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1 Introduction

A dominant idea in perceptuo-motor research is that there exists a direct linkage between perception and action, e.g. (Neumann and Klotz 1994). Indeed it is difficult to imagine how co-ordinated action could arise without such coupling. Less clear-cut though is the role that conscious awareness plays in mediating such perceptuo-motor processes. There is though increasing evidence that perceptuo-motor linkages can be made below the threshold of conscious experience.

Significant evidence for such a subliminal linkage has come from the study of neurological impairments, such as “blindsight” (Weiskrantz, Warrington et al. 1974) or visual form agnosia (Milner, Perrett et al. 1991). One prominent hypothesis for explaining such neuropsychological data focusses on the dissociation between the ventral and dorsal visual processing streams (Milner and Goodale 1995). This theory postulates that, via the dorsal stream, perceptual stimuli can initiate motor responses without yielding phenomenal experience.

A number of experimental paradigms have also pointed to the existence of such a subliminal linkage in neurologically unimpaired subjects. For example, visuo-motor experiments have been identified which suggest that conscious experience is “fooled” by perceptual illusions while pointing and grasping movements are not (Bridgeman, Kirch et al. 1981) (Agliotti, DeSouza et al. 1995). These effects were initially taken as supporting the dorsal (nonconscious action) and ventral (conscious) dissociation proposed by Milner and Goodale. However, detailed investigation of such illusions has questioned whether the phenomena do indeed support a simple dorsal – ventral dissociation centred explanation (Bruno 2001). However, even in the absence of such a clear anatomically differentiated dissociation, the existence of a direct (below threshold) link is well supported by a number of masked priming experiments. In these experiments stimuli affect response outcomes despite the fact that masking prevents these stimuli from being phenomenally available. In particular, (Fehrer and Raab 1962) and (Neumann and Klotz 1994) both discovered that metacontrast masking prevented a prime stimulus from being phenomenally available, however, subject’s reaction time behaviour seemed still to be affected by the “masked” prime. For example, in Neumann and Koltz’s experiments primes were metacontrast masked by target stimuli. However, despite this backwards masking, congruent prime-target trials yielded faster responses than noncongruent trials.

From amongst these experimental paradigms, we particularly focus here on the masked priming task of Eimer and Schlaghecken (Eimer and Schlaghecken 1998)
 which employs pattern rather than metacontrast masking. In its basic form, four stimuli are used – left pointing double arrows (“<<”), right pointing double arrows (“>>”) and two neutral stimuli (“<>” and “><”). The left and right pointing double arrows are mapped to left and right hand button presses respectively. The experiment proceeds as follows – a prime is presented for 16ms, then a mask is presented for 100ms and finally a target stimulus is presented for 100ms. The prime can be one of any of the four basic stimuli; the mask is a superimposition of left and right pointing double arrows; and the target stimulus is either a left or right pointing double arrow. All stimuli are presented at fixation and subliminality of the prime is indicated since subjects are at chance in forced choice variants of the experiment in which subjects make a “best effort” response to trials in which just a prime and a mask is presented.

In accordance with Neumann’s direct parameter specification hypothesis (Neumann and Klotz 1994), i.e. that below threshold stimuli can affect action outcomes, response times in the masked priming task vary according to prime-target compatibility. However, the direction in which they vary turns out to be somewhat surprising and perhaps at first sight counter-intuitive. Specifically, negative compatibility effects are obtained, whereby subjects are slower to respond to targets when they are compatible with the prime stimulus than when they are not. These results are in contrast with those of (Neumann and Klotz 1994) who obtained (more expected) positive compatibility effects.

Negative compatibility is suggestive of inhibitory mechanisms. Indeed the series of experiments performed by Eimer and Schlaghecken give strong evidence for the central role of inhibition in explaining the masked priming results. In particular, evidence for inhibitory mechanisms comes from electrophysiological results. The difference in left and right hand motor responses was measured using Lateralized Readiness Potentials (LPRs), see Figure 2. These LRPs indicate that initial activation in the direction specified by the prime is followed by a reversal in which the non-primed response is more highly activated. Such an activation reversal could clearly be caused by suppression of the primed response as a result of mask onset. Although the possibility is still open that rather than the mask causing suppression of the primed response, the LRP and behavioural data actually arises from facilitation of the opposite (non-primed) response by the mask. Remember the LRPs only indicate differences between left and right motor responses. For example, in compatible trials a positive (incorrect direction) LRP deflection could result from either inhibition of the primed response or facilitation of the non-primed response. In addition, it might be possible to explain facilitation of the non-primed response in terms of induced motion resulting from the form of the mask employed.

However, the inhibition based account is supported by a go/nogo variant of the Masked Priming task (Eimer and Schlaghecken 1998) in which a ‘go’ stimulus requires a response with one finger and a ‘nogo’ stimulus indicates no response at all. The significance of this paradigm is that there is no response alternative. Thus, mask induced facilitation from a competing response direction cannot arise and since Eimer and Schlaghecken do indeed obtain a negative compatibility effect in the go/nogo paradigm, the supporting evidence for an inhibitory explanation of the masked priming results is strong. Furthermore, in the go/nogo paradigm they also find that “false alarms” (i.e. erroneous responses on nogo trials) are less frequent after a ‘go’ prime than a ‘nogo’ prime, again indicating active inhibition of the response triggered by the ‘go’prime.

Thus, having accepted this inhibitory account of the masked priming results we are prompted to consider what computational mechanism is involved. Can we identify a psychologically plausible inhibition based computational mechanism, which is consistent with the available data? This is the question that we address in this paper.

Identifying computational explanations is important for a number of reasons. Perhaps most significantly, they serve to verify theories, by addressing the question of whether a theory is computationally feasible and enabling the computational consequences of a theory to be investigated. Computational modelling also forces researchers to think hard about their theories and it prevents them from being able to hide behind imprecise natural language explanations. Computational modelling is particularly worthwhile when a large amount of empirical data is available to constrain the model; this is exactly the case with masked priming.

A major influence on our work has been the connectionist modelling of selective attention by Houghton and Tipper (Houghton and Tipper 1994). They have provided connectionist models of two selective attention phenomena: negative priming (Tipper 1985) and inhibition of return (Klein 2000). Although different in nature to masked priming (which is not believed to be controlled by “high-level” attention) inhibitory effects, not unlike those arising in masked priming, can be observed in both inhibition of return and negative priming. For example, in inhibition of return, response to a spatial target stimulus can be slowed in the presence of a preceding peripheral cue towards the same location. The classic explanation for which is that initial activation of the cued location has been followed by inhibition by the time that target selection is initiated
. In contrast, the inhibitory mechanism that has been postulated to underlie negative priming is mediated by endogeneously directed attention. Specifically, in the archetypal negative priming experiment (the, so called, ignored repetition condition) the distractor item on a prime trial becomes the target on a closely following probe trial. Subjects are slower to respond to the target in the probe trial than they are in the control condition in which the probe trial target appears in a fresh location. An important explanation of this effect is that inhibition of the prime trial distractor (which is necessary to support prime target selection) has to be overcome during probe trial selection (when the prime distractor item becomes the probe target)
.

Due to this common role for inhibition in masked priming, negative priming and inhibition of return we were drawn to investigate whether Houghton and Tipper’s connectionist modelling principles could be applied to the masked priming task. However, it is important to note that the existing Houghton and Tipper model is not suitable for modelling masked priming. This is because, in both their negative priming and inhibition or return implementations, the release of inhibition is driven by (higher level) attentional mechanisms. In their negative priming model an endogeneously controlled attention layer modulates the activation level of targets and distractors. In addition, in Houghton and Tipper’s inhibition of return implementation inhibitory processes are controlled by an orienting system, which enables attention to be exogeneously directed towards new targets. Neither of these mechanisms are relevant to our experimental circumstances in which the absence of conscious awareness of the priming militates against a role for high-level attention. Consequently, in this paper we seek a computational explanation that is “dumb” in the sense that recourse is not taken to high-level processes, rather a model, which reflects the characteristics of a direct non-conscious link from preception to motor action is developed. In undertaking this endeavour, we will though make liberal use of a number of mechanisms underlying Houghton and Tipper’s modelling work.

The central element of Houghton and Tipper’s model is the concept of an opponent network. A number of different incarnations of opponent processing can be found in their papers (Houghton and Tipper 1994) (Houghton, Tipper et al. 1996) (Jackson and Houghton 1994). However, the central idea is the same. Nodes are designated to reflect response activation build-up. For the masked priming task, a node would be allocated to each of the two possible responses - left and right-hand selections. Activation build-up at one of these nodes reflects increasing evidence for that response
. Then an opponent (OFF) node is associated with each response
. These two nodes are linked via an excitatory link from the response to the OFF node and an inhibitory link from the OFF node back to the response. We can depict such a configuration as follows:
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In terms of function, the opponent node regulates activation in the associated response node through the release of inhibition. Thus, as activation builds-up at a response node there is a delayed build-up of activation at the OFF node. Eventually the OFF node feeds inhibition back onto the response node. In addition, a threshold mechanism can be placed in the opponent loop in order to regulate the time-course of the release of inhibition onto the response node.

It is postulated that such opponent networks play a central role in chaining together motor actions into co-ordinated sequences. By suppressing and hence “clearing-up” residue activation of completed responses, OFF nodes enable a sequence of response selections to be made in quick succession.

The main contribution of this paper is to use these opponent network ideas in constructing a computational account of the masked priming results. In order to do this we will begin in section 2 by reviewing the masked priming task and the available empirical data. Then the main body of the paper presents a sequence of computational models, which give progressively superior matches to the available data. Thus, section 3 presents our prototype model, section 4 presents a first refinement of this model and sections 5 and 6 provide further refinements. Then section 7 places the model in a broader context of the spectrum of available data. Section 8 discusses the result of the modelling work and section 9 presents our conclusions.
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Figure 1: Masked Priming Task Response Times from (Eimer 1999).

2 The Masked Priming Task

By way of clarification we re-iterate the Masked Priming stimuli sequence again. We follow (Eimer 1999) here.

1. Prime Phase: A prime stimulus is presented for 16ms. This stimulus is either a left-pointing or right-pointing double arrow or a neutral stimulus (“<>” or “><”).

2. Mask Phase: Immediately following the prime, the mask is presented for 100ms. A number of different types of mask have been explored, since it was felt that the superimposition of left and right pointing arrows may generate an induced motion in the opposite direction to the prime. Examples of such alternative masks, include SS, ZZ, ## or &&. The negative compatibility effect remains with all such masks.

3. Target Phase: Finally, a target is presented for 100ms. This is either a left or right-pointing double arrow. Subjects respond with their left or right hand according to arrow direction.

Using this experimental set-up, three conditions can be identified:

1. Compatible: This is defined to be all trials in which the direction of the arrows in the prime and target phases is the same.

2. Incompatible: This is defined to be all trials in which the direction of the arrows is reversed between prime and target phases.

3. Neutral: This is defined to be all trials in which a neutral stimulus is presented in the prime phase.

These three conditions have been extensively investigated and have yielded the behavioural results shown in Figure 1 (this figure is taken from (Eimer 1999)). These results confirm that response times are slowest on the compatible condition and fastest on the incompatible condition. This is the archetypal negative compatibility effect. Furthermore, since the quantity of errors varies consistently with response times, it cannot be argued that response speed up is being exchanged for accuracy.

This figure suggests that an indicative profile of response times would be (these are all mean values):

· Compatible – 420 ms;

· Neutral – 380 ms; and

· Incompatible – 360 ms.

As previously suggested, EEG work has thrown considerable light on the time-course of masked priming negative compatibility. The lateralized readiness potentials shown in Figure 2 have been measured for this experiment (and once again we are reproducing results presented in (Eimer 1999)).
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Figure 2: LRP for Masked Priming Task from (Eimer 1999).

The direction of activation (above or below the x-axis) indicates activation in motor cortex areas that correspond to the correct or incorrect hand movement. Correct here meaning, in the direction of the target in the target phase. The origin corresponds to prime onset and the potentials are measured up to 600ms after prime onset.

The initial peak and trough obtained around 250ms after prime onset (indicated by the black arrow) can be interpreted as pre-activation of the motor response corresponding to the direction of the prime. The white arrow indicates the point at which target activation begins (in the compatible condition) to cancel out and (in the incompatible condition) to accentuate the reversal, which has arisen from masking the prime.

We use the following terminology in the remainder of the paper,

· Onset of prime direction pre-activation: The point, around the 200ms time-point, at which the compatible and incompatible cases show a significant enough deflection from the origin that it cannot be attributed to background activation fluctuations.

· Reversal onset: The point at which suppression starts to take affect, somewhere around the black arrow.

· Inhibition induced crossover: The crossover point just before 300ms, at which suppression has taken sufficient hold that the response direction changes.

· Target activation onset: The point at which target activation starts to take affect, somewhere around the white arrow.

· Target induced crossover: The compatible case crossover just before 400ms at which target activation has taken sufficient hold that the response direction changes.

One notable point about this LRP profile that it is worth emphasising now is that the reversal deflection is significantly larger than the prime direction pre-activation. This is demonstrated, for example, in the compatible case by the area of correct deflection between the onset of prime direction pre-activation and inhibition induced crossover being around a half the size of the area of incorrect deflection between inhibition induced crossover and target induced crossover. The need to reproduce such a response profile will impose strong constraints on our model.

3 Prototype Model

Some of the modelling choices that we have made may not at first sight be completely obvious. Hence in order to elucidate these choices, we will begin by presenting a simple prototype model, which one might at first think is sufficient. However, we will show that it is in fact insufficient and in response, in the following sections, we will present extended versions, which resolve these difficulties.
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Figure 3: The Prototype Model

All our models have been constructed using the Stuttgart Neural Network Simulator (version 4.2) (SNNS_Team 2001) and are available on request. There are two types of node in the network – input nodes and hidden nodes. An execution of the net corresponds to a sequence of cycles. On each cycle a new activation pattern is presented to the net and activation of all nodes is updated accordingly. Input nodes are updated using the pattern. In contrast, hidden nodes are updated as a function of current activation and the new activation flowing into the node; an activation function, which will be introduced shortly, is defined for this purpose.

3.1 Configuration

As with all our networks, the prototype model is built using opponent nets. Its configuration is shown in Figure 3.

In terms of high-level structural configuration, the prototype model contains two layers – a perception layer and a response selection layer. In this prototype model these two layers reflect the distinction between input and hidden nodes. Thus, all perception layer nodes are input nodes and all other nodes are hidden.

It is also important to note that in terms of the perception layer, the process of object recognition is not modelled. Indeed our model largely abstracts from the question of the level of cognitive representation of the stimuli that is built during performance of the task. In effect our perception layer nodes denote (through their activation level) the extent of the evidence for perception of that stimulus and we make no assumption about how activation levels correspond to construction of object representations.

Activation of node 1 is used to model the mask or the neutral prime being presented, while activation of node 2 corresponds to a left double arrow stimulus and activation of node 3 to a right double arrow stimulus. Notice that since node 1 is completely disconnected, we have assumed that perception of both the mask and the neutral stimulus have no effect (either facilitatory or inhibitory) upon the rest of the model. Indeed the same result would be obtained if no mask or neutral related activation was to enter the model during the relevant cycles. One might alternatively believe that the mask and neutral stimulus do have some effect upon response nodes. However, this effect would be considerably reduced in activation quantity when compared with the other experimental stimuli and, in addition, it would be symmetric with regard to the response nodes, i.e. it would relay the same quantity of activation into both nodes. We investigate an alternative model of masking in a later version of our model.

Nodes 5 and 6 represent a response layer, i.e. each node denotes a particular motor response channel. Node 5 corresponds to a left-hand response and node 6 to a right hand response
. Perception of the left and right stimuli causes excitation of their corresponding response node, through excitatory links from node 2 to node 5 and from node 3 to node 6.

Nodes 7 and 8 are the respective OFF (opponent) nodes for nodes 5 and 6. Thus, when, for example, activation builds up in node 5, it also causes activation to build up in node 7. We include a threshold on the input to nodes 7 and 8. By adjusting the value of the threshold we can regulate the speed with which activation builds-up in OFF nodes following its build-up in response nodes. This can help us to regulate the time-course of response suppression.

3.2 Formal Definitions

As was previously explained, the activation level of input nodes is determined externally through the presentation of pattern files. In contrast the activation level of hidden nodes is evaluated internally. We use a leaky integrator activation function over a [-1,+1] range, in order to perform this role. The negative range here is inherited from Houghton and Tipper, whose work we have endeavoured to follow. However, before presenting this function, we need some preliminary definitions, all of which are relatively standard in connectionist models.

Firstly, we denote the input to an arbitrary node i on cycle t as neti(t). This is defined, in standard fashion, as a weighted sum of the activation currently being input to the node,
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where j indexes node i’s K predecessor nodes in the network; wij is the weight on the link from node j to node i
; and oj(t) is the activation output by the jth predecessor node on the tth cycle. In particular, activation arriving along negatively weighted links will reduce neti and will hence have an inhibitory effect. In addition, as indicated by them not having a cycle parameter, weights are fixed throughout our simulations. We discuss this issue in the next subsection.

The output from nodes is clipped in order to ensure that it is non-negative, Thus,
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where aj(t) denotes the activation of node j on cycle t. By clipping the outputted activation in this way, we ensure that only non-negatively excited nodes relay their activation to successor nodes. This is in line with (Houghton and Tipper 1994).

Using these concepts, we can now define the leaky integrator activation function that we use for hidden nodes. It is a small refinement of the activation function employed in (Houghton and Tipper 1994)
. Thus, assuming that ( is the decay rate,


The activation function expresses the new activation level of a hidden node (i.e. ai(t+1)) in terms of its current activation (i.e. ai(t)) and any new activation being input into the node (i.e. neti(t)). A level of temporal activation stability, is preserved by the term on the left of the +, i.e.
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However, the function leaks at a rate determined by the constant . Thus, broadly speaking, temporal stability of the activation function increases as  increases. In other words, when  is large (i.e. approaches 1) the activation level on previous iterations becomes more significant in determining the new activation level. Thus, large fluctuations in activation will have less effect on the value of ai than they would with small values of .

In addition, depending upon whether it is negative or positive, the new activation entering the node, the neti(t), is treated differently in the term to the right of the +. This is needed because depending upon whether the input activation is moving up towards the +1 or down towards the –1 bound, there will be a different quantity of activation that is left unallocated after the  ( ai(t) term has been extracted.

In the positive case, the relevant term is,


where,

squashes activation into the range –1 to +1 and is most responsive, i.e. most nearly linear, when netI  is zero. In the remainder of the paper we denote this function as F 

3.3 Interpretation of the Model

There are a number of issues that impinge upon how both this prototype model and the refined model that we will shortly present should be interpreted. We discuss these issues in this subsection.

Firstly, it is important to note that even though, in broad terms, activation build up on a particular response node (i.e. node 5 or 6) suggests increased excitation of that direction, responses are not selected via constraints local to response nodes. Rather the key criteria in deciding response selection, is the relative activation of response nodes. This is what we refer to as response separation. The difference in activation between nodes 5 and 6 indicates the degree to which one response has come to dominate over the other. In fact, a number of different criteria could be applied in order to relate the separation of nodes 5 and 6 to response times, however, they are all in some way based upon taking the difference between node 5 and node 6 activation levels. For example, all of the following criteria could be used.

1. Separation – the difference between the activation of node 5 and node 6 is, in absolute terms, greater than some constant, e.g. 0.3 or 0.4.

2. Stability – the difference between node 5 and node 6 is in absolute terms greater than some constant for a number of cycles, e.g. 3 cycles.

3. Separation and Stability – a combination of 1 and 2, for example, three cycles of separation in a particular direction, i.e. negative or positive and that on the third cycle separation is, in absolute terms, greater than 0.3.

We postpone a decision of which of these selection criteria to employ until we have considered the data being generated from our model. However, it is also worth noting that there are further approaches to response selection that we could have employed, for example, the evidence accumulators employed in Cohen, Dunbar and McClelland’s model of the Stroop Effect (Cohen, Dunbar et al. 1990). However, it is not clear how using these techniques would add to our approach.

We should also make clear the bounds of our model. Most significantly, unlike a large swath of connectionist research, we have not investigated learning. This is because there is no empirical evidence concerning how learning affects the masked priming task or indeed whether it would at all. Consequently, link weights are hard-wired and fixed during our simulations. This is not to say that we have not explored the consequences of setting weights to different values. In fact, one element of our work has been to use the model to explore parameter settings that can reproduce the available empirical data and central parameters in this respect are the link weights.

Finally, the simulations presented in this paper correspond to mean empirical data values. Since the empirical data available to us were mean values, e.g. the response times (shown in Figure 1) and the LRP data (shown in Figure 2), we have built a computational model which reflects these central tendencies. Thus, we have not attempted to generate a distribution of response times. Although it should be emphasised that, by applying gaussian noise to the model, it would not be hard to do this. For example, we could add gaussian noise to the response selection process in a manner similar to Cohen et al (Cohen, Dunbar et al. 1990). However, we would only then average across the resulting response time distributions in order to compare with the data available to us. Consequently, we have avoided this added complexity. Although, in subsection 7.3 we discuss how the addition of such noise could be useful in reproducing the error values of (Eimer 1999).

3.4 Prototype Model Parameters

The key parameters that we can set in order to control the behaviour of our model are the decay rate of the activation function, the threshold on the entrance to OFF nodes and link weights. In the results reported in this subsection, these are set as follows:

1.  is set to 0.9.

2. No threshold is placed on the entrance to OFF nodes
.

3. Weights are set as follows:-

· inter-layer weights (that is, between the perception and response selection layers) are set to 0.6, i.e. links 2 to 5 and 3 to 6;

· intra-layer weights (that is, in the opponent circuits) are set to an absolute value of 0.8, i.e. links 5 to 7, 7 to 5, 6 to 8 and 8 to 6. Although, links from 7 to 5 and 8 to 6 are inhibitory and thus, have weights of –0.8.

Broadly speaking the choice of these parameter values has been made in order to accentuate the effect of OFF nodes and thus, to ensure as strong a reversal as possible. We will return to this point shortly.

As previously stated, activation is input into the network via activation patterns. These define the level of excitation of input nodes on each cycle. Node activations in patterns are assumed to be binary in nature. Thus, an activation of 0.0 or +1.0 can be applied to an input node. As an illustration, the pattern for a typical cycle of the presentation of a left pointing target would enforce the following activations,

Node 1  –     0.0

Node 2  –  +1.0

Node 3  –     0.0

which ensures that the mask is unactivated, left pointing double arrows are activated and right pointing double arrows are unactivated.

The three pattern sequences are as follows:-

1. Compatible. An activation of +1.0 is presented for 1 cycle at node 2 (this corresponds to the subliminal cue). Then 6 cycles of an activation level of 1.0 are presented at node 1 (this corresponds to the mask). This is followed by 6 cycles of activation at node 2 again and finally a number of cycles in which all input activation is zero.

2. Incompatible. An activation of +1.0 is presented for 1 cycle at node 3. Then the sequence proceeds identically to the compatible case.

3. Neutral. An activation of +1.0 is presented for 1 cycle at node 1 – the mask location. Following this neutral cue, the pattern sequence is the same as the compatible and incompatible cases.

Notice that these timings are broadly in the same proportions as those used in (Eimer 1999), where the prime is presented for 16.6666ms and the mask and the target are presented for 100ms each. One of our cycles corresponds to 16.6666 ms in the Eimer experiments. Thus, 6 cycles of stimulus presentation in the model corresponds to 16.66666 ( 6 = 100ms of stimulus presentation in Eimer’s work.

We would like to obtain results from our simulations, which correspond to the LRPs reproduced in Figure 2. However, our graphs will start at some point to the right of the origin in Figure 2. This is because it takes some time for the perceptual pathways to relay information to the response system and this time lag is not modelled in our implementation. From the results in (Eimer 1999), this lag is somewhere around 200ms.

3.5 Prototype Model Results

With this set-up, we obtain the results shown in Figure 4. In each condition the figure shows the time-course of the difference between nodes 6 and 5. Thus, a negative value corresponds to facilitation in the correct direction, when compared with Figure 2 and positive values correspond to facilitation in the incorrect direction. These results are promising, in particular, if, for example, we consider the compatible case, we see the correct sequence of events. There is an initial separation in the direction of the prime, which is followed by a reversal as inhibition from the OFF nodes cut in. Consequently, although we have not yet settled upon a specific separation criteria, it is clear that, at least in qualitative terms, the response time pattern from Figure 1 has been reproduced. If we consider the profile from the point of target activation onset, the incompatible separates most quickly, followed by the neutral condition and then the compatible condition. Despite this success, there are problems with these results.

If we look carefully at Figure 4, it is clear that we are a long way from reproducing the results of the LRPs shown in Figure 2. In particular, the reversal deflection is much larger than the prime direction pre-activation in Eimer’s data, however, it is much smaller in Figure 4. This is a strong indicator that there are problems with this prototype model.


Figure 4: Prototype Model Results


Figure 5: Refined Model

We have done an extensive exploration of parameter settings with this basic configuration without resolving this problem. In fact, we would argue that the data presented here is about as close as one could justifiably go in trying to reproduce the required separation profile. Specifically, if we consider the parameter settings used, we can see that they are all set in order to maximise the reversal strength. That is, a decay rate of 0.9 ensures that nodes hold their activation and decay very slowly. This is required to ensure that the build-up of activation in OFF nodes is stable and any higher value would be unrealistic
. Furthermore, the inclusion of a non-zero threshold on the entrance to OFF nodes would only reduce reversal strength, since it would constrain the build-up of OFF node activation. Finally, we also currently reserve our highest weights for the opponent network links, this is again to ensure a strong build-up of activation in and feedback from OFF nodes.

The problem that we are struggling with is that apart from prime activation on the 2nd cycle
, there is no activation entering the opponent networks during the first eight cycles of the simulation, i.e. up to target activation onset. In this sense, the response selection layer is a closed system between cycles 3 and 8. However, if we are to believe this design, somehow this quantity of activation must explain a reversal of approximately twice the size of the prime onset pre-activation, even though there is no new activation entering the system apart from that which caused the pre-activation. It is consequently difficult to see how such a model could explain the LRP profiles of Figure 2. The problem is accentuated by the fact that there must be some activation decay in the model (unless we set  to 1.0, which as previously suggested, is unreasonable). Thus, not only can we not some how double the level of excitation in the opponent networks while they are “closed”, it is unclear that we can even preserve the activation level to be found on cycle 2. It is for this reason that we move in the next section to construct a new connectionist configuration, which responds to this deficiency.

4 Refined Model (i)

4.1 Refinements

The refined model that we discuss now contains three principle additions to the prototype model, each of which can be justified in psychological terms. Firstly, we include a mechanism to prime and maintain the response set, secondly, we add a non-zero threshold on the entrance to OFF nodes and finally, we add lateral inhibition between response nodes. These additions are shown in Figure 5 and are discussed now.

· Response Set Delineation. We add an extra layer, which comprises just one item – an input neuron (node 4). This node represents a pathway by which high-level task demands can affect the delineation of a response set. Remember that, although we are not depicting them, the two response nodes shown in Figure 5, nodes 5 and 6, are just two amongst many such responses. In other terms, our response set delineation can be viewed as initiating a particular stimulus-response binding. In broad terms, any response could be bound to any stimulus, and a particular binding is instigated by the demands of the task. In particular, it is important to note that we are not interpreting this delineation as controlling response readiness. (Schlaghecken and Eimer 2001) have shown that changes in response readiness (which can be controlled by altering the number of previous responses in a particular direction, e.g. left or right) does not result in changes in negative compatibility effects.

The mechanism of response set delineation has two components. Firstly, it “primes” the response system according to task demands, by exciting nodes 5 and 6 in order to “foreground” them from amongst the set of possible response nodes. Secondly, the layer maintains this delineation of response set, by continuing to feed activation into the two nodes. In operational terms, the response system is primed by running the network for a number of cycles before the experimental sequence starts (i.e. before the prime is presented) with a pattern which, from amongst the input nodes, only excites node 4. The number of cycles is chosen in order to ensure that the priming of nodes 5 and 6 has stabilised and reached an equilibrium level before the experimental sequence starts.

This addition is similar to mechanisms that have been used in a number of other neural network models. For example, Cohen et al (Cohen, Dunbar et al. 1990) introduced an attention mechanism which, using a pre-activation technique similar to ours, placed nodes in the attended pathway in the most receptive segment of their sigmoidal activation function (i.e. the part that is most nearly linear). In addition, although their attention mechanism is intrinsically more complex than ours, the target fields in Houghton and Tipper’s work (Houghton and Tipper 1994) have a related role to our response set delineation.

However, it is important to note that our response set delineation in no way resolves the choice between the two response alternatives. Rather it feeds an equal amount of activation into both alternatives. Thus this is quite unlike Houghton and Tipper’s mechanism of high-level activation which directly controls the selection between response alternatives.

· Thresholds. As we have previously emphasised, the purpose of the opponent networks is to suppress the activation leftover in response nodes. Consequently, it would be inappropriate for the opponent mechanism to inhibit response node activation before any activation from the perception layer has arrived
. In order to prevent this, we have added non-zero thresholds on the entrance to OFF nodes. These are set to be just above the level of activation that response nodes reach when their priming from response delineation has reached equilibrium. Consequently, OFF nodes remain at baseline activation levels (i.e. zero) throughout response node priming. It is only when perception layer activation reaches the opponent system that the OFF node threshold is exceeded and OFF nodes become excited.

· Lateral Inhibition. We also include lateral inhibition between response nodes. This amounts to adding inhibitory links between nodes 5 and 6
. The inclusion of such lateral inhibition is a standard technique in neural network modelling; its function being to “pick-out” the most excited neuron from a set of neurons. The term winner-take all is often associated with such an approach. In fact, a combination of the time-course of our experiment and the link weight settings that we employ prevent a full winner-take all behaviour. Rather the lateral inhibition “sharpens up” a particular separation without necessarily excluding the losing node, i.e. without being allowed to push its activation to zero (or below). In this sense, we obtain an effect similar to that found in competitive networks, see (Carpenter 2001). In psychological terms this lateral inhibition is implementing response competition. In the experimental paradigm only one out of the two “delineated” responses can be executed on each trial and competition between these two potential responses is realised by this lateral inhibition.

The central problem with our prototype model was that the activation build-up in OFF nodes was not sufficient to create a reversal strength commensurate with the LRP profile of (Eimer 1999). The addition of response set delineation, non-zero thresholds and lateral inhibition responds to this problem. Response set delineation ensures that a greater quantity of activation is input into the opponent network and continues to be input during (the previously “closed”) cycles 3 to 8. Non-zero thresholds prevent this newly available activation from releasing opponent behaviour inappropriately early. Then lateral inhibition redistributes the activation made newly available by response set delineation in such a way that opponent nodes are more strongly (and in fact selectively) activated. This is what allows us to obtain a stronger reversal.

Individually, none of these additions would have a significant effect, but combined they lead to increased response separation and reversal strength. The critical behaviour of the model is as follows:

1. Response set delineation provides a stable pre-activation of nodes 5 and 6. Although there is no separation – they are equally excited. At this stage, activation of nodes 7 and 8 has not moved above baseline.

2. The prime pushes separation a small amount in a particular direction; let’s say towards the left response, i.e. node 5.

3. Lateral inhibition acts upon the activation made available by response set priming and maintenance; redistributing this activation according to the primed response direction.

4. This in turn causes excitation of opponent nodes. However, it is important to note that, of the opponent nodes, it is only node 7 that becomes activated at this stage. This is because only the primed response (node 5) is generating enough activation on its ON to OFF node link to cross the threshold on the entrance to its OFF node. Consequently, node 7 becomes highly activated while node 8 remains at baseline.

5. The build-up of activation in node 7 is ultimately relayed back to its corresponding response node, but now in an inhibitory form. This inhibition strongly suppresses node 5. Furthermore, once this suppression is strong enough to push node 5 activation below node 6 activation, lateral inhibition begins to work in the opposite direction; rapidly reversing the direction of separation.

6. In the compatible case, this reversal yields separation in the incorrect direction, while in the incompatible case, it is in the correct direction.

It is this sequence of events that brings the behaviour of our model more in-line with the results of (Eimer 1999)
4.2 Results

Model parameters are set as follows in the results reported in this subsection:

1. is set to 0.9.

2. A threshold of 0.2 is placed on the entrance to OFF nodes.

3. Weights are set as follows:-

· between the perception and response selection layers weights are set to 0.6, i.e. links 2 to 5 and 3 to 6;

· positive weights in the opponent circuits are set to 0.8, i.e. links 5 to 7 and 6 to 8;

· negative weights in the opponent circuits are set to –0.8, i.e. 7 to 5 and 8 to 6;

· lateral inhibition weights between response nodes, i.e. links 5 to 6 and 6 to 5 are set to –0.5;

· weights from response set delineation are set to 0.14, i.e. links 4 to 5 and 4 to 6.

Notice that the last of these weights has been manipulated in order to ensure that stable response node priming is below the 0.2 threshold level. With these parameter settings, response node activation stabilises at 0.189 after 17 cycles of excitation from response set delineation.

Of these parameter settings, all are in-line with those made in the prototype model apart from the non-zero thresholds, lateral inhibition weights and response set delineation weights.

Figure 6: Results of Refined Model (i)

The pattern sequences presented for this model are the same as those for the prototype model (which were discussed in section 1) apart from the functioning of response set delineation. Specifically, 20 cycles of just node 4 being activated are prepended on the front of the old sequences and node 4 continues to be activated throughout. Since response node activation stabilises after 17 cycles, this prepended 20 cycles is sufficient to ensure equilibrium has been reached before the prime is presented. 

The results that we obtain for our model are shown in Figure 6. As a consequence of our modelling we have obtained two main improvements. (i) The reversal is stronger (although still not as strong as we would like). (ii) The shape of the prime induced pre-activation is more reasonable, i.e. a more gradual increase and decrease in separation.

These results are again promising but the reversal is still not strong enough. The reason for this is that target activation enters the network too sharply, cutting off the reversal as it is building-up. A justification for this observation is that the gap between inhibition-induced crossover and target-induced crossover is much smaller in our simulations than in the LRPs. In Figure 6, the gap between the crossovers is around 3.5 cycles, which corresponds to 58.33333 ms. This is much smaller than the greater than 100ms gap in Figure 2. We propose to use a gradual target onset in order to address this issue. This is what we undertake in the next section.

5 Refined Model (ii)

5.1 Refinements

A gradual activation onset can be obtained by explicitly modelling visual pathways from the perception layer to the response selection layer. In particular, we know that it takes time for a perceptual input to activate the motor system since the neurophysiological architecture of the visuo-motor pathways includes several steps from primary visual cortex to motor cortex. In conceptual terms it is (in admittedly very abstract terms) the modelling of this sequence of steps that we are explicitly adding to our model here. This refinement is shown in Figure 7, where nodes 14 and 15 model these perceptual pathways. These nodes relay activation from perception layer nodes to their corresponding response nodes. However, when relaying activation, the nodes apply a leaky integrator activation function, of the type discussed in subsection 3.2. This has the effect of turning the binary (i.e. zero or one) perception layer activation into a gradual onset and decline.




Figure 7: Refined Model (ii)

As a consequence of this extension, we need to enhance the masking mechanism. Specifically, applying a leaky integrator activation function to nodes 14 and 15 means that even after the prime is over, activation caused by it will remain (in a decaying form) in the perceptual pathways. However, this conflicts with the known effect of masking; the purpose of which is exactly to prevent prime induced activation from persisting in perceptual pathways.

What we require then is a mechanism by which activation persisting in nodes 14 and 15 is nullified when node 1 is activated, i.e. when the mask is presented. We obtain this effect by adding, what we call, gating links from node 1 to nodes 14 and 15. When the mask is not activated, these links have no effect on activation of nodes 14 and 15. However, if node 1 is activated, node 14 and 15 activation is “reset” to zero, i.e. the gate is closed
. Indeed it could be argued that this is conceptually a more reasonable model of masking than that employed in our previous simulations, in which a disconnected mask node was selectively activated. In contrast, the gating links employed here can be viewed as an abstract implementation of the idea that the restricted capacity of visual pathways generates masking. In particular, shared competing usage of the visual pathways between prime and mask stimuli causes the effect.

5.2 Results

Model parameters are set as follows in the results reported in this subsection:

1. is set to 0.9 in all nodes except 14 and 15, where it is set to 0.5.

2. A threshold of 0.2 is placed on the entrance to OFF nodes.

3. Weights are set as follows:-

· between the perception layer and perceptual pathways, weights are set to 1, i.e. links 1 to 14, 1 to 15, 2 to 14 and 3 to 15;

· between the perceptual pathways and the response selection layer, weights are set to 0.6, i.e. links 2 to 5 and 3 to 6;

· positive weights in the opponent circuits are set to 0.8, i.e. links 5 to 7 and 6 to 8;

· negative weights in the opponent circuits are set to –0.8, i.e. 7 to 5 and 8 to 6;

· lateral inhibition weights between response nodes, i.e. links 5 to 6 and 6 to 5 are set to –0.5;

· weights from response set delineation are set to 0.14, i.e. links 4 to 5 and 4 to 6.

These parameters are in line with those employed in our two previous models. The only notable choice is that we have employed a faster decay rate for perceptual pathways than nodes in the opponent circuits. The reason for this is that slow decay rates have been chosen for the opponent circuits, since they contribute to a strong reversal. There is no such motivatory argument for employing slow decay rates in perceptual pathways. Consequently, we have set them to the more standard value of 0.5.

Firstly, it should be clear from Figure 8 that we have succeeded in generating a suitably strong reversal. In particular, as a consequence of the addition of perceptual pathways, we have obtained a reversal, which is approximately twice as large as the prime induced pre-activation and, at least up to time-point 8, is nicely in-line with the LRP activation profiles
.

However, there is still a problem with the separation profile of Figure 8. This is that we do not reproduce the LRP profile that arises post response selection. In particular, from time-point 9 or 10 onwards, incompatible condition separation “runs-away” in a negative direction, while in the LRP data, the incompatible condition rapidly loses separation around this time-point and there is a crossover between the conditions. We obtain a suitable crossover between the neutral and compatible conditions, however, the incompatible condition fails to follow this pattern.

Our explanation for this effect comes from an inspection of the time-course of activation in the network. When running our simulations, it becomes clear that at the vital point at which separation runs away in the incompatible condition, the non-selected response becomes negatively activated. This has the effect of sustaining and enhancing the separation. Apart from this situation, negative activation does not arise to any significant level in any of our simulations. In response to this observation, our next refinement considers the consequences of preventing negative activation by placing a zero lower bound on our activation functions.


Figure 8: Results of Refined Model (ii)

6 Refined Model (iii)

The activation function that we use in this model is a small refinement of that which we have previously been employing. According to this new function, we denote the activation level, of node i at cycle t as, Ai(t) which is defined as,

           
[image: image6.wmf])

(

 

else

 

0

 then 

0

)

(

 

if

)

(

t

a

t

a

t

A

i

i

i

<

=


This function simply resets to zero any negative activation arising from our previous function (ai(t)). Apart from employing this refined activation function on hidden nodes, in all other respects, refined model (iii) is the same as refined model (ii). In particular, all parameters are set as in the previous network.

Running the three conditions using this new network generates the results shown in Figure 9. As can be seen, although the pattern of post selection crossover is not exactly the same as that occurring in the LRPs, it is close enough for us to argue that our new activation function has largely worked. We have preserved the reversal strength, while generating a post selection crossover similar to that found in Eimer’s LRPs.

We can also convincingly relate our model to the available behavioural (reaction time) data. The important characteristics of these reaction times are that,

1. reaction times are longer on compatible than incompatible trials;

2. there are behavioural costs (relative to neutral trials) on compatible trials and behavioural benefits (again relative to neutral trials) on incompatible trials; and

3. costs and benefits are not significantly different from each other, i.e. reaction times for neutral trials are (broadly) in the middle between compatible and incompatible trials.

Now to generate reaction times from our model we need to identify a suitable selection criteria. This is the “separation condition” that has to be satisfied in order to adjudge that a motor response has occurred.

In fact, a whole wealth of selection criteria could, if employed, yield a profile of reaction times commensurate with the three requirements above. As an illustration of this we now investigate a selection criteria that will generate the reaction times shown in Figure 1. Although it should be said that depending upon the exact experimental conditions employed quite different reaction times can result. And indeed by varying the selection criteria our model will yield, in quantitative terms, markedly different actual reaction times. Thus, the following should be taken as merely an illustration that we can fit our model to specific (and typical) sample data, while the key overall result is that we can satisfy characteristics 1, 2 and 3 above.

Now, if we assume that time-point 1 in our graphs corresponds to the 200ms time-point along the x-axis of the LRP (Figure 2), the empirical data in Figure 1 predicts the following (simulation) response times:

· Compatible – 220 ms = 13.2 network cycles;

· Neutral – 180 ms = 10.8 network cycles; and

· Incompatible – 160 ms = 9.6 network cycles.

As discussed in subsection 3.3, there are a number of possible selection criteria that could be used. Here we employ the separation and stability combination discussed there. In simulation terms, we view a response as having been selected when separation greater than an absolute value of 0.46 and separation has been in the corresponding direction for at least 4 cycles. This gives us the following response time figures for our model:

· Compatible – 13.0 cycles;

· Neutral – 11.0 cycles; and

· Incompatible – 8.8 cycles.


Figure 9: Results of Refined Model (iii)

In combination with our LRP fit, these simulation data are certainly sufficiently close to the empirical data of Figure 1 to suggest that we have reproduced the basic masked priming data.

7 Reproducing other Data

There are some other empirical indicators available for the Masked Priming task. We discuss these here and how they can be handled by our model.

7.1 Forced Choice Results

Although we in no sense wish to suggest that our model provides a comprehensive treatment of consciousness, we would argue that within the restricted modelling domain in which we are working a reasonable determinate of phenomenal experience can be identified. Although the reader should note that we use the term phenomenal experience rather loosely, in particular, one could debate how a chance forced choice outcome relates to phenomenal experience. However, in order to avoid getting embroiled in this debate we will (perhaps naively) identify chance forced choice outcomes in terms of the masked priming task with absence of phenomenal experience. With this caveat in mind, our interpretation of phenomenal experience will be governed by, what is the key emergent property of our model, the separation of activation between response nodes. Separation that fails to satisfy the selection criteria will be viewed as below threshold and that which satisfies the criteria will be viewed as yielding conscious experience
.

This interpretation of consciousness yields a clear justification for Eimer and Schlaghecken’s forced choice results. In their forced choice experiments, Eimer and Schlaghecken use the same stimulus sequence as that discussed so far except that target phase stimuli are not presented. In such circumstances subjects are at chance (Eimer and Schlaghecken 1998).

In order to reproduce these results we can run the model without target phase activation. As required, separation fails to reach a point at which the selection criteria is satisfied. As we have just argued, we would interpret absence of selection as reflecting that the prime is not available to conscious experience and hence, that subjects default to a random selection between response alternatives. In this way we can reproduce Eimer and Schlaghecken’s forced choice results.

7.2 SOA Length

There is also further evidence that the time-course of our model is valid. Eimer and Schlaghecken’s work indicates that positive compatibility effects are obtained with shorter prime-target SOAs (Eimer 1999), i.e. the order of response times switches and the compatible case becomes the quickest and the incompatible case the slowest. From an inspection of the results in Figure 9, it is clear that, in principle, our model will exhibit the same phenomenon. This is because, if the SOA is sufficiently short that the target onset is between cycles 2 and 5, in the compatible condition, there would be facilitation in the correct direction at the onset of the target. Similarly, at the same point in the incompatible condition, there would be facilitation in the incorrect direction. Thus, our model should have no problem in reproducing this finding.

7.3 Error Rates

Currently, we do not reproduce error rates, however, it is worth considering how we might do so. We will argue that, the LRP profiles (Figure 2) suggest how errors arise. The profiles show mean left and right hemisphere activation differences for correct trials (note, error trials are not averaged into the LRP). However, variations around such an average correct response activation profile could yield an error and there will, of course, be trial specific variation around mean data. For example, if in the compatible condition a particularly strong reversal occurs then the selection criteria could be satisfied in the incorrect direction. It should be clear from this perspective why there are fewest errors in the incompatible condition. Since, in this condition, the reversal brings separation in the correct direction, separation must stray very significantly from the mean in order to generate an error. For example, the prime induced pre-activation would have to be very significantly enhanced.

From this discussion it should be clear that a relatively straightforward extension of our network would allow us to investigate error rates. This extension would be to add gaussian noise to the separation profiles, yielding new “noisy” profiles. Each time-point in a noisy profile would be sampled from a normal distribution with mean the separation produced by the model. Furthermore, since as shown in Figure 1, the pattern of errors follows the pattern of response times (in the sense that, slower responses and more errors co-occur and faster responses yield less errors), we hypothesis that Eimer and Schlaghecken’s error rates should be generated by this simple extension.

8 Discussion

8.1 Relationship to Houghton and Tipper’s Model

Although we have been heavily influenced by Houghton and Tipper’s work there are many differences between our model and theirs’. These reflect the different purposes of the two models. As we have previously stated, Houghton and Tipper’s work was concerned with the effects of high-level attention and the consequences of directing this attention towards targets and away from distractors. In contrast, our model is not concerned with dynamic redirecting of high-level attention. Response set delineation is the closest we come to high-level attention. However, the focus of this activation is fixed throughout the duration of our simulations. Another way of viewing response set delineation is that it sets-up (and maintains) the appropriate stimulus-response binding initiated by the task demands. Notice there is nothing contradictory between (task demand initiated) mapping of stimuli to responses and direct perception action links. Indeed one of Neumann’s arguments for direct parameter specification being different to automatic processing is that it can be modulated by task demands (Neumann and Klotz 1994). The key difference is that in Houghton and Tipper’s work, the direction of response selection is controlled by high-level attention, while in our model response set delineation excites both responses equally. In our model the direction of response selection is completely controlled by low-level perception to action linkages. As a result of their different concerns, it is quite natural that the two models will be different.

A further illustration of the difference in purpose of the two models is that, here we use a simpler opponent network configuration, while in (Houghton and Tipper 1994) a gain system is used which, associates both an ON and an OFF node with each property node. Here we associate a single OFF node with each response node. Thus, in comparison with the Houghton and Tipper model, we have (in effect) conflated ON cells and property cells into a single response node
. The central reason for our simplification is that the ON opponent node (and the symmetry of having both ON and OFF opponent nodes), was largely a facet of the negative priming modelling Houghton and Tipper were undertaking. The ON opponent node was used as a repository for activation that had been redirected from their target fields layer using a match/mismatch system. Such selective redistribution of activation is not a concern of ours.

A further difference between our model and Houghton and Tipper’s is that in our final refinement we have imposed a zero lower bound on our activation function. We have clearly motivated why we have made this change to the function we inherited from Houghton and Tipper and the change has enabled us to reproduce the LRP data more faithfully. Furthermore, it could be argued that we have moved to a more standard (and accepted) activation function – probably the most common activation function to be found in the literature is a sigmoidal function which ranges between zero and one. In addition, we can argue that Houghton and Tipper’s non-standard use of a –1 to +1 ranging activation function was also specific to their domain of interest. A central element of their work was that negative activation would build-up over time in distractor OFF nodes, while being held in equilibrium by perception layer activation. This inhibitory potential is only “released” when perceptual activation is retracted. In this way a “delayed” inhibitory rebound (reversal) is obtained. “Storing-up” such an inhibitory potential suggests the negative activation of nodes. However, such a mechanism is not required in our modelling work and thus, can justifiably be avoided.

8.2 Relationship to Physiology

Firstly, we must emphasis that, in its current form, our model is best viewed as providing a “psychological-level” explanation of masked priming. In particular, the relationship between our model and neurophysiology is not currently that strong. Nonetheless it is valuable to speculate on how the mechanisms we have employed here could relate to brain structures; thus providing a spring board for the development of a more biologically plausible model of the masked priming data. Such a consideration is made here.

We divide our discussion into two main issues,

1. biological justifications for the micro elements of our model, in particular, neuron activation functions and activation transfer across links; and

2. how the macro elements of our model, i.e. layers and neural circuits, relate to anatomical structures that could be involved in the masked priming effect.

We discuss these in turn.

8.2.1 Micro Comparison

Perhaps the key element of the micro-level of our model is the activation function employed and central aspects of this function are (a) time-averaging and (b) the shape of the F function. By our final refinement, the activation function we employ is the following:
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Now to consider points (a) and (b) directly.

(a) Time averaging is built into the definition of ai(t+1) with  playing a key role in regulating the responsiveness of the function to fluctuations in net input. Time averaging is biologically plausible, in particular, it is well known that neural activity builds up gradually over time. For example, in (O'Reilly and Munakata 2000) the membrane potential at a time t+1 is expressed as a function of the potential at time t (and the newly arriving electrical charge in that time interval). In addition, in order to reflect the “sluggish” propagation and aggregation of synaptic inputs O’Reilly and Munakata express the excitatory input conductance to a neuron using time averaging.

(b) The F function that we use is inherited from Houghton and Tipper (Houghton and Tipper 1994), although, we have adapted it by clipping negative activation levels (the Ai function). Nonetheless we would argue that what we obtain is, in broad terms, biologically justifiable. Firstly it should be noted that, in biological terms, node activation levels represent the rate of spiking over a population of neurons. Thus, we do not model the spiking of individual neurons. This is a standard approach that does not in itself preclude biological plausibility. In particular, it has been argued that the noisy nature of individual neuron spiking implies that the computationally meaningful level of neural activity is the rate of spiking of sets of neurons (O'Reilly and Munakata 2000) and this is what we are modelling here.

But what exactly does our F function look like? Well it is the function shown in Figure 10.

However, we have also chopped out the negative activation levels (as justified in Section 6). This affects the resulting activation function. However, it is difficult to view this overall effect, because the negative activation is chopped after time averaging is applied, while F is applied to the current net input (i.e. before time averaging is applied). Thus to view the function we consider values of Ai against neti when  is set to zero and, thus, time averaging is “factored out”. The resulting function is the following (which is shown in Figure 11).

The function is an extreme form of a sigmoidal, viz one with a “hard” threshold at zero. In particular, in the standard manner our function saturates at high positive net inputs. This is justified by neuronal refactory periods, which ensure that there is an upper bound on the spiking rate of a population of neurons. The unusual aspect of our function is that it is completely unresponsive when neti is negative. Thus, only if input conductances to a population of biological neurons are positive will neurons in the population fire. This would correspond for example to the biologically motivated derivation of the X over X plus 1 function used in (O'Reilly and Munakata 2000).
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Figure 10: The Function F
The argument against our approach is that it does not sufficiently recognise the noisy nature of spiking, i.e. our threshold for spiking (the origin in Figure 11) is too strict. This is the motivation in O’Reilly and Munakata for convolving the X over X plus 1 function to a noisy X over X plus 1 function. In summary, one could legitimately criticise the (non-noisy nature) of our output activation function, and indeed this observation is motivating ongoing research. However, it is not clear that using a convolved version of our F function would have a dramatic affect on our model and thus, in broad terms, we can claim a reasonable degree of biological plausibility for our activation functions.

Figure 11: Output Function for Final Model

At the micro-level of comparison we can also identify biological mechanisms that support activation transfer in the manner we have been considering here. Firstly, links in our model could only be related to coarse biological interconnections such as large scale neural pathways or projections between cortical areas. Consequently, link weights would denote accumulated synaptic efficacy across a set of individual connections. Furthermore, the distinction between excitatory and inhibitory connections, which is used in our model, has its origins in brain processing, with different classes of interaction employing different neurotransmitters, e.g. glutamate is excitatory and GABA is inhibitory.

8.2.2 Macro Comparison

It is at this level of comparison that the biological plausibility is less clear. Specifically, the question we are asking here is, beyond simply saying that single nodes in our model represent populations of neurons, how do components of our model relate to neuroanatomical structures? We can make “broad brush” statements such as that our perceptual layer would be implemented in visual cortex and our perceptual pathways correspond to projections going anterior from visual cortex (perhaps with an emphasis on the dorsal route, although this is not certain). However, the big question to answer is where our opponent circuits reside in the brain and this is less obvious.

One possibility is that our left and right response nodes reside in motor cortex. But this is unlikely since lateral inhibitory links across hemispheres do not exist. Thus, it seems likely that our response selection layer is situated earlier in the pathway from perception to motor output.

A more likely possibility for the location of these opponent circuits is the basal ganglia. These possess extensive projections to motor cortex and are known to be heavily involved in controlling motor responses (c.f. Parkinsons and Huntingtons diseases which are pathologies of the basal ganglia). Furthermore, the basal ganglia are known to have an inhibitory action. Specifically, GABAergic neurons in the Globus Pallidus and Substantia Nigra Pars Reticulata are tonically active and hold the thalamus (amongst other structures) in a state of tonic inhibition. Furthermore, previous work by Jackson and Houghton (Jackson and Houghton 1994) have related opponent network processing to basal ganglia architecture.

However it should be emphasised that all such claims remain highly speculative and confirmation or rejection of these conjectures awaits the results of ongoing brain imaging work on the Masked Priming Task.

9 Conclusions

We have given further evidence for an inhibition based account of the masked priming results. We have done this by presenting a connectionist model of inhibitory processes, the behaviour of which is broadly consistent with the data accumulated from the masked priming task. The underlying mechanisms we use are related to those employed in Houghton and Tipper’s influential connectionist models of negative priming and inhibition of return
 (Houghton and Tipper 1994). Furthermore similar opponent systems have played an important role in models of serial order recall such as (Burgess and Hitch 1999). Thus, when viewed as a body of research, one might suggest that opponent effects are ubiquitous – arising at many levels of cognition.

As stated previously, the notable difference between Houghton and Tipper’s model and ours is the role that high-level attention plays. Our network has the right flavour to reflect a low-level visuo-motor linkage. In this respect the mechanisms used could be described as “dumb”. The only role that goal driven processes play is in response set delineation. However, this is not a selective process and its effect is static and fixed throughout the time-course of our simulations. In particular, in contrast to Houghton and Tipper’s work, our model proposes a low-level inhibitory mechanism, which is initiated by activation build-up in response nodes. Furthermore the direction of response separation is itself initiated by perceptual activation rather than attentional processes, as is the case in Houghton and Tipper’s model.

Although it would be wrong of us to argue that our’s is the only conceivable model that could reproduce the masked priming data we would argue that on the basis of what has been presented here, the mechanisms employed in our model are good candidates for those underlying masked priming. In particular we can point to the following arguments in favour of our approach:

1. We have built upon the precedent set by Houghton and Tipper’s model. The fact that opponent network dynamics have been found useful for modelling a spectrum of different cognitive phenomena supports the argument that such mechanisms are ubiquitous. Thus, supporting our hypothesis that they underlie the Masked Priming effect.

2. Even in its final form (i.e. refinement (iii)), our model remains simple and canonical. This is always an advantage in modelling work.

3. The techniques employed are psychologically plausible and reflect a level of cognitive mechanism commensurate with the dynamics of the masked priming task.

4. The model accurately reproduces the available masked priming data.

In conclusion then, the modelling work presented here gives preliminary evidence that the masked priming results of Eimer and Schlaghecken can be reproduced using a simple combination of  (Houghton and Tipper inspired) opponent networks, lateral inhibition and response set delineation.
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� One reason for this choice is the availability of electrophysiological data, which can greatly inform our modelling work.


� It has been argued that such inhibition is instigated by re-fixation and that suppression of a previously explored location leads to an optimised visual search strategy, providing evolutionary advantages.


� Although, it should be noted that this distractor inhibition account of negative priming is not universally accepted, see for example, the selection feature mismatch account of � ADDIN ENRfu ��MacDonald, P. A. and S. Joordens (2000). "Investigating a Memory-Based Account of Negative Priming: Support for Selection-Feature Mismatch." Journal of Experimental Psychology: Human Perception and Performance 26(4): 1478-1496.� and the episodic retrieval account of � ADDIN ENRfu ��Neill, W. T. and L. A. Valdes (1992). "Persistence of Negative Priming: Steady State or Decay." Journal of Experimental Psychology: Learning, Memory, and Cognition 18: 565-576.�


� In fact, in our masked priming model the interpretation of such activation build-up is slightly more complicated than this. This is because the difference in activation between the two possible responses will actually be the indicator of increasing evidence for a particular response. We will make this mechanism precise shortly. However, for the moment a broad understanding of the mechanism is sufficient.


� Houghton and Tipper have also worked with pairs of opponent nodes – one being an excitatory ON node and the other being an inhibitory OFF node, see � ADDIN ENRfu ��Houghton, G. and S. P. Tipper (1994). A Model of Inhibitory Mechanisms in Selective Attention. Inhibitory Processes in Attention, Memory and Language. D. Dagenback and T. H. Carr, Academic Press: 53-112.� They call such a configuration a gain system and it has particular relevance to the working of attention in their work. However, such a complex opponent network will not be required for our purposes.


� In fact, these could be viewed as just two from a large number of possible responses. However, since only these two are relevant to our model, we only depict them.


� Without loss of generality, we can assume that there is a single link between two nodes in any particular direction.


� Our refinement amounts to the addition of the  multiplier in the� EMBED Equation.3  ��� and � EMBED Equation.3  ��� terms. This is needed in order to ensure that activation stays within the interval [+1,-1]. With extreme values, Houghton and Tipper’s function (� ADDIN ENRfu ��Houghton, G. and S. P. Tipper (1994). A Model of Inhibitory Mechanisms in Selective Attention. Inhibitory Processes in Attention, Memory and Language. D. Dagenback and T. H. Carr, Academic Press: 53-112.�) could depart from this interval.


� You can also think of this as setting the threshold to zero.


� In fact, one could argue that a value of 0.9 is already somewhat unrealistic. We are seeking to develop a system whereby residual activation left-over from a response selection is efficiently removed in order to allow future selections to take place, such a high decay rate hampers this endeavour. Furthermore, Houghton and Tipper set their basic decay rate to 0.5, which is much less severe than our choice. (Actually they also used a 0.9 decay rate for recovery from negatively activated states, but this is not of great relevance to us since none of the nodes in our response selection layer go strongly negative at any stage.)


� This prime activation is initiated at the perception layer on the 1st cycle, but does not reach the response nodes until the 2nd cycle. 


� Note, that we are not arguing that suppression only starts once a response has been fired, since this would contradict the basic findings of the masked priming task, i.e. that a subliminal prime can induce a separation reversal, while not inducing an overt response. It is though one thing to accept that inhibition can be initiated in the absence of an overt response (and this is what the Masked Priming data suggests), but it is quite another thing to think that inhibition is initiated even before perceptual stimuli have filtered through to the response selection layer.


� In fact, if we were to depict all possible response nodes in our network, not just those that are relevant to the task at hand, we would obtain a web of inhibitory links, ensuring that each pair of response nodes inhibits one another.


� The actual mechanism we use to perform this gating is as follows. We use a “sign reversing” output function at node 1, which relays –1.0 on the gating links when node 1 is activated to 1.0. This is the only situation in which perceptual pathway nodes can receive a negative activation. Thus, reception of –1.0 at nodes 14 and 15 can be used as a signal to return activation levels to baseline.


� In addition, with further simulations we have considered whether employing such a gradual onset would dramatically increase the strength of the reversal in the prototype model. However, these simulations confirmed that the absence of lateral inhibition and response set delineation restricts the effect of gradual activation onset on reversal strength. Thus, it is really the combination of these three features that generates the larger reversal.


� Although, it is important to note that we are not making any claims about the form of conscious awareness that might be elicited by a particular level of separation or even that there is a direct link between form of experience and separation. Rather we are making the much weaker claim that the existence or not of a phenomenal experience can be correlated with satisfaction or not of the response selection criteria.


� This is actually in line with simplifications made by Houghton and Tipper in other papers, e.g. � ADDIN ENRfu ��Houghton, G. (1994). Inhibitory Control of Neurodynamics: Opponent Mechanisms in Sequencing and Selective Attention. Neurodynamics and Psychology. M. Oaksford and G. D. A. Brown. London, Academic Press: 107-155.�.


� We also believe that the model presented here could be adapted to model inhibition of return. Furthermore, if our prediction is correct, we should be able to reproduce inhibition of return data without recourse to the inclusion of an orienting system as employed by Houghton and Tipper. Thus, simplify the resulting model.
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				1. Eimer.net Experiments

				The data presented here is from running the patterns EimerCmp.pat, Eimerneut.pat

				and Eimerincmp.pat on the net Eimer.net. This is a back to basics net which removes

				lateral inhibition and Task Set Maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.28		0.28		0

				3		-0.252		0.252		0

				4		-0.172		0.172		0

				5		-0.067		0.067		0

				6		0.037		-0.036		0

				7		0.121		-0.121		0

				8		0.182		-0.181		0

				9		-0.096		-0.516		-0.291

				10		-0.296		-0.732		-0.477

				11		-0.43		-0.846		-0.571

				12		-0.505		-0.894		-0.606

				13		-0.538		-0.901		-0.606

				14		-0.543		-0.884		-0.586

				15		-0.172		-0.466		-0.17

				16		0.116		-0.155		0.137

				2. EimerThr2.net Results

				These are the results of running EimerThr2.net, which is Eimer.net with a threshold of

				.15 place on entrance to the two OFF nodes. Thus only activation over this level will

				excite the OFF nodes.

				This first set of results is for running the basic condition - Eimercmp.pat and Eimerincmp.pat

				(we ignore the neutral case here)

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.28		0.28

				3		-0.252		0.252

				4		-0.172		0.172

				5		-0.067		0.067

				6		0.0127		-0.012

				7		0.0728		-0.072

				8		0.118		-0.117

				9		-0.165		-0.441

				10		-0.361		-0.651

				11		-0.496		-0.762

				12		-0.562		-0.808

				13		-0.583		-0.814

				14		-0.577		-0.798

				15		-0.187		-0.382

				16		0.114		-0.073

				This second set of results is for running a degraded prime simultation, I.e. Eimercmp2.pat and

				Eimerincmp2.pat.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.143		0.143

				3		-0.129		0.129

				4		-0.116		0.116

				5		-0.104		0.104

				6		-0.094		0.094

				7		-0.084		0.084

				8		-0.076		0.076

				9		-0.34		-0.223

				10		-0.508		-0.416

				11		-0.598		-0.516

				12		-0.614		-0.556

				13		-0.608		-0.561

				14		-0.585		-0.546

				15		-0.163		-0.134

				16		0.147		0.17

				3. EimTh2LtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This net adds some of the old ideas to the EimTh2.net that was just explored. In particular,

				we add a small amount of task set maintenance activation and of lateral inhibition between

				OFF nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.219		0.219

				4		-0.14		0.14

				5		-0.038		0.038

				6		0.096		-0.095

				7		0.2278		-0.227

				8		0.3368		-0.336

				9		0.1068		-0.579

				10		-0.08		-0.701

				11		-0.212		-0.734

				12		-0.304		-0.693

				13		-0.365		-0.594

				14		-0.4		-0.499

				15		-0.134		-0.089

				16		0.1174		0.2409

				4. EimTh2RLtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This is an investigation of the consequences of moving lateral inhibition to the response nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.286		0.286

				4		-0.265		0.265

				5		-0.191		0.191

				6		-0.068		0.068

				7		0.085		-0.084

				8		0.231		-0.23

				9		0.074		-0.596

				10		-0.102		-0.867

				11		-0.384		-1.051

				12		-0.521		-1.171

				13		-0.694		-1.248

				14		-0.839		-1.295

				15		-0.718		-1.161

				16		-0.574		-1.009

				5. EimTh2RLtTM3.net with pattern files EimCmpTM.pat and EimincmpTM.pat

				This adds to the previous net a 0.5 weight increase on the task maintenance node

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.139		-0.13

				8		0.309		-0.308

				9		0.147		-0.655

				10		-0.034		-0.909

				11		-0.27		-1.082

				12		-0.517		-1.194

				13		-0.717		-1.265

				14		-0.872		-1.308

				15		-0.793		-1.199

				16		-0.684		-1.071

				6. EimTh2RLtTM3.net with pattern file EimCmpTM2.pat

				This pattern file has a tiny activation level of 0.12 and still we do not get positive

				compatibility.

						cmp 13		incmp 13		neut 13

				0		0

				1		0

				2		-0.035

				3		-0.037

				4		-0.038

				5		-0.012

				6		0.018

				7		0.057

				8		0.092

				9		-0.175

				10		-0.424

				11		-0.629

				12		-0.788

				13		-0.908

				14		-0.996

				15		-0.863

				16		-0.709

				7. EimTh2RLtTM3.net using patterns EimincmpTM3.pat and EimCmpTM3.pat

				Investigation of a slow target onset rate.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.131		-0.13

				8		0.309		-0.308

				9		0.31		-0.546

				10		0.2036		-0.771

				11		0.0266		-0.948

				12		-0.254		-1.093

				13		-0.535		-1.19

				14		-0.76		-1.253

				15		-0.756		-1.159

				16		-0.705		-1.04

				8. EimTh2RLtTM6.net using patterns TaskStincmp.pat and TaskStCmp.pat

				Investigation of starting with an equilibrium level of task set maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.125		0.125

				4		-0.091		0.091

				5		-0.011		0.011

				6		0.064		-0.064

				7		0.139		-0.139

				8		0.212		-0.212

				9		0.148		-0.396

				10		0.021		-0.611

				11		-0.128		-0.789

				12		-0.368		-0.941

				13		-0.567		-1.049

				14		-0.724		-1.123

				15		-0.605		-0.959

				16		-0.442		-0.774

				9. EimTh2RLtTM7.net using patterns TaskStincmp.pat and TaskStCmp.pat

				Investigation of slightly increased lateral inhibition..

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.13		0.13

				4		-0.104		0.104

				5		-0.03		0.03

				6		0.043		-0.043

				7		0.117		-0.117

				8		0.195		-0.195

				9		0.139		-0.385

				10		0.014		-0.615

				11		-0.173		-0.812

				12		-0.46		-0.985

				13		-0.704		-1.111

				14		-0.897		-1.201

				15		-0.871		-1.113

				16		-0.798		-0.997

				10. EimTh2RLtTM7.net using patterns TaskStincmp2.pat and TaskStCmp2.pat

				Investigating the consequences of a one cycle longer mask

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.13		0.13

				4		-0.104		0.104

				5		-0.03		0.03

				6		0.043		-0.043

				7		0.117		-0.117

				8		0.195		-0.195

				9		0.276		-0.276

				10		0.222		-0.464

				11		0.072		-0.663

				12		-0.167		-0.835

				13		-0.496		-0.992

				14		-0.769		-1.108

				15		-0.979		-1.193

				16		-0.995		-1.093

				17		-0.957		-0.969

				11. EimTh2RLtTM6.net using patterns TaskStincmp3.pat and TaskStCmp3.pat

				These data are included in the report that I am writing. They are runs of the net EimTh2RLtTM6.net

				with pattern files in which response set delineation pre-activates response channels, but there

				is no gradual onset of stimuli. Thus, you should observe that low zero here actually corresponds

				to the 21st pattern presentation. The first 20 presentations being just of the response delineation

				layer.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.231		0.231

				3		-0.263		0.263

				4		-0.229		0.229

				5		-0.133		0.133

				6		0		0

				7		0.126		-0.126

				8		0.249		-0.249

				9		0.062		-0.607

				10		-0.107		-0.888

				11		-0.272		-1.077

				12		-0.416		-1.198

				13		-0.538		-1.273

				14		-0.638		-1.318

				15		-0.426		-1.157

				16		-0.198		-0.981
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				Varying Prime Value

		Results for Model - Masking1.net

		Masking1.net is the first net we have used with an accumulator node. Thus we

		only have to record activation values at the accumulator node. The pattern files

		used are mskAttComp4.pat, mskAttinComp4.pat and mskAttNeut4.pat (see ReadMe file).

				cmp 13		incmp 13		neut 13

		0		0		0		0

		1		0		0		0

		2		-0.07		0.07		0

		3		-0.069		0.069		0

		4		-0.063		0.063		0

		5		-0.051		0.051		0

		6		-0.031		0.031		0

		7		0.002		-0.002		0

		8		0.046		-0.046		0

		9		-0.035		-0.21		-0.11

		10		-0.199		-0.446		-0.317

		11		-0.361		-0.626		-0.507

		12		-0.501		-0.684		-0.645

		13		-0.604		-0.704		-0.679

		14		-0.652		-0.705		-0.689

		15		-0.458		-0.486		-0.477

		16		-0.237		-0.277		-0.273
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				1. Eimer.net Experiments

				The data presented here is from running the patterns EimerCmp.pat, Eimerneut.pat

				and Eimerincmp.pat on the net Eimer.net. This is a back to basics net which removes

				lateral inhibition and Task Set Maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.28		0.28		0

				3		-0.252		0.252		0

				4		-0.172		0.172		0

				5		-0.067		0.067		0

				6		0.037		-0.036		0

				7		0.121		-0.121		0

				8		0.182		-0.181		0

				9		-0.096		-0.516		-0.291

				10		-0.296		-0.732		-0.477

				11		-0.43		-0.846		-0.571

				12		-0.505		-0.894		-0.606

				13		-0.538		-0.901		-0.606

				14		-0.543		-0.884		-0.586

				15		-0.172		-0.466		-0.17

				16		0.116		-0.155		0.137

				2. EimerThr2.net Results

				These are the results of running EimerThr2.net, which is Eimer.net with a threshold of

				.15 place on entrance to the two OFF nodes. Thus only activation over this level will

				excite the OFF nodes.

				This first set of results is for running the basic condition - Eimercmp.pat and Eimerincmp.pat

				(we ignore the neutral case here)

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.28		0.28

				3		-0.252		0.252

				4		-0.172		0.172

				5		-0.067		0.067

				6		0.0127		-0.012

				7		0.0728		-0.072

				8		0.118		-0.117

				9		-0.165		-0.441

				10		-0.361		-0.651

				11		-0.496		-0.762

				12		-0.562		-0.808

				13		-0.583		-0.814

				14		-0.577		-0.798

				15		-0.187		-0.382

				16		0.114		-0.073

				This second set of results is for running a degraded prime simultation, I.e. Eimercmp2.pat and

				Eimerincmp2.pat.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.143		0.143

				3		-0.129		0.129

				4		-0.116		0.116

				5		-0.104		0.104

				6		-0.094		0.094

				7		-0.084		0.084

				8		-0.076		0.076

				9		-0.34		-0.223

				10		-0.508		-0.416

				11		-0.598		-0.516

				12		-0.614		-0.556

				13		-0.608		-0.561

				14		-0.585		-0.546

				15		-0.163		-0.134

				16		0.147		0.17

				3. EimTh2LtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This net adds some of the old ideas to the EimTh2.net that was just explored. In particular,

				we add a small amount of task set maintenance activation and of lateral inhibition between

				OFF nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.219		0.219

				4		-0.14		0.14

				5		-0.038		0.038

				6		0.096		-0.095

				7		0.2278		-0.227

				8		0.3368		-0.336

				9		0.1068		-0.579

				10		-0.08		-0.701

				11		-0.212		-0.734

				12		-0.304		-0.693

				13		-0.365		-0.594

				14		-0.4		-0.499

				15		-0.134		-0.089

				16		0.1174		0.2409

				4. EimTh2RLtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This is an investigation of the consequences of moving lateral inhibition to the response nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.286		0.286

				4		-0.265		0.265

				5		-0.191		0.191

				6		-0.068		0.068

				7		0.085		-0.084

				8		0.231		-0.23

				9		0.074		-0.596

				10		-0.102		-0.867

				11		-0.384		-1.051

				12		-0.521		-1.171

				13		-0.694		-1.248

				14		-0.839		-1.295

				15		-0.718		-1.161

				16		-0.574		-1.009

				5. EimTh2RLtTM3.net with pattern files EimCmpTM.pat and EimincmpTM.pat

				This adds to the previous net a 0.5 weight increase on the task maintenance node

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.139		-0.13

				8		0.309		-0.308

				9		0.147		-0.655

				10		-0.034		-0.909

				11		-0.27		-1.082

				12		-0.517		-1.194

				13		-0.717		-1.265

				14		-0.872		-1.308

				15		-0.793		-1.199

				16		-0.684		-1.071

				6. EimTh2RLtTM3.net with pattern file EimCmpTM2.pat

				This pattern file has a tiny activation level of 0.12 and still we do not get positive

				compatibility.

						cmp 13		incmp 13		neut 13

				0		0

				1		0

				2		-0.035

				3		-0.037

				4		-0.038

				5		-0.012

				6		0.018

				7		0.057

				8		0.092

				9		-0.175

				10		-0.424

				11		-0.629

				12		-0.788

				13		-0.908

				14		-0.996

				15		-0.863

				16		-0.709

				7. EimTh2RLtTM3.net using patterns EimincmpTM3.pat and EimCmpTM3.pat

				Investigation of a slow target onset rate.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.131		-0.13

				8		0.309		-0.308

				9		0.31		-0.546

				10		0.2036		-0.771

				11		0.0266		-0.948

				12		-0.254		-1.093

				13		-0.535		-1.19

				14		-0.76		-1.253

				15		-0.756		-1.159

				16		-0.705		-1.04

				8. EimTh2RLtTM6.net using patterns TaskStincmp.pat and TaskStCmp.pat

				Investigation of starting with an equilibrium level of task set maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.125		0.125

				4		-0.091		0.091

				5		-0.011		0.011

				6		0.064		-0.064

				7		0.139		-0.139

				8		0.212		-0.212

				9		0.148		-0.396

				10		0.021		-0.611

				11		-0.128		-0.789

				12		-0.368		-0.941

				13		-0.567		-1.049

				14		-0.724		-1.123

				15		-0.605		-0.959

				16		-0.442		-0.774

				9. EimTh2RLtTM7.net using patterns TaskStincmp.pat and TaskStCmp.pat

				Investigation of slightly increased lateral inhibition..

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.13		0.13

				4		-0.104		0.104

				5		-0.03		0.03

				6		0.043		-0.043

				7		0.117		-0.117

				8		0.195		-0.195

				9		0.139		-0.385

				10		0.014		-0.615

				11		-0.173		-0.812

				12		-0.46		-0.985

				13		-0.704		-1.111

				14		-0.897		-1.201

				15		-0.871		-1.113

				16		-0.798		-0.997

				10. EimTh2RLtTM7.net using patterns TaskStincmp2.pat and TaskStCmp2.pat

				Investigating the consequences of a one cycle longer mask

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.13		0.13

				4		-0.104		0.104

				5		-0.03		0.03

				6		0.043		-0.043

				7		0.117		-0.117

				8		0.195		-0.195

				9		0.276		-0.276

				10		0.222		-0.464

				11		0.072		-0.663

				12		-0.167		-0.835

				13		-0.496		-0.992

				14		-0.769		-1.108

				15		-0.979		-1.193

				16		-0.995		-1.093

				17		-0.957		-0.969

				11. EimTh2RLtTM6.net using patterns TaskStincmp3.pat and TaskStCmp3.pat

				These data are included in the report that I am writing. They are runs of the net EimTh2RLtTM6.net

				with pattern files in which response set delineation pre-activates response channels, but there

				is no gradual onset of stimuli. Thus, you should observe that zero here actually corresponds

				to the 21st pattern presentation. The first 20 presentations being just of the response delineation

				layer.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.231		0.231

				3		-0.263		0.263

				4		-0.229		0.229

				5		-0.133		0.133

				6		0		0

				7		0.126		-0.126

				8		0.249		-0.249

				9		0.062		-0.607

				10		-0.107		-0.888

				11		-0.272		-1.077

				12		-0.416		-1.198

				13		-0.538		-1.273

				14		-0.638		-1.318

				15		-0.426		-1.157

				16		-0.198		-0.981

				12. EimTh2RLtTMpl.net using patterns TaskStincmp3.pat, TaskStCmp3.pat and TaskStNeut.pat

				Here we are investigating the consequences of adding perceptual pathway nodes. These

				enable us to obtain a gradual onset of activation and hence prelong the reversal.

				You should observe that zero here actually corresponds

				to the 22nd pattern presentation. The first 20 presentations being just of the response delineation

				layer and compared to the last simulation, we need one extra cycle because of the perceptual

				pathway nodes.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.11		0.11		0

				3		-0.121		0.121		0

				4		-0.087		0.087		0

				5		-0.008		0.008		0

				6		0.0678		-0.067		0

				7		0.1418		-0.141		0

				8		0.2158		-0.215		0

				9		0.1508		-0.398		-0.114

				10		0.0488		-0.594		-0.252

				11		-0.062		-0.746		-0.369

				12		-0.227		-0.854		-0.46

				13		-0.367		-0.926		-0.525

				14		-0.48		-0.972		-0.57

				15		-0.512		-0.955		-0.517

				16		-0.445		-0.856		-0.374

				17		-0.322		-0.711		-0.187

				18		-0.174		-0.549		0.0027

				19		-0.023		-0.379		0.1897

				20		0.1273		-0.206		0.3707

				The following table is the same data as that above except that separation starts at time point

				1 rather than 2.This allows us to obtain a clearer graphical presentation.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		-0.11		0.11

				2		-0.121		0.121

				3		-0.087		0.087

				4		-0.008		0.008

				5		0.0678		-0.067

				6		0.1418		-0.141

				7		0.2158		-0.215

				8		0.1508		-0.398

				9		0.0488		-0.594

				10		-0.062		-0.746

				11		-0.227		-0.854

				12		-0.367		-0.926

				13		-0.48		-0.972

				14		-0.512		-0.955

				15		-0.445		-0.856

				16		-0.322		-0.711

				17		-0.174		-0.549

				18		-0.028		-0.379

				19		0.1273		-0.206

				13. Eimer.net using patterns mskAttComp2.pat and mskAttincomp2.pat

				This simulation is run in order to check that a gradual onset does not

				generate a dramatic reversal on our prototype model (I.e. the one that

				does not have lateral inhibition and task set delineation). Hence we run

				Eimer.net with a gradual onset pattern. Note, the pattern files also activate

				task set delineation, however, since this node is unconnected to the rest of

				the net, this has no effect.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		-0.119		0.119

				2		-0.107		0.107

				3		-0.076		0.076

				4		-0.032		0.032

				5		0.0142		-0.014

				6		0.0542		-0.054

				7		0.0842		-0.084

				8		-0.016		-0.227

				9		-0.19		-0.416

				10		-0.366		-0.58

				11		-0.49		-0.685

				12		-0.55		-0.729

				13		-0.571		-0.737

				14		-0.225		-0.366

				15		0.064		-0.068

				14. EimTRTpZ.net using patterns TaskStincmp3.pat, TaskStCmp3.pat and TaskStNeut.pat

				These simulations are concerned to try to reproduce the post selection cross-over

				that can be found in Eimer's LRPs. To this end, this network employs a zero lower

				bound on activation. You should observe that zero here actually corresponds

				to the 22nd pattern presentation.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.11		0.11		0

				3		-0.121		0.121		0

				4		-0.087		0.087		0

				5		-0.008		0.008		0

				6		0.0678		-0.067		0

				7		0.1418		-0.141		0

				8		0.2138		-0.213		0

				9		0.1488		-0.358		-0.114

				10		0.0478		-0.486		-0.252

				11		-0.063		-0.548		-0.369

				12		-0.228		-0.564		-0.46

				13		-0.369		-0.551		-0.506

				14		-0.467		-0.522		-0.495

				15		-0.423		-0.37		-0.373

				16		-0.277		-0.159		-0.181

				17		-0.103		0.0079		0.0251

				18		0.0223		0.0559		0.0911

				19		0.0693		0.0979		0.1461

				20		0.1113		0.1369		0.1921
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				Varying Prime Value

		Results for Model - Masking1.net

		Masking1.net is the first net we have used with an accumulator node. Thus we

		only have to record activation values at the accumulator node. The pattern files

		used are mskAttComp4.pat, mskAttinComp4.pat and mskAttNeut4.pat (see ReadMe file).

				cmp 13		incmp 13		neut 13

		0		0		0		0

		1		0		0		0

		2		-0.07		0.07		0

		3		-0.069		0.069		0

		4		-0.063		0.063		0

		5		-0.051		0.051		0

		6		-0.031		0.031		0

		7		0.002		-0.002		0

		8		0.046		-0.046		0

		9		-0.035		-0.21		-0.11

		10		-0.199		-0.446		-0.317

		11		-0.361		-0.626		-0.507

		12		-0.501		-0.684		-0.645

		13		-0.604		-0.704		-0.679

		14		-0.652		-0.705		-0.689

		15		-0.458		-0.486		-0.477

		16		-0.237		-0.277		-0.273
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				1. Eimer.net Experiments

				The data presented here is from running the patterns EimerCmp.pat, Eimerneut.pat

				and Eimerincmp.pat on the net Eimer.net. This is a back to basics net which removes

				lateral inhibition and Task Set Maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.28		0.28		0

				3		-0.252		0.252		0

				4		-0.172		0.172		0

				5		-0.067		0.067		0

				6		0.037		-0.036		0

				7		0.121		-0.121		0

				8		0.182		-0.181		0

				9		-0.096		-0.516		-0.291

				10		-0.296		-0.732		-0.477

				11		-0.43		-0.846		-0.571

				12		-0.505		-0.894		-0.606

				13		-0.538		-0.901		-0.606

				14		-0.543		-0.884		-0.586

				15		-0.172		-0.466		-0.17

				16		0.116		-0.155		0.137

				2. EimerThr2.net Results

				These are the results of running EimerThr2.net, which is Eimer.net with a threshold of

				.15 place on entrance to the two OFF nodes. Thus only activation over this level will

				excite the OFF nodes.

				This first set of results is for running the basic condition - Eimercmp.pat and Eimerincmp.pat

				(we ignore the neutral case here)

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.28		0.28

				3		-0.252		0.252

				4		-0.172		0.172

				5		-0.067		0.067

				6		0.0127		-0.012

				7		0.0728		-0.072

				8		0.118		-0.117

				9		-0.165		-0.441

				10		-0.361		-0.651

				11		-0.496		-0.762

				12		-0.562		-0.808

				13		-0.583		-0.814

				14		-0.577		-0.798

				15		-0.187		-0.382

				16		0.114		-0.073

				This second set of results is for running a degraded prime simultation, I.e. Eimercmp2.pat and

				Eimerincmp2.pat.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.143		0.143

				3		-0.129		0.129

				4		-0.116		0.116

				5		-0.104		0.104

				6		-0.094		0.094

				7		-0.084		0.084

				8		-0.076		0.076

				9		-0.34		-0.223

				10		-0.508		-0.416

				11		-0.598		-0.516

				12		-0.614		-0.556

				13		-0.608		-0.561

				14		-0.585		-0.546

				15		-0.163		-0.134

				16		0.147		0.17

				3. EimTh2LtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This net adds some of the old ideas to the EimTh2.net that was just explored. In particular,

				we add a small amount of task set maintenance activation and of lateral inhibition between

				OFF nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.219		0.219

				4		-0.14		0.14

				5		-0.038		0.038

				6		0.096		-0.095

				7		0.2278		-0.227

				8		0.3368		-0.336

				9		0.1068		-0.579

				10		-0.08		-0.701

				11		-0.212		-0.734

				12		-0.304		-0.693

				13		-0.365		-0.594

				14		-0.4		-0.499

				15		-0.134		-0.089

				16		0.1174		0.2409

				4. EimTh2RLtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This is an investigation of the consequences of moving lateral inhibition to the response nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.286		0.286

				4		-0.265		0.265

				5		-0.191		0.191

				6		-0.068		0.068

				7		0.085		-0.084

				8		0.231		-0.23

				9		0.074		-0.596

				10		-0.102		-0.867

				11		-0.384		-1.051

				12		-0.521		-1.171

				13		-0.694		-1.248

				14		-0.839		-1.295

				15		-0.718		-1.161

				16		-0.574		-1.009

				5. EimTh2RLtTM3.net with pattern files EimCmpTM.pat and EimincmpTM.pat

				This adds to the previous net a 0.5 weight increase on the task maintenance node

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.139		-0.13

				8		0.309		-0.308

				9		0.147		-0.655

				10		-0.034		-0.909

				11		-0.27		-1.082

				12		-0.517		-1.194

				13		-0.717		-1.265

				14		-0.872		-1.308

				15		-0.793		-1.199

				16		-0.684		-1.071

				6. EimTh2RLtTM3.net with pattern file EimCmpTM2.pat

				This pattern file has a tiny activation level of 0.12 and still we do not get positive

				compatibility.

						cmp 13		incmp 13		neut 13

				0		0

				1		0

				2		-0.035

				3		-0.037

				4		-0.038

				5		-0.012

				6		0.018

				7		0.057

				8		0.092

				9		-0.175

				10		-0.424

				11		-0.629

				12		-0.788

				13		-0.908

				14		-0.996

				15		-0.863

				16		-0.709

				7. EimTh2RLtTM3.net using patterns EimincmpTM3.pat and EimCmpTM3.pat

				Investigation of a slow target onset rate.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.131		-0.13

				8		0.309		-0.308

				9		0.31		-0.546

				10		0.2036		-0.771

				11		0.0266		-0.948

				12		-0.254		-1.093

				13		-0.535		-1.19

				14		-0.76		-1.253

				15		-0.756		-1.159

				16		-0.705		-1.04

				8. EimTh2RLtTM6.net using patterns TaskStincmp.pat and TaskStCmp.pat

				Investigation of starting with an equilibrium level of task set maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.125		0.125

				4		-0.091		0.091

				5		-0.011		0.011

				6		0.064		-0.064

				7		0.139		-0.139

				8		0.212		-0.212

				9		0.148		-0.396

				10		0.021		-0.611

				11		-0.128		-0.789

				12		-0.368		-0.941

				13		-0.567		-1.049

				14		-0.724		-1.123

				15		-0.605		-0.959

				16		-0.442		-0.774

				9. EimTh2RLtTM7.net using patterns TaskStincmp.pat and TaskStCmp.pat

				Investigation of slightly increased lateral inhibition..

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.13		0.13

				4		-0.104		0.104

				5		-0.03		0.03

				6		0.043		-0.043

				7		0.117		-0.117

				8		0.195		-0.195

				9		0.139		-0.385

				10		0.014		-0.615

				11		-0.173		-0.812

				12		-0.46		-0.985

				13		-0.704		-1.111

				14		-0.897		-1.201

				15		-0.871		-1.113

				16		-0.798		-0.997

				10. EimTh2RLtTM7.net using patterns TaskStincmp2.pat and TaskStCmp2.pat

				Investigating the consequences of a one cycle longer mask

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.113		0.113

				3		-0.13		0.13

				4		-0.104		0.104

				5		-0.03		0.03

				6		0.043		-0.043

				7		0.117		-0.117

				8		0.195		-0.195

				9		0.276		-0.276

				10		0.222		-0.464

				11		0.072		-0.663

				12		-0.167		-0.835

				13		-0.496		-0.992

				14		-0.769		-1.108

				15		-0.979		-1.193

				16		-0.995		-1.093

				17		-0.957		-0.969

				11. EimTh2RLtTM6.net using patterns TaskStincmp3.pat and TaskStCmp3.pat

				These data are included in the report that I am writing. They are runs of the net EimTh2RLtTM6.net

				with pattern files in which response set delineation pre-activates response channels, but there

				is no gradual onset of stimuli. Thus, you should observe that zero here actually corresponds

				to the 21st pattern presentation. The first 20 presentations being just of the response delineation

				layer.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.231		0.231

				3		-0.263		0.263

				4		-0.229		0.229

				5		-0.133		0.133

				6		0		0

				7		0.126		-0.126

				8		0.249		-0.249

				9		0.062		-0.607

				10		-0.107		-0.888

				11		-0.272		-1.077

				12		-0.416		-1.198

				13		-0.538		-1.273

				14		-0.638		-1.318

				15		-0.426		-1.157

				16		-0.198		-0.981

				12. EimTh2RLtTMpl.net using patterns TaskStincmp3.pat and TaskStCmp3.pat

				Here we are investigating the consequences of adding perceptual pathway nodes. These

				enable us to obtain a gradual onset of activation and hence prelong the reversal.

				You should observe that zero here actually corresponds

				to the 22nd pattern presentation. The first 20 presentations being just of the response delineation

				layer and compared to the last simulation, we need one extra cycle because of the perceptual

				pathway nodes.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.11		0.11		0

				3		-0.121		0.121		0

				4		-0.087		0.087		0

				5		-0.008		0.008		0

				6		0.0678		-0.067		0

				7		0.1418		-0.141		0

				8		0.2158		-0.215		0

				9		0.1508		-0.398		-0.114

				10		0.0488		-0.594		-0.252

				11		-0.062		-0.746		-0.369

				12		-0.227		-0.854		-0.46

				13		-0.367		-0.926		-0.525

				14		-0.48		-0.972		-0.57

				15		-0.512		-0.955		-0.517

				16		-0.445		-0.856		-0.374

				17		-0.322		-0.711		-0.187

				18		-0.174		-0.549		0.0027

				19		-0.023		-0.379		0.1897

				20		0.1273		-0.206		0.3707

				The following table is the same data as that above except that separation starts at time point

				1 rather than 2.This allows us to obtain a clearer graphical presentation.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		-0.11		0.11

				2		-0.121		0.121

				3		-0.087		0.087

				4		-0.008		0.008

				5		0.0678		-0.067

				6		0.1418		-0.141

				7		0.2158		-0.215

				8		0.1508		-0.398

				9		0.0488		-0.594

				10		-0.062		-0.746

				11		-0.227		-0.854

				12		-0.367		-0.926

				13		-0.48		-0.972

				14		-0.512		-0.955

				15		-0.445		-0.856

				16		-0.322		-0.711

				17		-0.174		-0.549

				18		-0.028		-0.379

				19		0.1273		-0.206

				13. Eimer.net using patterns mskAttComp2.pat and mskAttincomp2.pat

				This simulation is run in order to check that a gradual onset does not

				generate a dramatic reversal on our prototype model (I.e. the one that

				does not have lateral inhibition and task set delineation). Hence we run

				Eimer.net with a gradual onset pattern. Note, the pattern files also activate

				task set delineation, however, since this node is unconnected to the rest of

				the net, this has no effect.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		-0.119		0.119

				2		-0.107		0.107

				3		-0.076		0.076

				4		-0.032		0.032

				5		0.0142		-0.014

				6		0.0542		-0.054

				7		0.0842		-0.084

				8		-0.016		-0.227

				9		-0.19		-0.416

				10		-0.366		-0.58

				11		-0.49		-0.685

				12		-0.55		-0.729

				13		-0.571		-0.737

				14		-0.225		-0.366

				15		0.064		-0.068
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				Varying Prime Value

		Results for Model - Masking1.net

		Masking1.net is the first net we have used with an accumulator node. Thus we

		only have to record activation values at the accumulator node. The pattern files

		used are mskAttComp4.pat, mskAttinComp4.pat and mskAttNeut4.pat (see ReadMe file).

				cmp 13		incmp 13		neut 13

		0		0		0		0

		1		0		0		0

		2		-0.07		0.07		0

		3		-0.069		0.069		0

		4		-0.063		0.063		0

		5		-0.051		0.051		0

		6		-0.031		0.031		0

		7		0.002		-0.002		0

		8		0.046		-0.046		0

		9		-0.035		-0.21		-0.11

		10		-0.199		-0.446		-0.317

		11		-0.361		-0.626		-0.507

		12		-0.501		-0.684		-0.645

		13		-0.604		-0.704		-0.679

		14		-0.652		-0.705		-0.689

		15		-0.458		-0.486		-0.477

		16		-0.237		-0.277		-0.273
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				1. Eimer.net Experiments

				The data presented here is from running the patterns EimerCmp.pat, Eimerneut.pat

				and Eimerincmp.pat on the net Eimer.net. This is a back to basics net which removes

				lateral inhibition and Task Set Maintenance.

						cmp 13		incmp 13		neut 13

				0		0		0		0

				1		0		0		0

				2		-0.28		0.28		0

				3		-0.252		0.252		0

				4		-0.172		0.172		0

				5		-0.067		0.067		0

				6		0.037		-0.036		0

				7		0.121		-0.121		0

				8		0.182		-0.181		0

				9		-0.096		-0.516		-0.291

				10		-0.296		-0.732		-0.477

				11		-0.43		-0.846		-0.571

				12		-0.505		-0.894		-0.606

				13		-0.538		-0.901		-0.606

				14		-0.543		-0.884		-0.586

				15		-0.172		-0.466		-0.17

				16		0.116		-0.155		0.137

				2. EimerThr2.net Results

				These are the results of running EimerThr2.net, which is Eimer.net with a threshold of

				.15 place on entrance to the two OFF nodes. Thus only activation over this level will

				excite the OFF nodes.

				This first set of results is for running the basic condition - Eimercmp.pat and Eimerincmp.pat

				(we ignore the neutral case here)

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.28		0.28

				3		-0.252		0.252

				4		-0.172		0.172

				5		-0.067		0.067

				6		0.0127		-0.012

				7		0.0728		-0.072

				8		0.118		-0.117

				9		-0.165		-0.441

				10		-0.361		-0.651

				11		-0.496		-0.762

				12		-0.562		-0.808

				13		-0.583		-0.814

				14		-0.577		-0.798

				15		-0.187		-0.382

				16		0.114		-0.073

				This second set of results is for running a degraded prime simultation, I.e. Eimercmp2.pat and

				Eimerincmp2.pat.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.143		0.143

				3		-0.129		0.129

				4		-0.116		0.116

				5		-0.104		0.104

				6		-0.094		0.094

				7		-0.084		0.084

				8		-0.076		0.076

				9		-0.34		-0.223

				10		-0.508		-0.416

				11		-0.598		-0.516

				12		-0.614		-0.556

				13		-0.608		-0.561

				14		-0.585		-0.546

				15		-0.163		-0.134

				16		0.147		0.17

				3. EimTh2LtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This net adds some of the old ideas to the EimTh2.net that was just explored. In particular,

				we add a small amount of task set maintenance activation and of lateral inhibition between

				OFF nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.219		0.219

				4		-0.14		0.14

				5		-0.038		0.038

				6		0.096		-0.095

				7		0.2278		-0.227

				8		0.3368		-0.336

				9		0.1068		-0.579

				10		-0.08		-0.701

				11		-0.212		-0.734

				12		-0.304		-0.693

				13		-0.365		-0.594

				14		-0.4		-0.499

				15		-0.134		-0.089

				16		0.1174		0.2409

				4. EimTh2RLtTM.net Experiments (with patterns EimCmpTM.pat and EimincmpTM.pat)

				This is an investigation of the consequences of moving lateral inhibition to the response nodes.

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.27		0.27

				3		-0.286		0.286

				4		-0.265		0.265

				5		-0.191		0.191

				6		-0.068		0.068

				7		0.085		-0.084

				8		0.231		-0.23

				9		0.074		-0.596

				10		-0.102		-0.867

				11		-0.384		-1.051

				12		-0.521		-1.171

				13		-0.694		-1.248

				14		-0.839		-1.295

				15		-0.718		-1.161

				16		-0.574		-1.009

				5. EimTh2RLtTM3.net with pattern files EimCmpTM.pat and EimincmpTM.pat

				This adds to the previous net a 0.5 weight increase on the task maintenance node

						cmp 13		incmp 13		neut 13

				0		0		0

				1		0		0

				2		-0.267		0.267

				3		-0.276		0.276

				4		-0.248		0.248

				5		-0.169		0.169

				6		-0.036		0.036

				7		0.139		-0.13

				8		0.309		-0.308

				9		0.147		-0.655

				10		-0.034		-0.909

				11		-0.27		-1.082

				12		-0.517		-1.194

				13		-0.717		-1.265

				14		-0.872		-1.308

				15		-0.793		-1.199

				16		-0.684		-1.071

				6. EimTh2RLtTM3.net with pattern file EimCmpTM2.pat

				This pattern file has a tiny activation level of 0.12 and still we do not get positive

				compatibility.

						cmp 13		incmp 13		neut 13

				0		0

				1		0

				2		-0.035

				3		-0.037

				4		-0.038

				5		-0.012

				6		0.018

				7		0.057

				8		0.092

				9		-0.175

				10		-0.424

				11		-0.629

				12		-0.788

				13		-0.908

				14		-0.996

				15		-0.863

				16		-0.709

				7. EimTh2RLtTM3.net using patterns EimincmpTM3.pat and EimCmpTM3.pat

				Investigation of a slow target onset rate.

						cmp 13		incmp 13		neut 13

				0		0		0
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