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MODELLING DISTRIBUTED SYSTEMS USING Z

Howard Bowman and John Derrick

Computing Laboratory� University of Kent� Canterbury� UK�

Abstract

The ODP development model is a natural progression from
OSI� Multiple viewpoints are used to specify complex ODP
systems� Formal methods are playing an increasing role
within ODP� There are two technical problems concerning
the use of formal techniques within ODP which have yet to
be addressed� these are uni�cation and consistency checking�
We show how Z can be used to provide a solution for both�
and hence provide a mechanism for Z to be used properly in
the ODP development process�

Keywords� ODP� Z� Consistency� Viewpoints�

Introduction

The use of formal methods outside academic institutions has
not penetrated industry in the manner that many have been
predicting� However� there are two areas that formal meth�
ods have been making a signi�cant impact� these are in stan�
dards and safety�critical systems� This paper discusses the
implications and integration of formal techniques� in particu�
lar Z� into the Open Distributed Processing �ODP	 standard
initiative�

The ODP standardization initiative is a natural progression
from OSI� broadening the target of standardization from the
point of interconnection to the end�to�end system behaviour�
The objective of ODP 
�� is to enable the construction of
distributed systems in a multi�vendor environment through
the provision of a general architectural framework that such
systems must conform to� One of the cornerstones of this
framework is a model of multiple viewpoints which enables
di
erent participants to observe a system from a suitable
perspective and at a suitable level of abstraction 
��� There
are �ve separate viewpoints presented by the ODP model�
Enterprise� Information� Computational� Engineering and
Technology� Requirements and speci�cations of an ODP sys�
tem can be made from any of these viewpoints�

Formal methods are playing an increasing role within ODP
�Part � of the ODP�RM outlines requirements for applying
formal description techniques in the speci�cation of ODP
systems�	� and we aim to provide a mechanism by which
speci�c techniques can be used within ODP� The suitability

of a wide spectrum of FDTs is currently being assessed �eg
LOTOS� Estelle� SDL� Z� Object�Z and RAISE	� Amongst
these LOTOS and Z are becoming dominant� The �rst com�
pliant ODP speci�cation� the Trader� is being written using
Z for the information and computational viewpoint�

However� while it has been accepted that the viewpoint
model greatly simpli�es the development of system speci�ca�
tions and o
ers a powerful mechanism for handling diversity
within ODP� the practicalities of how to make the approach
work are only beginning to be explored� In particular� one of
the consequences of adopting a multiple viewpoint approach
to development is that descriptions of the same or related
entities can appear in di
erent viewpoints and must co�exist�
Consistency of speci�cations across viewpoints thus becomes
a central issue� However� the actual mechanism by which
consistency can be checked and maintained is only just be�
ing addressed 
�� ��� In particular� although Z is being used
as a viewpoint speci�cation language in ODP� there is as
yet no mechanism to describe the combination of di
erent Z
viewpoint speci�cations� or the consistency of them�

In Section � we develop the uni�cation mechanism for Z
speci�cations� In Section � we present an example of the
technique by specifying the dining philosophers problem us�
ing viewpoints� Section � discusses consistency checking of
viewpoint speci�cations� and we make some concluding re�
marks in Section ��

Uni�cation in Z

Given a model of multiple viewpoints� descriptions of the
same or related entities can appear in di
erent viewpoints
and must co�exist� Clearly the di
erent viewpoints must
be consistent� i�e� the properties of one viewpoint speci�ca�
tion do not contradict those of another� In addition� during
the development process there must be some way to com�
bine speci�cation from di
erent viewpoints into a single im�
plementation speci�cation� This process of combining two
speci�cations is known as uni�cation� Furthermore� the uni�
�cation of two speci�cations must be a re�nement of both�

��� Uni�cation can also be used� because of this common
re�nement� as a method by which to check consistency� To
check the consistency of two speci�cations� we check for con�
tradictions within the uni�ed speci�cation�

Given a re�nement relation� v� de�ned in a formal speci�
�cation technique� we can de�ne the uni�cation U�T��T�	
of two speci�cations as fT � T��T� v T and if T��T� v
S then T v Sg� Uni�cation of Z speci�cations will there�
fore depend upon the Z re�nement relation� which is given
in terms of two separate components � data re�nement and
operation re�nement� 
���



Z is a state based FDT� and Z speci�cations consist of in�
formal English text interspersed with formal mathematical
text� The formal part describes the abstract state of the sys�
tem �including a description of the initial state of the sys�
tem	� together with the collection of available operations�
which manipulate the state� We assume the reader is famil�
iar with details of the language and its re�nement relation�
introductionary texts include 
�� ���

The uni�cation algorithm we describe is divided into three
stages� normalization� common re�nement �which we usu�
ally term uni�cation itself	� and re�structuring� Normaliza�
tion identi�es commonality between two speci�cations� and
re�writes the speci�cations into normal forms suitable for
uni�cation� Uni�cation itself takes two normal forms and
produces the least re�nement of both� Because normaliza�
tion will hide some of the speci�cation structure introduced
via the schema calculus� it is necessary to perform some re�
structuring after uni�cation to re�introduce some of the spec�
i�ers style� We do not discuss re�structuring here�

Normalization

Given two di
erent viewpoint speci�cations of the same
�ODP	 system� the commonality between the speci�cations
needs to be identi�ed� These will be given by co�viewpoint
mappings that describe the naming� and other� conventions
in force� Once the commonality has been identi�ed� the ap�
propriate elements of the speci�cations are re�named�

Normalization will also expand data�type and schema de�ni�
tions into a normal form� The purpose of normalization is to
hide the structuring of schemas �which is needed in order to
provide automatic uni�cation techniques	 and expand dec�
larations into maximal type plus predicate declarations� For
example� normalization of a declaration part of a schema
involves replacing every set X which occurs in a declara�
tion x � X � with its corresponding maximal type and adding
predicates to the predicate part of the schema involved to
constrain the variable appropriately�

Normalization also expands schemas de�ned via the schema
calculus into their full form� All schema expressions involv�
ing operations from the schema calculus can be expanded to
a single equivalent vertical schema� Examples of this type
of normalization are given in 
���

State Uni�cation

The purpose of state uni�cation is to �nd a common state
to represent both viewpoints� The state of the uni�cation
must be a data re�nement of the state of both viewpoints�
Furthermore� it should be the least re�nement whenever pos�
sible� This is needed to ensure we do not add too much de�
tail during uni�cation because additional detail might add
inconsistencies that were not due to inconsistencies in the
original viewpoint speci�cations�

The essence of all constructions will be as follows� If an
element x is declared in both viewpoints as x � T� and x � T�

respectively� then the uni�cation will include a declaration
x � T where T is the least re�nement of T� and T�� The type
T will be the smallest type which contains a copy of both
T� and T�� For example� if T� and T� can be embedded in
some maximal type then T is just the union of T� �T�� We

will prove the correctness of this uni�cation below�

Given two viewpoint speci�cations containing the following
fragment of state description�

D

x � S

predS

D

x � T

predT

we unify as follows

D

x � S �T

x � S �� predS
x � T �� predT

whenever S �T is well founded� �Axiomatic descriptions are
uni�ed in exactly the same manner�	 This representation
is needed in order to preserve the widest range of possible
behaviours�

Operation Uni�cation

Once the data descriptions have been uni�ed� the operations
from each viewpoint need to be de�ned in the uni�ed spec�
i�cation� We assume all renaming of names visible to the
environment has taken place� Uni�cation of schemas then
depends upon whether there are duplicate de�nitions� For
operations de�ned in just one of the viewpoint speci�cations�
these are included in the uni�cation with appropriate adjust�
ments to take account of the uni�ed state�

For operations which are de�ned in both viewpoint speci�ca�
tions� the uni�ed speci�cation should contain an operation
which is the least re�nement of both� with respect to the
uni�ed representation of state� The uni�cation of two oper�
ations is de�ned via their pre� and post�conditions� Given
a schema it is always possible to derive their pre� and post�
conditions� 
��� Given two schemas A and B representing
operations� both applicable on some uni�ed state� then the
uni�cation of A and B is�

U�A�B	
���

pre A � pre B

pre A �� post A

pre B �� post B

where the declarations are uni�ed in the manner of the pre�
ceding subsection� This de�nition ensures that if both pre�
conditions are true� then the uni�cation will satisfy both
post�conditions� Whereas if just one pre�condition is true�
only the relevant post�condition has to be satis�ed�

Uni�cation is the least re�nement

To show that uni�cation is correct� we must show that it is
the least re�nement of the two viewpoint speci�cations� We
sketch a proof here� showing �rst it is a re�nement� before
showing that any other re�nement will also re�ne the uni��
cation� As above we decorate elements in viewpoint j with a



subscript j � Given two fragments of viewpoint speci�cations
below� both with the state described by the schema D� and
an operation A which manipulates the state D and possibly
other non�overlapping portions of the state�

D

x � S

predS

A

���
OpD

pre A

post A

D

x � T

predT

A

���
OpD

pre A

post A

where Op is either ��� or blank� The uni�cation is

D

x � S �T

x � S �� predS
x � T �� predT

A

���
OpD

pre A� � pre A�

pre A� �� post A�

pre A� �� post A�

To describe the re�nement� the retrieve relation R� between
the uni�cation and viewpoint one is given by

R�

D

D�

x� � fxg � S

Then it is easy to see that� pre A � pre A� �
pre A�� pre A� � R� �� pre A� pre A� � �R� � A �
post A�� Hence� the uni�cation is indeed a common re�ne�
ment� We now show that it is the least re�nement�

To do so suppose that we are given another re�nement of
both viewpoints� which is described by state E and operation
B � Then there exist retrieve relations ED� and ED� such
that�

pre A� � ED� � pre B � pre A� ��ED� �B � post A�

pre A� � ED� � pre B � pre A� ��ED� �B � post A�

We then require a retrieve relation X between D and E such
that pre A � X �� pre B � pre A ��X � B �� post A�
Letting X � ED� �ED� will su�ce� Since pre A � pre A� �
pre A�� we have the following deduction� pre A��ED��ED�	
equals �pre A��pre A�	��ED��ED�	 equals �pre A��ED��
ED�	��pre A��ED��ED�	 implies �pre B�ED�	��pre B�
ED�	 implies pre B � �ED� � ED�	 implies pre B �

For the second deduction we have� pre A���ED� �ED�	�
B equals �pre A� � pre A�	 � �ED� � �ED�	 � B implies
�post B ��ED�	��post B ��ED�	 equals post B���ED��
�ED�	� and hence post B follows� Therefore� the state E

and operation B are re�nements of the uni�cation�

Example

To illustrate uni�cation with Z� we shall consider the fol�
lowing viewpoint speci�cations of the dining philosophers

problem� The dining philosophers problem� 
��� is a clas�
sic problem in synchronization� A group of N philosophers
sit round a table� laid with N forks� There is one fork be�
tween each adjacent pair of philosophers� Each philosopher
alternates between thinking and eating� To eat� a philoso�
pher must pick up its right�hand fork and then the left�hand
fork� A philosopher cannot pick up a fork if its neighbour al�
ready holds it� To resume thinking� the philosopher returns
both forks to the table� We shall describe the problem via
two viewpoint Z speci�cations� each representing a particu�
lar concern� We shall then describe their uni�cation�

The Philosophers Viewpoint

This viewpoint considers the speci�cation from the point of
view of the philosophers� There are N philosophers who are
either thinking� eating or holding their right fork� Note that
since the latter is just a state of mind �for a philosopher�	
there is no need to describe the operations from a forks point
of view at all in this viewpoint� In order to correctly describe
the synchronization� the philosophers have to be aware of the
fork�s existence� and some of the possible states a fork can
be in�

N � IN

N � �

tabled �� ���N

PhilStatus ��� Thinking j HasRightFork j Eating


ForkStatus�

j Free � ForkStatus

Then the system from the philosophers point of view is just
de�ned by the state of the philosopher� however� there is an
awareness of the forks existence�

Table

phils � tabled � PhilStatus

forks � ���N � ForkStatus

And initially the philosophers are all thinking� and we make
no constraints on forks�

InitTable

Table

ran phils � fThinkingg

We can now describe the operations available� A thinking
philosopher can pick up its right�hand fork� it also knows
that to do this the right hand fork must be free�

GetRightFork

�Table
n� � tabled

forks�n�mod N � �	 � Free

phils�n�	 � Thinking

phils � � phils 	 fn� 
� HasRightForkg



Philosophers who hold their right fork can begin eating upon
picking up their left�hand fork� whenever it is free�

GetLeftFork

�Table
n� � tabled

forks�n�	 � Free

phils�n�	 � HasRightFork

phils � � phils 	 fn� 
� Eatingg

Finally to resume thinking� a philosopher releases both forks�

DropForks

�Table
n� � tabled

phils�n�	 � Eating

phils � � phils 	 fn� 
� Thinkingg

The Forks Viewpoint

This viewpoint considers the speci�cation from the point of
view of the forks� There are N forks each of which is either
free or busy� The fact that the philosopher might change
state when a fork is picked up or dropped does not concern
forks�

N � IN

N � �

ForkStatus ��� Free j Busy


PhilStatus�

j Thinking�HasRightFork �Eating � PhilStatus

Then the system from the forks point of view is just de�ned
by the state of the fork�

Table

forks � ���N � ForkStatus

phils � tabled � PhilStatus

And initially the forks are all free�

InitTable

Table

ran forks � fFreeg

We can now describe the operations available� A free fork
can be picked up� Note that clearly the speci�er of this view�
point has to be aware that the forks have a polarity for the
object that picks them up� and thus describes the operations
in terms of that polarity �alternatively� this polarity could
be described via co�viewpoint mappings	�

GetRightFork

�Table
n� � ���N

phils�n�	 � Thinking

forks�n�mod N � �	 � Free

forks � � forks 	 fn� mod N � � 
� Busyg

GetLeftFork

�Table
n� � ���N

phils�n�	 � HasRightFork

forks�n�	 � Free

forks � � forks 	 fn� 
� Busyg

Finally� both forks can be released�

DropForks

�Table
n� � ���N

phils�n�	 � Eating

forks � � forks 	 fn� 
� Free�n� mod N � � 
� Freeg

Unifying the Viewpoints

We can now describe the uni�cation of these two viewpoints
in terms of the algorithm given above� First all normaliza�
tions are undertaken� These will describe the declarations
in normal form� and substitute expressions for all abbrevia�
tions� In the philosophers speci�cation tabled is expanded�
then the types normalized� So for example� the schema
GetRightFork in the philosophers viewpoint is re�written as

GetRightFork

�Table
n� � IN

� � n� � N

forks�n�mod N � �	 � Free

phils�n�	 � Thinking

phils � � phils 	 fn� 
� HasRightForkg

The declarations in the uni�cation are then�

N � IN

N � �

PhilStatus ��� Thinking j HasRightFork j Eating

ForkStatus ��� Free j Busy

These declarations have been uni�ed as described above�
Next one schema called Table with initial state InitTable

are built out of the component viewpoints� The combined
declarations and predicates become�

Table

phils � P�IN� PhilStatus	
forks � P�IN� ForkStatus	


 x � IN � �
�
y � PhilStatus � �x �y	 � phils


 x � IN � �
�
y � ForkStatus � �x �y	 � forks

dom phils � dom forks � ���N

InitTable

Table

ran phils � fThinkingg
ran forks � fFreeg



The operations available which are represented by the
schemas have to be uni�ed� To do so we calculate their
pre� and post�conditions� and produce a uni�cation with re�
spect to the uni�ed state as represented by the schema Table�
Upon simplifying� the operation schemas GetRightFork and
GetLeftFork become�

GetRightFork

�Table
n� � IN

� � n� � N

phils�n�	 � Thinking

phils � � phils 	 fn� 
� HasRightForkg
forks�n�mod N � �	 � Free

forks � � forks 	 fn� mod N � � 
� Busyg

GetLeftFork

�Table
n� � IN

� � n� � N

phils�n�	 � HasRightFork

phils � � phils 	 fn� 
� Eatingg
forks�n�	 � Free

forks � � forks 	 fn� 
� Busyg

DropForks is uni�ed in a similar fashion�

Checking Consistency

Consistency checking involves checking the uni�ed speci��
cation for contradictions� Consistency checking consists of
checking both the consistency of the state model and the
consistency of all the operations� The nature of uni�cation
as the least re�nement means that this involves checking the
intersection of the two viewpoints in the uni�ed state model�
and the conjunction of the pre�conditions in each operation�

For example� consider the general form of state uni�cation
given in Section ����

D

x � S �T

x � S �� predS
x � T �� predT

This state model is consistent as long as both predS and
predT can be satis�ed for x � S � T � In the classroom ex�
ample� suppose the class consisted of just the element ��
i�e� d � f�g� Both pre�conditions in the uni�ed state�
d � Pf�� �g and d � Pf�� �� �g� now hold giving the state
invariant Min � �d � Max � Thus the consistency of
the viewpoint speci�cations of the classroom requires that
Min � Max � This type of consistency condition is called a
correspondence rule in ODP� 
��� that is a condition which is
necessary but not necessarily su�cient to guarantee consis�
tency�

Consistency checking also needs to be carried out on each
operation in the uni�ed speci�cation� The de�nition of oper�
ation uni�cation means that we have to check for consistency

when both pre�conditions apply� That is� if the uni�cation
of A and B is denoted U�A�B	� we have�

pre U�A�B	 � pre A � pre B �

post U�A�B	 � �pre A� post A	 � �pre B � post B	

So the uni�cation is consistent as long as �pre A�pre B	�
�post A � post B	� In the classroom example� this amounts
to checking the operation Leave when

�p� � d � f�� �g	 � �p� � d � f�� �� �g ��d �Min � �	

In these circumstances� the two post�conditions are d � �
d n fp�g and d � � d n fp�� �g� Now the two pre�conditions
apply i
 both p� � � and Min � �� in which case the post�
conditions are d � � d n f�g and d � � d n f�g� and thus
consistent� Hence� Leave is consistent �and therefore so are
two viewpoint speci�cations	 whenever the correspondence
rule Min �Max holds�

Conclusions

The use of viewpoints to enable separation of concerns to be
undertaken at the speci�cation stage is a cornerstone of the
ODP model� However� the practicalities of how to make the
approach work are only beginning to be explored� Two is�
sues of importance are uni�cation and consistency checking�
Our work attempts to provide a methodology to undertake
uni�cation and consistency checking for Z speci�cations�
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