
Freitas, Leonardo, Cavalcanti, Ana L. C. and Moura, Hermano (2001) Animating
CSPm using Action Semantics. In: Proceedings of IV Workshop em Metodos
Formais. . Sociedade Brasileira de Computacao

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13530/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
http://www.cin.ufpe.br/~}lfsf

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13530/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Animating CSPM Using A
tion Semanti
sbyLeonardo Freitas, Ana Caval
anti, Hermano Mourafljsf,al

,hermanog�
in.ufpe.brInformati
s Center Federal University of Pernambu
o,Av. Luis Freire s/n CDU, 50.740-540, Re
ife, Brazil, (81)3271-8430 R.4018August 30, 2001Abstra
tCSPM is a language used to model
on
urrent and parallel
omputer systems for-mally. This paper presents an implementation of a signi�
ant part of the operationalsemanti
s of CSPM using a
tion semanti
s. This work is a starting point for thedevelopment of a formal animator using a
tion semanti
s engines,
ompilers, orinterpreters like Aba
o or Ani, and of a Java library that implements the CSPoperators.Keywords: A
tion semanti
s, CSPM,
on
urren
y, animation.1 Introdu
tionThe use of abstra
t and mathemati
al notation for the spe
i�
ation of
on
urrent andparallel primitives is a
hallenging task. A
tion Semanti
s [11℄
overs some very desirableproperties for this kind of job: readability, modularity, abstra
tion,
omparability, and
on
urren
y.Communi
ating Sequential Pro
esses (CSP) has been used to design
on
urrent sys-tems based on a formal mathemati
al theory [17, 9℄. Its main obje
tive is to de�ne thedynami
 behaviour of
on
urrent pro
esses. This is modeled using the
on
ept of
ommu-ni
ation between pro
esses. CSPM [18℄ is the ma
hine readable version of CSP. It wasimplemented by tools like FDR [3℄ and PROBE [4℄, and extends CSP with a subset of afun
tional language that is used to
onstru
t auxiliary expressions and fun
tions.An A
tion Semanti
s des
ription for the implementation of CSPM operators
an beused as a starting point for the formal development of animators or library implementa-tions of CSPM. There exist some libraries [16, 7℄ and an animator [4℄ for CSPM. Thelibraries, however, were not
reated using formal des
riptions. Freitas [6℄ is building aJava library that implements CSP primitives. The des
ription of CSPM presented herewill be a guide for that work.As mentioned in [11℄, the
ommuni
ative fa
et of A
tion Notation makes availablea basi
 notation to spe
ify
on
urren
y. Some important features like syn
hronizationme
hanisms and resour
e sharing must be implemented on the top of this basi
 notation.This work also provides some important primitive
ommuni
ative a
tions, as an extensionlibrary, that
an be used to model other languages.1

Another
ontribution of this work is a
ase study on the use of the
ommuni
ative fa
et.As far as we know, only the examples reported in [2, 12, 1℄ are available. The authorsof [2℄ and [12℄ give insightful views of the use of A
tion Semanti
s to model
on
urren
y,but they do not treat them generi
ally nor they support pro
essing of distributed agents;they rely on
entralized agents.In Se
tion 2 we brie
y des
ribe A
tion Semanti
s, presenting examples of its notation.Next, in Se
tion 3, we de�ne CSP types,
hannels, pro
esses, and operators. After that,in Se
tion 4, we present a fragment of the full A
tion Semanti
s for CSP [5℄ dis
ussingonly the main
ontributions. In sequen
e, we present the abstra
t syntax of CSPM, somefun
tional
onstru
ts, the pro
esses representation, the animator proto
ol a
tions, andsome primitive
on
urrent a
tions. Finally, in Se
tion 5 we present the
on
lusions andan overview of future and related works.2 A
tion Semanti
sA
tion Semanti
s has many desirable properties that formalisms for spe
ifying languagesshould have [21℄. A
tion Notation [19, 11℄, the formal notation used in A
tion Semanti
s,provides
ontrol
ow as well as data
ow between a
tions. This allow us to spe
ify pro-gramming language
on
epts like expressions,
ommands, de
larations,
on
urrent agents,et
. There are �ve basi
 entities that
omprise A
tion Notation: (i) A
tions: entities that
an be exe
uted pro
essing information, like a pie
e of a program; (ii) Yielders: expres-sions that
an be evaluated during a
tion exe
ution; (iii) Sorts: de�ne data types withsome operational fun
tions (Data Notation); (iv) Agents: entities that en
apsulate theexe
ution of a
tions, like a thread; and (v) Abstra
tions: a sort of data whi
h en
apsulatesan a
tion.An a
tion has fa
ets that deals with parti
ular modes of data
ow. There are severalfa
ets: basi
, fun
tional, de
larative, imperative,
ommuni
ative, re
exive, dire
tive, andhybrid; they are des
ribed in [11, 19℄. Below we brie
y detail those used in this paper.� Basi
 fa
et: pro
esses information independently (just
ontrol
ow).� Fun
tional fa
et: data are
alled transients and are not available to the subsequenta
tion.� De
larative fa
et: an a
tion may produ
e bindings that are visible to (s
oped) suba
tions(s) of the a
tion.� Imperative fa
et: an a
tion may pla
e data in storage
ells, whi
h may be inspe
tedby subsequent a
tions. Storage is stable (visible to all a
tions).� Communi
ative fa
et: an a
tion may pla
e a message (any kind of data in
ludinga
tion abstra
tions) in the bu�er of an a
tion agent. The bu�er is permanent, so it is
on
erned with the pro
essing of
ommuni
ation between agents. All a
tions exe
utedby an agent
an a

ess the bu�er, but it is ina

essible to other agents.There are, in A
tion Semanti
s, primitive a
tions and a
tion
ombinators spe
i�
allybuilt to deal with
on
urren
y issues. The framework provides a bus for asyn
hronousmessage passing, asyn
hronous remote a
tion invo
ation between a
tion agents, and alsoa permanent bu�er that
an be inspe
ted by any a
tion of the performing agent. Anagent a
ts like a lightweight pro
ess (or thread) of exe
ution that behaves as a separateand independent running ma
hine (CPU).An a
tion
an be single-fa
eted (primitive a
tion) or multi-fa
eted (
omposite a
tion).The former only a�e
ts one kind of data (either transients, bindings, storage, or bu�er);2

the latter
an
ompose ea
h fa
et e�e
t to produ
e
omplex and
ompounded a
tions.This
omposition is made by a
tion
ombinators. There exist a
tion
ombinators for ea
hkind of the fa
et. Below we show some examples of a
tions.� bind ``x'' to 10: produ
es the binding of token \x" to the value 10.� store true in
ell1: stores the value true in the memory lo
ation
ell1.� send a message to agent1
ontaining the value bound to ``x'': sends a mes-sage to agent1 from the performing-agent
ontaining the value bound to the token \x"(performing-agent is a prede�ned variable that represent \this" agent).An A
tion Semanti
s des
ription for a programming language is a uni�ed algebrai
 spe
-i�
ation divided in the following modules: (i) Abstra
t Syntax; (ii) Semanti
 Fun
tions:des
ribe the mapping from the abstra
t syntax tree (AST) of programs to their meaning,using A
tion Notation; and (iii) Semanti
 Entities: de�ne the data types used by thelanguage, and auxiliary sorts and
ombinators used by the des
ription in the previousmodule. For a detailed des
ription of A
tion Semanti
s see [11, 19℄.3 Communi
ating Sequential Pro
essesCommuni
ating Sequential Pro
esses (CSP)
an be viewed in two di�erent ways: (i) anotation for des
ribing
on
urrent systems; (ii) a mathemati
al theory to study pro
esseswhi
h intera
t with ea
h other and their environment by means of
ommuni
ations [17℄.The most fundamental
on
ept of CSP is a
ommuni
ation event. These events areassumed to be drawn from a set � (EVENTS in CSPM) whi
h
ontains all possible
om-muni
ations for pro
esses in the universe under
onsideration. A
ommuni
ation
an beviewed as an indivisible transa
tion or syn
hronization between two or more pro
esses.The fundamental assumptions about
ommuni
ations in CSP [17℄ are: (i) they are instan-taneous; (ii) they only o

ur when all its parti
ipants (the pro
esses and its environment)allow them.In CSPM you
an de�ne types and
hannels. The
hannels are the wires that al-low values to be
ommuni
ated between pro
esses. For example,
onsidering the diningphilosophers example [17℄, type and
hannels
an be de
lared as follows:nametype FORKSPHILS = {0..2}.{0..2}
hannel a : Int,
hannel b : FORKSPHILSThis allows
hannel a to
ommuni
ate any integer value and
hannel b to
ommuni-
ate pairs: elements of the
artesian produ
t f0 : : : 2gxf0 : : : 2g whi
h is representedf0 : : : 2g.f0 : : : 2g. The input of a value x through
hannel a is written as a?x. Simi-larly, output of the fork 0 for the philosopher 1 through
hannel b is written as b!0.1.The main unit under
onsideration in CSP is a pro
ess. The alphabet of a pro
essP (�P) is the set of all events this pro
ess
an
ommuni
ate. The \STOP" pro
essrepresents a broken ma
hine (i.e. a ma
hine that was not able to
ommuni
ate), and the\SKIP" pro
ess represents a su

essfully terminated pro
ess. Pro
esses
an be de�nedusing the CSPM operators. Below we give a brief des
ription of some of the CSPMoperators.� Pre�x (->) - Given an event e in �, the pro
ess e -> P is initially willing to
ommuni
atee, and then behaves like P. 3

� External Choi
e ([℄) - The pro
ess P [℄ Q o�ers to the environment the opportunityto
ommuni
ate the initials of either P or Q. By initials we mean the set of events in�P and �Q that
an be
ommuni
ated immediately.� Internal Choi
e (|~|) - The pro
ess P |~| Q does not o�er to the environment anyopportunity to
hoose any
ommuni
ation. It
ommuni
ates the initials of either P orQ internally.� Parallelism ([|X|℄) - The pro
ess P [|X|℄ Q exe
utes P and Q in parallel, but theymust syn
hronize on the events in the set X, interleaving otherwise.In the literature we
an �nd many works des
ribing CSP [8, 9, 17℄, and CSPM [18, 3℄.4 CSPM A
tion Semanti
sIn this se
tion we give the a
tion de�nitions for CSPM that are
entral to the
onstru
tionof the animator. The
omplete work
an be found in [5℄.4.1 Abstra
t SyntaxTypes in CSPM
an be either single or
omposite, where the
omposite types representsthe
artesian produ
t of single types. Types representing intervals of a dis
rete type maybe de�ned as well. Sin
e we are not
overing all possible type we leave the de�nition open(with the symbol 2).� Type = [[Type (\." Type)* ℄℄ [[\f" Constant \. . . " Constant \g" ℄℄\Int" \Bool" [[\f" Identi�ers \g" ℄℄ 2 .In CSPM we
an de
lare types to be used in
hannel de
larations;
hannels to be usedin pro
esses de
larations; and pro
esses to des
ribe the problem domain.� De
laration = [[\nametype" Identi�er \=" Type ℄℄[[\
hannel" Identi�ers (\:" Type)? ℄℄Pro
ess-De
laration 2 .A pro
ess de
laration gives the name of the pro
ess and its de�nition: a pro
ess.� Pro
ess = Identi�er [[\(" Expression & Pro
ess \)" ℄℄[[Identi�er (\? \!" \.") Expression \->" Pro
ess ℄℄[[Pro
ess Pro
Op Pro
ess ℄℄ 2 .In the de�nition of a pro
ess, we
an refer to other pro
esses, and use guards, pre�xing,and the CSP operators presented in Se
tion 3. Sin
e CSPM is a fun
tional language we
an use fun
tional expressions in guards and
ommuni
ations.The des
ription of CSPM involves well-known fun
tional des
riptions [20℄. Otherimportant semanti
 fun
tion de�nitions like
hannels, types, and expressions are omittedhere (but
an be found in [5℄). 4

4.2 Pro
ess RepresentationHere, CSP pro
esses are represented using A
tion Notation agents [11℄. Agents abstra
ta ma
hine that exe
utes a
tions, like a thread that runs in a CPU. We extend the defaultagents (user-agent),
alling them pro
ess-agents, to have a pro
ess status asso
iated withthem, and de�ne semanti
 fun
tions to alter their status and
reate new agents. Thisstatus is used for syn
hronization purposes.More spe
i�
ally, a pro
ess is represented by a tuple.(1) pro
ess = (pro
ess-agent2, pro
ess2,
ell2) .It
ontains two agents: the exe
utor and the environment. The former exe
utes theCSP operators, and the latter intera
ts with it.Respe
tively, the pro
ess tuple
ontains two other pro
esses: the left and the rightoperands. The operational exe
ution of the parallelism uses this stru
ture. In a pro
essR = P [jfagj℄ Q, the left and right of R are P and Q, respe
tively, and the environmentof P and Q is R. In this way we link the pro
esses and
an abstra
t the syn
hronizationme
hanism.More details for sequential exe
ution
an be found in Se
tion 4.5. For this, the left andright pro
esses have the spe
ial value unknown. For the topmost pro
ess, the environmentis a spe
ial kind of agent presented in Se
tion 4.4. The environment agent �eld is used tolink the pro
ess network.The tuple also has two
ells that abstra
ts the pro
ess representation: the �rst re
ordsthe pro
ess LTS (labeled transition system) [10℄ and the se
ond its walk history. The mainmotivation to represent a pro
ess as an LTS, instead of an a
tion, is the work in [18℄. Thisis an operational semanti
s for CSPM that de�nes the behaviour of pro
esses as an LTS.We de�ne semanti
 fun
tions that
reate a pro
ess and a

ess some of its �elds.4.3 Primitive Communi
ative A
tionsBelow we des
ribe some primitive
ommuni
ative a
tions used in the syn
hronizationproto
ol. These a
tions are used in our spe
i�
ation, but they are suÆ
iently generi
 tobe
ome an extension for the A
tion Notation
ommuni
ative fa
et.The a
tion wait[for ℄[on ℄ is used for syn
hronization of the
urrent (performing)agent. First it uses the put [in status℄ a
tion to set the status of the
urrent agent toWAIT. Next it uses the re
eive primitive a
tion that blo
ks until the expe
ted messagefor the
urrent agent arrives in the bu�er. Finally, it uses the patiently
he
k a
tion towait for the sending agent to set the status of the
urrent agent to ACTIVE, and returnsthe re
eived message. We use status
ags, like WAIT and ACTIVE, to have a detailed
ontrol over syn
hronization.� wait [for ℄[on ℄ :: yielder[of pro
ess-agent℄, yielder[of event+℄ !a
tion[giving
ontents of a message
ompleting diverging
ommuni
ating℄[using
urrent bu�er℄ (total , restri
ted).(1) wait [for x ℄[on s℄ =put the performing-agent [in WAIT status℄andre
eive a message[from x ℄[
ontaining s℄then 5

patiently
he
k(the status of the performing-agent is ACTIVE)and thengive the
ontents of the given message .In sequen
e we have an a
tion that o�ers a set of events s to be performed by an agentp. This a
tion has the pre
ondition that the re
eiving agent is not a
tive: its status isWAIT.� o�er [to ℄ :: yielder[of event+℄, yielder[of pro
ess-agent℄ !a
tion[
ommuni
ating diverging℄[using
urrent bu�er℄ (total , restri
ted).(1) o�er s [to p℄ =patiently
he
k(the status of p is WAIT)thensend a message [to p℄[
ontaining s℄ .We also have two a
tions used to syn
hronize two agents (the performing and theenvironment agents), with respe
t to a given syn
hronization set. The �rst one is usedin the main
ow of events and the other to handle the spe
ial events p, yielded by the\SKIP" pro
ess, and � , that represents an internal event to be performed independentlyof the environment agent (i.e. internal
hoi
es). Their de�nition
an be found in [5℄.The three a
tions bellow assume that the pro
ess representation is well
onstru
ted.They generalize the pro
ess representation stru
ture and
ompanion operations. To de�ne
on
rete des
riptions we need to fully spe
ify these a
tions. Here we give their headers.The behaviour of alphabet[of pro
ess p℄ is to return the initials of a pro
ess: the set ofthe all events initially
ommuni
able by a pro
ess, in
luding � and p.� alphabet[of ℄ :: yielder[of pro
ess℄ !a
tion[giving set of event
ompleting℄ (total , restri
ted).The behaviour of �re[event e℄[of pro
ess p℄ is to adjust the underlying representationof the pro
ess returning the next step in the pro
ess representation. These
an be, forinstan
e, the next node of the LTS graph.� �re [℄ [of ℄ :: yielder[of event℄, yielder[of pro
ess℄ !a
tion[giving
ell
ompleting failing℄ .The behaviour of
hooses[in s event +℄[of pro
ess p℄ represents the environment agentof the pro
ess p,
hoosing an event inside the given event set s.�
hooses[in ℄[[of ℄ :: yielder[of event+℄, yielder[of pro
ess℄ !a
tion[giving an event failing
ompleting℄ (total).The a
tions alphabet[of pro
ess p℄ and �re[event e℄[of pro
ess p℄
orrespond to theinitial and after semanti
 fun
tions in the denotational semanti
s presented in [18℄.6

4.4 Initialization A
tionsThe a
tion presented in this se
tion starts the exe
ution of a pro
ess p
onsidering theCSPsequential (pre�x, external and internal
hoi
es, and re
ursion) and parallel operators(generalized parallelism and interleaving). It establishes the status pre
ondition for theagents that perform ea
h a
tion.(1) start-user-environment with p =
he
k(both(the environment-agent of p is the performing-agent,the pro
ess-agent of p is the
ontra
ting-agent) 1then
esubordinate the pro
ess-agent of p and put the performing-agent [in ACTIVE status℄ 2thensend a message [to the given agent℄[
ontaining fun
tion of
hoose-a
tion of p℄ 3and thenregive 4thenunfolding5sele
t-an-event[from p℄[on the given event+℄6thenget-a
k-and-wait[from the pro
ess-agent of p℄[on the given event℄ 7thenunfold. 8To simplify the explanation of the next a
tion we number its important points andrefer to these numbers in the text. This a
tion �rst
he
ks 1 that the environment agent [ofp℄ is running (it is the performing agent) and that its pro
ess agent is the one with whi
hit is intera
ting (the
ontra
ting agent). This guarantees that the environment agent
ontrols the pro
ess agent. Next, the subordinate a
tion is used to a
tivate the pro
essagent 2. Afterwards, the ACTIVE status of the environment agent is re
orded. In thesequen
e, it sends a message to the given agent 3 to
hoose one of the possible CSP oper-ator a
tions (CSP basi
 proto
ol [for p℄ or CSP parallel proto
ol [for p℄[on e℄) to exe
utea

ording with the stru
ture of the pro
ess p (the basi
 proto
ol is
alled if p has the leftand right pro
ess set to unknown; otherwise parallel is
alled). This a
tion also sets theagent status to satisfy the proto
ol a
tions pre
onditions. The behaviour of the proto
ola
tions is give events to be sele
ted by the user environment 6, so it regives the re
eivedevents 4. In the unfolding part 5, the a
tion sele
t-an-event[from p℄[on e+℄
aptures theuser environment sele
ting an element 6. Next, the a
tion get-a
k-and-wait[from p℄[on e℄waits for the set of initially
ommuni
able events of p 7, an element of whi
h is sele
ted bythe a
tion sele
t-an-event[from p℄[on e+℄ 6. This goes on 8 until the TERMINATE sta-tus
ag is set for the pro
ess agent [of p℄, by the a
tions in the next se
tion. In this
asesele
t-an-event[from p℄[on e+℄ terminates. Note that the a
tion start-user-environment ex-e
utes in its own agent, so it plays the role of the topmost environment for the pro
essnetwork. 7

4.5 A
tions to Animate CSPM OperatorsHere we de�ne an a
tion to animate the pre�x, guarded re
ursion, external and internal
hoi
e CSP operators. We have only two a
tions to represent the CSPM operators be-haviour: one for the sequential (CSP basi
 proto
ol [for p℄), and another for the paralleloperators (CSP parallel proto
ol [for p℄[on s℄). These two a
tions animate a CSP pro
essby
ontrolling the exe
ution
ow of the agents. The
ontrol is based on the a
tionsalphabet [of p℄, �re[e℄[of p℄, and
hooses [in s℄[of p℄, whi
h, as explained in the previousse
tion,
apture the operational semanti
s in [18℄. There exists a pre
ondition for thesea
tions to fun
tion properly: the pro
ess-agent and the environment-agent status of thegiven pro
ess must be WAIT and ACTIVE respe
tively, in order to avoid the live lo
k.Firstly, CSP basi
 proto
ol [for p℄ syn
hronously puts the pro
ess-agent and the envi-ronment agent of the given pro
ess in ACTIVE and WAIT(�) status, respe
tively.1� CSP basi
 proto
ol [for ℄ :: yielder[of pro
ess℄ ! a
tion[giving event*
ommuni
ating
ompleting failing diverging℄[using
urrent bindings
urrent storage
urrent bu�er℄ (total).(1) CSP basi
 proto
ol [for p℄ =syn
h states [from the environment-agent of p℄[with the pro
ess-agent of p℄[
ontaining elements of the set bound to �℄ 1then
eunfoldingThen it builds the set of events that p
an
ommuni
ate in
luding � and p 2. Afterthat the a
tion
he
ks if the pro
ess is deadlo
ked (the set ATS of the pro
ess alphabet- its initials - is empty) 3 and treats that situation syn
hronously putting the pro
essand environment agents in TERMINATED and ACTIVE status, respe
tively 4. It treatsp 5 and � 8 in mu
h the same way. For the former, �nishing a
tions are �red 6 andthe pro
esses silently dies 7. For the latter, invisible a
tions are �red 9 and the a
tion
ontinues10 (unfolds). For simpli
ity, we are prioritazing the sele
tion of � and p.bind \ATS" to the alphabet [of p℄ 2then
e. . .
he
k 3 and treat deadlo
k 4 . . .or . . .
he
k 5, exe
ute 6 and treat termination 7 . . .or. . .
he
k 8, exe
ute 9 and treat invisible a
tions 10 . . .orThe a
tion
he
ks if the pro
ess has any event in the \ATS" set to exe
ute 11. It o�ersthe possible
ommuni
ation set to the environment and waits for a response to sele
t anygiven ATS events 12. The environment must also be waiting for this to happen (barriergranted in 1).Then we need to adjust the pro
ess representation a

ording to the
hosen ATS eventand regive the
hosen event 13. This extra
ts the sele
ted given event from the
ommu-ni
ation set (initials of the pro
ess). After that, we need to send the same given event to8

the environment and syn
hronize the status (i.e a
tivate the environment and make thepro
ess agent wait on it for any event 14). Finally, we restart the a
tion after the pro
essand the environment have been resyn
hronized.15

he
k(not (either(either(the given event, �), p))) 11then
eo�er the set bound to \ATS" [to the environment-agent of p℄ 12thensyn
h events[from the pro
ess-agent of p℄[with the environment-agent of p℄[
ontaining the elements of the set bound to \ATS"℄then
e�re [the given event℄[of p℄ 13andthe pro
ess-agent of p a
ks[the given event℄[to the environment-agent of e℄[waiting on the elements of the set bound to �℄ 14thenunfold . 15The a
tion for the generalized parallelism and interleaving (CSP parallel proto
ol [for p℄[on s℄)is presented below. Sin
e its header is similar to the a
tion above we omit it here. Thata
tion has an additional pre
ondition: the left and right pro
esses must be di�erent ofunknown.Firstly, the a
tion needs to ensure that the environment agent of the left pro
ess isthe pro
ess agent of p and the same for the right pro
ess 1; this also
he
ks for unknownpro
esses. This
he
k 1 is needed be
ause the agent performing this a
tion plays therole of the environment for the left and right pro
esses; the pro
ess agent of p re
eivesthe messages of left or right pro
ess agents as their environment agent 4. Note that theenvironment agent of the pro
ess p
an be either other sequential pro
ess or the topmostuser environment.As in the previous a
tion, it needs to syn
hronously put the pro
ess-agent and theenvironment agent of the given pro
ess in ACTIVE and WAIT(�) status, respe
tively.2Here we want to de�ne a kind of forking inside the pro
ess p3. Note that there is nota start order of the pro
ess 3', so we use the interleave property of the \and" a
tion
ombinator to
apture this [11℄.(1) CSP parallel proto
ol [for p℄℄on s℄ =
he
k(both(the environment-agent of the left-pro
ess of p isthe pro
ess-agent of p)) 1and
he
k(both(the environment-agent of the right-pro
ess of pis the pro
ess-agent of p)) 1and then 9

syn
h states [from the environment-agent of p℄[with the pro
ess-agent of p℄[
ontaining elements of the set bound to �℄ 2thenstart-user-environment with the left of p 3andstart-user-environment with the right of p 3'thenThe a
tion re
ursively builds the set \C" of possible
ommuni
able events 5. Theauxiliary a
tion build-C-set(A, B, s) applies the step-law for the CSP parallel operator(C = (A \ B \ X) [(A n X) [(B n X), where A, B are the initials of P and Q, of P[|X|℄ Q, and X is the given syn
hronization set s) [17℄.Next, the a
tion
he
ks 6 if the pro
ess is deadlo
ked (\C" is empty) and treats thatsituation syn
hronously putting the pro
ess and environment agents in TERMINATEDand ACTIVE status, respe
tively 7. Note that it must inform the parti
ipants (left andright pro
esses) that this situation has been rea
hed.unfolding4bind \C" to build-C-set (the alphabet[of left of p℄,the alphabet[of right of p℄, s) 5then
e. . .
he
k 6 and treat deadlo
k 7 . . .then
eAfter that, the a
tion
on
urrently 9 waits for the a
ks of its parti
ipant pro
esses,inside the elements of \C". The a
knowledged events will be the events
hosen by eitherpro
ess (left or right) 8, 8'. We have an interleaving be
ause of the \and" property andnot an agent based (CPU)
on
urren
y.respe
tively get-a
k-and-wait[from the pro
ess-agent of the right of p℄[on the elements of set bound to \C"℄ 8and9respe
tively get-a
k-and-wait[from the pro
ess-agent of the left of p℄[on the elements of set bound to \C"℄ 8'then
eIn this
ase, they
an interleave 12 if that events are outside the syn
hronization sets 10, or need to a
hieve syn
hronization via barrier 11. In sequen
e, the event is sele
tedfor exe
ution 13, and the pro
ess
ontinues to exe
ute 14.. . . the given event 2 s ? 10 barrier (T) 11 or interleave (F) 12thensele
t-an-event[from p℄[on the given event+℄13then
eunfold. 14These a
tions give an operational view of the de�nitions of CSP operators and thestep law of the parallel operator [17℄. 10

5 Con
lusions and Related WorksIn this work we have used A
tion Semanti
s to de�ne an operational semanti
s of CSPM[18℄ more legibly. We also made extensive use of the
ommuni
ative fa
et of a
tionnotation extending it with some new primitive a
tions for syn
hronization, hand shaking,and
ommuni
ation. Tools like ANI [14℄ or ABACO [15℄ will be used in a possiblefuture work to run and
he
k our semanti
 des
ription in order to have a formal animatorimplementation of the basi
 CSPM operators. Sin
e a
tion notation has an underlyingoperational semanti
s, it
an be interesting as a future work to
ompare this operationalview of the a
tion notation against the CSPM operational semanti
s des
ribed in [18℄,with this we
an guarantee that the same behaviour were de�ned in ea
h des
ription(i.e. our a
tion semanti
s des
ription of CSPM against the operational semanti
s of [18℄).Basi
ally, the relationship between raw operational semanti
s of CSPM [18℄, and ourdes
ription is the readability, and modularity. It is also a tentative of a more
on
reteimplementation of the CSPM exe
ution behaviour.The work in [2℄ uses the
ommuni
ative fa
et to des
ribe distributed network proto
ols(SNMPv3). The
on
urrent primitives of a fun
tional language (ML) is presented in [12℄.As far as we know, there is only one work whi
h uses a
tion semanti
s to des
ribe CSP [1℄,whi
h is based on informal des
riptions of the CSP diale
t originally de�ned in Hoare'sseminal paper [8℄. Due to the la
k of works in a
tion notation that uses
ommuni
ativefa
et, it was diÆ
ult to make a
omparison against other works sin
e there are no widespread available a
tion notation interpreters that run
ommuni
ative a
tions.The work in [2℄ inspired us to de�ne an A
tion Semanti
s for CSP; the
on
urrentML des
ription of [12℄ inspired us to build a de
entralized and generalized version of the
ommuni
ative a
tions. This made the
onstru
tion of a
ommuni
ative fa
et extensionframework for A
tion Semanti
s easier. This is an important part of our future work.Some
on
epts were note
ontemplated in our work, like event hiding and renaming,repli
ated operators, and data type de�nition. We also do not
onsider the whole typeexpressiveness ofCSPM as noted in [3℄. Due to the la
k of spa
e we
annot explain in moredetail some of the a
tions and also the a
tion notation stru
ture, but a
omphreensivework in this �ed
an be found in [11℄ and [5℄.6 A
knowledgmentsThis work is partially supported by CNPq, the Brazilian Resear
h Agen
y. We wouldlike to a
knowledge Peter Mosses for his e�ort in obtaining out of print referen
es onA
tion Semanti
s of CSP and for many valuable dis
ussions. The idea of using an LTSto �rst give an a
tion semanti
s to CSP was �rst pursued by Alexandre Mota [13℄; wethank him for dis
ussing his work with us.Referen
es[1℄ S. Christensen and M. H. Olsen. A
tion Semanti
s of Cal
ulus of Comuni
ating Systemsand Communi
ating Sequential Pro
esses. Te
hni
al report, Aarhus University, Sep 1988.[2℄ M. Musi
ante D. Furlan and E. Duarte. An A
tion Semanti
s Des
ription of the SNMPv3Dispat
her. IV Brazilian Symphosion of Programming Languages, 2000.[3℄ Formal Methods (Europe) Ltd. FDR User's Manual version 2.28, 1997.11

[4℄ Formal Methods (Europe) Ltd. PROBE Users Manual version 1.25, 1998.[5℄ L.J.S. Freitas. A
tion Semanti
s of CSPM. Te
hni
al report, Semanti
s of ProgrammingLanguage, available at http://www.
in.ufpe.br/~ljsf/pub/as
sp.ps, Nov 2000.[6℄ L.J.S. Freitas. JACK: An approa
h to pro
ess algebra for Java. Master's thesis, UFPE,ago 2001. not yet published.[7℄ G.H. Hilderink and E.A.R. Hendriks. Con
urrent Threads in Java - CTJ v0.9, r17, Sep2000. http://www.rt.el.utwente.nl/javapp.[8℄ C.A.R. Hoare. Communi
ating Sequential Pro
ess. Communi
ations of ACM, 21(8):666{677, Aug 1978. Seminal Paper.[9℄ C.A.R. Hoare. Communi
ating Sequential Pro
ess. Prenti
e Hall, 1985.[10℄ J. Krammer. Con
urren
y: State Models & Java Programs. Addison Wesley, April 1999.ISBN 0471987107.[11℄ P. Mosses. A
tion Semanti
s. Number 26 in Cambridge Tra
ts of Theori
al ComputerS
ien
e. Cambridge University Press, 1st edition, 1992.[12℄ P. Mosses and M. Musi
ante. An A
tion Semanti
s for ML Con
urrent Primitives. Te
hni
alReport RS-94-20, Aarhus University/UFPE, July 1994.[13℄ A. Mota. Modeling CSP as LTSs using A
tion Semanti
s. Te
hni
al report, Semanti
s ofProgramming Language, available at http://www.
in.ufpe.br/~lmf, Nov 1996.[14℄ H. Moura. An Implementation of A
tion Semanti
s. In M. Bruynooghe and M. Wirsing,editors, Programming Language Implementation and Logi
 Programming, volume 631, pages477{478, http://www.
in.ufpe.br/~rat, August 1992. Springer-Verlag. Le
ture Notes inComputer S
ien
e.[15℄ H. Moura and L.C. Menezes. The Aba
o System - An Algebrai
 Based A
tion Compiler.In Armando Mart�in Haeberer, editor, 17th International Conferen
e on Algebrai
 Method-ology and Software Te
hnology, volume 1548, pages 527{529, http://www.
in.ufpe.br/~rat,January 1999. Springer-Verlag. Le
ture Notes in Computer S
ien
e.[16℄ P.D.Austin and P.H.Wel
h. Java Communi
ating Sequential Pro
ess - JCSP, Aug 2000.http://www.
s.uk
.a
.uk/proje
ts/ofa/j
sp/.[17℄ A.W. Ros
oe. The Theory and Pra
ti
e of Con
urren
y. Prenti
e Hall, 1st edition, 1997.[18℄ B. S
attergood. The Semanti
s and Implementation of Ma
hine Readable CSP. PhD thesis,University of Oxford, The Queen's College, 1998.[19℄ D. Watt. Programming Languages Syntax and Semanti
s. Prenti
e Hall, 1991.[20℄ D. Watt. Standard ML A
tion Semanti
s version 0.5. Te
hni
al report, University ofGlasgow, May 1997.[21℄ D. Watt and P. Mosses. A
tion Semanti
s in A
tion. Unpublished, 1987.
12

