
Bowman, Howard, Faconti, Giorgio, Katoen, J-P., Latella, D. and Massink,
M. (1998) Automatic Verification of a Lip-Synchronisation Algorithm Using
UPPAAL - Extended Version. In: Groote, J.F. and Luttik, B. and van Warnel,
J., eds. FMICS'98, Third International Workshop on Formal Methods for
Industrial Crtical Systems. CWI, pp. 97-124. ISBN 90-6196-480-6.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21658/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Also available as: H. Bowman, G. Faconti, J-P Katoen, D. Latella and M. Massink `Using UPPAAL for the Specification and Verification

of a Lip-Sync Protocol' ERCIM Research Report 07/98-R054, July 1998.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21658/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Automatic Veri�cation of a Lip SynchronisationAlgorithm Using UPPAAL- Extended Version - �H. Bowman y G. Faconti z J-P. Katoen x D. Latella {M. Massink kAbstractWe present the formal speci�cation and veri�cation of a lip synchronisationalgorithm using the real-time model checker UPPAAL. A number of speci�cationsof this algorithm can be found in the literature, but this is the �rst automaticveri�cation. We take a published speci�cation of the algorithm, code it up inthe UPPAAL timed automata notation and then verify whether the algorithmsatis�es the key properties of jitter and skew. The veri�cation reveals some
awsin the algorithm. In particular, it shows that for certain sound and video streamsthe algorithm can timelock before reaching a prescribed error state.1 IntroductionIt is now well recognised that the next generation of distributed systems will be dis-tributed multimedia systems, supporting multimedia applications such as, video con-ferencing. Importantly though, multimedia imposes a number of new requirements ondistributed computing, not least of which is the need to ensure \timely" transmission�This paper has been presented at the 3rd Int. ERCIM/FMICS Workshop, Amsterdam, May1998, and it can be found in: Jan Friso Groote, Bas Luttik and Jos van Wamel (Eds.) Proceedingsof the Third International Workshop on Formal Methods for Industrial Critical Systems, CWI, TheNetherlands, 1998.yComputing Lab., U. of Kent, Canterbury, Kent, CT2 7NF, UK. Currently on leave at CNUCEunder the support of the ERCIM Fellowship Programme.zCNR-Istituto CNUCE, Via S. Maria 36, 56126, Pisa, Italy.xLehrstuhl f�ur Informatik VII, U. Erlangen, D-91058 Erlangen, Germany.{CNR-Istituto CNUCE, Via S. Maria 36, 56126, Pisa, Italy.kDept. of Computer Science, U. of York, UK. Supported by the TACIT network under the Euro-pean Union TMR Programme, contract ERB FMRX CT97 0133.

Bowman, Faconti, Katoen, Latella, Massinkand presentation of multimedia data, e.g. ensuring that the end-to-end timing de-lay between transmitting and presenting video frames stays within acceptable bounds.Consequently, there is signi�cant interest in how to determine that multimedia systemssatisfy their real-time requirements (which, in the distributed multimedia systems �eld,are typically categorized as Quality Of Service (QOS) properties).Furthermore, it would be advantageous if the real-time properties of systems couldbe analysed during the early stages of system development. This prevents the costlyscenario of constructing a �nished system only to �nd that it doesn't meet its real-time requirements. Formal speci�cation and veri�cation o�ers great potential in thisrespect.Consequently, a number of researchers have considered techniques for the speci�ca-tion [3, 10, 17, 9] and veri�cation [5] of multimedia systems. One contribution of thisbody of work is to identify a number of canonical examples of multimedia systems, e.g.a multimedia stream and a lip synchronisation algorithm [3]. The latter is particu-larly important as it o�ers a non-trivial example of real-time synchronisation betweencontinuous media.The lip-sync example was �rst described in the synchronous language Esterel [18].Then speci�cations in a number of di�erent formalisms were presented, e.g. in a timedLOTOS [17], in a dual language approach, LOTOS/QTL, [4, 3] and in Timed CSP[9]. Typically, these speci�cations describe the algorithm in their chosen formalismand then postulate that it satis�es certain timing requirements. However apart from[9], where some properties are proved by hand, no formal veri�cation of the postulatedproperties exist.This paper responds to this de�ciency by considering formal veri�cation of the lip-sync algorithm using the real-time model checker UPPAAL [12]. The model checkingproblem is to determine whether a system (usually described as a network of communi-cating automata) satis�es a particular temporal logic property. In our case, the systemwill be described in a timed automata notation and the properties will be de�ned in atimed temporal logic. Such automatic veri�cation is potentially far more e�cient thanthe complex hand proofs considered in [9].One of the goals of this paper is to �nd out for which streams this protocol behavescorrectly, i.e. maintains lip synchronisation or signals a proper error when the syn-chronisation requirements are not met. The performed veri�cation reveals some
awsin the algorithm. In particular, it shows that for certain sound and video streams thealgorithm can timelock before reaching a prescribed error state.Structure of the paper. Section 2 introduces the lip-sync problem. Section 3 in-troduces the UPPAAL tool suite. Section 4 considers how streams with varying jitterbehaviour can be de�ned. Section 5 discusses the important issue of how to expresstimeout behaviour in UPPAAL. Section 6 presents the UPPAAL speci�cation of thealgorithm. Section 7 considers the results of our veri�cation and section 8 gives aconcluding discussion.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL2 The Lip Synchronisation Problem2.1 BackgroundIt is typically argued that the incorporation of multimedia enforces three new require-ments on distributed systems:-� Continuous Interaction. Traditionally, distributed systems communicationparadigms involve interaction of a logically singular character, e.g. a remote pro-cedure call. However, the advent of multimedia means that this is not su�cient.In particular, interaction of an \ongoing" nature must be provided, e.g. contin-uous transmission of video frames in a video conferencing application. Such anongoing interaction is called a stream (the term
ow is also often used [13]).� Quality of Service. QoS requirements have to be associated with such continuousinteractions. For example, in a video conferencing application, if the end-to-endlatency delay between the generation of frames and their presentation becomestoo great the sense of simultaneous interaction will be lost. Typical quality ofservice properties include: end-to-end latency between the generation of packetsand their presentation (which we simply call latency), throughput , i.e. the rate atwhich packets are presented and jitter , which concerns the variability of delay,we consider it further in subsection 2.2.� Real-time Synchronisation. It is also often necessary to synchronise multiplestreams; lip-synchronisation is just such an example. Application speci�c real-time synchronisation also arises, e.g. if captions need to be presented at particularpoints in a video presentation.A veri�cation using UPPAAL of a multimedia stream with associated quality ofservice parameters was presented in [5]. It embraces the �rst two of the above require-ments. Here we build upon this previous work by considering UPPAAL veri�cation inthe context of the third requirement.2.2 Jitter, Drift and SkewA number of key real-time properties can be used to quantify the quality of synchronisa-tion between audio and video. This subsection introduces these properties. One reasonfor doing this is to clarify terminology which has previously been used inconsistently.Jitter. In this paper we will only be concerned with bounded jitter, i.e. placing upperand lower bounds on the acceptable level of jitter. In a statistical setting we canalso obtain a measure of variability of presentation times by considering the statisticalvariance of latency. However, such an interpretation is beyond the scope of the tools

Bowman, Faconti, Katoen, Latella, Massink
send
pckt 1

send
pckt 2

send
pckt 3

send
pckt 4

latency

present
pckt 1

present
pckt 2

present
pckt 3

40Figure 1: An Optimum Playout of Packetswe have available. In the context of this paper we will refer to bounded jitter as simplyjitter.Two interpretations of jitter can be found in the literature:-� Anchored Jitter1. Jitter attempts to quantify the acceptable variation around theoptimum presentation time. So, assuming a source which transmits at regularintervals, say every 40ms, ideally (if the latency is constant) the sink should playframes with identical spacing, generating a time line such as that shown in �gure1. Anchored jitter measures the maximum variation relative to these optimumpresentation times. We refer to it as anchored because it is anchored to thesequence of optimum presentations. For example, it may allow packets to bepresented 5ms before or after the optimum presentation time.� Non-anchored Jitter. In contrast, non-anchored jitter is not de�ned relative tothe time line of optimum presentation, rather variability is measured relative tothe presentation time of the previous frame. For example, the property mightstate:All frames, apart from the �rst, must be presented within an interval,say [35,45], of the previous frame.Importantly, this interpretation allows the presentation sequence to drift outrelative to the time line of optimum presentation. For example, if each frameis presented 44ms after the previous frame, we will not invalidate the aboveproperty, but each presented frame will incure a drift relative to the optimum;+4 for the second frame, +8 for the third, +12 for the fourth and so on.1The term anchored and non-anchored is ours and to our knowledge cannot be found elsewhere inthe literature

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALThe anchored jitter interpretation appears frequently in the multimedia literature,however, much of the previous work on lip-sync has interpreted jitter in a non-anchoredfashion [3, 19].Skew. In line with the terminology in [19] we use the term skew to refer to the timedi�erence between related audio and video items. Thus, while jitter is an intra-streammeasure, skew is an inter-stream measure. It categorizes the degree to which the twostreams are out of synchronization. So, for example we might have a situation wherevideo is skewed by �80ms relative to the audio, i.e. it lags the audio by 80ms.2.3 Lip SynchronisationA common approach to obtaining lip-synchronisation is to multiplex the audio andvideo streams at the source and demultiplex at the sink, i.e. elements of the two streamsare physically combined and a single \composite" stream is transmitted. Such an ap-proach automatically ensures synchronisation of audio and video. However, as pointedout in [19], this approach is not always possible or even wanted since di�erent mediatypes need to be handled by di�erent adapters in the system, e.g. compression hard-ware. Thus, alternative approaches need to be considered in which audio and videoare transmitted as separate streams and synchronisation between audio and video isregenerated at the sink. The algorithm we consider here is such a scenario.Importantly though, resynchronisation at the sink does not always have to be exact,since it is well known that certain \out of synchronisation" levels can not be perceivedby the user. In [19] experiments have been performed to determine bounds on ac-ceptable out of synchronisation levels. Thus, in order to avoid ruling out acceptableimplementations (i.e. not to overspecify), the lip-sync algorithm accommodates certainout of synchronisation levels.The basic system con�guration that we consider is shown in �gure 2. There are twodata sources, a sound source and a video source, which generate a pair of data streams.These streams are received at a presentation device (in fact, in our speci�cation wewill model the arrival of frames at the presentation device and will abstract away fromthe behaviour of particular sources). The problem is to ensure that play out of the twostreams at the presentation device is acceptably synchronised.The algorithm is implemented using a number of components: sound and videomanagers and a controller . When a sound packet arrives at the presentation devicean savail signal is passed to the Sound Manager . When appropriate, the Sound Man-ager returns an spresent to the Presentation Device indicating that the packet canbe presented. The Video Manager has a corresponding behaviour. The Controllercontains the body of the lip-sync algorithm. It receives sreadys (respectively vreadys)from the Sound (respectively Video) Manager , indicating that a Sound (respectivelyVideo) packet is ready to be played. The Controller then evaluates if and when it isappropriate to play the particular packet. It either returns an sok (respectively vok)

Bowman, Faconti, Katoen, Latella, Massink
Presentation Device

Video
Source

Sound
Source

Sound
Stream

Video
Stream

Sound
Manager

Video
Manager

savail
spresent

vpresent vavail

Controller

Sound
Watchdog

 Video
Watchdog

Synchroniser

sready vreadysok vokFigure 2: Basic structure of the lip-sync systemat the appropriate time or, if acceptable synchronisation is not recoverable, it signalsan error and passes into an error state.The following requirements characterise acceptable synchronisation between thetwo streams. Our �gures are in line with those used in formal speci�cations found inthe literature [18] [17]2.� The granularity of time is a millisecond3.� A sound packet must be presented every 30ms (each sound packet contains 400samples of 12khz sampled digital sound). No jitter is allowed on the sound.� In the optimum, a video packet should be presented every 40ms (i.e. 25 framesper second). However, we allow some
exibility around this optimum:{ Non-anchored Jitter - A video framemust follow the previous video frameby no less than 35ms and no more than 45ms.{ Skew - Video frames may lag sound by no more than 150ms and mayprecede sound by no more than 15ms .2According to [19] di�erent �gures should be used in practice. Although these �gures are importantthey do not a�ect the essence of the lip synchronisation algorithm.3The algorithm assumes a discrete time solution. Although, UPPAAL supports dense time, inorder to stay in line with the existing solutions, we model a discrete time clock in UPPAAL.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALOne characteristic of the scenario is that there is not a one-to-one correspondencebetween packets in the two streams. Even at the optimum, sound packets are pre-sented every 30ms and video packets are presented every 40ms. Thus, although wemay informally talk about corresponding items in the audio and video stream, thiscorrespondence is not at the level of packets.3 Introduction to UPPAALUPPAAL is a tool-suite for the speci�cation and automatic veri�cation of real-timesystems. It has been developed at BRICS in Denmark and at Uppsala Universityin Sweden. In UPPAAL a real-time system is modelled as a network of (extended)timed automata with global real-valued clocks and integer variables. The behaviourof a network of automata can be analysed by means of the simulator and reachabilityproperties can be checked by means of the model checker. In Figure 3 an overview isgiven of the di�erent components of the UPPAAL tool and their relation.
simta

graphical
display

random
simulator

graphic
animator

Autograph

Text editor

checktaatg2ta

verifyta

constraint
solvers

forward
analysis

trace
generator

requirements .q

"yes/no"

.atg

.ta

diagnostic trace .trexecution
trace .trFigure 3: Overview of UPPAAL tool suiteIn UPPAAL, automata can be speci�ed in two ways. Graphically by using the toolAutograph or textually by means of a normal text editor. The graphical speci�cationcan be used by the graphical simulator `simta' or be automatically translated intotextual form and used as input for the model checker `verifyta' together with a �le withrequirements to be checked on the model. The requirements are formulas in a simpletemporal logic language that allows for the formulation of reachability properties. Themodel checker indicates whether a property is satis�ed or not. If the property is notsatis�ed a trace is provided that shows a possible violation of the property. This tracecan be fed back to the simulator so that it can be analysed with the help of the graphical

Bowman, Faconti, Katoen, Latella, Massinkpresentation.3.1 The UPPAAL modelUPPAAL automata consist of nodes and edges between the nodes. Both the nodes,which are called locations, and the edges, which are called transitions, are labelled.A network of automata consists of a number of automata and a de�nition of thecon�guration of the network. In the con�guration the global real-time clocks, theinteger variables, the communication channels and the composition of the network arede�ned.The labels on edges are composed of three optional components: a guard, an ac-tion and a number of clock resets and assignments to integer variables. The guard onclocks and data variables expresses under which condition the transition can be per-formed. Absence of a guard is interpreted as the condition true. The synchronisationor internal action is performed when the transition is taken. In case the action is asynchronisation action then synchronisation with a complementary action in anotherautomaton is enforced following similar synchronisation rules as in CCS [14]. Absenceof a synchronisation action is interpreted as an internal action similar to � -actions inCCS. The label of a location consists also of three parts: the name of the location, anoptional invariant and optionally the marking c:. The invariant expresses constraintson clock values, indicating the period during which control can remain in that particu-lar location. Absence of an invariant is interpreted as the condition true. The markingc: in front of the location name indicates that the location is committed. This optionis useful to model atomicity of transition-sequences. When control is in a committedlocation the next transition must be performed (if any) without any delay and anyinterleaving of other actions.In the con�guration, the names of the automata which compose the system as well asthe global variables and channels are declared. Channels can be declared urgent. Whena channel is urgent no timing constraints can be de�ned on the transition labelled bythat channel and no invariant can be de�ned on the location from which that transitionleaves. Urgent actions have to happen as soon as possible, i.e. without delay, butinterleaving of other actions is allowed if this does not cause delays.Formally, the states of an UPPAAL model are of the form (�l; v), where �l is a controlvector and v a value assignment. The control vector indicates the current controllocation for each component of the network. The value assignment gives the currentvalue for each clock and integer variable. The initial state consists of the initial locationof all components and an assignment giving the value 0 for all clocks and integervariables. All clocks proceed at the same speed. There are three types of transitionsin an UPPAAL model. An Internal transition can occur when an automaton in thenetwork is at a location in which it can perform an internal action. The guard of thattransition has to be satis�ed and there must be no other transitions enabled that startfrom a committed location. A Synchronisation transition can occur when there are two

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALautomata which are in locations that can perform complementary actions. The guardsof both transitions must be satis�ed and there must be no other transitions enabledthat start from a committed location. A Delay transition can occur when no urgenttransitions are enabled, none of the current control locations is a committed locationand the delay is allowed by the invariants of the current control locations.
AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;
int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;
chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;
urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;
system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2 s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3 s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1 r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2 c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3 r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0

b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?

y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4

n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0 b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!

n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1Figure 4: Example of an UPPAAL speci�cationAn example of an UPPAAL speci�cation is given in Figure 4. The transitionbetween s1 and s2 can only be taken when the value of clock y is greater than or equalto 3. This holds also for the transition between r1 and r2 because the automata Aand B are synchronised on channel a. The transition must happen before y is equal to6 because of the invariant at location s1. If this invariant would not be there controlcould have remained in s1 and in r1 inde�nitely. When control is in s2 and r2 the onlytransition that is possible is the synchronisation on action b. This is because b hasbeen declared as an urgent channel in the con�guration. Note that if the guard y >= 4would not have been labelling the transition between s2 and s3 in A both transitionsbetween those two locations would have been enabled! This is because urgency onlyprevents the passing of time, but does not prevent the occurrence of other actions thatare enabled at the same time. To prevent interleaving actions in this case the locationr2 can be annotated as a committed location. This forces the action b to happenwithout delay or interference of other actions.3.2 Simulation and Model CheckingThe future behaviour of a network of timed automata is fully characterized by its state,i.e. the control vector �l, and the value of all its clocks and data variables. Clearly thisleads to a model with in�nitely many states. The interesting observation made by Alurand Dill was that states with the same �l but with slightly di�erent clock values haveruns starting from �l that are \very similar". Alur and Dill described exactly how to

Bowman, Faconti, Katoen, Latella, Massinkderive the sets of clock values for which the model shows \similar" behaviour [1]. Thesets of clock values are called time regions. Regions can be derived from the guards,the invariants and the reset-sets in the UPPAAL model. Since clock variables in theconstraints are always compared with integers and because in every model there isa maximum integer with which a clock is compared the state space of a model canbe partitioned into �nitely many regions. This makes model checking for dense timedecidable. In UPPAAL the regions are characterised by simple constraint systemswhich are conjunctions of atomic clock and data constraints [20].The properties that can be analysed by the model checker are reachability proper-ties. They are formulas of the following form:� ::= A []� j E <> �� ::= a j �1 and �2 j �1 or �2 j �1 implies �2 j not �where a is an atomic formula of the form: Ai:l where Ai is an automaton and l alocation of Ai or vi � n where vi is a clock or data variable, n a natural number and� a relation in f<;<=; >;>=;==g. The basic temporal logic operators are, A [] andE <>, where, informally, A []� requires all reachable states to satisfy � and E <> �requires at least one reachable state to satisfy �.Although the �nal aim of the developers of UPPAAL is to develop a modellinglanguage that is as close as possible to a high-level real-time programming languagewith various data types the current version is rather restrictive. For example it doesnot allow assignment of variables to other variables and there is no value-passing in thecommunication. Despite these restrictions, quite a number of case-studies have beenperformed in UPPAAL ranging from small examples to real industrial case studies,e.g. [2, 7, 11].For the veri�cation experiment presented in this paper we used UPPAAL version2.17 which improves previous versions specially with respect to its capabilities of dead-lock analysis4.4 Formal Modelling of JitterTimed automata can be used as a convenient notation for formally specifying (andverifying) real-time properties like anchored and non-anchored jitter and skew. Weillustrate this by means of a series of automata that generate streams, like video andsound streams. The availability of a frame is modelled by an output along channel swhere we assume that such output is always possible (i.e. the environment is not im-posing additional time constraints on the communication along s). Ideally the elapsed4In the rest of the present paper we will often call "time-locks" those deadlocks which prevent timeto pass (e.g. deadlocks involving committed locations), although in the UPPAAL terminology theyare called simply deadlocks.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALtime between two successive frames is p. The automaton Optimum Playout (Figure 5,on the left) generates an optimal stream, without any jitter. After generating the �rstframe at an arbitrary time instant, it produces frames periodically with a period p.
Optimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum Playout Anchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored Jitter

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0 st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1
(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p) st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0 st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1

(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)
st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2
(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)

x == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == p
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := a

x == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == p
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!Figure 5: Timed automata for optimal playout and anchored jitter.A stream exhibiting anchored jitter where frames are allowed to occur at earliesta time-units before the optimum presentation time, and at latest b time-units afterthis point in time, is generated by the automaton Anchored Jitter, see Figure 5 on theright. The stream of frames that it generates is:p�a p p times! s! s! s!a+b a+b a+bThe automaton presents a frame at some time instant in the indicated intervals oflength a+b. This time instant is chosen non-deterministically. An automaton thatgenerates a stream exhibiting non-anchored jitter is depicted in Figure 6 (left). Eachframe (apart from the initial one) is presented within an interval [p�a; p+b] of thepresentation of the previous frame. Notice that for a=b=0 we obtain an automatonthat is equivalent to the automaton generating the optimal stream.
Non-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored Jitter

st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1
(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

p-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+b
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

clock x rate pp+brate pp�a rate 1time=possible clockprogressionFigure 6: Timed automaton for non-anchored jitter and
uctuating clock rate.In the optimal situation the automaton Non-anchored Jitter presents frames with afrequency of 1p frames per time-unit; in the slowest case this frequency is 1p+b and in the

Bowman, Faconti, Katoen, Latella, Massinkfastest case 1p�a . One might consider that the period between two successive presenta-tions is determined by a clock with
uctuating rate. This suggests an alternative spec-i�cation of non-anchored jitter using so-called linear hybrid automata, timed automatain which clocks may proceed at di�erent, but linearly dependent, rates. Consider theautomaton Optimal Playout and adapt the rate of clock x such that it proceeds witha minimal rate of pp+b and a maximal rate of pp�a . These rates are depicted in Figure 6(right). While running, the clock may choose at any time instant any rate betweenthese two values. If it always proceeds with rate 1 the clock proceeds as fast as timeprogresses, and the hybrid automaton boils down to the automaton Optimal Playout.UPPAAL supports the speci�cation and veri�cation of linear hybrid automata by us-ing an algorithm that converts such automata into timed automata [16]. Indeed, if weapply this transformation on our hybrid automaton we obtain a timed automaton thatis equivalent to the automaton Non-anchored Jitter.Notice that in the above automata for anchored and non-anchored jitter, the exactpoint of time at which a frame is presented is completely non-deterministically deter-mined. For several purposes it is of interest to quantify the probability of presentationat a certain time instant. For instance, consider anchored jitter where the probabilitiesof presentation at a certain time instant in the window a+b is equal, i.e. uniformlydistributed. Using stochastic automata [6] this can be speci�ed as depicted in Figure 7(left) where F is a deterministic distribution of p and G a uniform distribution in theinterval [0; a+b]. For the sake of simplicity we do not make an exception for the initialpresentation. By changing G other distributions can be used for quantifying the formof jitter. In a stochastic automaton clocks run backwards, and are initialised with asample of an arbitrary probability distribution function. Clock expirations (i.e. a clockhas reached value 0) can be used as guards. State invariants are absent: edges aretaken as soon as they are enabled. A stream that exhibits non-anchored jitter with
st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1 st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2

y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!

x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)
y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)
y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)

Stochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored Jitter

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0 st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)

x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)

Stochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterFigure 7: Stochastic automata for uniformly distributed anchored and non-anchoredjitter.a uniformly distributed probability is generated by the automaton in Figure 7 (right)where F is a uniform distribution in the interval [p�a; p+b]. Each frame is presentedwithin a uniformly distributed interval [p�a; p+b] of the presentation of the previousframe. The probability that, for instance, the delay between two successive frames isexactly p is 1a+b . Stochastic automata are not supported by UPPAAL, nevertheless

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL
a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0 a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0

b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1

(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)
b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0

b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1

t<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=D
good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?

t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’
timeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeout

(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)
t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0

good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good! good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!Figure 8: Bounded timeoutit should be clear from the above discussion that they are very useful for formallyspecifying basic concepts in the �eld of multimedia systems.5 Formal Modeling of TimeoutIn the scope of this paper we need two di�erent kinds of timeout functionality. In thefollowing we shall discuss and de�ne them.By a Bounded timeout we mean a device which, once activated, produces a timeoutaction at speci�ed timeD0 (relative to device activation) if and only if a certain speci�edaction good did not occur by time D < D0. Notice that this implies that if actiontimeout occurs, then it must occur at time D0; moreover, if action good occurs, then itcan occur at any time from the timeout activation up to, and including, D. This is astrong timeout, in the terminology of [15].In the context of this paper, it is assumed that if action good is enabled (i.e. canoccur) before time D (from timeout activation time) it will occur by time D; actually,we further strengthen this assumption, by requiring that action good must be executedas soon as it is enabled, i.e. it is urgent. In the domain of media presentation thisassumption is supported by the observation that if a frame is available it should beprocessed. It makes no sense to delay such a processing for no reason beyond thetimeout deadline when the frame is available.In Figure 8 (left) it is shown how this variant of timeout can be modelled in UP-PAAL. Usually, such an automaton is embedded in a more complex one. Timeoutactivation is modelled by passing control to location a0, by means of an incoming fur-ther transition where the clock t is reset. The transition from a0 to a1 models the (intime) execution of the good action, while the other, from a0 to a2, models the signallingof the timeout action.The fact that the timeout occurs exactly at timeD0, if it needs to occur, is modelledby a combination of the guard t = D0 at the transition labelled by timeout , and theinvariant at location a0 that requires t � D0. The fact that good should happen atlatest when t reaches the value D is expressed by the guard t � D at the transition

Bowman, Faconti, Katoen, Latella, Massink
a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0
(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D) a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3 a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4

t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0

t == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == D
ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums! t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’

timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!

good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?
ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!

AAAAAAAAAAAAAAAAA

b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0 b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1
(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)

b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2

ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?

ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?

t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’
timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?

BBBBBBBBBBBBBBBBB

Figure 9: Precise timeoutlabelled by good.As stated above it is assumed that action good occurs as soon as it is enabled. Itis easy to see in the �gure that the timeout itself does not enforce good to be urgentsince this is an assumption on its environment. This has to be guaranteed by othermeans, in the context in which the timeout is placed. As has been pointed out insection 3, UPPAAL provides three ways for expressing urgency; they are committedlocations, urgent channels and through combinations of guards and location invariants.Unfortunately, the good action cannot be de�ned as an urgent channel because in thetimeout construction it is guarded by t � D and the use of guards for urgent channelsis not allowed in UPPAAL. So the only way to make good urgent is to use committedlocations or location invariants. These committed locations and location invariantswill belong to automata that synchronize via good with (the automaton containing)the timeout (see Figure 8 (automata on right)).It is important to point out here that special care is required in the use of suchcommitted locations and location invariants since they can easily generate dead-/time-locks. In particular, it is worth pointing out here that once a timeout action hasoccurred, it is no longer possible for a good action to occur, which can result in dead-/time-locks.A Precise timeout is essentially a Bounded timeout with the di�erence that actiongood must happen at precisely time D (and not by time D). Figure 9 shows how thisvariant of timeout can be modelled in UPPAAL. As we will discuss later, this modelis only an approximation of a Precise timeout.We �rst of all point out that in this case it makes no sense to model the urgencyof the good action by means of committed locations or location invariants. In fact, inorder to avoid time-lock, a committed state should be entered exactly when the goodaction should occur, which would nullify the use of the timeout. This would also bethe case if a location invariant in the environment would be used; in fact, in order to bee�ective, it would require an upper bound equal to D (relative to timeout activation).Therefore we declare good as an urgent channel.The timeout is modeled as two automata A and B and a clock t. The timeout isactivated by passing control to location a0, in automaton A, by means of an incoming

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALtransition where the clock t is reset, also making sure that automaton B is in its initialstate. Automaton A will stay in location a0 until t reaches the value D. Exactlywhen t = D, this automaton makes a transition to location a1, from which both thegood action and the timeout are possible. Action timeout is possible at any time notsmaller than D0. In order to make it occur exactly when t = D0 we use automatonB; this automaton makes a transition to location b1 exactly when t = D because ofsynchronization action ums? paired with ums! in the transition to a1 in A. It mustleave location b1 at latest when t = D0, which is the time at which the transition to b2can occur. This transition will execute action timeout ! which will force transition toa2, labeled with timeout? to occur.On the other hand, action good is allowed to occur at any time before the timeoutoccurs. Whenever this happens, we have to disable the timeout, in order to avoid alive-lock. This is done by means of making location a3 committed, which will forceaction ume! of A to be executed together with action ume? of B which brings it to itsinitial location.A few considerations are now due. First of all, we have to point out that ourUPPAAL model of the Precise timeout tolerates an occurrence of the good action atany time when D � t � D0, whereas we had required that such an action shouldbe allowed only when t = D. Moreover, exactly when t = D0, both the good actionand the timeout may occur, thus we have indeed modeled a weak timeout. The �rstproblem has again to do with the fact that one is not allowed to associate a clockguard (like t = D) with a transition labeled by an action on an urgent channel (likegood). A similar situation arises with invariants on locations which act as source for atransition with an urgent channel. This in turn implies that good can happen any timeuntil the timeout expires, including when t = D0. In any case, if the good action isavailable when D � t < D0, then it is guaranteed to happen, and this is the maximumwe can guarantee with this model of timeout. Thus, it is not possible to model aPrecise timeout in UPPAAL [21]; probably, some notion of priority could help in thesesituations, but it is not provided by the tool.6 Formal speci�cation of the lip synchronisationprotocolIn this section we give a formal speci�cation in UPPAAL that follows as closely aspossible the timed LOTOS speci�cation given in [17] which covers the speci�cation ofthe video and sound managers and the synchronizer (see Figure 2).The full UPPAAL speci�cation is shown in Figure 10, where the Video Manager ,the Sound Manager , the Video Watchdog and the Sound Watchdog are modeled re-spectively by automata VideoMgr, SoundMgr, VideoWdg and SoundWdg (together withUrgMon). The Synchronizer is composed by automata Synch, VideoSynch, SoundSynch

Bowman, Faconti, Katoen, Latella, Massinkand SoundClock. Finally, in order to perform veri�cations, we also need to model the"external environment", i.e. the incoming video and sound streams (VideoStr andSoundStr). In the following we shall brie
y discuss these components.The stream managers Both managers are triggered by the availability (at the pre-sentation device) of a video or sound item respectively. This is modelled by the actionssavail and vavail. The availability of a media item is immediately reported to the syn-chronizer via actions sready and vready. Immediately in this context means withoutdelay and without interference of other actions. This is modelled in the managers bymarking the locations vm2 and sm2 as committed. The managers must then wait foran indication from the controller (actually the watchdogs) that the media item is to bepresented. This is modelled by the actions vokk and sokk. As soon as the indicationhas been obtained the presentation device must be given a signal to present the item.This is modelled by the internal actions vpresent and spresent. These actions are leftinternal because the presentation device itself is not further speci�ed5The watchdog timers Each watchdog timer ensures that the time between two con-sequent presentations of media items of the same kind is between certain bounds. If amedia item is too late for presentation the watchdog timer has to give an error signal.We �rst consider the video watchdog. Initially it waits for the �rst presentation of avideo frame, which is indicated by the vok action. This action precedes the vpresentbut it is guaranteed that no time passes between the vok and the presentation of thevideo frame. At the moment the �rst vok is observed, a clock t4 is started and theaction vokk is issued to the video manager without any delay. The combination ofvok and vokk makes the synchronisation between three automata possible, namely theautomata VideoMgr, VideoWdg and VideoSynch. The two actions vok and vokk cantherefore be considered as one atomic action6. The VideoWdg has to guarantee thatthe next video frame is presented between 35 ms and 45 ms after the previous one.Therefore the transition labelled by vok leaving location vw3 is guarded by t4 >= 35and t4 <= 45. When vok occurs the clock t4 is reset to zero. Immediately after vokthere is a committed transition labelled by vokk back to location vw3 to start a newtimeout session. If vok does not occur before 45 ms pass, a vlate error is given at timet4 == 46. Note that VideoWdg is modelled as a slight variation of a repeated Boundedtimeout (see section 5).The SoundWdg is a bit more complicated. Essentially it has to take care that a5In [17] there is an additional action presented that is performed by the presentation device tomark the end of the presentation of a media item. We have omitted this action because in the timedLOTOS speci�cation this action was apparently assumed to occur always before the next media itembecomes available and therefore cannot create further complications for the protocol.6Although interleaving is allowed in this case

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALsound frame is presented exactly at every 30 ms. If a sound frame is too late forpresentation it should generate an error indicating that the sound is late 1 ms after itsoriginal presentation time. The initial part of SoundWdg is similar to that of VideoWdg.When the �rst sok is observed a timer t3 is started and synchronisation on this actionwith the SoundMgr is established via sokk.The repeated timeout construction is of kind Precise, as discussed in section 5. TheSoundWdg waits in location sw3 until 30 ms have passed since the last occurrence of asound frame. At that time it noti�es the urgency monitor UrgMon by means of actionums and it resets clock t3 to zero. At this point an sok can happen urgently (sok isde�ned as an urgent channel) or, if sok is not available, an slate error is generated 1ms later. The construction with UrgMon is needed to guarantee that slate happensurgently.If the sok happens in time, UrgMon is immediately noti�ed by ume about this factand the sokk action is generated to model the multi part synchronisation with theSoundMgr.The synchronizer The synchronizer Synch is activated by vready or sready. Depend-ing on which of these actions occurs �rst it generates a vok or an sok and after thatit starts three automata in parallel. The initial part of these automata is di�erentand depends only on whether a video frame or a sound frame has been received �rst.To start the automata in the right way their initialisation is synchronized on specialactions that do not occur in the original Timed LOTOS speci�cation. In this way wemodel the parallel composition operator that is available in LOTOS but not as such inUPPAAL. The names of the special actions are a shorthand of the following.� std (sti) initialises the SoundClock in case a video (sound) frame arrived �rst.� sv1 (sv0) initialises the VideoSynch in case a video (sound) frame arrives �rst.� ss0 (ss1) initialises the SoundSynch in case a video (sound) frame arrives �rst.Note that all the locations except the initial location of the Synch are committed.This is necessary to model that the three automata start at the same time in parallelimmediately after the �rst vok or sok action.The sound clockThe SoundClock is a discrete clock that ticks with units of 1 ms. It is started at themoment that the �rst sound frame has arrived and is presented. This clock serves asa reference time to compute the amount of skew that the video stream may have withrespect to the sound.If a sound frame arrives as �rst frame the clock is started via sti and forced toperform a transition every 1 ms. During this transition a variable vmins is updatedthat keeps a record of the amount of skew between the sound and the video stream.

Bowman, Faconti, Katoen, Latella, MassinkThis variable is called vmins because of its direct relation to the original Timed LOTOSspeci�cation in which the time of the sound presentations was recorded in one variable(s-time) and the ideal time of the video presentation in another variable (v-time). Theskew was calculated by subtraction of s-time from v-time. Notice that, at the time atwhich a video frame arrives, s-time corresponds to the arrival time of such a frame.If a video frame arrives �rst, the SoundClock automaton is started by means of thestd action. In this way the clock ticks start only after synchronization on action sclockhas indicated the arrival of the �rst sound frame.The sound synchronizerAlso the sound synchroniser can start in two di�erent ways.If a sound frame arrives �rst it directly starts its repeating behaviour via synchroni-sation on action ss1. The repeating part of the behaviour is very simple and consistsonly of receiving an sready action after which an sok is generated. Note that the sokaction is de�ned as an urgent channel in the con�guration in order to let sok happenas soon as possible.If a video frame arrives �rst the sound synchroniser starts by checking whethera sound frame arrives within 15 ms of the initial video frame. This is part of therequirement for lip synchronisation. If the sound frame does not arrive in time a syn-chronisation error is generated 16 ms after the start of the sound synchroniser (Boundedtimeout). If the sound frame arrives within 15 ms, an sok action is generated imme-diately, the sound clock is started via the sclock action and the automaton starts itsrepeating behaviour.The video synchronizer The video synchroniser is the most complex process ofthe lip synchronisation protocol. If a video frame arrives �rst it starts the repeatingpart of its behaviour via synchronisation on action sv1. From that point on the videosynchroniser essentially checks the lip synchronisation requirement and generates anerror if there is too much skew between the video and the sound stream.In every cycle VideoSynch waits for a vready action. When it receives a vreadyit resets clock t1 to zero and goes to state v03 where it checks the lip synchronisa-tion requirement immediately (due to the invariant t1 <= 0). Now there are threepossibilities:1. The video presentation is more than 150 ms later than the corresponding soundpresentation. This situation is characterised by the guard vmins < �150. Inthis case a synchronisation error is produced.2. The video is more than 15 ms too early with respect to the corresponding soundpresentation. In this case the video presentation can be delayed. This situationis modelled by the guard vmins > 15. It leads to a state in which the videosynchroniser is forced to wait 1 ms and then repeats the checking of the lipsynchronisation requirement.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL
SoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStr VideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStr

VideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgr

SoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdg

SoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynch

chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,
 spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk,
 sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate,
 sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume;
urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;
int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;
clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;
system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr,
 SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr,
 SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg,
 SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch,
 SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

VideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynch

SoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClock

SoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgr

SynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynch

UrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMon

so1so1so1so1so1so1so1so1so1so1so1so1so1so1so1so1so1

so2so2so2so2so2so2so2so2so2so2so2so2so2so2so2so2so2
(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)

c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3

sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3
(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)

c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4

sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5
vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3
(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)

c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4

vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5

s01s01s01s01s01s01s01s01s01s01s01s01s01s01s01s01s01

s02s02s02s02s02s02s02s02s02s02s02s02s02s02s02s02s02
(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)

c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03

sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1

v02v02v02v02v02v02v02v02v02v02v02v02v02v02v02v02v02
(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)

v03v03v03v03v03v03v03v03v03v03v03v03v03v03v03v03v03
(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)

v06v06v06v06v06v06v06v06v06v06v06v06v06v06v06v06v06

s07s07s07s07s07s07s07s07s07s07s07s07s07s07s07s07s07

s05s05s05s05s05s05s05s05s05s05s05s05s05s05s05s05s05s06s06s06s06s06s06s06s06s06s06s06s06s06s06s06s06s06
v04v04v04v04v04v04v04v04v04v04v04v04v04v04v04v04v04
(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)

st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1

st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3
(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)

v01v01v01v01v01v01v01v01v01v01v01v01v01v01v01v01v01

c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04

st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2

v05v05v05v05v05v05v05v05v05v05v05v05v05v05v05v05v05

vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1

c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2

c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3
sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1

c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2
vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7

sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7

sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7
(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)

vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7
(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)

sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1

c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2

c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4

c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3

c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5 c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9 c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10

sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11

c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6 c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7 sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8

sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1 u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2
(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

v07v07v07v07v07v07v07v07v07v07v07v07v07v07v07v07v07

savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!
t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0

t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30
savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!
t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35
vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46
vlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlate

t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35
t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45
vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0 vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!

ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?
t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0

t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15
sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready? t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150

vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16
ssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_error

t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151
vsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_error

sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?

sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!

sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?
t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0

t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1
vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1
t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0

sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?

sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!

sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!

std?std?std?std?std?std?std?std?std?std?std?std?std?std?std?std?std?

sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?
t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0

vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15

t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15
vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150
vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!
vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40

vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?

vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail? savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?

vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!

vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?

sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!

sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?

sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0

vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?
vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!

sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?

sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!

vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0

sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

std!std!std!std!std!std!std!std!std!std!std!std!std!std!std!std!std! sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1! ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!

sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti! ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1! sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!

vpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresent spresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresent

t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30
ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?

t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1
slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!

ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!

sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!

ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?

t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1
slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?

ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?

vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150
vsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_error

Figure 10: Lip synchronisation protocol3. The video presentation is su�ciently in synchronisation with the sound pre-sentation. This situation is characterised by the guard vmins <= 15 andvmins >= �150. In this case a vok is generated immediately and the vari-able vmins is updated.If a sound frame arrives �rst only the initial behaviour of the video synchroniser isdi�erent. In this case it checks if the �rst video frame arrives within 150 ms of the �rstsound frame. If the video is too late a synchronisation error is generated. If the videoframe is in time it starts its repeating behaviour by checking the lip synchronisationrequirement.The media streams Since the informal speci�cation does not describe any assump-tions on the streams, we can in principle model them as we like. Unfortunately itsoon becomes clear that the protocol is not able to deal with all possible streams. Themodels of the media streams we used are further described in the section on veri�cation.

Bowman, Faconti, Katoen, Latella, Massink
IdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdeal AnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchored NonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnch

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)

vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3
(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40
vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5

t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0 vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35
vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0Figure 11: Three variants of video stream behaviour7 Veri�cation7.1 Veri�ed propertiesIn all the speci�cations of the lip-synch protocol found in the literature little is saidabout the assumptions that were made on the behaviour of the media streams from thereceiver point of view. In our veri�cation we investigated several di�erent behavioursof the media streams.For any model of the sound stream that does not let frames arrive every 30 ms thelip-synch protocol does not behave properly. It seems clear that the lip-synch protocolhas been designed assuming a perfect behaviour of the arriving sound frames. We donot present here the speci�c veri�cation results we have got on this aspect. We rathermake the explicit assumption that the sound stream does not show any perturbation.Instead of verifying properties that have been reported in work in the literature onlip-synch, such as proving that a sound frame is presented every 30 ms [9], we takesuch basic properties for granted and we explore possible problems caused by jitter ofthe video stream.We investigated the results for three kinds of video stream behaviour:� An \ideal" video stream that delivers a frame every 40 ms.� A video stream with \anchored jitter" with rate of 40 ms and variation of � 5ms.� A video stream with \non-anchored jitter" where the variability between eachtwo consequent frames is minimally 35 ms and maximally 45 ms.These automata are instantiations of the automata for jitter we have shown inSect. 4 and are shown in �gure 11.Each video stream behaviour has been investigated in the situation in which thestart of each stream was left unspeci�ed and the situation in which both streams startat the same time.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALIn the veri�cation we did a reachability analysis of the error conditions. The resultsfor each situation have been obtained by checking the reachability property on themodel consisting of the lip-synch speci�cation and a variant of the video stream. Thereachability properties are all of the formE <> A:l and not(B1:l1 or ... or Bn:ln)i.e. does there exist a path in which eventually the control of automaton A is in locationl and the control of other automata Bi is not in certain other locations li. In theseproperties location l is the location that indicates the error the reachability of which weare checking. The second part ensures that the other automata did not reach anothererror location. In this way we know that the error we are checking for did not occuras a consequence of other errors. It is worth recalling here that all error states of ourautomata are sink states. In the lip-synch protocol, the following error locations havebeen modelled:� Initial sound synchronisation error in the SoundSynch (location s07)� Initial video synchronisation error in the VideoSynch (location v06)� Video synchronisation error in the VideoSynch (location v07)� Video late error in the VideoWdg (location vw5)� Sound late error in the SoundWdg (location sw5)7.2 ResultsWe ran a �rst veri�cation suite on a SUN Ultra SPARC 143, running SUN-OS 5.5.1with 128 Megabytes of RAM. We were unable to successfully complete all veri�cationsbecause of resource limitations, especially in terms of disk space needed for diagnostic�les. Meanwhile we found that UPPAAL 2.17 was about �ve times faster when runningon a PC with a AMD K6 processor at 200Mhz with 64 Megabytes RAM and withthe Red Hat Linux 5.0 operating system, so we used such a PC for all subsequentveri�cations. Moreover, we reduced the state space of the model by marking all errorlocations as committed forcing a time-lock whenever control reaches any such location.Figure 12 gives the result of veri�cation of the lip-synch protocol for the variousreachability properties when there may be an initial delay between the streams. Theleftmost column lists which kind of reachability error has been checked. For each typeof video stream behaviour the result of the reachability check and the C.P.U. time inseconds are reported. The numbers between brackets at a `True' in the table give theleast number of time units (ms) that are needed to reach the error.From the table it is clear that initial out of synchronisation errors for both the videoand the sound can always occur. This is explained by the fact that the time between the

Bowman, Faconti, Katoen, Latella, Massinkpossible initial delay between streamsProperty Ideal Video Anchored Video Non-anchored VideoInit Sound Synch err True (16) 0.08 True (16) 0.07 True (16) 0.05Init Video Synch err True (151) 145.47 True (151) 6479.72 True (151) 246.42Video Synch err False 291.70 True (191) 16143.67 True (191) 421.39Video Late False 291.72 True (81) 410.45 False 2638.93Sound Late False 291.69 False 32899.19 False 2638.36Deadlocks 1 1 1Figure 12: Veri�cation results for streams with initial relative delay�rst video and the �rst sound frame can be arbitrarily long. The error occurs exactlywhen the maximal delay has passed, so at 16 ms and at 151 ms respectively. If theseinitial errors do not occur, the ideal video stream cannot go out of synchronisationwith the sound stream. The model checker performs a complete search in about 292seconds.The anchored and non-anchored streams can go out of synchronisation. The an-chored stream can wait to start sending frames until the latest time that does notcreate an initial video synchronisation error. It's delay w.r.t. sound is then alreadylarge. When the next video frame arrives as late as possible given the jitter, it createsan out of synchronisation error. The non-anchored stream can go out of synchronisationin a rather similar way.Video frames can arrive late only in the case of anchored jitter. This is explainedby the fact that the time between two consecutive frames in the stream with anchoredjitter is maximally 50 ms. This is 5 ms more than VideoWdg allows. Sound framescan never be late. This is of course because we modelled the sound stream as an idealstream.When both streams are forced to start at the same time the results of the veri�cationare rather di�erent, as shown in Figure 13. The ideal video stream does not lead toany error or deadlock. This is what we would indeed expect.The anchored stream can lead to a late arrival of a video frame. This is for thesame reason as in the case when initial delay between the two streams is allowed.The non-anchored stream can lead to an out of synchronisation error because ofthe possible cumulation of delay w.r.t. the sound stream (skew).7.3 DeadlocksThe last rows of both tables indicate whether the veri�er reported any deadlocks whichwere not caused by reaching an error state. When the video and the sound start at thesame time no deadlocks were reported. When they start independently one deadlock

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALNO initial delay between streamsProperty Ideal Video Anchored Video Non-anchored VideoInit Sound Synch err False 1.060 False 23.150 False 2641.600Init Video Synch err False 1.080 False 23.130 False 2644.570Video Synch err False 1.080 False 23.180 True (1031) 2483.120Video Late False 1.060 True (81) 3.97 False 2641.560Sound Late False 1.080 False 23.150 False 2644.250Deadlocks None None NoneFigure 13: Veri�cation results for streams without relative initial delaywas reported for every type of video stream. These deadlocks are very similar. We startby discussing the deadlocks that have been reported and continue with the discussionof some problems we found incidentally.The deadlocks that have been reported by UPPAAL and that were not due toreaching an error location were all related to how the timeout modelled in VideoSynchat location v02. In each speci�cation, such a deadlock occurs when the �rst soundframe has been received and the �rst video frame arrives between (but not including)150 ms and 151 ms after the sound frame. In that situation the VideoMgr synchroniseson vavail and has to do a vready immediately due to the committed location vm2. Thisvready cannot be performed because t1 is beyond 150 ms in location v02 of VideoSynch.This leads to a time-lock. This kind of time-lock has already been highlighted inSection 5. In the original lip-synchronisation protocol described in [17] this problemcould not occur because a discrete time model was used. This time model implicitelypresupposes that frames arrive only at discrete points in time so for example onlyat precise ticks of a clock. This assumption was not made explicit in the problemdescription of the lip-synchronisation.We would have expected UPPAAL to report a similar deadlock in SoundSynch buteven a full state space search did not reveal it. We think that to fully explain thisrequires further research.With the anchored video the veri�er did not report any further deadlock either, butby means of the simulator we have found a timelock just after a few transitions fromthe starting state. This timelock occurs when a video frame arrives as late as allowedby the loop in the speci�cation of the video stream and the next video frame arrivesas early as possible. The time between the arrival of these two frames is 30 ms. TheVideoSynch needs to synchronize urgently with the VideoWdg on the vok action, butthe VideoWdg is at that point still waiting until at least 35 ms have passed since thelast video frame.Also in the case of non-anchored jitter no further deadlocks were reported. However,a small change in the VideoStr that replaces the invariant by its strict version t7 < 45

Bowman, Faconti, Katoen, Latella, Massinkleads to a timelock situation. This timelock is a very interesting one because it revealsanother, quite hidden, problem of the lip-synch speci�cation. The timelock occurs whenVideoStr has to synchronize on vavail with VideoMgr just before 45 ms passed, andVideoSynch is at location v04 because the video was too early with respect to sound (i.e.vmins > 15). In this situation the above synchronization on vavail cannot take placebecause VideoMgr is at location vm7 waiting to synchronize on vokk with VideoWdgdue to the video being early w.r.t. sound. In order to enable the synchronisation onvavail time must pass because of the guard (t1 == 1) on the outgoing transition atlocation v04 in VideoSynch. Due to this forced delay, the invariant t7 < 45 at locationvi2 of VideoStr cannot be satis�ed, thus leading to the timelock. In the non-strictversion (t7 � 45) this timelock is avoided in a curious way. The synchronization onvavail between VideoStr and VideoMgr is delayed until t7 == 45 so that VideoSynchcan leave location v04 by pure time passing and subsequently synchronize on vok withVideoWdg. This enables the synchronization on vokk between VideoWdg and VideoMgrand vpresent to occur at the VideoMgr. Since the complete sequence of transitions,after VideoSynch has left location v04, occurs without consuming time because of theconcatenation of committed locations, the synchronization on vavail between VideoStrand VideoMgr can take place as well.This aspect of the lip-synch is not satisfactory because in reality it is unlikely thatthe arrival of a frame can be postponed until a proper time. The arrival of a frameis determined by the environment in which the lip-synch protocol works rather thanby the protocol itself. It is easy to see that there is a period in which both video andsound managers are not available to receive any frame, namely when they are waitingfor a vokk and a sokk respectively. Notice also that the next frame can be received onlyafter a vokk (resp. sokk) for the previous frame has been communicated.8 Conclusions and Related WorkWe have speci�ed and veri�ed a lip-sync algorithm in UPPAAL. Speci�cations of thisalgorithm have been made previously in a number of di�erent formalisms, [18, 3, 17, 9].We have particularly followed the timed LOTOS speci�cation to be found in [17]. Wefound it interesting to investigate how several typical multi-media concepts, like jitter,drift and skew can be formally speci�ed and analyzed.Our veri�cation has identi�ed a number of interesting issues with the algorithm, ofwhich, two of the most important are:� The last column of �gure 13 indicates that with non-anchored jitter, which wasthe variety of jitter the speci�cation was de�ned for, and both streams startingtogether, lip-sync can only be guaranteed for just over one second (1031 ms).This is clearly quite a low �gure. However of course, if we reduced the amount ofpertubation allowed on the video stream then this length of time would increase.This points to one of the strengths of the form of veri�cation we have considered:

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAALwe can derive bounds on the performance of components of the system (here thevideo stream) under which the system will behave satisfactorily.� In addition to only guaranteeing lip-sync for a short period of time, our veri�-cation work has also highlighted some concrete problems in the algorithm. Inparticular, we have shown that with all types of video streams we de�ned a time-lock can be reached in which none of the components is in a prescribed error state.Some of these timelocks have been found automatically, others where found bysimulation. Some timelocks appeared because we used a dense time model todescribe an algorithm previously speci�ed in a discrete time model. Other dead-locks were related to the fact that the assumptions on the behaviour of the mediastreams have not been made explicit in the original problem description.Another limitation of the lip-synch algorithm is that it does not handle bu�ering,i.e. the possibility that the presentation device smooths out synchronization errors bybu�ering packets before playing them. Adding bu�ering would increase the capabilityof the algorithm to handle pertubated sound and video streams and in addition, wouldenable a number of the problems with the existing algorithm to be resolved. We arecurrently investigating the possibility to add such bu�ering.The work reported here has also enabled us to evaluate the UPPAAL tool in thecontext of a non-trivial speci�cation and veri�cation scenario. Our experience withUPPAAL (especially the most recent version of the tool) has generally been positive.Nonetheless we can point to some limitations:-� Class of Properties Checked. A known limitation of the tool is that it onlyperforms reachability analysis and thus, only checks a small subset of the fullclass of timed temporal logic formulae. A strategy for checking bounded live-ness properties using test automata has been proposed and we have investigatedsuch a strategy in verifying latency properties [5]. However, the strategy is notimplemented yet and thus, has to be performed by hand.� Timelocks. A major aspect of the veri�cation of time sensitive systems is tocheck that states cannot be reached in which the passage of time is blocked. Suchstates often represent major speci�cation errors. For example, our analysis hasidenti�ed situations in which a timelock can arise without being in a prescribederror location. However, we have not identi�ed all these states through directveri�cation for timelock freedom. In particular, one of them was not revealed bythe model checker, but rather through simulation. Why some timelocks have notbeen reported during full state space search of the speci�cation is not clear atthis moment and requires further research. It would be interesting to repeat ourexperiment with some other tool like KRONOS [8]. KRONOS accepts a richer setof temporal logic formulae, including \unbounded" liveness properties. Freedomfrom timelocks can be coded up as an \unbounded" liveness property. KRONOS

Bowman, Faconti, Katoen, Latella, Massinkalso o�ers the possibility to use a clock reduction algorithm, which automaticallyreduces the number of clocks used. This could be very e�ective in the context ofthe lip-sync speci�cation, which contains many clocks.� Low Level Notation. Timed automata can also be criticised on the groundsthat they are a relatively low level notation. For example, timeout operatorsand watchdog timers have to be \hand wired". Also, our investigation in section5 suggests that certain forms of \strong" timeout behaviour cannot be easilydescribed in the UPPAAL notation and some forms can be only approximated.This can easily lead to the introduction of timelocks. It would be nice to have aset of generic high level operators for timed speci�cation, which could be mappeddown to timed automata. Furthermore, the timed automata notation only allowsone level of parallel composition, i.e. component automata cannot themselvescontain parallel compositions. This leaves a question mark over the scalability ofthe notation.AcknowledgementsWe would like to thank Wang Yi and Paul Pettersson, of Uppsala Univeristy, for adviceon UPPAAL and Stavros Tripakis of VERIMAG-SPECTRE for fruitful discussions onsymbolic model checking. In addition, David Duke, of the University of York, wasinvolved in some preliminary work on verifying the lip-sync algorithm.References[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, (126):183{235,1994.[2] Johan Bengtsson, W. O. David Gri�oen, K�are J. Kristo�ersen, Kim G. Larsen, Fredrik Larsson,Paul Pettersson, and Wang Yi. Veri�cation of an audio protocol with bus collision using uppaal.In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th International Conference onComputer-Aided Veri�cation, LNCS 1102, pages 244{256, New Brunswick, New Jersey, USA,July 1996.[3] G.S. Blair, L. Blair, H. Bowman, and A. Chetwynd. Formal Speci�cation of Distributed Multi-media Systems. University College London Press, September 1997.[4] H. Bowman, L. Blair, G.S. Blair, and A. Chetwynd. A formal description technique support-ing expression of quality of service and media synchronisation. In Multimedia Transport andTeleservices, COST 237 Workshop, LNCS 882. Springer-Verlag, 1994.[5] H. Bowman, G. Faconti, and M. Massink. Speci�cation and veri�cation of media constraints usingUPPAAL. In Accepted for publication in the Proceedings of the 5th Eurographics Workshop onthe Design, Speci�cation and Veri�cation of Interactive Systems, DSV-IS 98, Abingdon, UK.Springer-Verlag, 1998.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL[6] P.R. D'Argenio, J.-P. Katoen and E. Brinksma. An algebraic approach to the speci�cation ofstochastic systems (extended abstract). In D. Gries and W.-P. de Roever, editors, ProceedingsIFIP Working Conference on Programming Concepts and Methods, 22 pages. New York, USA.Chapman & Hall, 1998.[7] P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retransmission protocolmust be on time! In Proceedings of the 3rd International Workshop on Tools and Algorithms forthe Construction and Analysis of Systems, LNCS 1217, pages 416{431, Enschede, The Nether-lands, April 1997.[8] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems III,LNCS 1066. Springer-Verlag, 1996.[9] A. Feyzi Ates, M. Bilgic, S. Saito, and B. Sarikaya. Using timed CSP for speci�cation, veri�cationand simulation of multimedia synchronization. IEEE Journal on Selected Area in Communica-tions, 14:126{137, 1996.[10] S. Fischer and S. Leue. Formal methods for broadband and multimedia systems. ComputerNetworks and ISDN Systems, Special Issue on Trends in Formal Description Techniques andtheir Applications, to appear, 1998.[11] Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis of a collisionavoidance protocol using spin and uppaal. In Proceedings of the 2nd SPIN Workshop, RutgersUniversity, New Jersey, USA, August 1996.[12] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Springer InternationalJournal of Software Tools for Technology Transfer, 1(1/2), October 1997.[13] P. F. Linington. RM-ODP: The Architecture. In K. Raymond and L. Armstrong, editors, IFIPTC6 International Conference on Open Distributed Processing, pages 15{33, Brisbane, Australia,February 1995. Chapman and Hall.[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[15] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In J de Bakker,C. Huizing, C. de Roever, and G. Rozenberg, editors, Real-Time: Theory and Practice. REXWorkshop, volume 600 of LNCS, pages 526{548. Springer-Verlag, 1991.[16] A. Olivero, J.Sifakis, and S.Yovine. Using abstraction techniques for the veri�cation of linearhybrid systems. In CAV'94, volume 818 of LNCS, pages 81{94. Springer-Verlag, 1994.[17] T. Regan. Multimedia in temporal LOTOS: A lip synchronisation algorithm. In PSTV XIII,13th Protocol Speci�cation, Testing and Veri�cation. North-Holland, 1993.[18] J-B Stefani, L. Hazard, and F. Horn. Computational model for distributed multimedia applica-tions based on a synchronous programming language. Computer Communications (Special Issueon FDTs), 15(2), 1992.[19] R. Steinmetz. Human perception of jitter and media synchronization. IEEE Journal on SelectedAreas in Communications, 14(1):61{72, 1996.[20] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic veri�cation of real-time communicatingsystems by constraint solving. In Proceedings of the 7th International Conference on FormalDescription Techniques, Berne, Switzerland, 4-7 October 1994.[21] Wang Yi. Personal Communication.

