
Bowman, Howard and Derrick, John (1995) Modelling Distributed Systems
using Z. In: UNSPECIFIED.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21281/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21281/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

MODELLING DISTRIBUTED SYSTEMS USING Z

Howard Bowman and John Derrick

Computing Laboratory� University of Kent� Canterbury� UK�

Abstract

The ODP development model is a natural progression from
OSI� Multiple viewpoints are used to specify complex ODP
systems� Formal methods are playing an increasing role
within ODP� There are two technical problems concerning
the use of formal techniques within ODP which have yet to
be addressed� these are uni�cation and consistency checking�
We show how Z can be used to provide a solution for both�
and hence provide a mechanism for Z to be used properly in
the ODP development process�

Keywords� ODP� Z� Consistency� Viewpoints�

Introduction

The use of formal methods outside academic institutions has
not penetrated industry in the manner that many have been
predicting� However� there are two areas that formal meth�
ods have been making a signi�cant impact� these are in stan�
dards and safety�critical systems� This paper discusses the
implications and integration of formal techniques� in particu�
lar Z� into the Open Distributed Processing �ODP	 standard
initiative�

The ODP standardization initiative is a natural progression
from OSI� broadening the target of standardization from the
point of interconnection to the end�to�end system behaviour�
The objective of ODP
�� is to enable the construction of
distributed systems in a multi�vendor environment through
the provision of a general architectural framework that such
systems must conform to� One of the cornerstones of this
framework is a model of multiple viewpoints which enables
di
erent participants to observe a system from a suitable
perspective and at a suitable level of abstraction
��� There
are �ve separate viewpoints presented by the ODP model�
Enterprise� Information� Computational� Engineering and
Technology� Requirements and speci�cations of an ODP sys�
tem can be made from any of these viewpoints�

Formal methods are playing an increasing role within ODP
�Part � of the ODP�RM outlines requirements for applying
formal description techniques in the speci�cation of ODP
systems�	� and we aim to provide a mechanism by which
speci�c techniques can be used within ODP� The suitability

of a wide spectrum of FDTs is currently being assessed �eg
LOTOS� Estelle� SDL� Z� Object�Z and RAISE	� Amongst
these LOTOS and Z are becoming dominant� The �rst com�
pliant ODP speci�cation� the Trader� is being written using
Z for the information and computational viewpoint�

However� while it has been accepted that the viewpoint
model greatly simpli�es the development of system speci�ca�
tions and o
ers a powerful mechanism for handling diversity
within ODP� the practicalities of how to make the approach
work are only beginning to be explored� In particular� one of
the consequences of adopting a multiple viewpoint approach
to development is that descriptions of the same or related
entities can appear in di
erent viewpoints and must co�exist�
Consistency of speci�cations across viewpoints thus becomes
a central issue� However� the actual mechanism by which
consistency can be checked and maintained is only just be�
ing addressed
�� ��� In particular� although Z is being used
as a viewpoint speci�cation language in ODP� there is as
yet no mechanism to describe the combination of di
erent Z
viewpoint speci�cations� or the consistency of them�

In Section � we develop the uni�cation mechanism for Z
speci�cations� In Section � we present an example of the
technique by specifying the dining philosophers problem us�
ing viewpoints� Section � discusses consistency checking of
viewpoint speci�cations� and we make some concluding re�
marks in Section ��

Uni�cation in Z

Given a model of multiple viewpoints� descriptions of the
same or related entities can appear in di
erent viewpoints
and must co�exist� Clearly the di
erent viewpoints must
be consistent� i�e� the properties of one viewpoint speci�ca�
tion do not contradict those of another� In addition� during
the development process there must be some way to com�
bine speci�cation from di
erent viewpoints into a single im�
plementation speci�cation� This process of combining two
speci�cations is known as uni�cation� Furthermore� the uni�
�cation of two speci�cations must be a re�nement of both�

��� Uni�cation can also be used� because of this common
re�nement� as a method by which to check consistency� To
check the consistency of two speci�cations� we check for con�
tradictions within the uni�ed speci�cation�

Given a re�nement relation� v� de�ned in a formal speci�
�cation technique� we can de�ne the uni�cation U�T��T�	
of two speci�cations as fT � T��T� v T and if T��T� v
S then T v Sg� Uni�cation of Z speci�cations will there�
fore depend upon the Z re�nement relation� which is given
in terms of two separate components � data re�nement and
operation re�nement�
���

Z is a state based FDT� and Z speci�cations consist of in�
formal English text interspersed with formal mathematical
text� The formal part describes the abstract state of the sys�
tem �including a description of the initial state of the sys�
tem	� together with the collection of available operations�
which manipulate the state� We assume the reader is famil�
iar with details of the language and its re�nement relation�
introductionary texts include
�� ���

The uni�cation algorithm we describe is divided into three
stages� normalization� common re�nement �which we usu�
ally term uni�cation itself	� and re�structuring� Normaliza�
tion identi�es commonality between two speci�cations� and
re�writes the speci�cations into normal forms suitable for
uni�cation� Uni�cation itself takes two normal forms and
produces the least re�nement of both� Because normaliza�
tion will hide some of the speci�cation structure introduced
via the schema calculus� it is necessary to perform some re�
structuring after uni�cation to re�introduce some of the spec�
i�ers style� We do not discuss re�structuring here�

Normalization

Given two di
erent viewpoint speci�cations of the same
�ODP	 system� the commonality between the speci�cations
needs to be identi�ed� These will be given by co�viewpoint
mappings that describe the naming� and other� conventions
in force� Once the commonality has been identi�ed� the ap�
propriate elements of the speci�cations are re�named�

Normalization will also expand data�type and schema de�ni�
tions into a normal form� The purpose of normalization is to
hide the structuring of schemas �which is needed in order to
provide automatic uni�cation techniques	 and expand dec�
larations into maximal type plus predicate declarations� For
example� normalization of a declaration part of a schema
involves replacing every set X which occurs in a declara�
tion x � X � with its corresponding maximal type and adding
predicates to the predicate part of the schema involved to
constrain the variable appropriately�

Normalization also expands schemas de�ned via the schema
calculus into their full form� All schema expressions involv�
ing operations from the schema calculus can be expanded to
a single equivalent vertical schema� Examples of this type
of normalization are given in
���

State Uni�cation

The purpose of state uni�cation is to �nd a common state
to represent both viewpoints� The state of the uni�cation
must be a data re�nement of the state of both viewpoints�
Furthermore� it should be the least re�nement whenever pos�
sible� This is needed to ensure we do not add too much de�
tail during uni�cation because additional detail might add
inconsistencies that were not due to inconsistencies in the
original viewpoint speci�cations�

The essence of all constructions will be as follows� If an
element x is declared in both viewpoints as x � T� and x � T�

respectively� then the uni�cation will include a declaration
x � T where T is the least re�nement of T� and T�� The type
T will be the smallest type which contains a copy of both
T� and T�� For example� if T� and T� can be embedded in
some maximal type then T is just the union of T� �T�� We

will prove the correctness of this uni�cation below�

Given two viewpoint speci�cations containing the following
fragment of state description�

D

x � S

predS

D

x � T

predT

we unify as follows

D

x � S �T

x � S �� predS
x � T �� predT

whenever S �T is well founded� �Axiomatic descriptions are
uni�ed in exactly the same manner�	 This representation
is needed in order to preserve the widest range of possible
behaviours�

Operation Uni�cation

Once the data descriptions have been uni�ed� the operations
from each viewpoint need to be de�ned in the uni�ed spec�
i�cation� We assume all renaming of names visible to the
environment has taken place� Uni�cation of schemas then
depends upon whether there are duplicate de�nitions� For
operations de�ned in just one of the viewpoint speci�cations�
these are included in the uni�cation with appropriate adjust�
ments to take account of the uni�ed state�

For operations which are de�ned in both viewpoint speci�ca�
tions� the uni�ed speci�cation should contain an operation
which is the least re�nement of both� with respect to the
uni�ed representation of state� The uni�cation of two oper�
ations is de�ned via their pre� and post�conditions� Given
a schema it is always possible to derive their pre� and post�
conditions�
��� Given two schemas A and B representing
operations� both applicable on some uni�ed state� then the
uni�cation of A and B is�

U�A�B	
���

pre A � pre B

pre A �� post A

pre B �� post B

where the declarations are uni�ed in the manner of the pre�
ceding subsection� This de�nition ensures that if both pre�
conditions are true� then the uni�cation will satisfy both
post�conditions� Whereas if just one pre�condition is true�
only the relevant post�condition has to be satis�ed�

Uni�cation is the least re�nement

To show that uni�cation is correct� we must show that it is
the least re�nement of the two viewpoint speci�cations� We
sketch a proof here� showing �rst it is a re�nement� before
showing that any other re�nement will also re�ne the uni��
cation� As above we decorate elements in viewpoint j with a

subscript j � Given two fragments of viewpoint speci�cations
below� both with the state described by the schema D� and
an operation A which manipulates the state D and possibly
other non�overlapping portions of the state�

D

x � S

predS

A

���
OpD

pre A

post A

D

x � T

predT

A

���
OpD

pre A

post A

where Op is either ��� or blank� The uni�cation is

D

x � S �T

x � S �� predS
x � T �� predT

A

���
OpD

pre A� � pre A�

pre A� �� post A�

pre A� �� post A�

To describe the re�nement� the retrieve relation R� between
the uni�cation and viewpoint one is given by

R�

D

D�

x� � fxg � S

Then it is easy to see that� pre A � pre A� �
pre A�� pre A� � R� �� pre A� pre A� � �R� � A �
post A�� Hence� the uni�cation is indeed a common re�ne�
ment� We now show that it is the least re�nement�

To do so suppose that we are given another re�nement of
both viewpoints� which is described by state E and operation
B � Then there exist retrieve relations ED� and ED� such
that�

pre A� � ED� � pre B � pre A� ��ED� �B � post A�

pre A� � ED� � pre B � pre A� ��ED� �B � post A�

We then require a retrieve relation X between D and E such
that pre A � X �� pre B � pre A ��X � B �� post A�
Letting X � ED� �ED� will su�ce� Since pre A � pre A� �
pre A�� we have the following deduction� pre A��ED��ED�	
equals �pre A��pre A�	��ED��ED�	 equals �pre A��ED��
ED�	��pre A��ED��ED�	 implies �pre B�ED�	��pre B�
ED�	 implies pre B � �ED� � ED�	 implies pre B �

For the second deduction we have� pre A���ED� �ED�	�
B equals �pre A� � pre A�	 � �ED� � �ED�	 � B implies
�post B ��ED�	��post B ��ED�	 equals post B���ED��
�ED�	� and hence post B follows� Therefore� the state E

and operation B are re�nements of the uni�cation�

Example

To illustrate uni�cation with Z� we shall consider the fol�
lowing viewpoint speci�cations of the dining philosophers

problem� The dining philosophers problem�
��� is a clas�
sic problem in synchronization� A group of N philosophers
sit round a table� laid with N forks� There is one fork be�
tween each adjacent pair of philosophers� Each philosopher
alternates between thinking and eating� To eat� a philoso�
pher must pick up its right�hand fork and then the left�hand
fork� A philosopher cannot pick up a fork if its neighbour al�
ready holds it� To resume thinking� the philosopher returns
both forks to the table� We shall describe the problem via
two viewpoint Z speci�cations� each representing a particu�
lar concern� We shall then describe their uni�cation�

The Philosophers Viewpoint

This viewpoint considers the speci�cation from the point of
view of the philosophers� There are N philosophers who are
either thinking� eating or holding their right fork� Note that
since the latter is just a state of mind �for a philosopher�	
there is no need to describe the operations from a forks point
of view at all in this viewpoint� In order to correctly describe
the synchronization� the philosophers have to be aware of the
fork�s existence� and some of the possible states a fork can
be in�

N � IN

N � �

tabled �� ���N

PhilStatus ��� Thinking j HasRightFork j Eating

ForkStatus�

j Free � ForkStatus

Then the system from the philosophers point of view is just
de�ned by the state of the philosopher� however� there is an
awareness of the forks existence�

Table

phils � tabled � PhilStatus

forks � ���N � ForkStatus

And initially the philosophers are all thinking� and we make
no constraints on forks�

InitTable

Table

ran phils � fThinkingg

We can now describe the operations available� A thinking
philosopher can pick up its right�hand fork� it also knows
that to do this the right hand fork must be free�

GetRightFork

�Table
n� � tabled

forks�n�mod N � �	 � Free

phils�n�	 � Thinking

phils � � phils 	 fn�
� HasRightForkg

Philosophers who hold their right fork can begin eating upon
picking up their left�hand fork� whenever it is free�

GetLeftFork

�Table
n� � tabled

forks�n�	 � Free

phils�n�	 � HasRightFork

phils � � phils 	 fn�
� Eatingg

Finally to resume thinking� a philosopher releases both forks�

DropForks

�Table
n� � tabled

phils�n�	 � Eating

phils � � phils 	 fn�
� Thinkingg

The Forks Viewpoint

This viewpoint considers the speci�cation from the point of
view of the forks� There are N forks each of which is either
free or busy� The fact that the philosopher might change
state when a fork is picked up or dropped does not concern
forks�

N � IN

N � �

ForkStatus ��� Free j Busy

PhilStatus�

j Thinking�HasRightFork �Eating � PhilStatus

Then the system from the forks point of view is just de�ned
by the state of the fork�

Table

forks � ���N � ForkStatus

phils � tabled � PhilStatus

And initially the forks are all free�

InitTable

Table

ran forks � fFreeg

We can now describe the operations available� A free fork
can be picked up� Note that clearly the speci�er of this view�
point has to be aware that the forks have a polarity for the
object that picks them up� and thus describes the operations
in terms of that polarity �alternatively� this polarity could
be described via co�viewpoint mappings	�

GetRightFork

�Table
n� � ���N

phils�n�	 � Thinking

forks�n�mod N � �	 � Free

forks � � forks 	 fn� mod N � �
� Busyg

GetLeftFork

�Table
n� � ���N

phils�n�	 � HasRightFork

forks�n�	 � Free

forks � � forks 	 fn�
� Busyg

Finally� both forks can be released�

DropForks

�Table
n� � ���N

phils�n�	 � Eating

forks � � forks 	 fn�
� Free�n� mod N � �
� Freeg

Unifying the Viewpoints

We can now describe the uni�cation of these two viewpoints
in terms of the algorithm given above� First all normaliza�
tions are undertaken� These will describe the declarations
in normal form� and substitute expressions for all abbrevia�
tions� In the philosophers speci�cation tabled is expanded�
then the types normalized� So for example� the schema
GetRightFork in the philosophers viewpoint is re�written as

GetRightFork

�Table
n� � IN

� � n� � N

forks�n�mod N � �	 � Free

phils�n�	 � Thinking

phils � � phils 	 fn�
� HasRightForkg

The declarations in the uni�cation are then�

N � IN

N � �

PhilStatus ��� Thinking j HasRightFork j Eating

ForkStatus ��� Free j Busy

These declarations have been uni�ed as described above�
Next one schema called Table with initial state InitTable

are built out of the component viewpoints� The combined
declarations and predicates become�

Table

phils � P�IN� PhilStatus	
forks � P�IN� ForkStatus	

 x � IN � �
�
y � PhilStatus � �x �y	 � phils

 x � IN � �
�
y � ForkStatus � �x �y	 � forks

dom phils � dom forks � ���N

InitTable

Table

ran phils � fThinkingg
ran forks � fFreeg

The operations available which are represented by the
schemas have to be uni�ed� To do so we calculate their
pre� and post�conditions� and produce a uni�cation with re�
spect to the uni�ed state as represented by the schema Table�
Upon simplifying� the operation schemas GetRightFork and
GetLeftFork become�

GetRightFork

�Table
n� � IN

� � n� � N

phils�n�	 � Thinking

phils � � phils 	 fn�
� HasRightForkg
forks�n�mod N � �	 � Free

forks � � forks 	 fn� mod N � �
� Busyg

GetLeftFork

�Table
n� � IN

� � n� � N

phils�n�	 � HasRightFork

phils � � phils 	 fn�
� Eatingg
forks�n�	 � Free

forks � � forks 	 fn�
� Busyg

DropForks is uni�ed in a similar fashion�

Checking Consistency

Consistency checking involves checking the uni�ed speci��
cation for contradictions� Consistency checking consists of
checking both the consistency of the state model and the
consistency of all the operations� The nature of uni�cation
as the least re�nement means that this involves checking the
intersection of the two viewpoints in the uni�ed state model�
and the conjunction of the pre�conditions in each operation�

For example� consider the general form of state uni�cation
given in Section ����

D

x � S �T

x � S �� predS
x � T �� predT

This state model is consistent as long as both predS and
predT can be satis�ed for x � S � T � In the classroom ex�
ample� suppose the class consisted of just the element ��
i�e� d � f�g� Both pre�conditions in the uni�ed state�
d � Pf�� �g and d � Pf�� �� �g� now hold giving the state
invariant Min � �d � Max � Thus the consistency of
the viewpoint speci�cations of the classroom requires that
Min � Max � This type of consistency condition is called a
correspondence rule in ODP�
��� that is a condition which is
necessary but not necessarily su�cient to guarantee consis�
tency�

Consistency checking also needs to be carried out on each
operation in the uni�ed speci�cation� The de�nition of oper�
ation uni�cation means that we have to check for consistency

when both pre�conditions apply� That is� if the uni�cation
of A and B is denoted U�A�B	� we have�

pre U�A�B	 � pre A � pre B �

post U�A�B	 � �pre A� post A	 � �pre B � post B	

So the uni�cation is consistent as long as �pre A�pre B	�
�post A � post B	� In the classroom example� this amounts
to checking the operation Leave when

�p� � d � f�� �g	 � �p� � d � f�� �� �g ��d �Min � �	

In these circumstances� the two post�conditions are d � �
d n fp�g and d � � d n fp�� �g� Now the two pre�conditions
apply i
 both p� � � and Min � �� in which case the post�
conditions are d � � d n f�g and d � � d n f�g� and thus
consistent� Hence� Leave is consistent �and therefore so are
two viewpoint speci�cations	 whenever the correspondence
rule Min �Max holds�

Conclusions

The use of viewpoints to enable separation of concerns to be
undertaken at the speci�cation stage is a cornerstone of the
ODP model� However� the practicalities of how to make the
approach work are only beginning to be explored� Two is�
sues of importance are uni�cation and consistency checking�
Our work attempts to provide a methodology to undertake
uni�cation and consistency checking for Z speci�cations�

References

��� G� Cowen� J� Derrick� M� Gill� G� Girling �editor�� A� Herbert�
P� F� Linington�D� Rayner� F� Schulz� and R� Soley� Prost Re�
port of the Study on Testing for Open Distributed Processing�
APM Ltd� �		
�

��� E� W� Dijkstra� Cooperating sequential processes� In
F� Genuys� editor� Programming Languages� Academic Press�
�	�
�

�
� K� Farooqui and L� Logrippo� Viewpoint transformations� In
J� de Meer� B� Mahr� and O� Spaniol� editors� �nd Interna�

tional IFIP TC� Conference on Open Distributed Processing�
pages
���
��� Berlin� Germany� September �		
�

��� ISO�IEC JTC��SC���WG�� Basic reference model of Open

Distributed Processing � Parts ���� July �		
�

��� S� King� Z and the re�nement calculus� In D� Bjorner� C�A�R�
Hoare� and H� Langmaack� editors� VDM ��	 VDM and Z �

Formal Methods in Software Development� LNCS ��
� pages
�����

� Kiel� FRG� April �		�� Springer�Verlag�

��� P� F� Linington� Introduction to the Open Distributed Pro�
cessing Basic Reference Model� In J� de Meer� V� Heymer�
and R� Roth� editors� IFIP TC� International Workshop on

Open Distributed Processing� pages
��
� Berlin� Germany�
September �		�� North�Holland�

��� B� Potter� J� Sinclair� and D� Till� An introduction to formal

speci
cation and Z� Prentice Hall� �		��

�
� J�M� Spivey� The Z notation� A reference manual� Prentice
Hall� �	
	�

�	� A� Vogel� On ODP�s architectural semantics using LOTOS�
In J� de Meer� B� Mahr� and O� Spaniol� editors� �nd Interna�

tional IFIP TC� Conference on Open Distributed Processing�
pages
���
��� Berlin� Germany� September �		
�

