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Abstract

Linear diagrams have recently been shown to be more
effective than Euler diagrams when used for set-based rea-
soning. However, unlike the growing corpus of knowledge
about formal aspects of Euler and Venn diagrams, there has
been no formalisation of linear diagrams. To fill this knowl-
edge gap, we present and formalise Point and Line (PaL) di-
agrams, an extension of simple linear diagrams containing
points, thus providing a formal foundation for an effective
visual language. We prove that PaL diagrams are exactly as
expressive as monadic first-order logic with equality, gain-
ing, as a corollary, an equivalence with the Euler diagram
extension called spider diagrams. The method of proof pro-
vides translations between PaL diagrams and sentences of
monadic first-order logic.

1. Introduction

Linear diagrams have a long history, with the first
recorded use of them owing to Leibniz in 1686 [1, 4]. Much
like Venn and Euler diagrams, they express information
about sets in a visual way. Whilst Venn and Euler dia-
grams have been put on a formal footing (see [10]), linear
diagrams have largely been overlooked, which we begin to
address in this paper. In a linear diagram, parallel labelled
line segments represent sets. The vertical overlap of lines
represents the intersection of the corresponding sets. For
example, consider the diagrams in Fig. 1. The three di-
agrams shown express the same information, namely that
A ∩ B = ∅, and C ⊆ A: d1 is a Venn diagram, using
shading to represent the emptiness of certain set intersec-
tions; d2 is an Euler diagram, which uses disjointness of
curves to represent emptiness of sets; and d3 is a linear di-
agram, where the absence of any vertical overlap between
the lines labelled A and B represents the emptiness of the
corresponding set intersection.

As notations built upon Euler diagrams (hereafter Euler-
based diagrams) have been widely used and formalised,
the expressiveness of these notations has been well stud-

ied. Venn-II and Euler diagrams exactly as expressive as
monadic first-order logic (MFOL) [12, 14]. Although it
has not been formally established, the expressiveness of
the Euler/Venn system is thought to be somewhere be-
tween MFOL and monadic first-order logic with equality
(MFOL[=]) [7]. Spider diagrams extend Euler diagrams
with points, and are known to be exactly as expressive as
MFOL[=] [16]. Of this family of logics, generalised con-
straint diagrams are at least as expressive as dyadic first-
order logic making them the most expressive [13].

Recent research provided empirical evidence that lin-
ear diagrams can be more effective for visualisation than
Euler-based diagrams. In the restricted setting of represent-
ing syllogisms, [11] showed that linear diagrams performed
as well as Euler diagrams. In [3], where the context was
general set-based reasoning, participants using linear dia-
grams outperformed those using Euler diagrams in terms
of both task completion times and error rates. In order
to exploit this interesting result, we propose an extension
to linear diagrams, called PaL diagrams, by adding points
allowing the representation of both sets and elements. We
have two goals: (a) to provide a formal foundation for PaL
diagrams in order that we may (b) determine contexts where
these new diagrams maintain their advantage over Euler-
based notations. It is the first of these goals which is one
focus of this paper.

Adequate formal foundations are important for a number
of reasons. Firstly, to compare the efficacy of two notations,
it is key that the two notations are capable of expressing the
same information. Any meaningful comparison between
notations can only be performed on information expressible
in all. Without formalisation, determining the expressive-
ness of a notation is not possible. In this paper, we show
that PaL diagrams are exactly as expressive as MFOL[=],
giving us the corollary that PaL diagrams are equivalent in
expressive power to spider diagrams, and more expressive
than Euler and Venn-II diagrams. Secondly, while static di-
agrams are useful, the ability to manipulate and reason with
diagrams in a coherent manner is also desirable. The only
way in which such reasoning rules can be determined and
shown to be sound is through formalisation. The develop-
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Figure 1. Venn, Euler and linear diagrams

ment of reasoning rules is outside the scope of this paper,
but the work contained herein will allow such rules to be
defined, and reasoned about, in a rigorous manner.

A number of notations have been derived from linear di-
agrams. For instance, the parallel bargrams of [18] and the
double decker plots of [8] are both closely related to Leib-
niz’s original version of linear diagrams, though neither are
formal objects. To our knowledge, only one attempt has
been made to formalise diagrams similar in flavour to linear
diagrams, called line diagrams [6]. These diagrams contain
non-parallel lines, and the intersection of these lines asserts
the existence of an element in the corresponding sets. How-
ever, [9] showed the construction rules for these line dia-
grams were unsound. There is thus a gap for a formaliza-
tion of linear diagrams, which is a key contribution of this
paper.

The rest of the paper is organised as follows. In sec-
tion 2 we give formal definitions of the syntax and seman-
tics of PaL diagrams. Section 3 gives an overview of some
MFOL[=] concepts necessary for establishing expressive
equivalence of PaL diagrams and MFOL[=]. The sections
4 and 5 contain demonstrations that every PaL diagram is
equivalent to some sentence in MFOL[=], and that every
sentence in MFOL[=] can be equivalently expressed as a
PaL diagram, respectively. We conclude and point to future
directions in section 6.

2. PaL diagrams: Syntax and Semantics

A PaL diagram consists of a set of parallel horizontal line
segments (the actual orientation is somewhat irrelevant, all
that is important is that the lines are parallel) with a col-
lection of points arranged underneath the lines, as in Fig.
2. How the points and lines are arranged determines the
meaning of the diagram. We proceed to present an abstract
syntax for PaL diagrams.

In what follows, we take L to be a countably infinite set
of letters, whose elements are called line labels, and P to be
a countably infinite set of letters, whose elements are called
point labels, disjoint from L. In examples, we use capi-
tal roman letters A,B,C, . . . as elements of L and lower
case roman letters a, b, c, . . . as elements of P . When mak-
ing general statements, we use Li and pi to denote line and

Figure 2. A PaL diagram

Figure 3. Venn-3

point labels respectively. We reserve the letter U for a par-
ticular purpose, thus it is the case that U /∈ L ∪ P .

The main interaction between lines is the overlap which
is where horizontal lines share the same vertical space. For-
mally:

Definition 1 An overlap is a word L1L2 . . . Ln where each
Li is a line label from L, possibly adorned with a bar, L̄i.
Given an overlap, O, we say that Li is barred if L̄i appears
in O, otherwise Li is unbarred. The set of all overlaps is
denoted O.

For example, suppose that A,B and C are line labels in
L. Then the following are overlaps: ABC, ĀBC and
AAB̄CC̄. Note that last overlap is peculiar in that letters
appear duplicated, barred and unbarred. We allow such
overlaps to make reasoning about contradictions straight-
forward and intuitive, although that will be future work. In
Fig. 2, there are three overlaps, reading left to right: AB
(where the lines labelled A and B overlap), AB̄ (where the
line A does not overlap with B), and ĀB̄ (where neither A
nor B appear). Notice that the top line, labelled U , does not
appear in the overlaps. The line label U is special: it rep-
resents the universal set and its presence indicates the ex-
treme left and right coordinates of the line segments in the
diagram. This limiting behaviour is important when there
are overlaps whose letters are all barred; in Fig. 2, without
the line for U , the PaL diagram could be taken to assert that
all elements had to be in A, since the overlap ĀB̄ would be
not be visible in the diagram.

Lines may consist of several segments. For example, in
Fig. 3 we have a representation of Venn-3. This diagram
would be impossible to draw without splitting at least one
of the lines into segments. Here A and B consist of multiple
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segments, whereas C consists of a single segment. The U
line can only consist of a single segment.

Overlaps can either be solid or dashed, and this is rep-
resented by or respectively. The interpretation of
solid overlaps is that the set intersection represented is non-
empty, whereas a dashed overlap could represent an empty
set.

Points, which are visually drawn underneath overlaps as
in Fig. 2, are formally defined in a similar way to overlaps,
and to each overlap we associate the set of points occupying
the same vertical space, called a clan of points. Formally:

Definition 2 A clan is a word p1p2 . . . pn where each pi
is a letter drawn from P , possibly adorned with a bar, p̄i.
Given a clan cl, we say that pi is barred if p̄i appears in cl,
otherwise pi is unbarred.

For example, suppose that a, b, c are letters from P . Then
the following are clans: ab̄, cc̄, and ab̄c. Informally, points
which are unbarred are said to lie under overlaps. In Fig. 2,
there are three clans, reading left to right: pq (where both
p and q are under AB̄), pq̄ (where the point p is under AB
but q is not), and p̄q̄ (where neither p nor q are under ĀB̄).

PaL diagrams will comprise a list of overlaps, which may
be solid or dashed, together with a set of clans. For (ab-
stract) PaL diagrams to properly correspond to their con-
crete (drawn) realisations, it must be the case that each over-
lap and clan in a diagram is in some sense similar. We re-
quire that each overlap has the same underlying word. In
order to formalise this, we introduce the rem function that
removes bars from letters; in the definition below, λ denotes
the empty word and αi denotes a single letter.

Definition 3 The remove function,

rem : Overlap ∪ Clan → Overlap ∪ Clan,

is defined recursively by:

• rem(λ) = λ,

• rem(αi) = rem(ᾱi) = αi,

• rem(αi · w) = rem(αi) · rem(w),

where · is the standard concatenation operator.

For example rem(ĀBC) = ABC and rem(ab̄c) = abc.
The last piece of syntax needed is shading. An overlap

and clan sharing the same vertical space is either shaded or
not shaded, indicated by ! or ", respectively. Shading is
used to place an upper bound on the size of the set repre-
sented by the overlap.

Definition 4 A unitary PaL diagram, d, is a non-empty
ordered list of 4-tuples (overlapi, typei, clani, shadingi)
such that:

• ∀i, j. rem(overlapi) = rem(overlapj),

• typei ∈ { , }

• ∀i, j. rem(clani) = rem(clanj),

• shadingi ∈ {!,"}.

The word rem(overlapi) is called the line-order of d, de-
noted lo(d); the set of letters in lo(d) is called the lines of
d, denoted l(d); the word rem(clani) is called the point-
order of d, denoted po(d); and the set of letters in po(d) is
called the points of d, denoted p(d). The point pi lies under
overlapj , denoted pi ↓ overlapj , whenever pi is unbarred
in clanj . The set of overlaps in d is denoted Od; and the set
of all w such that rem(w) = lo(d) is called the allowable
overlaps of d, denoted AOd.

Much like repeated letters in overlaps, overlaps themselves
can be repeated in a diagram. The drawn PaL diagram in
Fig. 2 is, formally,

d = [(AB, , pq,!), (AB̄, , pq̄,"), (ĀB̄, , p̄q̄,!)].

In this diagram, l(d) = {A,B} and p(d) = {p, q}. The
following, however, is not a PaL diagram:

[(ABCD, , ab,!), (ABC̄, , āb̄,")]

since rem(ABCD) = ABCD ̸= ABC = rem(ABC̄).

Definition 5 Given a unitary PaL diagram d, we call the
set Od( ) = {Oi ∈ Od : typei = } the solid overlaps
of d; we call the set Od(") = {Oj ∈ Od : shi = "} the
shaded overlaps of d; we call the set Pd(O) = {p ∈ p(d) :
p ↓ O} the points lying under overlap O in d; and we call
the set Od(p) = {O ∈ Od : p ↓ O} the overlaps over point
p.

We can then build up PaL diagrams using normal logical
connectives and unitary PaL diagrams:

Definition 6 A PaL diagram is defined inductively as fol-
lows:

• if d is a unitary PaL diagram then d is a PaL diagram;

• if d1 is a PaL diagram then ¬d1 is a PaL diagram
where l(¬d1) = l(d1) and p(¬d1) = p(d1);

• if d1 and d2 are PaL diagrams and ⋄ ∈ {∧,∨,⇒}
then (d1 ⋄ d2) is a PaL diagram where l(d1 ⋄ d2) =
l(d1) ∪ l(d2) and p(d1 ⋄ d2) = p(d1) ∪ p(d2);

Given a unitary PaL diagram, we now show how to draw
that diagram. The process will produce a drawn diagram
where all overlaps have equal length, although it is a simple
matter to drop this restriction.
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Definition 7 Given a unitary PaL diagram

d = [(O1, type1, cl1, sh1), . . . , (On, typen, cln, shn)]

we draw the concrete diagram for d as follows:

1. Write the word U · lo(d) · po(d) vertically downwards,
followed by a vertical line of equivalent length.

2. Draw

(O1, type1, cl1, sh1) = (L1 . . . Lm, type1, p1 . . . pk, sh1)

as follows:

• If type1 = then draw a solid horizontal line
of length 1 unit against U and, for each j =
1, . . . ,m, if Lj is unbarred in O1 draw a solid
horizontal line against the letter Lj of length 1
unit.

• If type1 = then draw a dashed horizontal
line of length 1 unit against U and, for each j =
1, . . . ,m, if Lj is unbarred in O1 draw a dashed
horizontal line against the letter Lj of length 1
unit.

• For j = 1, . . . , k, if pj is unbarred then draw •
in the middle of the horizontal space of width 1
unit against the letter pj .

• If sh1 = " then shade the entire vertical column
one unit wide.

For each i = 2, . . . , n, repeat the process as for

(O1, type1, cl1, sh1),

moving along i − 1 units before starting to draw lines
(resp. i− 1

2 units for points).

3. Draw a box around the constructed elements.

Figure 4. Drawing a PaL diagram

As an example, consider the unitary PaL diagram

[(AB̄C, , pq̄,"), (ĀB̄C̄, , pq,!), (ABC, , p̄q̄,!)].

The drawing stages for this diagram are shown in Fig. 4.

Given drawings of unitary PaL diagrams, we can com-
bine them to form drawings of more general diagrams.
Diagrammatically, negation is represented by crossing the
diagram out, conjunction by juxtaposition, disjunction by
drawing a horizontal line segment between diagrams (as
in Shin’s Venn-II system [12]) and implication by drawing
a horizontal, single-headed arrow (⇒) between diagrams.
Concrete representations of these constructions are illus-
trated in Fig. 5, showing

(a) ¬[(AB̄C, , pq̄,!)]

(b) [(AB̄C, , p̄q,!)] ∧ [(ĀBC̄, , pq,!)]

(c) [(ĀB̄C̄, , p̄q,!)] ∨ [(ABC, , pq,!)], and
(d) [(ĀB̄C̄, , p̄q,!)] ⇒ [(ĀBC, , pq̄,!)].

We now have the syntax for PaL diagrams. We give them
meaning in a natural way, given we are using them as rep-
resentations of sets and elements. The lines and points are
interpreted as subsets and elements of some universe, re-
spectively. Formally:

Definition 8 An interpretation is a pair (U , I) where U is
called the universal set and I the function I : L → P(U)
ensures I(A) ⊆ U . The function I can be extended to inter-
pret barred letters and overlaps as follows:

• for each letter, A, I(Ā) = U − I(A), and

• for each overlap O,

I(O) =
⋂

A∈Lu

I(A) ∩
⋂

A∈Lb

I(Ā)

where Lu is the set of letters which appear unbarred in
O and Lb is the set of letters which appear as barred
letters in O.

If U is finite the size of the interpretation is |U|.

Interpretations that agree with the intended meaning of a
diagrams are called the diagram’s models:

Definition 9 Let

d = [(O1, type1, cl1, sh1), . . . , (On, typen, cln, shn)]

be a unitary PaL diagram. An interpretation I = (U , I)
is a model for d, denoted I |= d, whenever there exists a
function, namely Φ : P → U , mapping points to elements
of U satisfying:

1. Point-location condition: each point maps to an ele-
ment in the set represented by an overlap under which
the point lies:

∧

p∈p(d)

⎛

⎝Φ(p) ∈
⋃

Oi∈Od(p)

I(Oi)

⎞

⎠ .
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Figure 5. Components of PaL diagrams

2. Point-distinctness condition: no two distinct points
map to the same element:

∧

pi,pj∈p(d)

(pi ̸= pj ⇒ Φ(pi) ̸= Φ(pj)).

3. Solid-overlap condition: Solid overlaps represent
non-empty sets:

∧

O∈Od( )

(I(O) ̸= ∅) .

4. Overlap-absence condition: Overlaps that could be
present given the line labels used represent empty sets:

∧

O∈AOd−Od

(I(O) = ∅) .

5. Shaded-overlap condition: in a shaded overlap, all
elements are represented by points:

∧

Oi∈Od(!)

(I(Oi) ⊆ {Φ(pi) : pi ∈ cli}) .

If I is a model for d then I satisfies d.

As an example, take the final diagram in figure
4, and consider the interpretation (U , I) where U =
{1, 2, 3}, I(A) = {1, 3}, I(B) = {3}, I(C) =
{1, 3},Φ(p1) = {1},Φ(p2) = {2}. We show that (U , I) |=
d. For every solid overlap present in d, we have I(O) ̸=
∅. To illustrate, the second overlap is ĀB̄C̄, giving in-
terpretation (U − I(A)) ∩ (U − I(B)) ∩ (U − I(C)) =
{2} ∩ {1, 2} ∩ {2} = {2} ̸= ∅. Further, the overlap ĀBC̄
(amongst others) is absent. The interpretation of this over-
lap is (U−I(A))∩I(B)∩(U−I(C)) = {2}∩{3}∩{2} = ∅,
as required. Consider the point p2, lying under the over-
lap ĀB̄C̄. We have already seen the interpretation of this
overlap is {2}, and since Φ(p2) ∈ {2}, we have that the
point-location condition is satisfied for p2. Now, to satisfy

the point-location condition for p1, we require that Φ(p1) ∈
{1, 3}∪{2}, which holds. The shaded-overlap condition for
the first overlap requires that I(A)∩ (U − I(B))∩ I(C) ⊆
{Φ(p1)}. Now, since Φ(p1) = 1, the condition is satisfied.
All conditions are thus true, and so (U , I) |= d.

Note that (U , I) is not the only model for d. There is
no maximum cardinality restriction on the number of ele-
ments in I(ĀB̄C̄). Thus, keeping the function I the same,
but changing U to {1, 2, 3, 4} will still be a model for d, ex-
cept now I(ĀB̄C̄) = {2, 4}. By contrast, we cannot add
extra elements to I(AB̄C), since otherwise we would vi-
olate the shaded overlap condition. This observation that
the model sets for unshaded overlaps can be extended, but
the sets for shaded overlaps cannot necessarily be extended,
will be crucial in section 5.

The interpretation ({1, 2}, I) where I(A) = I(B) =
I(C) = ∅,Φ(p) = {1},Φ(q) = {2} is likewise a model
for d. This model illustrates the shaded-overlap condition
requiring a subset relation, rather than equality. For, the
interpretation of the first overlap is ∅, since p is interpreted
as lying under the second overlap, so clearly I(ĀBC̄) =
∅ ̸= {1}.

Consider the unitary diagram d = [(A, ,λ,")], in
other words the fully shaded diagram with one solid over-
lap, A, with no points lying under it. Consider further the an
interpretation I. The solid overlap presence condition tells
us that I(A) ̸= ∅. By contrast, the shaded overlap condition
tells us I(A) is subset of the interpretations of the points ly-
ing under the overlap. Since no points lie under the overlap
A, we have that I(A) ⊆ ∅. Thus, the conditions cannot all
be true, and so I is not a model for d, that is we say d is un-
satisfiable. There are many unsatisfiable diagrams, but the
canonical unsatisfiable diagram, denoted d⊥, is defined to
be:

d⊥ = [(λ, ,λ,")].

We need to define models for arbitrary PaL diagrams.
This is straightforward:

Definition 10 Given an interpretation I = (U , I) and a
non-unitary PaL diagram d, we say that I is a model for d,
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denoted I |= d, based on the structure of d:

1. if d ≡ ¬d1, then I |= d whenever I ̸|= d1,

2. if d ≡ d1 ∨ d2, then I |= d whenever I |= d1 or
I |= d2,

3. if d ≡ d1 ∧ d2, then I |= d whenever I |= d1 and
I |= d2, and

4. if d ≡ d1 ⇒ d2, then I |= d whenever I |= d1 implies
I |= d2.

Each dot against a point label represents disjunctive in-
formation. For example, in the right-most diagram of Fig.
5, there are two dots for the point p. This arrangement
means that the point p will be interepreted either as the first
dot, or the second, but not both. Conjunctive information
about points, meanwhile, will be represented by duplicate
point labels. Wherever a point-order for a diagram contains
two instances of the same letter, say p, then unless there is
some clan where both instances of p are unbarred, then the
diagram will necessarily represent a contradiction.

The use of multiple dots against a single point label to
represent disjunction provides a compact notation. If points
were singular (could only consist of a single dot), then dis-
junction would have to be represented as a disjunction of
unitary PaL diagrams. Consider the simple case of a di-
agram for Venn-2, together with a pair of points p and q
where the only information we know is that p and q are dis-
tinct points. In other words, we do not know in which sets
their interpretations are. This situation is illustrated in Fig.
6. If points were instead singular, then we would need 10
unitary diagrams connected by disjunctions to represent the
same information. Suppose that the interpretation of p is an
element of the intersections of the interpretations of A and
not B. Then, there are 4 possible locations for the inter-
pretation of q, requiring 4 separate representative diagrams
(the first four components of Fig. 7). Suppose, instead, that
the interpretation of p is an element of the intersection of
the interpretations of A and B. Recalling that the points
represent variables, not constants, there are now only 3 pos-
sible locations for the interpretation of q. Continuing in this
way, we see that there are 4+ 3+ 2+ 1 = 10 different uni-
tary diagrams needed when we restrict points to be singular.
The diagram in Fig. 7 represents the same information as
the in Fig. 6 yet the latter is more compact than the former.
In general, where m points each lie on n overlaps, then the
number of disjuncts needed if each point is to be singular
is O(nm), although proving this simple result is outside the
scope of this paper.

3. Monadic First-Order Logic with Equality

To show that PaL diagrams are exactly as expressive as
monadic first-order logic with equality (MFOL[=]), we aim

Figure 6. Points as disjunctive information

to provide translations between sentences in MFOL[=] and
diagrams. In order to do this, we first give a brief survey of
some necessary results about MFOL[=].

A monadic predicate symbol is one which takes a single
argument. For example, L(x) uses the monadic predicate
symbol L, whereas D(x, y) uses the dyadic predicate sym-
bol D. MFOL[=] has only one special dyadic predicate,
that of equality. We use L as the set of monadic predicate
symbols, thus treating the line labels as monadic predicates.
Further, we take the set of variables to include all points
in P = {p1, p2, . . .}, and sometimes use the more usual
x, y, . . . as well. Using points as variables makes definitions
later in the paper more straightforward (variables will arise
from points in our translations). Using x and y as variables
distinguishes them from those arising from points.

Briefly, formulae in MFOL[=] are defined using
monadic predicate symbols, variables, =, logical connec-
tives and quantifiers in the standard way. Given a formula,
ψ, if ψ has no free variables (i.e. variables that are not
bound by a quantifier) then ψ is a sentence. Every for-
mula can be turned into a semantically equivalent sentence
by binding the free variables with universal quantifiers. As
we use the standard syntax and semantics of MFOL[=] full
details of the syntax and semantics are omitted; unfamiliar
readers are referred to [2]. Firstly, we define the notion of
expressive equivalence:

Definition 11 A diagram and a sentence are expressively
equivalent whenever they have the same set of models.

In order to prove the expressive equivalence between
PaL diagrams and MFOL[=], we compare the model sets
of each. As an example, consider the MFOL[=] sen-
tence S = ∃x. A(x). Take the interpretation I =
({1, 2}, {(A, {1}), . . .}). This interpretation is a model for
S, whereas any interpretation with I(A) = ∅ is not: S stip-
ulates that any interpretation of A must be non-empty.

We briefly summarise some results about models for
MFOL[=] contained in [16]. In particular, we include the
definitions that are needed to state a key theorem about
MFOL[=] sentences, encapsulating the fact that each sen-
tence, S, has a finite set of ‘small’ models (formally defined
later) that can be used to generate all models of S. These
small models are crucial for constructing a diagram with
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Figure 7. Disjunctive blow-up

the same meaning as S. Like diagrams, each sentence S in
MFOL[=] may have many models. The first step is to iden-
tify the interpretation of sets of predicate symbols, akin to
the interpretation of overlaps:

Definition 12 Let I be a interpretation with universal set
U and let X and Y be finite subsets of L. The predicate
intersection set in I with respect to X and Y , denoted
PI(I, X, Y ), is given by:

PI(I, X, Y ) =
⋂

Li∈X

I(Li) ∩
⋂

Li∈Y

(U − I(Li))

where
⋂

Li∈∅ I(Li) =
⋂

Li∈∅(U − I(Li)) = U [16].

Given a sentence S, denote by q(S) and P (S) the quan-
tifier rank of S [5] and set of predicates in S, respectively;
recall, the quantifier rank of S is the maximum number of
nested quantifiers in S. A sentence with quantifier rank of
n can contain at most n distinct variables within the body
of the sentence. Now, to limit the cardinality of a predicate
intersection set to, say, m we need m + 1 distinct variable
names. To see this, consider the sentence ∃p1.∀p2. p1 = p2.
Any model for this sentence must have size 1, since the
sentence tells us some element exists, and every element
is equal to it. This argument is easily extended to arbitrary
m > 1. Given a model for S and a predicate intersection,
PI , set with cardinality at least q(S), elements can be added
to PI and the resulting interpretation is still a model for S.
By contrast, if PI has cardinality less than q(S) then ele-
ments cannot necessarily be added to it. Given any model
for S, we can identify which predicate intersection sets can
safely be extended with extra elements. Formally:

Definition 13 Let S be a sentence and let I1 be a model for
S. An S-extension of I1 is an interpretation, I2, such that
for each subset X of P (S):

PI(I1, X, P (S)−X) ⊆ PI(I2, X, P (S)−X)

with equality whenever |PI(I1, X, P (S) − X)| < q(S)
[16].

Definition 14 Let S be a sentence and I be a model for S.
If the cardinality of I is at most 2|P (S)|q(S) then we say I
is a small model for S [16].

Given a sentence S we have that q(S) and 2|P (S)| are
finite, and so there are finitely many candidate interpreta-
tions which can be small models for S. We say two inter-
pretations I1 = (U1, I1) and I2 = (U2, I2) are isomorphic
restricted to P (S) iff there exists an isomorphism between
I1 and I2 when the domains of I1 and I2 are both restricted
to P (S).

Definition 15 Let S be a sentence. A set of small models,
c(S), is called a classifying set of models for S if for each
small model m1 for S, there exists a unique m2 ∈ c(S) such
that m1 and m2 are isomorphic restricted to P (S) [16].

In other words, a classifying set for S is the smallest pos-
sible set of small models for S. We can create S-extensions
of the small models for S to create more models for S. Such
extensions form a set called the cone:

Definition 16 The cone of I1 given S, denoted
cone(I1, S), is a class of interpretations such that
I2 ∈ cone(I1, S) iff I2 is isomorphic to some S-extension
of I1 [16].

Finally, we have the key theorem needed for our expres-
siveness result:

Theorem 1 Let S be a sentence and let c(S) be a clas-
sifying set of models for S. Then

⋃
m∈c(S) cone(m,S) is

precisely the set of models for S [16].
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4. Sentences for diagrams

To show that every diagram can be turned into a sentence
in MFOL[=], we translate the conditions from definition 9
into formulae in MFOL[=]. Given a unitary PaL diagram
we need to know how to translate the overlaps, the clans
and the shading into MFOL[=] formulae. We first define
a formula for an overlap, regardless of whether it is solid,
dashed or shaded.

Definition 17 Let O be an overlap with unbarred letters Lu

and barred letters Lb. The overlap formula for O, denoted
F(O, x), is given by:

F(O, x) =
∧

L∈Lu

L(x) ∧
∧

L∈Lb

¬L(x).

We can now define the translation of a unitary PaL diagram
to a MFOL[=] sentence.

Definition 18 Let

d = [(O1, type1, cl1, sh1), . . . , (On, typen, cln, shn)]

be a unitary PaL diagram, where p(d) = {p1, . . . , ps}.

• The point-location formula for d, denoted FPL(d), is
a conjunction, over all points, of the disjunctive infor-
mation given by each point of d:

FPL(d) =
∧

pi∈p(d)

⎛

⎝
∨

O∈Od(pi)

F(O, pi)

⎞

⎠ .

• The point-distinctness formula for d, denoted
FPD(d), is a conjunction, over all distinct points, of
inequalities:

FPD(d) =
∧

pi,pj∈p(d)∧i ̸=j

pi ̸= pj .

• The solid-overlap formula for d, denoted FSoO(d), is
a conjunction, over all solid overlaps, of the existential
formulae:

FSoO(d) =
∧

O∈Od( )

∃x. F(O, x).

• The overlap-absence formula for d, denoted FOA(d),
is a conjunction, over all allowable overlaps that are
absent from d, of negated existential formulae stating
that no elements lie under the absent overlaps:

FOA(d) =
∧

O∈AOd−Od

¬∃x.F(O, x).

Figure 8. A PaL diagram to be translated to
MFOL[=]

• The shaded-overlap formula for d, denoted FShO(d),
is a conjunction, over all shaded overlaps, of universal
formulae stating that if an element lies under an over-
lap, then it must be one of the points lying under that
overlap:

FShO(d) =
∧

O∈Od(!)

⎛

⎝∀y.

⎛

⎝F(O, y) ⇒

⎛

⎝
∨

p∈Pd(O)

y = p

⎞

⎠

⎞

⎠

⎞

⎠ .

The MFOL[=] sentence for d, denoted S(d), is then given
by:

S(d) = ∃p1, . . . , ps. FPL(d)∧FPD(d)∧FSoO(d)∧FShO(d).

Note that, if typei = for some overlap then the overlap
itself gives us no information (although the points lying un-
der it might). Hence, there is no formula created from the
dashed overlaps, just as no condition arose in definition 9.

Consider the diagram d in figure 8. We create an
MFOL[=] sentence for this diagram using the following for-
mulae:

FPL(d) = (A(p1) ∧ ¬B(p1)) ∨ (¬A(p1) ∧ ¬B(p1))∧
(¬A(p2) ∧B(p2))∧
(¬A(p3) ∧ ¬B(p3)),

FPD(d) = (p1 ̸= p2 ∧ p1 ̸= p3 ∧ p2 ̸= p3),
FSoO(d) = ∃x. (¬A(x) ∧B(x)) ∧ ∃x. (¬A(x) ∧ ¬B(x)) ,
FOA(d) = ¬∃x. (A(x) ∧B(x)) ,
FShO(d) = ∀y. ((A(y) ∧ ¬B(y)) ⇒ (y = p1)) .

Thus the sentence for d is:

S(d) = ∃p1p2p3.FPL(d)∧FPD(d)∧FSoO(d)∧FOA(d)∧FShO(d).

Theorem 2 Every unitary PaL diagram d is expressively
equivalent to S(d).

The proof is straightforward: each part of the sentence cor-
responds to an encoding in MFOL[=] of the conditions in
definition 9. It is also immediate how to extend the result to
arbitrary PaL diagrams:
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Definition 19 Let d be a PaL diagram. The MFOL[=] sen-
tence for d, denoted Sen(d), is given by induction on the
structure of d:

• if d is a unitary diagram then Sen(d) is already de-
fined,

• if d is ¬d1, then Sen(d) = ¬Sen(d1),

• if d is d1 ⋄ d2, where ⋄ ∈ {∧,∨,⇒}, then Sen(d) =
(Sen(d1) ⋄ Sen(d2)).

Theorem 3 Every PaL diagram d is expressively equiva-
lent to Sen(d).

5. Diagrams for sentences

In order to construct a diagram for the sentence S, we
need only construct diagrams for the small models in c(S),
and take the disjunction of these diagrams. In what follows
we let PIX,I,S = |PI(I, X, P (S) − X)|. The process
for drawing a diagram for each small model is straight-
forward. First, if c(S) contains the interpretation with
|I| = 0, then this model gives rise to the empty diagram
d∅ = [(λ, ,λ,")]. This diagram contains no points or
lines other than the U line, and the shading asserts that
the universe is empty. For non-empty models, we assign
solid overlaps to non-empty predicate intersection sets and
we create the same number of points lying under this over-
lap as the cardinality of the predicate intersection set. We
shade those overlaps where the associated predicate inter-
section set has smaller size than the quantifier rank of the
sentence. Formally:

Definition 20 Let I be a small model for a MFOL[=] sen-
tence S and suppose |I| = m and |P (S)| = n where
P (S) = {L1, . . . , Ln}. Let the set {X : X ⊆ P (S) ∧
PIX,I,S > 0} = {X1, . . . , XN} be ordered. The PaL di-
agram d representing I given S, denoted D(I, S) = d is
defined as follows:

1. If |I| = 0, then d = d∅.

2. Otherwise, the line labels are the predicate symbols in
P (S) and set lo(d) = L1 . . . Ln.

3. There is one point label for each element of U:

p(d) = {p1, . . . , pm}

and set po(d) = p1 . . . pm.

4. For i = 1, . . . , N construct the overlap
(L1 . . . Ln, , p1 . . . pm, shi) where:

• Lj is unbarred iff Lj ∈ Xi,

• pk is unbarred iff:

i−1∑

j=1

PIXj ,I,S < k ≤
i∑

j=1

PIXj ,I,S

where we define
∑0

j=1 PIXj ,I,S = 0,

• shi = " iff PIXi,I,S < q(S).

We illustrate the process of determining whether points
are unbarred with an example. Suppose a model has
X1, X2 and X3 as the only sets where PIX,I,S > 0, and
PIX1,I,S = 3, P IX2,I,S = 4 and PIX3,I,S = 2. The val-
ues k can take such that PIX1,I,S < k ≤ PIX1,I,S +
PIX2,I,S are 4, 5, 6 and 7. Then the unbarred points
in the second clan would be p4, p5, p6 and p7, meaning
p1, p2, p3, p8 and p9 would be barred. A consequence of
definition 20 is that every point lies on exactly one overlap.

Having defined the diagrams representing an interpreta-
tion given a sentence, we now define the diagrams for the
sentence:

Definition 21 Given an MFOL[=] sentence S with classi-
fying models c(S), the diagram representing S, denoted
D(S), is given by:

D(S) = d⊥ ∨
∨

I∈c(S)

D(I, S)

We demonstrate definition 21 using an example. One of
the small models of the sentence S = ∃x. A(x)∨∀x. A(x)
is given by I = ({1, 2}, I) where I(A) = {1}. There is a
single predicate symbol in S, and so the line order for d is
simply as A. Furthermore, the set X1 = {A} and X2 = ∅
are the only sets for which PIX,I,S > 0. So, the number
of overlaps in D(I, S) is 2. In this example, |I| = 2 so we
require 2 points in each clan. The point order of d is given
by p1p2.

The first overlap, (A, , p1p̄2,!), is unshaded since
PIX1,I,S = 1 ≥ q(S) = 1. Also, since 0 < 1 ≤ 1, p1
is unbarred but p2 is not. Similarly, the second overlap is
(Ā, , p̄1p2,!).

The rest of the small models for S are:

1. I1 = (∅, ∅),

2. I2 = ({1}, {(A, {1})}),

3. I = I3 = ({1, 2}, {(A, {1})}), and

4. I4 = ({1, 2}, {(A, {1, 2})}).

The diagram for this sentence is given in figure 9.
The first model, I1, comes from the vacuous satisfac-

tion of ∀x. A(x), giving rise to the empty diagram. We
have already shown the diagram for the model I3, and the
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Figure 9. The PaL diagram for ∃x. A(x) ∨
∀x. A(x)

Figure 10. A more natural diagram for ∃x. A(x)

rest are left for the reader to verify. We note that the di-
agram in figure 9 could be considered a relatively natural
PaL diagram for the sentence. We could write ∀x. A(x)
using the law of excluded middle: either no x exists, or ev-
ery x has A(x). Thus, the first two disjuncts of figure 9, i.e.
d∅∨ [(A, , p1,!)], represent the universal part of the sen-
tence. The former covers the case where no x exists (and so
∀x. A(x) is trivially satisfied), and the latter covers the case
where ∀x. A(x) holds for non-empty universes. The exis-
tential part of the sentence can be thought of as follows: we
know an x exists such that A(x), but this does not preclude
other y existing such that ¬A(y). In order to capture this sit-
uation, we would use the diagram in figure 10. The overlap
(Ā, , p̄1,!) tells us only that it is possible for such y to
exist, but does not necessitate its existence. We could thus
replace the third and fourth components of figure 9 with the
PaL diagram from figure 10.

The purpose of definitions 20 and 21 was not to produce
the most natural diagrams for sentences (an interesting chal-
lenge for future work), however, but rather to demonstrate
that every sentence could be translated into some PaL dia-
gram.

Theorem 4 Let S be a sentence. Then D(S) is expressively
equivalent to S.

Proof. (Sketch) We show that definition 20 provides a di-
agram with models for S, and the corresponding proof for
definition 21 follows immediately. Let I be a small model
for S in c(S), and let D(I, S) be constructed according to
definition 20. We show that any model I1 ∈ cone(I, S) is
a model for D(I, S), omitting the details of the converse.

If I1 ∈ cone(I, S) then it has been extended from I in
such a way that

PI(I, X, P (S)−X) = PI(I1, X, P (S)−X)

whenever PIX,I,S < q(S), and

PI(I, X, P (S)−X) ⊆ PI(I1, X, P (S)−X)

otherwise. Let O be the overlap associated with the set
X , and thus |I(O)| = PIX,I1,S ≥ PIX,I,S . There are
PIX,I,S distinct points lying under O and at least PIX,I,S
distinct elements in I(O), so we can thus assign each point
lying under O to a distinct element of I(O) using a func-
tion Φ. In this way, we have satisfied the point location and
point distinctness conditions.

If PIX,I,S < q(S) then O is shaded and |I(O)| =
PIX,I,S . Since every point of D(I, S) lies under exactly
one overlap, and there are PIX,I,S of them by the point
distinctness and location conditions being satisfied we have
that ⋃

p∈Pd(O)

Φ(p) = I(O).

Trivially, then, I(O) ⊆
⋃

p∈Pd(O)

Φ(p), and thus the shaded

overlap condition is satisfied.
If PIY,I1,S = 0 then we draw no overlap, meaning

O ∈ AOD(I,S) − OD(I,S). However, since we associate
O with Y , we also have I(O) = ∅, and thus the overlap
absence condition is satisfied. Put another way, since we
only draw an overlap when PIX,I1,S ̸= 0, every X such
that PIX,I1,S ̸= 0 is assigned to an overlap O which has
I(O) ̸= ∅, satisfying the solid overlap presence condition.
Then, the model I1 is also a model for D(I, S), as required.
Hence, by theorem 1, every model for S is a model for
D(I, S). "

We have seen how any MFOL[=] sentence S can be
translated into a PaL diagram, and any PaL diagram can
be translated into an MFOL[=] sentence. Therefore:

Theorem 5 PaL diagrams and MFOL[=] are equally ex-
pressive.

The main result of [16] was that spider diagrams are
equally expressive as MFOL[=]. We thus have the follow-
ing:

Theorem 6 PaL diagrams, MFOL[=]and spider diagrams
are all expressively equivalent.

6. Conclusion and Further Work

The results from [3, 11] demonstrated that linear dia-
grams have the potential to be an effective visual language
in the areas where Euler and Venn diagrams are currently
used. To explore and exploit this observation, we have ex-
tended linear diagrams to PaL diagrams by adding points.
Moreover, we have formalised the syntax and semantics of
PaL diagrams and shown they are capable of expressing
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exactly the same statements as MFOL[=]. As a corollary,
we immediately have that PaL diagrams are exactly as ex-
pressive as spider diagrams which extend Euler diagrams.
PaL diagrams provide a solid foundation for further devel-
opment of linear-based notations, both in terms of expres-
siveness and reasoning.

There are a number of clear directions for further work.
The creation of a system of inference rules for PaL diagrams
is of particular interest. The reasoning rules for Euler-based
diagrams with an equivalent level of expressiveness demon-
strate that a sound and complete system of rules is possible.
Given a sound and complete reasoning system for PaL dia-
grams, it should be possible to integrate these diagrams into
a heterogeneous system such as Diabelli [17].

In the usability direction, we will seek layout guidelines
for PaL diagrams that aid understanding. For example, to
what extent is the ordering of the lines important? Is inter-
leaving of the points and lines ever beneficial? By answer-
ing these questions, and others, empirically we seek to de-
velop conditions akin to the well-formed conditions of Eu-
ler diagrams [15]. However, rather than these conditions be-
ing purely theoretical, to be tested empirically later, the em-
pirical method will drive their development. In other words,
we will develop a set of ease-of-understanding guidelines.

In terms of comparative usability, now that we have a
system equivalent to spider diagrams, it is possible to ex-
tend the results of [3], which established linear diagrams’
superiority over Euler diagrams, to notations equivalent to
MFOL[=]. We hypothesise that PaL diagrams, when com-
pared to spider diagrams, will retain the efficacy that linear
diagrams have over Euler diagrams.
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