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Abstract

With the fast, continuows increase in the number and size of databases, parallel data mining
is a natural and cost-effedive goproach to tadle the problem of scalability in data mining.
Recaitly there has been a onsiderable research on paralel data mining. However, most
projeds focus on the paral elization d asingle kind d data mining algorithm/paradigm. This
paper surveys parallel data mining with a broader perspedive. More predsely, we discussthe
paral elization d data mining algorithms of four knowledge discovery paradigms, namely rule
induction, instance-based learning, genetic dgorithms and reural networks. Using the lesons
leaned from this discusson, we dso derive aset of heuristic principles for designing efficient
parale data mining algorithms.

1 Introduction.

A magjor issue in data mining is saability with resped to the very large size of current-
generation and next-generation databases, given the excessvely long processng time taken
by (sequential) data mining algorithms on realistic volumes of data. To mention just two
examples, [Cohen 95] estimates that C4.5 with rule pruning would take 79 years on a 150-
MHz procesgr in order to mine adatabase with 500,00Qtuples. [Provost & Aronis 96] report
that a sequential version d the RL agorithm is impradicd (i.e. takes too long to run) on
databases of more than 70,000tuples.

Parall elism offers a natural and promising approach to cope with the problem of efficient
data mining in large databases. Recently, there has been considerable interest in the parall €l
processng of data mining algorithms [Provost & Aronis 96], [Holsheimer et al. 96|, [Shafer
et a. 9q, [Srivastava @ al. 97], [Agrawal & Shafer 96], [Han et a. 97], [Kufrin 97, [Madin
97], [McLaren et al. 97], [Neri & Giordana 95|, [Flockhart & Radcliffe 95|, [Freitas 97].
However, most of the literature focuses on isolated eff orts to parall elize asingle kind d data
mining a gorithm.

This survey aims at presenting a much broader view of the areaof parallel data mining, by
discussng the pardlélization d several kinds of data mining algorithms/paradigms. More
predsely, we discuss the parallelization d data mining algorithms in the following four
knowledge discovery paradigms. rule induction, instance-based learning (or neaest
neighbaur), genetic dgorithms and reural networks. In addition, we use the lesns leaned
from this discusson to derive some heuristic principles for designing efficient parallel data
mining a gorithms.

It shodd be noted that paralelism is not the only approach to speed up data mining
agorithms. Other approadhes — some of which can be used together with perallelism — are
sampling, attribute selection, discretization d continuous attributes, restriction o the seach
gpace agorithm/code optimization and dstributed data mining. An owerview of these
approadhes and their advantages/disadvantages over parallelism can be foundin [Freitas &



Lavington 99, which also presents a detail ed dscusson on @rallel data mining.

This paper is organized as follows. Section 2 reviews the distinction between data
paralelism and control parallelism. Sedion 3 dscusses parallel rule induction. Sedion 4
discusses parald instance-based learning. Section 5 dscusses paralel genetic dgorithms.
Sedion 6 dscusses parald neura networks. Sedion 7 dscusses how to design efficient
parallel data mining algorithms and pants out some future research dredions.

2 Data parallelism versus control parallelism.

This Sedion reviews the distinction ketween data paralelism and control parall elism,
which is crucia for an urderstanding of the next Sedions. In esence data parall €lism refers
to the exeaution d the same operation a instruction onmulti ple large data subsets at the same
time [Hillis & Stede 86], [Lewis 91], asill ustrated in Figure 1. Thisis in contrast to control
parallelism (or operation parallelism), which refers to the cncurrent exeaution d multiple
operations or instructions, as ll ustrated in Figure 2.
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Figure 1: Data paral€lism (1 operation exeauted on n pocesors, via data partitioning).
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Figure 2: Control parallelism (n operations exeauted on n Pocesrs).

From a data mining viewpoint, data parallelism has three main advantages over control
paralelism. First, data parallelism lends itself to a kind d automatic paralé€lization. The



control flow of a data paralel program is esentially the same & the ntrol flow of a
sequential program — ony the acessto the data is parall €lized in the former. Hence, a lot of
previously-written sequential code can be re-used in a data-parallel fashion. This smplifies
programming and leals to a development time significantly smaller than the one asciated
with control-parall el programming.

Sewnd, dita parallelism has a higher degree of machine-architecture independence, in
comparison with control parall elism. Sincethe cntrol flow of a data-parall €l algorithm is gill
sequentia (recdl that only data handling is parall elized), there is no reed to tail or the control
flow of the dgorithm to the underlying paralel architedure. Thisis in contrast with control
paralelism, where this kind d taloring is one of the maor challenges of parallel
programming [Quinn 87, [AklI 89]. Note that the problem of madine-architedure
dependenceis not completely eliminated in data parall elism. This problem is smply pushed
down to a lower layer of software, hidden from the goplications programmer, which leads to
an increase in programmer productivity.

Third, intuitively data parallelism has better scalability for large databases than control
paralelism [Hillis & Stede 86]. In most database gplicaions (including data mining), the
amount of data can incresse abitrarily fast, while the number of lines of code typicdly
increases at a much slower rate. To pu it in simple terms, the more data is avail able, the more
the oppatunity to exploit data paralelism. In principle we can add to the system a number of
processor nodes (usually CPU + RAM) propational to the anourt of data increase, to keeg
the resporse time nearly constant. (In practice there will be some small increase in resporse
time, due to the increase in inter-processor communication owerhead asociated with the extra
number of processor Nodes.)

Despite the dowve alvantages of data paraleism, it shodd be anphasized that the
exploitation d control paralelism is also useful in data mining. For instance, in the rule
induction paradigm (see Section 3, a pure data-paral el approadch would search the rule space
in a sequential fashion, evaluating/modifying candidate rules one & a time. Hence, data
parall elism does not address the problem of very large rule spaces. This problem is better
dedt with by using control parall eli sm.

To summarize, ore can say that data parallelism addresses the problem of very large
databases (typicaly very many tuples), whereas control paral elism addresss the problem of
very large search spaces (e.g. very many candidate rules). Note that data and control
paralelism are not mutually exclusive. If alarge enough number of procesors is avail able,
bath types of parallelism can be exploited at the same time, which can greatly speed up the
exeaution d data mining algorithms.

3 Paralld Rulelnduction.

In a very high level of abstradion a Rule Induction (RI) agorithm can be viewed as an
iterative heuristic search, where each iteration consists of threesteps, as foll ows:
(1) seled the “best” candidate rule (CR);

(2) expandthe seleded CR, generating new CRs,
(3) evaluate the new CRs.

These iterative steps are repeded urtil a satisfactory set of CRs is found [Holsheimer &
Siebes 94], [Michalski 83]. Both steps (1) and (3) are based on a given CR-evaluation
function, which computes the quality of a CR by accessang the database. Although the exad
formula used to evaluate aCR varies a great ded among different data mining agorithms,
most rule induction algorithms use aCR-evaluation function based onthe number of tuples
satisfying the CR's antecedent (“if” part) and consequent (“then” part). In esence counting
database tuples satisfying a given set of condtions is a ubiquitous operation in CR-evauation



functions [Freitas 97]. Therefore, data parall elism can be naturally applied to the dove step
(3) of aRI agoarithm, where asingle CRis evaluated in parallel by multiple processors (each
of them counting tuplesin its locad memory). This approach is particularly appeding, becaise
the evaluation d CRsisthe battlenedk of aRI algorithm mining a very large database.

In contrast, control parallelism is usually associated with the aove steps (1) and (2). In
addition, in the cae of step (3), control parall elism can aso be asciated with the evaluation
of multiple CRs at the same time, on dff erent procesors.

There is, however, an interesting phenomenon related to the scdability of control
paralelism. Surprisingly, in some cases increasing the anount of search (creaing more
oppatunity to exploit control parallelism) leals to less accurate discovered knowledge - see
e.g. [Quinlan & Cameron-Jones 954], [Murphy & Pazzani 94] and [Murthy & Salzberg 95]. In
general, this anomaly does not occur in the cae of data parallelism. Indeed, for a given
number of attributes, increasing the number of tuples given to the data mining algorithm tends
toincrease (or at least not to reduce) the accuracy of the discovered knowledge.

We mention kelow several parallel Rule Induction (RI) systems, focusing on the
diff erences between data and control parall elism. The remaining of this Sedionis divided into
two Subsedions. The first one discusses parallel Rl systems running on genera-purpose
paralel madines, withou DBMS faciliti es; while the second ore discusses parale RI
systems running on paral el database servers, with DBM S faciliti es.

3.1 Parallel RuleInduction (RI) Systemswithout DBM S Facilities.

[Agrawal & Shafer 96] report experiments with parallel versions of the Apriori agorithm
to discover aswciation rules. In a data-paralel version, ead processor independently
computes locd suppat courts for al the candidate itemsets of a given size by accessng only
database tuples in its locd memory. In contrast, in a control-parallel version, each processor
computes suppat courts for its locd candidate itemsets by accessng al tuples (in all
procesrs locd memories). They observed that the data-parall €l version achieved speed ups
significantly greder than the control-parallel version.

More recently, [Han et a. 97 have propcsed new parale algorithms for mining
asciation rules which improve upon some aspects of the parale algorithms proposed by
[Agrawal & Shafer 96]. In particular, some improvements propacsed by [Han et a. 97] include
a more efficient inter-procesor communication scheme and a dever method for distributing
candidate itemsets among pocessors.

[Anand et d. 95|, [Anand et a. 951, [Anand et al. 94a] have developed the paralé rule
induction algorithm STRIP, based on evidence theory. STRIP was designed to alow the
exploitation d both data- and control-parall elism, discovering mainly summarization and
asciation rules. Some experiments have shown that the exploitation d control paralelism
can be very inefficient in some caes [Anand et a. 95, bu beneficial in athers[Anand et al.
9549]. Overdl, however, the eploitation d data paralelism seans to be safer and more
promising in STRIP, when mining large databases.

[Provost & Aronis 96] have implemented a data-paral el version o the RL algorithm on a
Conredion Madine CM-2 with 8k procesrs. They achieved a speed up d abou 1200 oer
sequential RL on adata set with 1,000,00Quples.

[Cook & Holder 90] implemented a wntrol-paralel version d the AQ agorithm on the
CM-2. However, in their approach each Candidate Rule (CR) is dored in a distinct processor,
which requires a number of processors exporential in the number of attributes - a not very
cost-effedive goproach. In addition, all the training tuples have to be replicated in each
procesor, which considerably reduces the scdabili ty of the dgorithm.

[Kufrin 97 discusses the parallelization d severa phases of the rule pruning method d



C4.5.For each phese, he discusses which approach (data parall lism or control parall elism) is
more gpropriate. In essence, control parallelism was used to select a subset of rules, while
data parall elism was used in the phases of pruning rule @ndtions and removing individual
rules from the rule set. The author reports good speed upresults on a shared-memory parall
madhine.

There has also been significant reseach abou parallel versions of Top-Down Induction d
Dedsion Trees (TDIDT) agorithms. We mention kelow some projedsin thisarea

[Peason 94 implemented two versions of a parallel TDIDT algorithm on a 128-processor
Fujitsu cdlular array computer, bah of them exploiting control paralelism. Overal, the
spead ups adhieved were relatively low (far smaller than 128, the number of processors).
Furthermore, in bah parallel versions all the tuples are replicated in each processor, which of
course reduces the scdabili ty of the system.

SFRINT isaTDIDT algorithm designed specificdly for parallel exeaution, for which very
good speed up and scalabili ty results are reported [Shafer et al. 96]. However, this agorithm
has a significantly incressed memory usage, in arder to store some spedal data structures.
These data structures include lists of predicting-attribute values. These lists keep the dtribute
valuesin arder, avoid the resorting of attribute values after the partitioning of atree node. The
tuples being mined are distributed across the processors, and each procesor computes
atribute lists referring only to its locd tuples. When a tree noce is partitioned, nd only the
tuples in that node but aso the dtribute lists are partitioned across the dildren nodks.
Unfortunately, the partitioning of the dtribute lists is performed by creding a hash table that
requires that tuple ids of tuples in the aurrent tree node be mlleded from all processors.
Hence the number of colleded tuple idsis propational to the number of tuples being mined,
which limits sdabili ty.

More recently, [Srivastava d al. 97] have proposed a new scdable TDIDT agorithm that
avoids the spedalized data structures used in SPRINT by performing clustering on the values
of a continuous attribute, rather than sorting these values. The dgorithm follows a hybrid
data/control-parallél approach, by exploiting data paralelism in higher levels of the tree and
control parallelism in lower levels of the tree (where there is less data to justify the
exploitation d data parall elism).

Finally, in addition to the @ove domain-independent parallel algorithms, several domain-
spedfic paralel clasgfication agorithms, somehow relying on specific properties of their
target applicaion damain, have been reported in the literature. Some representative examples
are in the domains of protein-folding [Lathrop et a. 90|, [Hofadker et al. 96 and halo finding
in cosmology [Pfitzner & Samon 94.

3.2 Parallel RuleInduction (RI) Systemswith DBM S Facilities.

The previous Subsedion hes discussed parallel rule induction in general-purpose parall el
macdines. However, nowvadays there is a number of high-performance cost-effedive,
commercialy-avail able Parall el Database Servers (PDS). These madines offer the benefit of
automatic parall elization, in that database queries are aitomaticaly parall elized and ogimized
by the machine. The gplicaion pogrammer only has to specify the query in a declarative
style, saying “what” the query must do, rather than “how” to doit. Hence, the user has the
benefit of reduced processng time withou the complexity of parallel programming.

In addition, PDS offer severa DBMS faciliti es that are dso useful for large-scale data
mining systems — e.g. a DBMS' seaurity-control medianisms help to promote data-privacy
control, which is an important issue in data mining [O’ Leare 95]. Hence it is desirable to
exploit the DBM S fadliti es off ered by state-of-the-art PDS. We mention kelow some projeds
that exploit such fadliti es.



The DAFS projed includes a parallel version d a TDIDT algorithm [McLaren et a. 97].
DAFS is a PDS designed to suppat the overall knowledge discovery process(including pre-
processng and past-procesdng for data mining). It follows a dient/server approach, where
the dient is based onthe well-known Clementine data mining tod [Sheaer & Khabaza 96|
and the server is a shared-nothing PDS. The parallel TDIDT agorithm implemented in DAFS
esentially follows a data-parale approach, which seems to be an adaptation d the data-
paral e agorithm described in [Kufrin 95.

[Holsheimer et a. 96|, [Holsheimer & Kersten 94 implemented a data-parallel version o
a beam-seach data mining algorithm on the Monet PDS. In esence, candidate rules (CRs)
are evaluated by submitting queries to Monet, which processes the queries by exploiting inter-
query paralelism —i.e. two o more queries are processed in parallel by multiple processors.
Monet uses vertical partitioning of database relations (i.e. the set of attributes of arelation are
distributed aaoss the processors). This approach departures from conventional PDS, which
use horizontal partitioning (i.e. the set of tuples of a relation are distributed across the
processors).

One motivation to use more conventional PDS (typicdly based on haizontal partitioning)
stems from the desire to integrate data mining and data warehouses [Pass 97], [Freitas &
Lavington 99. Indeed, most large data warehouses are implemented on the top d
commercialy-available PDS [IBC 95], to improve dficiency and scaability. [Freitas 97],
[Freitas & Lavington 99 propcse aprimitive-based approach for integrating data mining and
data warehouses. More precisely, this projed defines a generic rule induction primitive that
underpins the evaluation d CRs in a number of rule induction agorithms. By executing this
primitive on a PDS, rule induwtion algorithms are significantly speeded up de to the
exploitation d data parall elism in the exeaution o database queries. To suppat this claim, the
authors report the results of some experiments with the gplicaion d the primitive in a data-
paralel TDIDT agorithm.

There ae dso some data mining tods offering parallel implementations of TDIDT
agorithms. One example is the HedSeeker system [Madkin 97]. In this system the dient
offers a graphical interfaceused to control the TDIDT agorithm and the paralel database
server is a distributed-memory White Cross madiine. On the largest, high-end White Cross
madhines, a large number of procesors can be used for exploiting data paralelism in a
massvely-parall el fashion.

Finally, [Anand et a. 944 have used a hardware acderator, namely the Ingres Seach
Accderator (based onICL’s SCAFYS), to spead updatabase queries. They observed that, for a
given database size, the benefits associated with the reduction d processng time are inversely
propartional to the number of tuples stisfying the query. Note that this is in contrast with
conventional “software-based” PDS, where the benefits of using a paralel madine ae
propartional to the number of tuples satisfying the query.

4 Paralld I nstance-Based L ear ning.

In the cntext of a dassfication task, the instance-based learning paradigm consists of two
basic steps, as follows:

(1) compare anew tuple, to be dasdfied, against al stored tuples, by computing a distance
metric (simil arity measure) between the new tuple and each stored tuple;

(2) the k nearest (most similar) stored tuples— where k is a user-spedfied value — are seleded
and their classes are used to predict the dassof the new tuple according to a given class
conflict resolution scheme (e.g. pick the most frequent class among the nearest stored
tuples).

The exeaution time of Step (2) is quite small and is entirely dominated by step (1) —



asuming that k << number of tuples, as usual. Hence the target of parallelism is gep (1).
This 4ep seans to ofer an ided oppatunity for the exploitation d data parallelism, as
follows. First of all, the data being mined is partitioned into p mutually exclusive and
exhaustive data subsets, where p is the number of processors. Each subset is assgned to a
distinct processor. Then each processor computes the distance (simil arity) between the tuples
in its locd data subset and the new tuple to be dasdfied. Note that each processor can
perform its computation in a manner entirely independently from the other procesors. Hence,
inter-processor communication owerheal is not a @wncern in the first step of the dgorithm.
(The second step requires mMe inter-procesor communicaion owerhead, bu recdl that the
time taken by this gep is much shorter than the time taken by the first step.)

The eploitation d data paralelism in IBL can also be dore in a way that integrates data
mining and data warehouses, based onthe ideaof performing generic data mining primitives
on a Paralel Database Server (PDS) — see Section 3.2.[Freitas 97], [Freitas 97a] has defined
ageneric IBL primitive that underpins sveral IBL algorithms and has shown how to use that
primitive to exploit data parallelism ona PDS, in order to significantly reduce the processng
time of IBL agorithms.

The eploitation d control paraleiism in instance-based leaning is also pcssble —
athough dften less profitable than data paralelism. In the cntrol-parallel approach each
procesr is assgned the task of classfying a subset of new tuples. Each procesor has access
to a wpy of al stored tuples. This allows each processor to classfy each o its new tuples
withou communicaing with oher processors. However, this approach has reduced
scdability, since the entire data being mined must be replicated aadossall processors. Hence,
this approach is suitable when there ae alarge number of new tuples to be dassfied and the
number of stored tuplesis not very high.

So far we have discussed how to exploit paral elism in the omputation d distance metrics
in general, withou considering any detail of the distance metric. In practice, depending on the
IBL agorithm, the computation d a distance metric can require some operation that offers
additional potential for the exploitation d parall élism. The typical example is the computation
of attribute weights, which are used in many IBL algorithms to assgn greaer importance to
attributes with greaer predictive power.

Two IBL agorithms that paral €lize the computation d attribute weights are discussed in
[Stanfill & Waltz 86] and [Creecy et a. 92. In bah agorithms attribute weights are
dynamically computed in parallel asthe dgorithm computes the distance between a new tuple
and the stored tuples. In bah cases data parall €lism is exploited, as described above. Oncethe
stored tuples are distributed aaoss the procesors, the computation d attribute weights is
dore in parale by letting each processor compute partial attribute weight values from its
locd tuples and then by having the partia results smehow combined into the final attribute
weights. Furthermore, bah agorithms were implemented onthe Conrection Macdhine CM-2,
by exploiting massve parall elism.

5 Parallel Genetic Algorithms.

A genetic dgorithm (GA) is an iterative procedure that maintains a popuation o
“individuals’, which are strings of symbadls representing a candidate solution for a given
problem. At ead iteration (or “generation”) the aurrent individuals are evaluated by a fitness
function, which measures the quality of the candidate solution represented by the individual,
and genetic operators are gplied to the fittest individuals of the aurrent generation, modifying
them and creating a new generation d individuals [Goldberg 89|, [Michalewicz 96]. Due to
Darwin’'s principle of natural seledion (survival of the fittest), the popuation tends to
converge to highly-fit individuals (high-quality solutions).



In the context of data mining, individuals often represent candidate rules and the fitness
function measures the quality of these rules. Note that the fitness function hes a role
equivaent to the candidate rule-evaluation function in the rule induction paradigm. The main
diff erence between the genetic dgorithms and the rule induction paradigmsis in the method
used for traversing the rule space.

Similarly to rule induction, there ae two basic sources of paral elism in genetic dgorithms.
One can exploit paralelism in the computation d the fitness of individuals and/or in the
applicaion d genetic operators. Unlessthe data being mined is snall, the time spent with the
computation d individuals' fitness (which involves accessto the data being mined) tends to
gredly exceal the time spent with the gplication d genetic operators (which are typically
computationally cheg). For this reason, in the remaining of this Sedion we focus on the
paralelization d fitnesscomputation.

There ae two basic ways of paral€elizing fitness computation. The first consists of
exploiting paralelism in the mmputation d the fitnessfunction d ead individual. Thisis a
data-parale approad, as follows. First of al, the data being mined is partitioned into p
mutually exclusive and exhaustive data subsets, where p is the number of processors. Each
subset is assgned to a distinct procesor. Then each processor computes a partial value for the
fitnessof an individual by accessng only its locd tuples. Next, the partial fitnessvalues are
somehow combined to produce the final fithessvalue for the aurrent individual .

The second way of paraléelizing fitness computation is a @ntrol-paralel approad. It
consists of partitioning the set of individuals of the aurrent popuation (rather than the data
being mined) into p mutually exclusive and exhaustive subsets. Each subset is assgned to a
distinct procesor. Then each processor computes the fitnessfunction for al its individuals.
Note that the cmputation performed by each procesr is independent from the computation
performed by other processors. However, the eitire data being mined has to be replicated
aaossall procesrs, which reduces the scalabili ty of the system.

Control-paralel genetic dgorithms can be further divided into two broad approades,
namely single-popudation and dstributed-popdation agorithms. In the former every
individual can mate with any other individual, so that all individuals are logically regarded as
a single popuation (even though they are physically distributed acrossall processors). As a
result, in principle (ignoring the non-determinism associated with the gplication d genetic
operators) this kind d control-parallel genetic dgorithm discovers the same knowledge &s its
sequential courterpart.

On the other hand, a distributed-popuation genetic dgorithm treds each o the physically
distributed sub-popuations as a distinct logicd popuation, so that an individua can mate
only with aher individuals in the same sub-popuation. This approach can be further
subdvided into coarse-grained and fine-grained approaches [Cantu-Paz 95], [Lin et al. 94. In
the former the popuation is divided into a small number of sub-popuations, ead of them
with alarge number of individuals; whereas in the latter the popuationis divided into a large
number of sub-popuations, each o them with a smal number of individuas. In bah
approadies there is sme medhanism to allow the exchange of some individuals among the
sub-popuations from time to time. (Otherwise, the process would be eguivalent to run p
distinct sequential genetic dgorithms in perallel, where p is the number of sub-popuations,
rather than parall elizing asingle run d a genetic dgorithm.)

Note that the distributed-popuation approach represents a significant departure from a
single-popuation approach, ance these two approaches leal to the discovery of different
pieces of knowledge (different rule sets). Actually, the modficaion introduced by
distributed-popuation GAs is often considered as advantageous [East & Rowe 96] - one of
the reasons being the fact that a distributed popuation reduces the probability of premature



convergenceto subogimal solutions, in comparison with asingle popuation.

An example of a fine-grain, dstributed-popuation GA for data mining is GA-MINER
[Flockhart & Radcliffe 95|, [Flockhart & Radcliffe 96]. This system is aparallel GA designed
to seach for several kinds of knowledge, such as “if-then” prediction rules, distribution-
comparison petterns within dstinct sets of tuples (e.g. the difference in the mean of an
attribute’s values) and statisticd correlation patterns. GA-MINER has been implemented in
bath shared-memory and dstributed-memory parallel machines [Flockhart & Radcliffe 95].
However, in the latter the entire data being mined had to be repli cated into the local memory
of eat processor. Thisobviously reduces scdability for large databases.

An example of a marse-grain, dstributed-popuation GA for datamining is REGAL. This
is a parale algorithm in which each individual encodes a candidate rule, so that the whole
popdation corresponds to a rule set [Giordana & Neri 95|, [Neri & Giordana 95|, [Neri &
Saitta 96]. The dgorithm was mainly designed to discover classfication rules. Experiments
have been dore with REGAL on a Conredion Macdine CM-5, with a number of processors
varying between 16and 64.0veral, the aithors have reported a superlinea speed up.

A variant of REGAL, cdled G-NET, has been implemented in a network of workstations
via PVM [Anglano et a. 97]. Experiments have been dane with the number of workstation
varying between 1 and 9.Overall, the speed ups were sublinear. However, in bah the &ove
experiments (with REGAL and G-NET) the data being mined was relatively small, so that it
isnat clea how much speed upcan be achieved when mining large databases.

Finally, the exploitation o data parallelism in GA can aso be dorein away that integrates
data mining and data warehouses, based on the idea of performing generic data mining
primitives on a Parallel Database Server (PDS) — see Sedion 3.2.[Freitas 97k describes a
preliminary work based on this idea where the time-consuming operations associated with
the evaluation d genetic programming individuals are encapsulated in a database query,
which can then be exeauted ona PDS to reduce processng time.

6 Parallel Neural Networks.

In esence, a Neural Network (NN) consists of many Processng Elements (PEs), loosaly
cdled “neurons’, and weighted interconnections among the PEs. Each PE performs a very
simple @mputation, such as cdculating a weighted sum of its inpu conredions, and
computes an ouput signa that is ent to aher PEs. The training (mining) phase of a NN
consists of adjusting the weights (typically, red-valued nunbers) of the interconrections, in
order to producethe desired ouput [Rumelhart & McClelland 86, [Rojas 96].

Note that the “knowledge” of the system is expresed in a low-level representation,
distributed aadossthe weights of the interconnedions. In passng we note that, in the mntext
of data mining, it is often desirable to convert the learned interconnection weights into a
higher-level knowledge representation such as “if-then” rules, to make the discovered
knowledge comprehensible for the user [Lu et a. 95, [Vaughn 94. However, this isse is
beyond the scope of this paper. Here we are interested in the influence that the distributed
representation d NNs hasin the parall elization d NN agorithms.

There ae two basic goproaches for exploiting paralelism in NNs. The first consists of
distributing the data being mined acrossthe procesors [Foo et a. 97], [Fathy & Syiam 96].
Thisisadata-parallel approad, also cdled training set-parall e, in the terminology of parall e
NNSs. First of all, the data being mined is partitioned into p mutually exclusive and exhaustive
subsets, where p is the number of processors. Eadch partition is assgned to a distinct
processor. Each processor has a aomplete cwpy of the NN, with al its neurons (PEs) and al
its interconnedion weights. Hence, each processor uses its locd data subset to compute
partial weight updates for its locd copy of the entire NN. Then these partia weight updates



are somehow combined to produce the final weight updates for the entire NN.

It shodd be noted that this approach usually involves a form of batch weight updating,
where the interconnedion weights are adually updated ony after the cmbination d the
partial weight updates. Thisisin contrast with the incremental nature of conventional weight-
update procedures, where weights are usually updated right after the NN processes eah
training tuple. The batch-updating procedure often leads to a prediction accuracy somewhat
different from (either higher or lower than) the one adieved with a conventional incremental -
upckting procedure.

The second approach for exploiting paralelism in NNs consists of distributing the
structure (neurons and interconrections) of the NN among the procesrs. This approad is
based on the inherent control parallelism associated with NNs. The strategy used for
distributing the structure of the NN aaossthe processors depends on severa fadors, such as
the number of neurons in each layer of the NN, the number of layers, the number of avail able
processors, the topdogy of the interconnections, etc.

In one strategy, ead processor is assgned a distinct neuron and the set of weights arriving
into its neuron. In this case the processng performed by each neuron is entirely independent
of the processng performed by other neurons, so that al neurons can operate in parale. Of
course, if the number of neurons is considerably larger than the number of processors, this
strategy can be modified so that each processor is assgned a subset of neurons with their
correspondng incoming interconredions.

Care must be taken, howvever, to avoid that many procesors get idle & a given time. For
instance, assume that the neurons and their incoming interconrections are distributed across
the processors in such away that each processor is assgned ony neurons of the same layer of
the NN. In this case, while the procesors assgned to one layer of the NN are working, the
procesors assgned to ather layers would beidle. This can be aroided by exploiting a form of
“temporal parallelism” (or pipelining) across siccessve layers of the NN. For instance as
soon as a neuron of the layer Ly of the NN finishes its processng of a tuple t,, that neuron
starts to processthe next tuple t.1, while & the same time aneuron d the next layer L+
startsto processtuplety.

Ancther strategy for exploiting control paralelism in NNs, working in a lower level of
granularity than the &owe strategy, consists of exploiting parall elism within ead neuron - see
e.g. [Bldloch & Rosenberg 87], [Nordstrom & Svensson 93. In this grategy, the incoming
interconredions of ead neuron (with their respedive weights) are distributed acossa set of
processors. Due to its fine-grain neture, this grategy is usually suitable for massvely-paral e
processng systems, particularly when the number of processors is much larger than the
number of neurons.

Although there has been an extensive research on rallel NNs, there has been little
research onthe aea of parallel NNs for data mining applications. An exception is the DAFS
projed (also mentioned in Sedion 3.2, which dfers parale implementations of
Clementine's Neural Networks on a Parallel Database Server [McLaren et al. 97]. These
implementations essentially foll ow a data-parall €l approac.

7 Principlesfor Designing Efficient Parallel Data Mining Algorithms and
Futur e Resear ch.
We have discussd the pardl€ization o data mining agorithms of four knowledge

discovery paradigms, namely rule induction, instance-based learning, genetic dgorithms and
neural networks. Despite significant differences between these paradigms, our discusson hes



focused on an aspect of paral€lization whose importance aits across al these paradigms.
Such asped is the distinction ketween data parall elism and control parallelism. We believe
that thisdistinctionis crucial for the design of parall el data mining algorithms.

Based onthe lessons leaned from the systems discussed in the previous Sedions, as well
as on fundamental parallel processng concepts, we can suggest a set of “heuristic principles’
for designing efficient parallel data mining algorithms, as snown in Figure 3.

(1) Analyze the propation d time spent in each part of the dgorithm. The most time-
consuming parts shoud be the target of parale processng.

(2) For each target part of the dgorithm, consider whether it is data-intensive or CPU-
intensive, in order to opt for data or control parall €lism.

(3) When considering data paraleism, try to think of intelli gent data partitioning
schemes, rather than randam or round-robin ores. Data partitioning is akey issue
in the exploitation d data parall elism.

(4) When considering control parall elism, try to minimize inter-processor communication.
Thisisamajor problem in the exploitation o control parall elism.

(5) When considering control parall elism, recdl that it is often necessary to repli cae the
entire data being mined in every procesor. Unlessyou can avoid this sheme, beware
that the scaabili ty of the system will be reduced.

(6) Consider the passhility of hybrid data/control-paral el agorithms, where the type of
parall elism being exploited is dynamicdly switched based oncurrent parameters of
the dgorithm and search space

Figure 3: Heuristic principles for designing efficient parallel data mining algorithms.

Principles (1), (3) and (4) are fundamenta in the design of any parale agorithm, while
principles (2), (5) and (6) are more related to paralel data mining. Let us elaborate alittle
more on the latter threeprinciples.

Principle (2) simply says that data-intensive operations doud be tackled with data
paralelism, while CPU-intensive operations $ioud be tadkled with control parallelism.
Hence in the same dgorithm, some parts of the dgorithm can exploit data parall elism while
other parts exploit control paralelism. A good example of the gplicaion d this principle
was the parall elization d the rule pruning method d C4.5, mentioned in Sedion 3.1.

Principle (5) isadually awarning abou the problem of scalability of control parallelism in
data mining. Note that this problem is not very serious in some caes. For instance, control
paralelism can be easily exploited in reural networks withou replicaing the data being
mined, since (conventional) neural networks are trained ore-tuple-at-a-time. However, the
warning asociated with this principle is important in many cases where the data mining
agorithm is based on the paradigms of rule induction, instance-based learning and genetic
algorithms.

Principle (6) suggests the combination d “the best of bath worlds’. A good example s the
paralelization d TDIDT algorithms. In higher levels of the tree (close to the roat), the
agorithm has to accessalarge anourt of data, which call s for data paral elism. Asthetreeis
expanded, havever, the anourt of data to be accessed gets gnaler and smaller. Hence, in
lower levels of the tree control paralelism tends to be more alvantageous than data
parall elism.

We anphasize that the &owve principles are just heuristics — i.e. they are not guaranteal to
lead to the best parallel data mining agorithm in al cases, bu they work reasonably well in
many Cases.



We now turn to the topic of future research. With the fast, continuous improvement of
interconredion retworks, clusters of workstations and/or networks of computers can be easily
conreded to form larger computer networks. This increases the opportunity for distributed
processng. Furthermore, advances in data communicaions techndogy blur the distinction
between dstributed processng and parallel processng. There ae drealy software
environments, such as PVM, that allow a duster of computers to be viewed as a single
pardlel madine. These fadors suggest that the development of paralel data mining
algorithms for heterogeneous environments (where the processors have different speels and
memory capacities) will be ar important area for future research. Mining the wealth o
information avail able on the Internet in paral e is aso an area deserving further research.

In addition, it would be interesting to perform a massve mmparison d different parall e
data mining agorithms, similarly in spirit to the massve mparison d (sequential)
classficaion agorithms performed in the well-known STATLOG projed [Michie € al. 94].
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