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Abstract

With the fast, continuous increase in the number and size of databases, parallel data mining
is a natural and cost-effective approach to tackle the problem of scalabili ty in data mining.
Recently there has been a considerable research on parallel data mining. However, most
projects focus on the parallelization of a single kind of data mining algorithm/paradigm. This
paper surveys parallel data mining with a broader perspective. More precisely, we discuss the
parallelization of data mining algorithms of four knowledge discovery paradigms, namely rule
induction, instance-based learning, genetic algorithms and neural networks. Using the lessons
learned from this discussion, we also derive a set of heuristic principles for designing efficient
parallel data mining algorithms.

1 Introduction.
A major issue in data mining is scalabili ty with respect to the very large size of current-

generation and next-generation databases, given the excessively long processing time taken
by (sequential) data mining algorithms on realistic volumes of data. To mention just two
examples, [Cohen 95] estimates that C4.5 with rule pruning would take 79 years on a 150-
MHz processor in order to mine a database with 500,000 tuples. [Provost & Aronis 96] report
that a sequential version of the RL algorithm is impractical (i.e. takes too long to run) on
databases of more than 70,000 tuples.

Parallelism offers a natural and promising approach to cope with the problem of eff icient
data mining in large databases. Recently, there has been considerable interest in the parallel
processing of data mining algorithms [Provost & Aronis 96], [Holsheimer et al. 96], [Shafer
et al. 96], [Srivastava et al. 97], [Agrawal & Shafer 96], [Han et al. 97], [Kufrin 97], [Mackin
97], [McLaren et al. 97], [Neri & Giordana 95], [Flockhart & Radcli ffe 95], [Freitas 97].
However, most of the literature focuses on isolated efforts to parallelize a single kind of data
mining algorithm.

This survey aims at presenting a much broader view of the area of parallel data mining, by
discussing the parallelization of several kinds of data mining algorithms/paradigms. More
precisely, we discuss the parallelization of data mining algorithms in the following four
knowledge discovery paradigms: rule induction, instance-based learning (or nearest
neighbour), genetic algorithms and neural networks. In addition, we use the lessons learned
from this discussion to derive some heuristic principles for designing efficient parallel data
mining algorithms.

It should be noted that parallelism is not the only approach to speed up data mining
algorithms. Other approaches – some of which can be used together with parallelism – are
sampling, attribute selection, discretization of continuous attributes, restriction of the search
space, algorithm/code optimization and distributed data mining. An overview of these
approaches and their advantages/disadvantages over parallelism can be found in [Freitas &



Lavington 98], which also presents a detailed discussion on parallel data mining.
This paper is organized as follows. Section 2 reviews the distinction between data

parallelism and control parallelism. Section 3 discusses parallel rule induction. Section 4
discusses parallel instance-based learning. Section 5 discusses parallel genetic algorithms.
Section 6 discusses parallel neural networks. Section 7 discusses how to design eff icient
parallel data mining algorithms and points out some future research directions.

2 Data parallelism versus control parallelism.
This Section reviews the distinction between data parallelism and control parallelism,

which is crucial for an understanding of the next Sections. In essence, data parallelism refers
to the execution of the same operation or instruction on multiple large data subsets at the same
time [Hil lis & Steele 86], [Lewis 91], as ill ustrated in Figure 1. This is in contrast to control
parallelism (or operation parallelism), which refers to the concurrent execution of multiple
operations or instructions, as ill ustrated in Figure 2.
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Figure 1: Data parallelism (1 operation executed on n processors, via data partitioning).
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              Figure 2: Control parallelism (n operations executed on n processors).

From a data mining viewpoint, data parallelism has three main advantages over control
parallelism. First, data parallelism lends itself to a kind of automatic parallelization. The



control flow of a data parallel program is essentially the same as the control flow of a
sequential program – only the access to the data is parallelized in the former. Hence, a lot of
previously-written sequential code can be re-used in a data-parallel fashion. This simpli fies
programming and leads to a development time significantly smaller than the one associated
with control-parallel programming.

Second, data parallelism has a higher degree of machine-architecture independence, in
comparison with control parallelism. Since the control flow of a data-parallel algorithm is still
sequential (recall that only data handling is parallelized), there is no need to tailor the control
flow of the algorithm to the underlying parallel architecture. This is in contrast with control
parallelism, where this kind of tailoring is one of the major challenges of parallel
programming [Quinn 87], [Akl 89]. Note that the problem of machine-architecture
dependence is not completely eliminated in data parallelism. This problem is simply pushed
down to a lower layer of software, hidden from the applications programmer, which leads to
an increase in programmer productivity.

Third, intuitively data parallelism has better scalabili ty for large databases than control
parallelism [Hilli s & Steele 86]. In most database applications (including data mining), the
amount of data can increase arbitrarily fast, while the number of lines of code typically
increases at a much slower rate. To put it in simple terms, the more data is available, the more
the opportunity to exploit data parallelism. In principle we can add to the system a number of
processor nodes (usually CPU + RAM) proportional to the amount of data increase, to keep
the response time nearly constant. (In practice there will be some small i ncrease in response
time, due to the increase in inter-processor communication overhead associated with the extra
number of processor nodes.)

Despite the above advantages of data parallelism, it should be emphasized that the
exploitation of control parallelism is also useful in data mining. For instance, in the rule
induction paradigm (see Section 3), a pure data-parallel approach would search the rule space
in a sequential fashion, evaluating/modifying candidate rules one at a time. Hence, data
parallelism does not address the problem of very large rule spaces. This problem is better
dealt with by using control parallelism.

To summarize, one can say that data parallelism addresses the problem of very large
databases (typically very many tuples), whereas control parallelism addresses the problem of
very large search spaces (e.g. very many candidate rules). Note that data and control
parallelism are not mutually exclusive. If a large enough number of processors is available,
both types of parallelism can be exploited at the same time, which can greatly speed up the
execution of data mining algorithms.

3 Parallel Rule Induction.
In a very high level of abstraction a Rule Induction (RI) algorithm can be viewed as an

iterative heuristic search, where each iteration consists of three steps, as follows:
(1) select the “best” candidate rule (CR);
(2) expand the selected CR, generating new CRs;
(3) evaluate the new CRs.

These iterative steps are repeated until a satisfactory set of CRs is found [Holsheimer &
Siebes 94], [Michalski 83]. Both steps (1) and (3) are based on a given CR-evaluation
function, which computes the quali ty of a CR by accessing the database. Although the exact
formula used to evaluate a CR varies a great deal among different data mining algorithms,
most rule induction algorithms use a CR-evaluation function based on the number of tuples
satisfying the CR’s antecedent (“ if” part) and consequent (“ then” part). In essence, counting
database tuples satisfying a given set of conditions is a ubiquitous operation in CR-evaluation



functions [Freitas 97]. Therefore, data parallelism can be naturally applied to the above step
(3) of a RI algorithm, where a single CR is evaluated in parallel by multiple processors (each
of them counting tuples in its local memory). This approach is particularly appealing, because
the evaluation of CRs is the bottleneck of a RI algorithm mining a very large database.

In contrast, control parallelism is usually associated with the above steps (1) and (2). In
addition, in the case of step (3), control parallelism can also be associated with the evaluation
of multiple CRs at the same time, on different processors.

There is, however, an interesting phenomenon related to the scalabili ty of control
parallelism. Surprisingly, in some cases increasing the amount of search (creating more
opportunity to exploit control parallelism) leads to less accurate discovered knowledge - see
e.g. [Quinlan & Cameron-Jones 95a], [Murphy & Pazzani 94] and [Murthy & Salzberg 95]. In
general, this anomaly does not occur in the case of data parallelism. Indeed, for a given
number of attributes, increasing the number of tuples given to the data mining algorithm tends
to increase (or at least not to reduce) the accuracy of the discovered knowledge.

We mention below several parallel Rule Induction (RI) systems, focusing on the
differences between data and control parallelism. The remaining of this Section is divided into
two Subsections. The first one discusses parallel RI systems running on general-purpose
parallel machines, without DBMS faciliti es; while the second one discusses parallel RI
systems running on parallel database servers, with DBMS faciliti es.

3.1 Parallel Rule Induction (RI) Systems without DBMS Facilities.

[Agrawal & Shafer 96] report experiments with parallel versions of the Apriori algorithm
to discover association rules. In a data-parallel version, each processor independently
computes local support counts for all the candidate itemsets of a given size by accessing only
database tuples in its local memory. In contrast, in a control-parallel version, each processor
computes support counts for its local candidate itemsets by accessing all tuples (in all
processors’ local memories). They observed that the data-parallel version achieved speed ups
significantly greater than the control-parallel version.

More recently, [Han et al. 97] have proposed new parallel algorithms for mining
association rules which improve upon some aspects of the parallel algorithms proposed by
[Agrawal & Shafer 96]. In particular, some improvements proposed by [Han et al. 97] include
a more eff icient inter-processor communication scheme and a clever method for distributing
candidate itemsets among processors.

[Anand et al. 95a], [Anand et al. 95b], [Anand et al. 94a] have developed the parallel rule
induction algorithm STRIP, based on evidence theory. STRIP was designed to allow the
exploitation of both data- and control-parallelism, discovering mainly summarization and
association rules. Some experiments have shown that the exploitation of control parallelism
can be very inefficient in some cases [Anand et al. 95b], but beneficial in others [Anand et al.
95a]. Overall , however, the exploitation of data parallelism seems to be safer and more
promising in STRIP, when mining large databases.

[Provost & Aronis 96] have implemented a data-parallel version of the RL algorithm on a
Connection Machine CM-2 with 8k processors. They achieved a speed up of about 1200 over
sequential RL on a data set with 1,000,000 tuples.

[Cook & Holder 90] implemented a control-parallel version of the AQ algorithm on the
CM-2. However, in their approach each Candidate Rule (CR) is stored in a distinct processor,
which requires a number of processors exponential in the number of attributes - a not very
cost-effective approach. In addition, all the training tuples have to be replicated in each
processor, which considerably reduces the scalabili ty of the algorithm.

[Kufrin 97] discusses the parallelization of several phases of the rule pruning method of



C4.5. For each phase, he discusses which approach (data parallelism or control parallelism) is
more appropriate. In essence, control parallelism was used to select a subset of rules, while
data parallelism was used in the phases of pruning rule conditions and removing individual
rules from the rule set. The author reports good speed up results on a shared-memory parallel
machine.

There has also been significant research about parallel versions of Top-Down Induction of
Decision Trees (TDIDT) algorithms. We mention below some projects in this area.

[Pearson 94] implemented two versions of a parallel TDIDT algorithm on a 128-processor
Fujitsu cellular array computer, both of them exploiting control parallelism. Overall , the
speed ups achieved were relatively low (far smaller than 128, the number of processors).
Furthermore, in both parallel versions all the tuples are replicated in each processor, which of
course reduces the scalabili ty of the system.

SPRINT is a TDIDT algorithm designed specifically for parallel execution, for which very
good speed up and scalabili ty results are reported [Shafer et al. 96]. However, this algorithm
has a significantly increased memory usage, in order to store some special data structures.
These data structures include lists of predicting-attribute values. These lists keep the attribute
values in order, avoid the resorting of attribute values after the partitioning of a tree node. The
tuples being mined are distributed across the processors, and each processor computes
attribute lists referring only to its local tuples. When a tree node is partitioned, not only the
tuples in that node but also the attribute lists are partitioned across the children nodes.
Unfortunately, the partitioning of the attribute lists is performed by creating a hash table that
requires that tuple ids of tuples in the current tree node be collected from all processors.
Hence, the number of collected tuple ids is proportional to the number of tuples being mined,
which limits scalabili ty.

More recently, [Srivastava et al. 97] have proposed a new scalable TDIDT algorithm that
avoids the specialized data structures used in SPRINT by performing clustering on the values
of a continuous attribute, rather than sorting these values. The algorithm follows a hybrid
data/control-parallel approach, by exploiting data parallelism in higher levels of the tree and
control parallelism in lower levels of the tree (where there is less data to justify the
exploitation of data parallelism).

Finally, in addition to the above domain-independent parallel algorithms, several domain-
specific parallel classification algorithms, somehow relying on specific properties of their
target application domain, have been reported in the literature. Some representative examples
are in the domains of protein-folding [Lathrop et al. 90], [Hofacker et al. 96] and halo finding
in cosmology [Pfitzner & Salmon 96].

3.2 Parallel Rule Induction (RI) Systems with DBMS Facilities.

The previous Subsection has discussed parallel rule induction in general-purpose parallel
machines. However, nowadays there is a number of high-performance, cost-effective,
commercially-available Parallel Database Servers (PDS). These machines offer the benefit of
automatic parallelization, in that database queries are automatically parallelized and optimized
by the machine. The application programmer only has to specify the query in a declarative
style, saying “what” the query must do, rather than “how” to do it. Hence, the user has the
benefit of reduced processing time without the complexity of parallel programming.

In addition, PDS offer several DBMS faciliti es that are also useful for large-scale data
mining systems – e.g. a DBMS’ security-control mechanisms help to promote data-privacy
control, which is an important issue in data mining [O’Leare 95]. Hence, it is desirable to
exploit the DBMS faciliti es offered by state-of-the-art PDS. We mention below some projects
that exploit such faciliti es.



The DAFS project includes a parallel version of a TDIDT algorithm [McLaren et al. 97].
DAFS is a PDS designed to support the overall knowledge discovery process (including pre-
processing and post-processing for data mining). It follows a client/server approach, where
the client is based on the well -known Clementine data mining tool [Shearer & Khabaza 96]
and the server is a shared-nothing PDS. The parallel TDIDT algorithm implemented in DAFS
essentially follows a data-parallel approach, which seems to be an adaptation of the data-
parallel algorithm described in [Kufrin 95].

[Holsheimer et al. 96], [Holsheimer & Kersten 94] implemented a data-parallel version of
a beam-search data mining algorithm on the Monet PDS. In essence, candidate rules (CRs)
are evaluated by submitting queries to Monet, which processes the queries by exploiting inter-
query parallelism – i.e. two or more queries are processed in parallel by multiple processors.
Monet uses vertical partitioning of database relations (i.e. the set of attributes of a relation are
distributed across the processors). This approach departures from conventional PDS, which
use horizontal partitioning (i.e. the set of tuples of a relation are distributed across the
processors).

One motivation to use more conventional PDS (typically based on horizontal partitioning)
stems from the desire to integrate data mining and data warehouses [Pass 97], [Freitas &
Lavington 98]. Indeed, most large data warehouses are implemented on the top of
commercially-available PDS [IBC 95], to improve eff iciency and scalabili ty. [Freitas 97],
[Freitas & Lavington 96] propose a primitive-based approach for integrating data mining and
data warehouses. More precisely, this project defines a generic rule induction primitive that
underpins the evaluation of CRs in a number of rule induction algorithms. By executing this
primitive on a PDS, rule induction algorithms are significantly speeded up due to the
exploitation of data parallelism in the execution of database queries. To support this claim, the
authors report the results of some experiments with the application of the primitive in a data-
parallel TDIDT algorithm.

There are also some data mining tools offering parallel implementations of TDIDT
algorithms. One example is the HeatSeeker system [Mackin 97]. In this system the client
offers a graphical interface used to control the TDIDT algorithm and the parallel database
server is a distributed-memory White Cross machine. On the largest, high-end White Cross
machines, a large number of processors can be used for exploiting data parallelism in a
massively-parallel fashion.

Finally, [Anand et al. 94b] have used a hardware accelerator, namely the Ingres Search
Accelerator (based on ICL’s SCAFS), to speed up database queries. They observed that, for a
given database size, the benefits associated with the reduction of processing time are inversely
proportional to the number of tuples satisfying the query. Note that this is in contrast with
conventional “software-based” PDS, where the benefits of using a parallel machine are
proportional to the number of tuples satisfying the query.

4 Parallel Instance-Based Learning.
In the context of a classification task, the instance-based learning paradigm consists of two

basic steps, as follows:
(1) compare a new tuple, to be classified, against all stored tuples, by computing a distance

metric (similarity measure) between the new tuple and each stored tuple;
(2) the k nearest (most similar) stored tuples – where k is a user-specified value – are selected

and their classes are used to predict the class of the new tuple according to a given class-
conflict resolution scheme (e.g. pick the most frequent class among the nearest stored
tuples).

The execution time of Step (2) is quite small and is entirely dominated by step (1) –



assuming that k << number of tuples, as usual. Hence, the target of parallelism is step (1).
This step seems to offer an ideal opportunity for the exploitation of data parallelism, as
follows. First of all , the data being mined is partitioned into p mutually exclusive and
exhaustive data subsets, where p is the number of processors. Each subset is assigned to a
distinct processor. Then each processor computes the distance (similarity) between the tuples
in its local data subset and the new tuple to be classified. Note that each processor can
perform its computation in a manner entirely independently from the other processors. Hence,
inter-processor communication overhead is not a concern in the first step of the algorithm.
(The second step requires some inter-processor communication overhead, but recall that the
time taken by this step is much shorter than the time taken by the first step.)

The exploitation of data parallelism in IBL can also be done in a way that integrates data
mining and data warehouses, based on the idea of performing generic data mining primitives
on a Parallel Database Server (PDS) – see Section 3.2. [Freitas 97], [Freitas 97a] has defined
a generic IBL primitive that underpins several IBL algorithms and has shown how to use that
primitive to exploit data parallelism on a PDS, in order to significantly reduce the processing
time of IBL algorithms.

The exploitation of control parallelism in instance-based learning is also possible –
although often less profitable than data parallelism. In the control-parallel approach each
processor is assigned the task of classifying a subset of new tuples. Each processor has access
to a copy of all stored tuples. This allows each processor to classify each of its new tuples
without communicating with other processors. However, this approach has reduced
scalabili ty, since the entire data being mined must be replicated across all processors. Hence,
this approach is suitable when there are a large number of new tuples to be classified and the
number of stored tuples is not very high.

So far we have discussed how to exploit parallelism in the computation of distance metrics
in general, without considering any detail of the distance metric. In practice, depending on the
IBL algorithm, the computation of a distance metric can require some operation that offers
additional potential for the exploitation of parallelism. The typical example is the computation
of attribute weights, which are used in many IBL algorithms to assign greater importance to
attributes with greater predictive power.

Two IBL algorithms that parallelize the computation of attribute weights are discussed in
[Stanfill & Waltz 86] and [Creecy et al. 92]. In both algorithms attribute weights are
dynamically computed in parallel as the algorithm computes the distance between a new tuple
and the stored tuples. In both cases data parallelism is exploited, as described above. Once the
stored tuples are distributed across the processors, the computation of attribute weights is
done in parallel by letting each processor compute partial attribute weight values from its
local tuples and then by having the partial results somehow combined into the final attribute
weights. Furthermore, both algorithms were implemented on the Connection Machine CM-2,
by exploiting massive parallelism.

5 Parallel Genetic Algorithms.
A genetic algorithm (GA) is an iterative procedure that maintains a population of

“ individuals” , which are strings of symbols representing a candidate solution for a given
problem. At each iteration (or “generation”) the current individuals are evaluated by a fitness
function, which measures the quali ty of the candidate solution represented by the individual,
and genetic operators are applied to the fittest individuals of the current generation, modifying
them and creating a new generation of individuals [Goldberg 89], [Michalewicz 96]. Due to
Darwin’s principle of natural selection (survival of the fittest), the population tends to
converge to highly-fit individuals (high-quali ty solutions).



In the context of data mining, individuals often represent candidate rules and the fitness
function measures the quali ty of these rules. Note that the fitness function has a role
equivalent to the candidate rule-evaluation function in the rule induction paradigm. The main
difference between the genetic algorithms and the rule induction paradigms is in the method
used for traversing the rule space.

Similarly to rule induction, there are two basic sources of parallelism in genetic algorithms.
One can exploit parallelism in the computation of the fitness of individuals and/or in the
application of genetic operators. Unless the data being mined is small , the time spent with the
computation of individuals’ f itness (which involves access to the data being mined) tends to
greatly exceed the time spent with the application of genetic operators (which are typically
computationally cheap). For this reason, in the remaining of this Section we focus on the
parallelization of f itness computation.

There are two basic ways of parallelizing fitness computation. The first consists of
exploiting parallelism in the computation of the fitness function of each individual. This is a
data-parallel approach, as follows. First of all , the data being mined is partitioned into p
mutually exclusive and exhaustive data subsets, where p is the number of processors. Each
subset is assigned to a distinct processor. Then each processor computes a partial value for the
fitness of an individual by accessing only its local tuples. Next, the partial fitness values are
somehow combined to produce the final fitness value for the current individual.

The second way of parallelizing fitness computation is a control-parallel approach. It
consists of partitioning the set of individuals of the current population (rather than the data
being mined) into p mutually exclusive and exhaustive subsets. Each subset is assigned to a
distinct processor. Then each processor computes the fitness function for all it s individuals.
Note that the computation performed by each processor is independent from the computation
performed by other processors. However, the entire data being mined has to be replicated
across all processors, which reduces the scalabili ty of the system.

Control-parallel genetic algorithms can be further divided into two broad approaches,
namely single-population and distributed-population algorithms. In the former every
individual can mate with any other individual, so that all i ndividuals are logically regarded as
a single population (even though they are physically distributed across all processors). As a
result, in principle (ignoring the non-determinism associated with the application of genetic
operators) this kind of control-parallel genetic algorithm discovers the same knowledge as its
sequential counterpart.

On the other hand, a distributed-population genetic algorithm treats each of the physically
distributed sub-populations as a distinct logical population, so that an individual can mate
only with other individuals in the same sub-population. This approach can be further
subdivided into coarse-grained and fine-grained approaches [Cantu-Paz 95], [Lin et al. 94]. In
the former the population is divided into a small number of sub-populations, each of them
with a large number of individuals; whereas in the latter the population is divided into a large
number of sub-populations, each of them with a small number of individuals. In both
approaches there is some mechanism to allow the exchange of some individuals among the
sub-populations from time to time. (Otherwise, the process would be equivalent to run p
distinct sequential genetic algorithms in parallel, where p is the number of sub-populations,
rather than parallelizing a single run of a genetic algorithm.)

Note that the distributed-population approach represents a significant departure from a
single-population approach, once these two approaches lead to the discovery of different
pieces of knowledge (different rule sets). Actually, the modification introduced by
distributed-population GAs is often considered as advantageous [East & Rowe 96] - one of
the reasons being the fact that a distributed population reduces the probabilit y of premature



convergence to suboptimal solutions, in comparison with a single population.
An example of a fine-grain, distributed-population GA for data mining is GA-MINER

[Flockhart & Radcli ffe 95], [Flockhart & Radcli ffe 96]. This system is a parallel GA designed
to search for several kinds of knowledge, such as “ if-then” prediction rules, distribution-
comparison patterns within distinct sets of tuples (e.g. the difference in the mean of an
attribute’s values) and statistical correlation patterns. GA-MINER has been implemented in
both shared-memory and distributed-memory parallel machines [Flockhart & Radcli ffe 95].
However, in the latter the entire data being mined had to be replicated into the local memory
of each processor. This obviously reduces scalabili ty for large databases.

An example of a coarse-grain, distributed-population GA for data mining is REGAL. This
is a parallel algorithm in which each individual encodes a candidate rule, so that the whole
population corresponds to a rule set [Giordana & Neri 95], [Neri & Giordana 95], [Neri &
Saitta 96]. The algorithm was mainly designed to discover classification rules. Experiments
have been done with REGAL on a Connection Machine CM-5, with a number of processors
varying between 16 and 64. Overall , the authors have reported a superlinear speed up.

A variant of REGAL, called G-NET, has been implemented in a network of workstations
via PVM [Anglano et al. 97]. Experiments have been done with the number of workstation
varying between 1 and 9. Overall , the speed ups were sublinear. However, in both the above
experiments (with REGAL and G-NET) the data being mined was relatively small , so that it
is not clear how much speed up can be achieved when mining large databases.

Finally, the exploitation of data parallelism in GA can also be done in a way that integrates
data mining and data warehouses, based on the idea of performing generic data mining
primitives on a Parallel Database Server (PDS) – see Section 3.2. [Freitas 97b] describes a
preliminary work based on this idea, where the time-consuming operations associated with
the evaluation of genetic programming individuals are encapsulated in a database query,
which can then be executed on a PDS to reduce processing time.

6 Parallel Neural Networks.
In essence, a Neural Network (NN) consists of many Processing Elements (PEs), loosely

called “neurons” , and weighted interconnections among the PEs. Each PE performs a very
simple computation, such as calculating a weighted sum of its input connections, and
computes an output signal that is sent to other PEs. The training (mining) phase of a NN
consists of adjusting the weights (typically, real-valued numbers) of the interconnections, in
order to produce the desired output [Rumelhart & McClelland 86], [Rojas 96].

Note that the “knowledge” of the system is expressed in a low-level representation,
distributed across the weights of the interconnections. In passing we note that, in the context
of data mining, it is often desirable to convert the learned interconnection weights into a
higher-level knowledge representation such as “ if-then” rules, to make the discovered
knowledge comprehensible for the user [Lu et al. 95], [Vaughn 96]. However, this issue is
beyond the scope of this paper. Here we are interested in the influence that the distributed
representation of NNs has in the parallelization of NN algorithms.

There are two basic approaches for exploiting parallelism in NNs. The first consists of
distributing the data being mined across the processors [Foo et al. 97], [Fathy & Syiam 96].
This is a data-parallel approach, also called training set-parallel, in the terminology of parallel
NNs. First of all , the data being mined is partitioned into p mutually exclusive and exhaustive
subsets, where p is the number of processors. Each partition is assigned to a distinct
processor. Each processor has a complete copy of the NN, with all it s neurons (PEs) and all
its interconnection weights. Hence, each processor uses its local data subset to compute
partial weight updates for its local copy of the entire NN. Then these partial weight updates



are somehow combined to produce the final weight updates for the entire NN.
It should be noted that this approach usually involves a form of batch weight updating,

where the interconnection weights are actually updated only after the combination of the
partial weight updates. This is in contrast with the incremental nature of conventional weight-
update procedures, where weights are usually updated right after the NN processes each
training tuple. The batch-updating procedure often leads to a prediction accuracy somewhat
different from (either higher or lower than) the one achieved with a conventional incremental-
updating procedure.

The second approach for exploiting parallelism in NNs consists of distributing the
structure (neurons and interconnections) of the NN among the processors. This approach is
based on the inherent control parallelism associated with NNs. The strategy used for
distributing the structure of the NN across the processors depends on several factors, such as
the number of neurons in each layer of the NN, the number of layers, the number of available
processors, the topology of the interconnections, etc.

In one strategy, each processor is assigned a distinct neuron and the set of weights arriving
into its neuron. In this case the processing performed by each neuron is entirely independent
of the processing performed by other neurons, so that all neurons can operate in parallel. Of
course, if the number of neurons is considerably larger than the number of processors, this
strategy can be modified so that each processor is assigned a subset of neurons with their
corresponding incoming interconnections.

Care must be taken, however, to avoid that many processors get idle at a given time. For
instance, assume that the neurons and their incoming interconnections are distributed across
the processors in such a way that each processor is assigned only neurons of the same layer of
the NN. In this case, while the processors assigned to one layer of the NN are working, the
processors assigned to other layers would be idle. This can be avoided by exploiting a form of
“ temporal parallelism” (or pipelining) across successive layers of the NN. For instance, as
soon as a neuron of the layer Lk of the NN finishes its processing of a tuple tn, that neuron
starts to process the next tuple tn+1, while at the same time a neuron of the next layer Lk+1

starts to process tuple tn.
Another strategy for exploiting control parallelism in NNs, working in a lower level of

granularity than the above strategy, consists of exploiting parallelism within each neuron - see
e.g. [Blelloch & Rosenberg 87], [Nordstrom & Svensson 92]. In this strategy, the incoming
interconnections of each neuron (with their respective weights) are distributed across a set of
processors. Due to its fine-grain nature, this strategy is usually suitable for massively-parallel
processing systems, particularly when the number of processors is much larger than the
number of neurons.

Although there has been an extensive research on parallel NNs, there has been littl e
research on the area of parallel NNs for data mining applications. An exception is the DAFS
project (also mentioned in Section 3.2), which offers parallel implementations of
Clementine’s Neural Networks on a Parallel Database Server [McLaren et al. 97]. These
implementations essentially follow a data-parallel approach.

7 Principles for Designing Efficient Parallel Data Mining Algorithms and
Future Research.

We have discussed the parallelization of data mining algorithms of four knowledge
discovery paradigms, namely rule induction, instance-based learning, genetic algorithms and
neural networks. Despite significant differences between these paradigms, our discussion has



focused on an aspect of parallelization whose importance cuts across all these paradigms.
Such aspect is the distinction between data parallelism and control parallelism. We believe
that this distinction is crucial for the design of parallel data mining algorithms.

Based on the lessons learned from the systems discussed in the previous Sections, as well
as on fundamental parallel processing concepts, we can suggest a set of “heuristic principles”
for designing efficient parallel data mining algorithms, as shown in Figure 3.

(1) Analyze the proportion of time spent in each part of the algorithm. The most time-
consuming parts should be the target of parallel processing.

(2) For each target part of the algorithm, consider whether it is data-intensive or CPU-
intensive, in order to opt for data or control parallelism.

(3) When  considering  data  parallelism,  try  to  think of intelli gent data partitioning
schemes, rather than random or round-robin ones. Data partitioning is a key issue
in the exploitation of data parallelism.

(4) When considering control parallelism, try to minimize inter-processor communication.
This is a major problem in the exploitation of control parallelism.

(5) When considering control parallelism, recall that it is often necessary to replicate the
entire data being mined in every processor. Unless you can avoid this scheme, beware
that the scalabili ty of the system will be reduced.

(6) Consider the possibili ty of hybrid data/control-parallel algorithms, where the type of
parallelism being exploited is dynamically switched based on current parameters of
the algorithm and search space.

Figure 3: Heuristic principles for designing eff icient parallel data mining algorithms.

Principles (1), (3) and (4) are fundamental in the design of any parallel algorithm, while
principles (2), (5) and (6) are more related to parallel data mining. Let us elaborate a littl e
more on the latter three principles.

Principle (2) simply says that data-intensive operations should be tackled with data
parallelism, while CPU-intensive operations should be tackled with control parallelism.
Hence, in the same algorithm, some parts of the algorithm can exploit data parallelism while
other parts exploit control parallelism. A good example of the application of this principle
was the parallelization of the rule pruning method of C4.5, mentioned in Section 3.1.

Principle (5) is actually a warning about the problem of scalabili ty of control parallelism in
data mining. Note that this problem is not very serious in some cases. For instance, control
parallelism can be easily exploited in neural networks without replicating the data being
mined, since (conventional) neural networks are trained one-tuple-at-a-time. However, the
warning associated with this principle is important in many cases where the data mining
algorithm is based on the paradigms of rule induction, instance-based learning and genetic
algorithms.

Principle (6) suggests the combination of “ the best of both worlds” . A good example is the
parallelization of TDIDT algorithms. In higher levels of the tree (close to the root), the
algorithm has to access a large amount of data, which calls for data parallelism. As the tree is
expanded, however, the amount of data to be accessed gets smaller and smaller. Hence, in
lower levels of the tree, control parallelism tends to be more advantageous than data
parallelism.

We emphasize that the above principles are just heuristics – i.e. they are not guaranteed to
lead to the best parallel data mining algorithm in all cases, but they work reasonably well i n
many cases.



We now turn to the topic of future research. With the fast, continuous improvement of
interconnection networks, clusters of workstations and/or networks of computers can be easily
connected to form larger computer networks. This increases the opportunity for distributed
processing. Furthermore, advances in data communications technology blur the distinction
between distributed processing and parallel processing. There are already software
environments, such as PVM, that allow a cluster of computers to be viewed as a single
parallel machine. These factors suggest that the development of parallel data mining
algorithms for heterogeneous environments (where the processors have different speeds and
memory capacities) will be an important area for future research. Mining the wealth of
information available on the Internet in parallel is also an area deserving further research.

In addition, it would be interesting to perform a massive comparison of different parallel
data mining algorithms, similarly in spirit to the massive comparison of (sequential)
classification algorithms performed in the well -known STATLOG project [Michie et al. 94].
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