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Abstract

A number of combinations of theorem proving and computer alge-
bra systems have been proposed; in this paper we describe another,
namely a way to incorporate a logic in the computer algebra system
Axiom. We examine the type system of Aldor — the Axiom Library
Compiler — and show that with some modifications we can use the de-
pendent types of the system to model a logic, under the Curry-Howard
isomorphism. We give a number of example applications of the logic
we construct.

1 Introduction

Symbolic mathematical — or computer algebra — systems, such as Axiom
[JS92], Maple and Mathematica, are in everyday use by scientists, engineers
and indeed mathematicians, because they provide a user with techniques
of, say, integration which far exceed those of the person themselves, and
make routine many calculations which would have been impossible some
years ago. These systems are, moreover, taught as standard tools within
many university undergraduate programmes and are used in support of both
academic and commercial research.

There are, however, drawbacks to the widespread use of automated sup-
port of complex mathematical tasks, which has been widely noted: Fateman
[Fat96] gives the graphic example of systems which will assume that a # 0
on the basis that ¢« = 0 has not been established. This can have poten-
tially disastrous consequences for the naive user of the system or indeed, if
it occurs within a sufficiently complicated context, any user.

Symbolic mathematics systems are also limited by their reliance on al-
gebraic techniques. As Martin [Mar98] remarks, in performing operations
of analysis it might be a precondition that a function be continuous; such a
property cannot be guaranteed by a computer algebra system alone.



All this makes the combination of computer algebra with theorem prov-
ing a topic of considerable interest: the logical capabilities of a theorem
prover could be used to express the assumptions upon which an answer rests,
and in critical cases be used to establish the truth of those assumptions.

The literature contains a number of different strategies proposed for
combining computer algebra and theorem proving; see, for instance, [Buc96,
CHY96, BCZ96]. This paper examines another proposal: that of using the
type system of the Axiom [JS92] computer algebra system to represent a
logic, and thus to use the constructions of Axiom to handle the logic and
represent proofs and propositions, in the same way as is done in theorem
provers based on type theory such as Nuprl [CT86] or Coq [Cor95].

This paper particularly explores the recent Axiom Library Compiler,
Aldor [W195], which is unusual among computer algebra systems in be-
ing strongly typed, and moreover in having a very powerful type system,
including dependent types.

The implementation of dependent types in Aldor is without evaluation
of type expressions — so each type expression is its own normal form — and
we show how this limits the expressivity of the dependent types. We pro-
pose a modification of the Aldor system which allow the types to represent
the propositions of a constructive logic, under the Curry-Howard correspon-
dence. We argue that this integrates a logic into the Aldor system, and thus
permits a variety of logical extensions to Aldor, including adding pre- and
post-conditions to function specifications, axiomatisations to categories of
mathematical objects as well as the ability to reason about the objects in
Axiom.

The structure of the paper is as follows. Section 2 introduces Aldor, and
more details of Aldor dependent types appear in Section 3. We show how
a logic can be defined in (a variant of) the Aldor system in Section 4 and
Section 5 gives some example applications. We conclude with a discussion
of related and future work.

2 An introduction to Aldor

The Axiom Library Compiler, Aldor [W*95] (previously known as AXIOM-
XL or Af), provides the user with a powerful, general-purpose programming
language in which to model the structures of mathematics. This language
is functionally based and provides higher order-functions, generators (which
bear a strong relationship to list comprehensions) and other features of mod-
ern functional languages like Standard ML [MTH90] and Haskell [PH97], as
well as being strongly typed.



2.1 The type system of Aldor

Unusually among languages for computer algebra, but in keeping with the
functional school, Aldor is strongly typed, and each declaration of a binding
is accompanied by a declaration of the type of the value bound, as in the
example

a : Integer == 23;

This contrasts with languages like Haskell in which types need not be de-
clared explicitly since they can be deduced by the system.! In Aldor types
have to be declared explicitly since the type system has a variety of complex
features including the following.

Overloading A single identifier can be used to denote values of different
type, such as Int -> Int and Int -> Bool -> Int.? Some support
is provided for users to resolve overloading when that proves to be
necessary.

Coercions Some ‘courtesy’ coercions are provided by the system automat-
ically: these convert between multiple values (¢ la LISP), cross prod-
ucts and tuples. It is also possible to make explicit conversions — by
means of the coerce function — from integers to floating point numbers
and so forth.

Types as values The type Type is itself a type; it is by this means that
the system supports functions over types, such as

idType (ty : Type) : Type == ty; ¢D)
and explicit polymorphism, as in
id (ty : Type, x : ty) : ty == x; 2

This resembles the quantification in System F in which functions can
depend on type parameters, and in F where functions can be defined
from types to types. This is investigated further in Section 3.1.

Dependent types Aldor permits functions to have dependent types, in
which the type of a function result depends upon the value of a pa-
rameter. An example is the function

!Most Haskell programmers would, however, tend to give type declarations for their
definitions, since they serve both as an important check on the programmer’s intention as
well as providing crucial documentation.

2Note that this is a much more powerful overloading facility than that provided by
Haskell type classes [PH97] in which overloaded functions have to be of the same arity.



vectorSum : (n:Integer) -> Vector(n) -> Double
in which the result of a function application, say
vectorSum(34)

has the type Vector(34) -> Double because its argument has the
value 34. In a similar way, when the id function of definition (2) is
applied, its result type is determined by the type which is passed as
its first argument.

We discuss this aspect of the language in more detail in Section 3.

Variables The system is not fully functional, containing as it does variables
which denote storage locations. The presence of updatable variables
inside expressions can cause side-effects which make the elucidation of
types considerably more difficult.

There is a separate question about the role of ‘mathematical’ variables
in equations and the like, and the role that they play in the type system
of Axiom.

Categories and domains These features which provide a form of data
abstraction are addressed in more detail in Section 2.2.

The Aldor type system can thus be seen to be highly complex and we shall
indeed see that other features such as macros (see Section 2.2) complicate
the picture further; one of the aspects of our work is to try to reach a more
formal description of (substantial parts of) the typing mechanism of Aldor.

2.2 Categories and domains

Axiom is designed to be a system in which to represent and manipulate
mathematical objects of various kinds, and support for this is given by the
Aldor type system. One can specify what it is to be a monoid, say, by
defining the Category 3 called Monoid, thus

Monoid : Category == BasicType with { (3)
* 0 Chyh) => %;
1: % }

This states that for a structure over a type ‘%4’ to be a monoid it has to
supply two bindings; in other words a Category describes a signature. The
first name in the signature is ‘*’ and is a binary operation over the type ‘%’;
the second is an element of ‘%’ .

3There is no relation between Axiom’s notion of category and the notion from category
theory!



In fact we have stated slightly more than this, as Monoid extends the cat-
egory BasicType which requires that the underlying type carries an equality
operation.

BasicType : Category == with {
= : (%,%) -> Boolean; }

We should observe that this Monoid category does not impose any con-
straints on bindings to ‘*’ and ‘1’: we shall revisit this example in Section
5.2 below.

Implementations of a category are abstract data types which are known
in Axiom as domains, and are defined as was the value a above

IntegerAdditiveMonoid : Monoid == add { (4)
Rep == Integer;
import from Integer;

(x:%) * (y:%) : % == per((rep x) + (rep y));
1: 9% == per 0; }

The category of the object being defined — Monoid — is the type of the domain
which we are defining, IntegerAdditiveMonoid. The definition identifies
a representation type, Rep, and also uses the conversion functions rep and
per which have the types

rep : % -> Rep per : Rep -> %

In fact, Rep, rep and per are implemented using the macro mechanism
of Aldor, and so are eliminated before type checking. Another aspect of
Aldor which we intend to explore are ways in which the macro system can
be eliminated in favour of a properly type checked mechanism, and so in
particular support the type abstraction machinery introduced here.

We have seen already that one category can extend another; this can be
seen as a form of inheritance. Other operations are available on categories,
including the Join operation which joins two categories, thus allowing a
form of multiple inheritance.

Categories provide a powerful abstraction mechanism which allows func-
tions to be written which depend on the bindings in a category, and which
can therefore be used over any domain which implements the category; that
is any abstract data type which implements the signature in question. Cat-
egories resemble existential types [MP88, San95] but are implemented in a
similar way to Haskell classes in that the type of the operands in an appli-
cation determine which implementation of the operation is used.

One of the advantages of the Haskell type class mechanism is that it is
possible to declare a type as an instance of different classes at different
points in a program. In the first version of Axiom this was not allowed, so



that an Axiom domain would have a signature (this is category) fixed at
the point of definition and could not be extended to become an instance
of a newly-defined category; this is possible in Aldor, using a post facto
extension. Details of this and other features can be found in [W95].

Categories can also be parametric, and depend upon value or type pa-
rameters. We shall see an example of this in Section 3.1 below. We continue
to explore the Aldor type system in the following section where we look in
more detail at the dependent types of the system.

3 Dependent types

The Aldor language contains dependent types, so that one can define func-
tions such as vectorSum which defines a sum function for vectors of arbitrary
length, of type

vectorSum : (n:Integer) -> Vector(m) -> Double
and a function append to join two vectors together
append : (n:Integer,m:Integer,Vector(n),Vector(m)) -> Vector(n+m)

Given vectors of length two and three, vec2 and vec3, we can join them
thus

append(2,3,vec2,vec3) : Vector(2+3)

and we would expect to be able to find the sum of this vector by applying
vectorSum 5, thus

(vectorSum 5) append(2,3,vec2,vec3)

but this will fail to type check, since the argument is of type Vector (2+3),
which is not equal to the expected type, namely Vector(5). This is because
no evaluation takes place in type expressions in Aldor (nor indeed in the
earlier version of Axiom).

In Section 3.2 we discuss how the Aldor type mechanism can be modified
to accommodate a more liberal evaluation strategy within the type checker.
Before doing that we look at another example of the problems caused by
the failure of Aldor to evaluate type expressions.

3.1 Types as values

Another example is provided by trying to formalise the notion from (math-
ematical) category theory [Mac72], namely that of a functor. Specifically
we are thinking of the types of the language as forming a category, whose
objects are the types themselves, and an arrow from A to B is a function of
type A->B. What is a functor from type to itself? It has two components



e a mapping F, say, from Type to Type; that is the object part of the
functor; and

e a mapping on functions which respects their types, so that the image
of an arrow a->a is an arrow (F a)->(F b).

(There are also some logical constraints on the behaviour of the these map-
pings; we cannot formalise these in Aldor.) How can this be formalised in
Aldor? We say

Functor (F : Type -> Type) : Category == with { (5)
map : (a:Type) -> (b:Type) -> (a->b) -> (F a) -> (F b)

}s

and we can show that the List functor, which builds the type List (a) from
the type a, is an instance of Functor thus:

listFunctor : Functor(List) == add { (6)
map (a:Type) (b:Type) (f:a->b) (x:List(a)) : List(b)
== if x=nil then nil
else cons ( £ (first(x)),
(((map a) b) f) rest(x))

s

which is the standard definition of map over lists.
In a similar vein we can try to make idType (as defined in Section 2.1
above) into an instance of Functor,

Ident : Functor(idType) == add { (7
map (a:Type) (b:Type) (f:a->b) (x:idType(a)) : idType(b)

s

but this will fail to be type correct since the types idType(a) and a will
not be identified as would be required for the application of £ to x to be
well-typed.

Observe, however, that (6) does type check. This is because List is a
constructor of types, that is the application List (a) is already fully evalu-
ated, and so there is no problem in identifying it with other Type expressions.

In the next section we examine possible modifications to the Aldor type
mechanism to accommodate evaluation within type expressions.

3.2 Investigating the Aldor dependent type mechanism

We are currently investigating ways in which the Aldor dependent type
mechanism can be modified to allow evaluation within type contexts as well
as within value contexts. A number of possibilities suggest themselves.



e The type system provides the pretend conversion routine which con-
verts or (type) casts any type to any other type,® so that one can
rewrite (7) as follows

Ident : Functor(idType) == add { (8
map (a:Type) (b:Type) (f:a->b) (x:idType(a)) : idType(b)

== (f (x pretend a) pretend idType(b))
}s

This achieves a result, but at some cost. Wherever we expect to need
some degree of evaluation, that has to be shadowed by a type cast;
these casts are also potentially completely unsafe.

e Another possibility is to suggest that the system is modified to include
coercion functions which would provide conversion between type pairs
such as idType(a) and a. This suggestion could be implemented but
we envisage two difficulties with it.

— In all but the simplest of situations we will need to supply uniformly-
defined families of coercions rather than single coercions. This
will substantially complicate an already complex mechanism.

— Coercions are currently not applied transitively: the effect of this
is to allow us to model single steps of evaluation but not to take
their transitive closure.

Putting these two facts together force us to conclude that effectively
mimicking the evaluation process as coercions is not a reasonable so-
lution to the problem to hand.

Instead of pursuing either of these solutions we are currently investigating
the possibility of performing some evaluation during type checking. Clearly
this can cause the type checker to diverge in general, since in, for instance,
an application of the form vectorSum(e) an arbitrary expression e:Nat will
have to be evaluated. We therefore intend to use current work on terminating
systems of recursion [MA96] as well as restrictions on the types of expression
chosen for evaluation (as heuristics at least) to guide the form of evaluation
that is supported.

4 Logic within Aldor

In this section we discuss the Curry-Howard isomorphism between propo-
sitions and types, and show that it allows us to embed a logic within the
Aldor type system, if dependent types are implemented to allow evaluation
within type contexts.

“The pretend function is used in the definition of rep and per in the current version
of Aldor; a more secure mechanism would be preferable.



4.1 The Curry-Howard correspondence

Under the Curry-Howard correspondence, logical propositions can be seen
as types, and proofs can be seen as members of these types. Accounts
of constructive type theories can be found in notes by Martin-L6f [ML84]
amongst others [NPS90, Tho91]. Central to this correspondence are depen-
dent types, which allow the representation of predicates and quantification.
We can summarise the correspondence in a table

Programming Logic
Type Formula
Program Proof
Product/record type Coveyend) Conjunction
Sum/union type \/ Disjunction
Function type -> Implication
Dependent function type (x:A) -> B(x) Universal quantifier
Dependent product type (x:A,B(x)) Existential quantifier
Empty type Exit Contradictory proposition
One element type Triv True proposition

Predicates (that is dependent types) can be constructed in a number of
different ways. We look at the example of the ‘less than’ predicate over the
natural numbers.

e A first approach is to give an explicit (primitive recursive) definition
of the type, which in Aldor might take the form

lessThan(n:Nat,m:Nat) : Type == (9
if m=0 then Exit
else (if n=0 then Triv
else lessThan(n-1,m-1));

e A second approach introduces them inductively as a generalisation of
the algebraic types which appear in Haskell and SML. We might define
the less than predicate ‘<’ of type Nat -> Nat -> Type by saying that
there are two constructors for the type of the following signature

ZeroLess : (n:Nat)(0 < S n)
SuccLess : (m:Nat)(n:Nat)((m < n) -> (Sm < S n))

This approach leads to a powerful style of proof in which inductions are
performed over the form of proof objects, that is the elements of types
like (m < n), rather than over (say) the natural numbers, and such a
method makes much more manageable a proof of the transitivity of ‘<’
over Nat, say. Inductive types have been used extensively in the type
theory community, see, for instance, [PM93].



4.2 A logic within Aldor

We need to examine whether the outline given in Section 4.1 amounts to a
proper embedding of a logic within Aldor. We shall see that it places certain
requirements on the definition and the system.

Most importantly, for a definition of the form (9) to work properly as a
definition of a predicate we need an application like lessThan(9,3) to be
reduced to Exit, hence we need to have evaluation of type expressions. This
is a modification of Aldor which we are currently investigating, as outlined
in Section 3. In the case of (9) the evaluation can be limited, since the
scheme used is recognisable as terminating by, for instance, the algorithm
of [MA96].

The restriction to terminating (well-founded) recursions is also necessary
for consistency of the logic. For the logic to be consistent, we need to require
that not all types are inhabited, which is clearly related to the power of the
recursion schemes allowed in Aldor. One approach is to expect users to
check this for themselves: this has a long history, beginning with Hoare’s
axiomatisation of the function in Pascal, but we would expect this to be
supported with some automated checking of termination, which ensures that
partially or totally undefined proofs are not permitted.

Consistency also depends on the strength of the type system itself; a
sufficiently powerful type system will be inconsistent as shown by Girard’s
paradox [Gir72].

5 Applications of an integrated logic

If we identify a logic within Aldor, how can it be used? There are various
applications possible; we outline some here and for others one can refer to the
number of implementations of type theories which already exist, including
Nuprl [C*86] and Coq [Cor95].

5.1 Pre- and Post-conditions

A more expressive type system allows programmers to give more accurate
types to common functions, such as the function which indexes the elements
of a list.

index : (1:List(t)) (n:Nat)((n < length 1) -> t)

An application of index has three arguments: a list 1 and a natural number
n — as for the standard index function — and a third argument which is
of type (n < length 1), that is a proof that n is a legitimate index for the
list in question. This extra argument becomes a proof obligation which
must be discharged when the function is applied to elements 1 and n.

10



In a similar vein, it is possible to incorporate post-conditions into types,
so that a sorting algorithm over lists might have the type

sort : ((1:List(t))(List(t),Sorted(1))

and so return a sorted list together with a proof that the list is Sorted.

5.2 Adding axioms to the categories of Axiom

In definition (3), Section 2.2 we gave the category of monoids, Monoid,
which introduces two operation symbols, * and 1. A monoid consists not
only of two operations, but of operations with properties. We can ensure
these properties hold by extending the definition of the category to include
three extra components which are proofs that 1 is a left and right unit for *

and that * is associative, where we assume that ‘=’ is the identity predicate:
Monoid : Category == BasicType with { (10)
o (b, h) => hs
1%

leftUnit : (g:%) -> (lxg = g);
rightUnit : (g:%) -> (g*l = g);
assoc 2 (gihohih, %) => ( gx(hxj) = (gxh)*j );

}

The extension and join operations over categories will lift to become oper-
ations of extension and join over the extended ‘logical’ categories such as
(10).

5.3 Different degrees of rigour

One can interpret the obligations given in Sections 5.1 and 5.2 with differing
degrees of rigour. Using the pretend function we can conjure up proofs of
the logical requirements of (10); even in this case they appear as impor-
tant documentation of requirements, and they are related to the lightweight
formal methods of [DK98].

Alternatively we can build fully-fledged proofs as in the numerous imple-
mentations of constructive type theories mentioned above, or we can indeed
adopt an intermediate position of proving properties seen as ‘crucial’ while
asserting the validity of others.

6 Conclusion

We have proposed a new way to combine — or rather, to integrate — com-
puter algebra and theorem proving. Our proposal is similar to [BCZ96]

11



and [Buc96] in that theorem proving capabilities are incorporated in a com-
puter algebra system. (In the classification of possible combinations of com-
puter algebra and theorem proving of [CH96], all these are instance of the
"subpackage” approach.) But the way in which we propose to do this is
completely different: we propose to exploit the expressiveness of the type
system of Axiom, using the Curry-Howard isomorphism that also provides
the basis of theorem provers based on type theory such as Nuprl [C*86] or
Coq [Cor95]. This provides a logic as part of the computer algebra system.
Also, having the same basis as existing theorem provers such as the ones
mentioned above should make it easier to interface with them.

It is interesting to see a convergence of interests in type systems from a
number of points of view, namely

e computer algebra,
e type theory and theorem provers based on type theory,
e functional programming.

For instance, there seem to be many similarities between structuring mech-
anisms used in these different fields: [BJK197] argues for functors in the
sense of the programming language ML as the right tool for structuring
mathematical theories in Mathematica, and [San95] notes similarities be-
tween the type system of Axiom, existential type [MP88], and Haskell classes
[WBB89]. More closely related to our proposal here, it is interesting to note
that constructive type theorists have added inductive types [PM93], giving
their systems a more functional flavour, while functional programmers are
showing an interest in dependent types [Aug97] and languages without non-
termination [Tur95]. We see our work as part of that convergence, bringing
type-theoretic ideas together with computer algebra systems, and thus pro-
viding a bridge between symbolic mathematics and theorem proving.

Our future work will involve investigating the type system of Aldor,
and integrating a logical approach to Aldor types; this is complementary to
recent work on formalising the Aldor system within Coq [Ale98]. We also
expect to apply our work in a case study with mathematical colleagues.
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