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Abstract. Most of the literature agues that surprisingness is an inherently
subjedive asped of the discovered knowledge, which cannot be measured in
objedive terms. This paper departs from this view, and it has a twofold goal:
(1) showing that it isindeed possble to define objedive (rather than subjedive)
measures of discovered rule surprisingness (2) proposing new ideas and
methods for defining oljedive rule surprisingnessmeasures.

1 Introduction

A crucia asped of dataminingisthat the discovered knowledge (usually expressed in
the form of “if-then” rules) shodd be somehow interesting, where the term
interestingness is arguably related to the properties of surprisingness
(unexpededness, usefulnessand novelty of the rule [Fayyad et al. 96]. In this paper
we ae interested in quantitative, objedive measures of one of the aove three
properties, namely rule surprisingress

In general, the evaluation of the interestingness of discovered rules has both an
objedive (data-driven) and a subjedive (user-driven) asped. In the particular case of
surprisingness however, most of the literature argues that this property of the
discovered rulesisinherently subjedive - see eg. [Liu et a. 97].

Hence, objedive measures of rule surprisingness £am to be something missng, or
a least underexplored, in the literature, and this is part of the motivation for the
discusson presented in this paper. Another motivation, of course, is that objedive
measures of rule surprisingress have one important advantage. Objediveness is
strongy related to domain independence, while subjedivenessis grondy related to
domain dependence Hence, objedive measures of rule surprisingness are, in
principle, more generic than subjedive measures. (However, subjedive measures are
still necessary - seebelow.)

We shoud emphasize that the dm of the paper is not to propose a new rule
surprisingnessmeasure. Note that any rule interestingness measure is part of the bias
of the corresponding data mining algorithm, and it is well-known that any data mining
bias has a domain-dependent effediveness



Hence instead o investigating the dfediveness of any particular rule
surprisingness measure, the am of this paper is rather to suggest and discussidess
that can be used to objedively measure the degree of rule surprisingress in a generic
way. We hope that this discusson will be auseful referencefor other reseachers who
have aspedfic data mining problem to be solved, sincethese researches could use the
ideas discussed in this paper to design their rule surprisingnessmeasure.

It shoud be noted that the goa of our work is to complement, rather than to
replace the existing subjedive measures of rule surprisingress Actualy, in pradice
both objedive and subjedive gproadces ould be used to seled surprising rules. In
our case, the new ideas for objedive rule suprisingness measures propaosed in this
paper can be used as a kind d filter to seled potentially surprising rules, among the
many rules discovered by a data mining algorithm. We can then return to the user a
much smaller number of potentially surprising rules, and let him/her judge the
ultimate surprisingressof those rules only. Obviously, the user will be able to save a
lot of his’lher rule analyzis time with this approacd, particularly when the data mining
algorithm discovers alarge number of rules.

This paper is organized as follows. Sedion 2 dscuses how to measure the
surprisingness of small diguncts. Sedion 3 discusses how to measure the degree of
surprisingness associated with individual attributes in a rule antecedent. Sedion 4
discusses how we can discover surprising knowledge by deteding occurrences of
Simpson's paradox. Finaly, sedion 5concludes the paper.

2 On the Surprisingnessof Small Diguncts

A rule set can be regarded as a digunction d rules, so that a given rule an be
regarded asadigunct. The sizeof adigunct (rule) is the number of tuples stisfied by
the rule's antecalent — i.e. the “if part” of the rule. Thus, small diguncts are rules
whose humber of covered tuplesis snall, acording to some spedfied criterion (e.g. a
fixed threshold, or amore flexible criterion).

At first glance, it seams that small disuncts are undesirable, since they have littl e
generality and tend to be aror-prone (see below). Based on this view, most data
mining algorithms have a bias favoring the discovery of large diguncts.

However, small diguncts have the potential to capture truly unexpeded
relationships, in the data. For instance, [Provost & Aronis 96] report an applicaion
where asmall disunct discovered by a data mining algorithm was considered truly
interesting and led to substantial new reseach in the gplicaion dmain. Hence, it
would be nice if the data mining agorithm could automaticdly evaluate the
surprisingnessof small diguncts, reporting to the user only the most promising ores.

The remaining o this dion is divided into two parts. Subsection 21 reviews
previous reseach on small diguncts, while subsedion 22 proposes our idea to
objedively measure the surprisingnessof small diguncts.



2.1 A Review of Small Diguncts

Asmentioned above, small diguncts are eror-prone. Sincethey cover a small number
of tuples, it is posgble that they cover mainly noise. At first glance, it seams that this
problem can be solved by simply discarding small diguncts.

Unfortunately, however, prediction accuracy can be significantly reduced if al
small disjuncts are discarded by the data mining algorithm, as siown by [Holte & al.
89]. This is a particularly serious problem in domains where the small diguncts
colledively match a large percentage of the number of tuples belongng to a given
class[Danyluk & Provost 93]. The main problem isthat a small disunct can represent
either a true exception accurring in the data or ssimply noise. In the former case the
digunct shoud be maintained, but in the latter case the digunct is error prone and
shoud be discarded. Unfortunately, however, it is very difficult to tell which is the
case, given only the data.

[Holte & al. 89] suggested that one remedy for the problem of small diguncts was
to evaluate these diguncts by using a bias different from the one used to evaluate
large diguncts. Hence, they proposed that small diguncts be evaluated by a
maximum-spedficity bias, in contrast with the maximum-generality bias (favoring the
discovery of more general rules) used by most data mining algorithms. [Ting 94]
further investigated this approad, by using an instance-based leaner (as far as we
can gowith the maximum-spedficity bias) to evaluate small diguncts.

It shoud be noted that the @ove literature has gudied the effect of small diguncts
mainly in the dassdficdion acairacy of the discovered knowledge. In this paper we
are rather interested in the dfed of small diguncts in the surprisingness of the
discovered knowledge, aswill be discus=d in the next subsedion.

2.2 Measuring the Surprisingnessof Small Diguncts

We propose that a small disunct be considered as surprising knowledge to the
extent that it predicts a dass different from the dass predicted by the minimum
generdlizations of the digunct. The minimum generali zations of adisunct are defined
asfollows. (Henceforth, we use simply the term disunct to refer to small diguncts.)

Let the disunct be compased by the conjunction of m condtions, of the form
cond, AND cond, AND ... cond,, where eat cond,, k=1,...m, is a triple of the form
<Att op Va>, where Att is an attribute, op is a relational operator in the set
{<,>2,5,=} and Vadl is a value belonging to the domain of Att. Also, following a
common pradice in data mining algorithms, if the dtribute Att is continuous (red-
valued), then opisinthe set {<,>,>,<,}; whereas if the attribute Att is categoricd then
opisthe “="* operator.

A digunct has m minimum generalizations, one for each of its m condtions. The
k-th minimum generalization of the digunct, asociated with cond, k=1,...m, is
defined as follows. If Att in cond, is caegoricd, then the k-th minimum
generalization of the digunct is achieved by removing cond, from the digunct. If Att
in cond, is continuous, then the k-th minimum generalizaion d the disiunct can be



defined in two ways, namely: (a) by removing cond, from the disunct; (b) by adding
a small value a to the value of the “cut-point” Val in cond,, when op in {<}, or
subtrading a from Val in cond, when op in {>2}; where a is a user-defined,
problem-dependent constant. It is up to the user to choose one of these two definitions
of minimum generali zation for continuous attributes, depending onthe appli cation.

To clarify the above definition (b) of minimum generalization, let us consider, as
an example, the following rule condtion: “Age < 23". Supposing that a is pedfied
as 5, the minimum generalization d this condtion would be “Age < 28’. In pradice
there might be several continuous attributes, and dff erent absolute values for a would
be necessry, due to dfferences of scde anong the dtributes - for instance, for the
attribute “Yealy Income”, a = 5 is too small. Obvioudly, it would be tedious to
spedfy a different absolute value of a for eat continuous attribute. A solution is to
spedfy a relative value of a, such as 5%. Then, for each continuous attribute, the
adual absolute value for a would be auitomaticdly cdculated as 5% of the highest
value observed for that attribute. An aternative definition o minimum generali zation
for continuous attributes could use some kind of percentil e-based approach.

In any case, note that a minimum generalizaion produces a new digunct which
covers a superset of the tuples covered by the original digunct. As a result, the dass
distribution d the tuples covered by the new digunct (produced by minimum
generalization of the origina digunct) can be significantly different from the dass
distribution o the tuples covered bythe original digunct.

Therefore, after a new digunct is produced by minimum generalization, its
predicted class (i.e. the mnsequent of the rule) is re-computed. More predsely, the
classpredicted by the new digunct is determined by using the same procedure used
by the data mining algorithm that discovered the original disunct. (Typicdly, picking
up the dasswith largest relative frequency among the tuples covered by the digunct.)

We ae now ready to define away to oljedively measure the surprisingness of
small diguncts discovered by a data mining algorithm. Let C be the classpredicted by
the original disjunct and C_be the dasspredicted by the disunct produced by the k-th
minimum generalization of the original digunct, k=1,... m, as explained above. We
then compare C against eat C,, k=1,...m, and count the number of times C differs
from C.. This result, an integer number in the interval 0..m, is defined as the raw
surprisingressof the original disunct, denoted DigSurp,,,. The higher DisSurp,,, the
more surprising the digunct is.

Note that the value of DisSurp,,, is sgnificently influenced by the number of
condtions m in the digunct, which is in turn a measure of syntadic complexity.
Several data mining algorithms already use ameasure of syntadic complexity as part
of their inductive bias. In this case, to avoid confusion between measures of syntadic
complexity and measures of digunct surprisingress we can render the latter
somewhat more independent from the former by defining a normalized dsunct
surprisingness measure, as follows: DigSurp,,,, = DigSurp,, / m; where m is the
number of condtions of the digunct. Clealy, DigSurp,,,, takes on values in the
interval [0..1]. The higher DigSurp,,,,, the more surprising the disunct is. However, it
shoud be noted that this normalized measure has a bias towards rules with fewer



condtions, sinceit will probably be difficult for rules with many condtionsto hdd a
high normalized value. The suitability of this bias depends on the goplication domain.
Finally, note that the above measure of small digunct surprisingress is being
proposed as a post-processng approacd, applied orcethe rules have been discovered.
This approach seans consistent with top-down, spedalizaion-driven rule induction
algorithms, that iteratively add conditionsto a @ndidate rule, in order to spedalizeit.
Note that thisis the most common kind of rule induction algorithm used in pradice

3 0n The Surprisingnessof a Rule's Individual Attributes

Most rule surprisingnessmeasures (or, more generaly, rule interestingnessmeasures)
consider the rule antecedent as a whole, without paying attention to the individual
attributes occurring in the rule aitecedent - see eg. the well-known rule
interestingnessmeasure proposed by [Piatetsky-Shapiro 91].

In some sense, these rule surprisingness measures are marse-grained. However,
two rules with the same value of a marse-grained rule surprisingness measure can
have very different degrees of interestingrness for the user, depending on which
attributes occur in the rule antecedent.

In order to evaluate the surprisingressof predicting attributes in a rule antecedent,
denated AttSurp, we propose an information-theory-based measure, as follows - see
[Cover & Thomas 91] for a cmprehensive review of information theory. First, we
cdculate InfoGain(A,), the information gain of ead predicting attribute A, in the rule
antecalent, using formulas (1), (2) and (3). In these formulas, Info(G) is the
information of the goal (clasg attribute G, Info(G|A)) is the information d the goal
attribute G given predicting attribute A, A; denotes the j-th value of attribute A, G;
denates the j-th value of the goa attribute G, Pr(X) denotes the probability of X,
Pr(X|Y) denotes the anditiona probability of X given Y, and all the logs are in base
2. Theindex j informulas (2) and (3) variesin the interval 1..n, where n is the number
of goal attribute values. The index k in formula (3) varies in the interval 1..m, where
m is the number of values of the predicting attribute A..

InfoGain(A)) = Info(G) - Info(G|A)) (D)
L 2
where Info(G) = -_ler(ej) log Pr(G) 2)
J:
m n 3
Info(GlA) = 2 Pr(A,) (- Z PGIA) 1o PI(GIA,)) ®
= J:

Attributes with high information gain are good predictors of class when these
attributes are mnsidered individualy, i.e. one & a time. However, from a rule
interestingnesspoint of view, it islikely that the user already knows what are the best



predictors (individual attributes) for its applicaion domain, and rules containing these
attributes would tend to have alow degreeof surprisingnessfor the user.

On the other hand, the user would tend to be more surprised if (S)he saw a rule
containing attributes with low information gain. These atributes were probably
considered as irrelevant by the users, and they are kind of irrelevant for classficaion
when considered individually, one & a time. However, attribute interadions can
render an individually-irrelevant attribute into a relevant one, and this phenomenon is
intuitively associated with rule surprisingness Therefore, all other things (such as the
prediction accuracy, coverage and completeness of the rule) being equal, we ague
that rules whose antecadent contain attributes with low information gain are more
surprising than rules whose antecedent contain attributes with high information gain.
Thisidea ca be expressed mathematicdly by defining AttSurp as foll ows:

#Hatt 4
AttSurp=1/ (_lenfoGai n(A) / #att ),
1=

where InfoGain(A) is the information gain of the i-th attribute occurring in the rule
antecadent and #att is the number of attributes occurring in the rule antecedent. The
larger the value of AttSurp, the more surprisingtheruleis.

4 On the Surprisingnessof the Occurre nce of Simpson’s Paradox

4.1 A Review of Simpson’s Paradox

Simpson's paradox [Simpson 51] can be defined as follows. Let a population ke
partitioned into two mutually exclusive and exhaustive populations, denaoted Pop, and
Pop,, acording to the value of a given binary attribute, denoted 1stPartAtt (First
Partitioning Attribute). Let G be abinary goal attribute, which takes on a value
indicating whether or not a given situation of interest has occurred in a popuation,
and let G, and G, be the value of the atribute G in ead of the respedive popuations
Pop, and Pop,. Let Pr(G,) and Pr(G,) denote the probability that the situation o
interest has occurred in Pop, and Pop,, respedively. Assume that Pr(G,) > Pr(G,).

Let us now consider the case where bath the populations Pop, and Pop, are further
partitioned, in parallel, acording to the value of a given categoricd attribute, denoted
2ndPartAtt. Let this attribute have m distinct caegorica values. We can nowv compute
the probability Pr(G) in each population, for ead of these m caegories, which we
denote by G, where i=1,2 is the id of the population and j=1,...,m is the id of the
value of 2ndPartAtt. Let Pr(G,) and Pr(G,) denote the probability that the situation of
interest has occurred in Pop, and Pop,, in the j-th category of 2ndPartAtt, j=1,...,m.

Finally, Simpson’'s paradox occurs when, although the overall value of Pr(G) is
higher in Pop, than in Pop,, i.e. Pr(G,) > Pr(G,), in each of the cdegories produced by
2ndPartAtt the value of Pr(G) in Pop, is lower than or equal to its value in Pop,, i.e.
Pr(G,) < Pr(G,), j=1,..,m. The paradox also occurs in the dual situation, i.e. when
Pr(G) < Pr(G) but Pr(G,) = Pr(G,), j=1,...m.



Some red-life examples of the occurrence of this paradox are mentioned in
[Wagner 82]. For instance the paradox occurred in a comparison of tuberculosis
deahsin New York City and Richmond, Virginia, during the year 1910 Overall, the
tuberculosis mortality rate of New York was lower than Richmond's one. However,
the opposite was observed when the data was further partitioned aacording to two
radal categories: white and non-white. In both the white and non-white caegories,
Richmond Fed a lower mortality rate. In terms of the &ove notation, the 1stPartAtt
was city; the situation o interest measured by attribute G was the occurr ence of death
in atuberculosis case; and the 2ndPartAtt wasracial category.

Some aithors have drawn attention to Simpson’'s paradox in the context of data
mining - see eg. [Glymour et a. 97]. However, most of this literature regards this
paradox as akind of danger, or obstade, for data mining algorithms. In particular, the
existence of this paradox in a given data set can easily fool a data mining algorithm,
causing the dgorithm to misinterpret a given relationship between some atributes.
For instance, dedsion-treeleaners usualy build atreeby seleding one dtribute & a
time. Hence, they can seled an attribute that seemsto have a cetain relationship with
a given class when in redity the true relationship (taking into acmunt attribute
interadions) isthe reverse of the gparent one.

Instead of considering Simpson’'s paradox as an obstade, in this paper we ae
interested in the potential that the occurrence of Simpson’s paradox offers for the
discovery of truly surprising knowvledge, as discussed in the next subsedion.

4.2 Discovering Surprising Knowledge via the Detedion of Simpson’s Paradox

We suggest to make adata mining algorithm to explicitly search for occurrences of
Simpson's paradox and to report the discovered occurrences for the user, as a kind of
surprising knowledge.

This each can be performed by the Algorithm 1 below. The input for the
algorithm is alist L of user-defined binary goal attributes, ead of them indicaing
whether or not a given situation o interest has occurred. The dgorithm below is
spedfied in a high level of abstradion, so the two statements that identify the
attributes to be put in lists L, and L, can be expanded in dfferent procedures, using
different criteria, as long as three conditions hold: (a) al attributes in L, are binary;
(b) all attributesin L, are cdegoricd; (c) any goa attribute contained in L, does not
appea in L, nor in L,. Note that these @nditions are not very strict, and in particular
they al ow the posshility that an attribute is contained in both L, and L, (since binary
atributes are aparticular cese of categoricd attributes). This posshility justifies the
use of the mondition A, # A, in the third FOR EACH statement of Algorithm 1. In
pradice, this and aher more strict condtions may be diredly implemented in the two
statements that identify the atributesto be put in listsL, and L,, when Algorithm 1 is
refined to achieve aparticular implementation.

Algorithm 1 ony deteds occurrences of Simpson’'s paradox. Extending the
algorithm to explain why the paradox has occurred is beyond the scope of this paper.



INPUT: list of user-defined gcel attributes, denoted L
BEGIN
identify attributes that can be used as 1stPartAtt and pu theminlistL,
identify attributes that can be used as 2ndPartAtt and put theminlistL,
FOR EACH goal attribute GinL
FOR EACH attribute A, in L,
partition pgoulation into Pop, and Pop,, acarding to the values of A,
Pr(G,) = Pr(G="yes'|A,71)
Pr(G,) = Pr(G="yes'|A,=2)
FOR EACH attribute A, inL, suchthat A, # A,
FOR i=1,2
partition Pop into m new populations Pop, ... Pop,,
aacording to thevalues of A,
FORj=1,...,m
Pr(G,) = Pr(G="yes'|A,=i A 7))
IF (Pr(G) >Pr(G,) AND Pr(G)) < Pr(G,), j=1,...m)
OR (Pr(G) <Pr(G) AND Pr(G,) = Pr(G,), j=1,...m)
report the occurrence of the paradox to the user
END
Algorithm 1: Seach for occurrences of Simpson’s paradox.

5 Conclusion

We caina overemphasize that a rule surprisingness measure (or, more generally, a
rule interestingress measure) is a bias, and so there is no uriversaly best rule
surprisingnessmeasure acossall application danains. Each reseacher or praditi oner
must adapt/invent arule surprisingnessmeasure to his’her particular target problem.

Hence, as mentioned in the introduction, in order to render the contribution o the
paper generic, the main goal of this paper was not to introduce yet another rule
surprisingnessmeasure. Rather, this paper had the twofold goal of: (1) showing that it
is posdble to define objedive (rather than subjedive) measures of discovered rule
surprisingress unlike what we might infer from the literature; (2) proposing rew
ideas for defining oljedive rule surprisingness measures, which will hopefully be
useful for other data mining researchers.

More predsely, the main new ideas proposed in this paper were: (a) a method for
measuring the surprisingressof discovered small diguncts, esentially based on how
much the prediction of the small disunct differs from the predictions of its minimum
generalizations; (b) an information-theoretic, fine-grain method for measuring the
surprisingness of a discovered rule by considering the surprisingress of individual
attributes in the rule antecadent, rather than the rule antecalent as a whole (the
conventional coarse-grain approach); (c) a method for discovering surprising
knowledge via the explicit detedion of occurrences of Smpson's paradax, in the form
of ahigh-level algorithm spedficdly designed for this task.



One limitation d this paper is that our discusson hes not taken into account the
interadion between rulesin the discovered rule set. In principle, however, the issue of
rule interadion is Kmewhat orthogoral to the isaue of individual rule surprisingress
in the sense that the measure of rule interadion (typicdly a measure of rule
overlapping) is often independent of the measure of individual rule surprisingness(or,
more generaly, interestingnesy. Hence, it shoud be possble to use the rule
surprisingness measures proposed in this paper together with rule interadion
measures. The realer interested in rule seledion procedures taking into acmunt rule
interadionisreferred to [Gebhardt 91], [Major & Mangano 95].

A natural diredion for further reseach is to implement the new ideas for defining
objedive rule surprisingness measures propaosed by this paper in some data mining
algorithm(s), in order to evaluate their effedivenessin some red-world data sets.
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