question. This extra argument becomes a proof obligation whichmust be discharged when the function is applied to elements l and n.10

In a similar vein, it is possible to incorporate post-conditions into types,so that a sorting algorithm over lists might have the typesort : ((l:List(t))(List(t),Sorted(l))and so return a sorted list together with a proof that the list is Sorted.5.2 Adding axioms to the categories of AxiomIn de�nition (3), Section 2.2 we gave the category of monoids, Monoid,which introduces two operation symbols, * and 1. A monoid consists notonly of two operations, but of operations with properties. We can ensurethese properties hold by extending the de�nition of the category to includethree extra components which are proofs that 1 is a left and right unit for *and that * is associative, where we assume that `�' is the identity predicate:Monoid : Category == BasicType with f (10)* : (%,%) -> %;1 : %;leftUnit : (g:%) -> (1*g � g);rightUnit : (g:%) -> (g*l � g);assoc : (g:%,h:%,j:%) -> (g*(h*j) � (g*h)*j);gThe extension and join operations over categories will lift to become oper-ations of extension and join over the extended `logical' categories such as(10).5.3 Di�erent degrees of rigourOne can interpret the obligations given in Sections 5.1 and 5.2 with di�eringdegrees of rigour. Using the pretend function we can conjure up proofs ofthe logical requirements of (10); even in this case they appear as impor-tant documentation of requirements, and they are related to the lightweightformal methods of [DK98].Alternatively we can build fully-
edged proofs as in the numerous imple-mentations of constructive type theories mentioned above, or we can indeedadopt an intermediate position of proving properties seen as `crucial' whileasserting the validity of others.6 ConclusionWe have proposed a new way to combine { or rather, to integrate { com-puter algebra and theorem proving. Our proposal is similar to [BCZ96]11

and [Buc96] in that theorem proving capabilities are incorporated in a com-puter algebra system. (In the classi�cation of possible combinations of com-puter algebra and theorem proving of [CH96], all these are instance of the"subpackage" approach.) But the way in which we propose to do this iscompletely di�erent: we propose to exploit the expressiveness of the typesystem of Axiom, using the Curry-Howard isomorphism that also providesthe basis of theorem provers based on type theory such as Nuprl [C+86] orCoq [Cor95]. This provides a logic as part of the computer algebra system.Also, having the same basis as existing theorem provers such as the onesmentioned above should make it easier to interface with them.It is interesting to see a convergence of interests in type systems from anumber of points of view, namely� computer algebra,� type theory and theorem provers based on type theory,� functional programming.For instance, there seem to be many similarities between structuring mech-anisms used in these di�erent �elds: [BJK+97] argues for functors in thesense of the programming language ML as the right tool for structuringmathematical theories in Mathematica, and [San95] notes similarities be-tween the type system of Axiom, existential type [MP88], and Haskell classes[WB89]. More closely related to our proposal here, it is interesting to notethat constructive type theorists have added inductive types [PM93], givingtheir systems a more functional
avour, while functional programmers areshowing an interest in dependent types [Aug97] and languages without non-termination [Tur95]. We see our work as part of that convergence, bringingtype-theoretic ideas together with computer algebra systems, and thus pro-viding a bridge between symbolic mathematics and theorem proving.Our future work will involve investigating the type system of Aldor,and integrating a logical approach to Aldor types; this is complementary torecent work on formalising the Aldor system within Coq [Ale98]. We alsoexpect to apply our work in a case study with mathematical colleagues.AcknowledgementsWe are grateful to Stephen Watt of the University of Western Ontario andto Ursula Martin and her research group at the University of St Andrewsfor feedback on these ideas. We would also like to thank Nag for granting usaccess to the Aldor compiler, and in particular to Mike Dewar for his helpin facilitating this. Finally, we are indebted to Dominique Duval who �rstintroduced us to the type system of Aldor, and to EPSRC for supportingher visit to UKC under the MathFIT programme.12

References[Ale98] Guillaume Alexandre. De Aldor �a Zermelo. PhD thesis, Universit�eParis VI, 1998.[Aug97] Lennart Augustsson. Cayenne - a language with dependent types.www.cs.chalmers.se/~augustss/cayenne/, 1997.[BCZ96] Andrej Bauer, Edmund Clarke, and Xudong Zhao. Analytica - an exper-iment in combining theorem proving and symbolic computation. In Ar-ti�cial Intelligence and Symbolic Mathematical Computation (AISMC-3), volume 1138 of Lecture Notes in Computer Science, pages 21{37.Springer, 1996.[BJK+97] Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea Marin, ElenaTomuta, and Daniela Vasaru. A survey of the Theorema project. In Pro-ceedings of ISSAC'97 (International Symposium on Symbolic and Alge-braic Computation), pages 384{391. ACM, 1997.[Buc96] Bruno Buchberger. Symbolic Computation: Computer Algebra andLogic. In F. Baader and K.U. Schulz, editors, Frontiers of CombiningSystems, Applied Logic Series. Kluwer, 1996.[C+86] Robert L. Constable et al. Implementing Mathematics with the NuprlProof Development System. Prentice-Hall Inc., 1986.[CH96] Jaques Calmet and Karsten Homann. Classi�cation of communicationand cooperation mechanisms for logical and symbolic computation sys-tems. In FroCos'96, pages 133{146. Kluwer Series on Applied Logic,1996.[Cor95] C. Cornes et al. The Coq proof assistant reference manual, version 5.10.Rapport technique RT-0177, INRIA, 1995.[DK98] Martin Dunstan and Tom Kelsey. Lightweight Formal Methods for Com-puter Algebra Systems. To appear in the proceedings of ISSAC'98, 1998.[Fat96] Richard Fateman. Why computer algebra systems can't solve simpleequations. ACM SIGSAM Bulletin, 30, 1996.[Gir72] Jean-Yves Girard. Int�erpretation fonctionelle et �elimination descoupures dans l'arithm�etique d'ordre sup�erieure. Th�ese d'Etat, Uni-versit�e Paris VII, 1972.[JS92] Richard D. Jenks and Robert S. Sutor. Axiom: The Scienti�c Compu-tation System. Springer-Verlag, 1992.[MA96] D. McAllester and K. Arkondas. Walther recursion. In M.A. Robbieand J.K. Slaney, editors, CADE 13. Springer-Verlag, 1996.[Mac72] Saunders MacLane. Categories for the Working Mathematician.Springer-Verlag, 1972.[Mar98] Ursula Martin. Computers, reasoning and mathematical practice. InHelmut Schwichtenberg, editor, Computational Logic, Marktoberdorf1997. Springer-Verlag, 1998. To appear.13

[ML84] Per Martin-L�of. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.Based on a set of notes taken by Giovanni Sambin of a series of lecturesgiven in Padova, June 1980.[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have existentialtype. ACM Trans. on Prog. Lang. and Syst., 10(3):470{502, 1988.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Stan-dard ML. MIT Press, 1990.[NPS90] Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming inMartin-L�of 's Type Theory | An Introduction, volume 7 of InternationalSeries of Monographs on Computer Science. Oxford University Press,1990.[PH97] John Peterson and Kevin Hammond, editors. Report on the Program-ming Language Haskell, Version 1.4. www.haskell.org/report, 1997.[PM93] Christine Paulin-Mohring. Inductive de�nitions in the system Coq. InTyped Lambda Calculi and Applications, volume 664 of Lecture Notes inComputer Science, pages 328{345. Springer, 1993.[San95] Philip S. Santas. A type system for computer algebra. Journal of Sym-bolic Computation, 19(1{3):79{110, 1995.[Tho91] Simon Thompson. Type Theory and Functional Programming. AddisonWesley, 1991.[Tur95] David Turner. Elementary strong functional programming. In Func-tional Programming Languages in Education, volume 1022 of LectureNotes in Computer Science, pages 1{13. Springer, 1995.[W+95] Stephen M. Watt et al. AXIOM: Library Compiler User Guide. TheNumerical Algorithms Group Limited. First edition, reprinted with cor-rections, 1995.[WB89] Philip Wadler and Stephen Blott. Making ad hoc polymorphism lessad hoc. In Proceedings of the 16th ACM Symposium on Principles ofProgramming Languages. ACM Press, 1989.

14

