
Derrick, John, Bowman, Howard and Steen, Maarten (1995) Maintaining
Cross Viewpoint Consistency using Z. In: UNSPECIFIED.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21280/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21280/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Maintaining Cross Viewpoint Consistency using Z

John Derrick� Howard Bowman and Maarten Steen y

University of Kent at Canterbury� U�K� fjd��hb��mwasg�ukc�ac�uk�

This paper discusses the use and integration of formal techniques� in particular Z� into the
Open Distributed Processing �ODP� standardization initiative�

One of the cornerstones of the ODP framework is a model of multiple viewpoints� During

the development process it is important to maintain the consistency of di�erent viewpoints of

the same ODP speci�cation� In addition� there must be some way to combine speci�cations

from di�erent viewpoints into a single implementation speci�cation� The process of combining

two speci�cations is known as uni�cation� Uni�cation can be used as a method by which to

check consistency� This paper describes a mechanism to unify two Z speci�cations� and hence

provide a consistency checking strategy for viewpoints written in Z�

Keyword Codes� C����� D����� D�����
Keywords� Distributed Systems� Speci�cation� Tools and Techniques�

� INTRODUCTION

This paper discusses the implications and integration of formal techniques� in particular
Z� into the Open Distributed Processing �ODP	 standard initiative�

The ODP standardization initiative is a natural progression from OSI� broadening
the target of standardization from the point of interconnection to the end
to
end system
behaviour� The objective of ODP ��
 is to enable the construction of distributed systems
in a multi
vendor environment through the provision of a general architectural framework
that such systems must conform to� One of the cornerstones of this framework is a model
of multiple viewpoints which enables di�erent participants to observe a system from a
suitable perspective and at a suitable level of abstraction ���� ��
� There are �ve sepa

rate viewpoints presented by the ODP model� Enterprise� Information� Computational�
Engineering and Technology� Requirements and speci�cations of an ODP system can be
made from any of these viewpoints�

Formal methods are playing an increasing role within ODP� and we aim to provide a
mechanism by which speci�c techniques can be used within ODP� The suitability of a wide
spectrum of FDTs is currently being assessed� Amongst these Z is likely to be used for
at least the information� and possibly the enterprise and computational� viewpoint� The
�rst compliant ODP speci�cation� the Trader� is being written using Z for the information
and computational viewpoint�

�y This work was partially funded by British Telecom Labs�� Martlesham� Ipswich� U�K� the Engineer�
ing and Physical Sciences Research Council under grant number GR�K��	�
 and the Royal Society�

Whilst it has been accepted that the viewpoint model greatly simpli�es the devel

opment of system speci�cations and o�ers a powerful mechanism for handling diversity
within ODP� the practicalities of how to make the approach work are only beginning
to be explored� In particular� one of the consequences of adopting a multiple viewpoint
approach to development is that descriptions of the same or related entities can appear
in di�erent viewpoints and must co
exist� Consistency of speci�cations across viewpoints
thus becomes a central issue� Similar consistency properties arise outside ODP� For ex

ample� within OSI two formal descriptions of communication protocols can co
exist and
there is no guarantee that� when the two protocols are implemented on the basis of these
speci�cations� processes which use these two protocols can communicate correctly� ��
�
However� the actual mechanism by which consistency can be checked and maintained is
only just being addressed ��� �� �
� In particular� although Z is being used as a viewpoint
speci�cation language in ODP� there is as yet no mechanism to describe the combination
of di�erent Z viewpoint speci�cations� or the consistency of them�

In Section � we develop a uni�cation mechanism for Z speci�cations� In Section � we
present an example of the technique by specifying the dining philosophers problem using
viewpoints� Section � discusses consistency checking of viewpoint speci�cations� and we
make some concluding remarks in Section ��

� UNIFICATION IN Z

One of the cornerstones of the ODP framework is a model of multiple viewpoints� Clearly
the di�erent viewpoints of the same ODP speci�cation must be consistent� i�e� the proper

ties of one viewpoint speci�cation do not contradict those of another� In addition� during
the development process there must be some way to combine speci�cations from di�er

ent viewpoints into a single implementation speci�cation� This process of combining two
speci�cations is known as uni�cation� Furthermore� the uni�cation of two speci�cations
must be a re�nement of both� see ��
� Uni�cation can also be used� because of this com

mon re�nement� as a method by which to check consistency� To check the consistency of
two speci�cations� we check for contradictions within the uni�ed speci�cation�

The mechanism we describe is a general strategy for unifying two Z speci�cations� As
such it is not speci�c to any particular ODP viewpoint� nor is it tied to any particular
instantiation of the architectural semantics� However� this generality does not reduce its
applicability� indeed it is possible that uni�cation can be used to describe an interac

tion mechanism between descriptions in Z of objects in such a way that is currently not
supported by Part � of the reference model�

Given a re�nement relation� v� de�ned in a formal speci�cation techniques� we can
characterize the uni�cation of two speci�cations as the least re�nement of both� ie�

U �T��T�	 � fT � T��T� v T and if T��T� v S then T v Sg

Uni�cation of Z speci�cations will therefore depend upon the Z re�nement relation� which
is given in terms of two separate components
 data re�nement and operation re�nement�
���
� Two speci�cations will thus be consistent if their uni�cation can be implemented
��
� The ability for the uni�cation to be implemented is known as internal validity� and
for Z speci�cations this holds when the speci�cation is free from contradictions�

Z is a state based FDT� and a Z speci�cation describes the abstract state of the system
�including a description of the initial state of the system	� together with the collection of
available operations� which manipulate the state� One Z speci�cation re�nes another if the
state schemas are data re�nements and the operation schemas are operation re�nements of
the original speci�cation�s state and operation schemas� We assume the reader is familiar
with the language and re�nement relation� introductionary texts include ���� ��� ��
�

The uni�cation algorithm we describe is divided into three stages� normalization� com

mon re�nement �which we usually term uni�cation itself	� and re
structuring� Normal

ization identi�es commonality between two speci�cations� and re
writes the speci�cations
into normal forms suitable for uni�cation� Uni�cation itself takes two normal forms and
produces the least re�nement of both� Because normalization will hide some of the spec

i�cation structure introduced via the schema calculus� it is necessary to perform some
re
structuring after uni�cation to re
introduce the structure chosen by the speci�er� We
do not discuss re
structuring here�

��� Normalization

Given two di�erent viewpoint speci�cations of the same �ODP	 system� the commonality
between the speci�cations needs to be identi�ed� Clearly� the two speci�cations that are
to be uni�ed have to represent the world in the same way within them �eg if an operation
is represented by a schema in one viewpoint� then the other viewpoint has to use the same
name for its �possibly more complex	 schema too	� and that the correspondences between
the speci�cations have to have been identi�ed by the speci�ers involved� These will be
given by co
viewpoint mappings that describe the naming� and other� conventions in force�
Once the commonality has been identi�ed� the appropriate elements of the speci�cations
are re
named�

Normalization will also expand data
type and schema de�nitions into a normal form�
The purpose of normalization is to hide the structuring of schemas �which needs to be
hidden in order to provide automatic uni�cation techniques	 and expand declarations into
maximal type plus predicate declarations� For example� normalization of a declaration
part of a schema involves replacing every set X which occurs in a declaration x � X � with
its corresponding maximal type and adding predicates to the predicate part of the schema
involved to constrain the variable appropriately�

Normalization also expands schemas de�ned via the schema calculus into their full
form� All schema expressions involving operations from the schema calculus can be ex

panded to a single equivalent vertical schema� Examples of normalization appear in ���
�

��� State Uni�cation

The purpose of state uni�cation is to �nd a common state to represent both viewpoints�
The state of the uni�cation must be a data re�nement of the state of both viewpoints�
since viewpoints represent partial views of an overall system description� Furthermore�
it should be the least re�nement whenever possible� This is needed to ensure we do
not add too much detail during uni�cation because additional detail might add incon

sistencies that were not due to inconsistencies in the original viewpoint speci�cations�
Clearly� uni�cation as a consistency checking strategy is more useful if it is also true that

an inconsistent uni�cation implies inconsistent viewpoint speci�cations� rather than just
consistent uni�cations implying consistent viewpoints�

The essence of all constructions will be as follows� If an element x is declared in both
viewpoints as x � T� and x � T� respectively� then the uni�cation will include a declaration
x � T where T is the least re�nement of T� and T�� The type T will be the smallest type
which contains a copy of both T� and T�� For example� if T� and T� can be embedded
in some maximal type then T is just the union of T� � T�� The proof of correctness of
this uni�cation is given in ��
� If T� and T� cannot be embedded in a single type then
the uni�cation will declare x to be a member of the disjoint union of T� and T�� In these
circumstances we again achieve the least re�nement of both viewpoints� Lack of space
precludes a discussion of this construction here�

Given two viewpoint speci�cations both containing the following fragment of state
description given by a schemas D� and D�� then D represents the uni�cation of the two�

D�

x � S

predS

D�

x � T

predT

D

x � S � T

x � S 	� predS
x � T 	� predT

whenever S � T is well founded� �Axiomatic descriptions are uni�ed in exactly the
same manner�	 This representation is needed in order to preserve the widest range of
possible behaviours�

��� Operation Uni�cation

Once the data descriptions have been uni�ed� the operations from each viewpoint need
to be de�ned in the uni�ed speci�cation� Uni�cation of schemas then depends upon
whether there are duplicate names� For operations de�ned in just one of the viewpoint
speci�cations� these are included in the uni�cation with appropriate adjustments to take
account of the uni�ed state�

For operations which are de�ned in both viewpoint speci�cations� the uni�ed speci�

cation should contain an operation which is the least re�nement of both� wrt the uni�ed
representation of state� The uni�cation algorithm �rst adjusts each operation to take
account of the uni�ed state in the obvious manner� then combines the two operations to
produce an operation which is a re�nement of both viewpoint operations�

The uni�cation of two operations is de�ned via their pre
 and post
conditions� Given
a schema it is always possible to derive its pre
 and post
conditions� ���
� Given two
schemas A and B representing operations� both applicable on some uni�ed state� then

U�A�B�
���

pre A � pre B

pre A 	� post A

pre B 	� post B

represents the uni�cation of A and B � where the declarations are uni�ed in the manner
of the preceding subsection� This de�nition ensures that if both pre
conditions are true�

then the uni�cation will satisfy both post
conditions� Whereas if just one pre
condition
is true� only the relevant post
condition has to be satis�ed� This provides the basis of the
consistency checking method for object behaviour which we discuss below�

����� Example

As an illustrative example we perform state and operation uni�cation on a simple speci�

cation of a classroom� The example consists of the state represented by the schema Class�
and operation Leave� The two viewpoint speci�cations to be uni�ed are�

Max � IN
Class

d � Pf
� �g

�d � Max

Leave

Class
p� � f
� �g

p� � d

d � 	 d n fp�g

Min � IN
Class

d � Pf�� �� �g

�d � Min

Leave

Class
p� � f�� �� �g

�d � Min �

p� � d

d � 	 d n fp�� �g

As described above� we �rst unify the state model� i�e� the schema Class in this example�
which becomes�

Class

d � Pf
� �g � Pf�� �� �g

d � Pf
� �g 	� �d � Max

d � Pf�� �� �g	� �d � Min

With this uni�ed state model we can unify the operation Leave on this state� To do so we
calculate the pre and post
conditions in the usual manner� and for this we need to expand
the schema Leave into normal form in each viewpoint� This will involve� for example�
declaring p� � IN and adding p� � f�� �g as part of the predicate for the description of
Leave in the �rst viewpoint� The pre
condition of Leave in the �rst viewpoint is then
p� � d � f�� �g �in fact this is the part of the pre
condition which is distinct from the
pre
condition in the second viewpoint� the rest acting as a state invariant	� Hence� the
uni�ed Leave becomes�

Leave

Class
p� � IN

�p� � d � f
� �g�� �p� � d � f�� �� �g��d � Min �
�
�p� � d � f
� �g� 	� d � 	 d n fp�g
�p� � d � f�� �� �g��d � Min �
� 	� d � 	 d n fp�� �g

To show that the uni�ed Leave is indeed a re�nement of Leave in viewpoint one we will
decorate elements in viewpoint one with a subscript one� We use the retrieve relation

R�

Class

Class�

d� � fdg � Pf
� �g

to describe the re�nement between the uni�ed state and the state in the �rst viewpoint�
To demonstrate the re�nement is correct� we make the following deductions� Suppose
pre Leave� ��R� � Leave� we have to show the result of this schema is compatible with
post Leave�� Now if pre Leave�� then p� � d� � fdg � Pf�� �g� and hence d � � d n fp�g�
Then d �

�
� fd �g�Pf�� �g � fd nfp�gg�Pf�� �g� So d �

�
� d ��f�� �g � �d nfp�g	�f�� �g �

d� n fp�g� since by pre Leave�� p� � f�� �g� The deduction that pre Leave� � R� ��
pre Leave is similar� These two deductions complete the proof that the uni�cation is a
re�nement of viewpoint one� The case for viewpoint two is symmetrical�

� EXAMPLE � DINING PHILOSOPHERS

To illustrate uni�cation with Z� we shall consider the following viewpoint speci�cations
of the dining philosophers problem� In the dining philosophers problem� ��
� a group of
N philosophers sit round a table� laid with N forks� There is one fork between each
adjacent pair of philosophers� Each philosopher alternates between thinking and eating�
To eat� a philosopher must pick up its right
hand fork and then the left
hand fork� A
philosopher cannot pick up a fork if its neighbour already holds it� To resume thinking�
the philosopher returns both forks to the table�

The three viewpoint speci�cations we de�ne are the philosophers� forks and tables
viewpoints� The philosophers and forks describe individual philosopher and fork objects
and the operations available on those objects� The table viewpoint describes a system
constructed from those objects and the synchronisation mechanism between operations
upon them� We shall then describe the uni�cation of the three viewpoints�

Although this example is not one of an ODP system� it provides a suitable illustration
of the issues involved in viewpoint speci�cation and consistency checking�

��� The Philosophers Viewpoint

This viewpoint considers the speci�cation from the point of view of a philosopher� A
philosopher either thinks� eats or holds her right fork� Note that since the latter is just
a state of mind there is no need to describe the operations from a forks point of view at
all in this viewpoint� A philosopher object is just de�ned by the state of the philosopher�
and initially a philosopher is thinking�

PhilStatus ��	 Thinking j HasRightFork j Eating

PHIL

status � PhilStatus
InitPHIL

PHIL�

status � 	 Thinking

We can now describe the operations available� A thinking philosopher can pick up its
right
hand fork� Philosophers who hold their right fork can begin eating upon picking up
their left
hand fork� Finally to resume thinking� a philosopher releases both forks�

GetRightFork

PHIL

status 	 Thinking

status � 	 HasRightFork

GetLeftFork

PHIL

status 	 HasRightFork

status � 	 Eating

DropForks

PHIL

status 	 Eating

status � 	 Thinking

��� The Forks Viewpoint

This viewpoint speci�es a fork object� Each fork is either free or busy� The fact that
the philosopher might change state when a fork is picked up or dropped does not concern
forks� The state of the fork is given by a FORK schema� and initially a fork is free�

ForkStatus ��	 Free j Busy

FORK

fstatus � ForkStatus
InitFORK

FORK �

fstatus � 	 Free

The operations available allow a free fork can be picked up� and both forks can be
released�

Acquire

FORK

fstatus 	 Free

fstatus � 	 Busy

Release

FORK

fstatus 	 Busy

fstatus � 	 Free

��� The Tables Viewpoint

This viewpoint has a number of schemas from the other viewpoints as parameters� these
are given as empty schema de�nitions� Upon uni�cation the non
determinism in this
viewpoint will be resolved by the other viewpoint speci�cations� and thus uni�cation will
allow functionality extension of these parameters� The parameters we require are�

PHIL InitPHIL GetRightFork

PHIL

GetLeftFork

PHIL
DropForks

PHIL
FORK

InitFORK Acquire

FORK
Release

FORK

The system from the table viewpoint is de�ned by a collection of fork and philosopher
objects�

N � IN

Table

forks �
��N 	 FORK

phils �
��N 	 PHIL

Initially the table consists of forks and philosophers all in their respective initial states�

InitTable

Table�

 InitFORK � InitPHIL � ran forks � 	 f�InitFORK g � ran phils � 	 f�InitPHILg

Here we use promotion �ie the � operator	 in the structuring of viewpoints� which allows
an operation de�ned on an object in one viewpoint to be promoted up to an operation
de�ned over that object in another viewpoint� As we can see� this can be used e�ectively
to reference schemas in di�erent viewpoints without their full de�nition�

In order to de�ne operations on the table� we de�ne a schema �Table which will allow
individual object operations to be de�ned in this viewpoint� See ���
 for a discussion of
the use of promotion�

�Table

Table

PHIL

FORK
m� �
��N
n� �
��N

phils�n�� 	 �PHIL � phils � 	 phils � fphils�n�� 	 �PHIL�g

forks�m�� 	 �FORK � forks � 	 forks � fforks�m�� 	 �FORK �g

Note that we use two inputs m��n�� because we want to control later the synchronisation
between operations on forks and those on philosophers� System operations to get the left
and right forks� and to drop both forks can now be de�ned�

GLF b� �
Table �GetLeftFork �Acquire � � n��m� � ���N j m� � n� �� n ��FORK ��PHIL�
GRF b� �
Table �GetRightFork �Acquire � � n��m� � ���N j m� � �n� modN � �� �� n ��FORK ��PHIL�
DF b� �
Table �DropForks �Release � �n��m� � ���N j m� � n� �� n ��FORK ��PHIL�

The last schema in each conjunction performs the correct synchronisation between the
individual object operations�

��� Unifying the Viewpoints

Since the fork and philosopher object descriptions are independent� ie there are no state
or operation schemas in common� the uni�cation of these two viewpoints is just the
concatenation of the two speci�cations� We do not re
write that concatenation here�

The Table speci�cation does have commonality with the other two viewpoints� For
each state or operation schema de�ned in two viewpoints �ie the Table and one other	� we
build one schema in the uni�cation� In fact� the separation and object
based nature �in a
loose sense	 of this example means that we will not make extensive use of uni�cation by
pre
 and post
conditions� This is desirable� since it reduces the search for contradictions
in the consistency checking phase� In fact� our experiences with viewpoint speci�cations
con�rms that such a viewpoint methodology is really only feasible if one adopts this
object
based approach�

For example� the schema FORK de�ned in the Table viewpoint is just a parameter
from the fork viewpoint� and consequently its uni�cation will just be�

FORK

fstatus � ForkStatus

Similarly the uni�cation of GetLeftFork from the Table and Philosophers viewpoint is

GetLeftFork

PHIL

status 	 HasRightFork

status � 	 Eating

since the pre
condition of GetLeftFork in Table is just false� Notice that this provides a
mechanism in Z by which to achieve functionality extension across viewpoints in a manner
previously not supported�

� CONSISTENCY CHECKING OF VIEWPOINT SPECIFICATIONS

The uni�cation mechanism can be applied to yield a consistency checking process� In
terms of the ODP viewpoint model� consistency checking consists of checking both the
consistency of the state model and the consistency of all the operations� Consistency
checking of the state model ensures there exists at least one possible set of bindings that
satis�es the state invariant� and the Initialization Theorem �see below	 ensures that we
can �nd one such set of bindings initially�

In addition� we require operation consistency� This is because a conformance statement
in Z corresponds to an operation schema�s	� ���
� Thus a given behaviour �ie occurrence of
an operation schema	 conforms if the post
conditions and invariant predicates are satis�ed
in the associated Z schema� Hence� operations in a uni�cation will be implementable
whenever each operation has consistent post
conditions on the conjunction of their pre

conditions�

Thus a consistency check in Z involves checking the uni�ed speci�cation for contra

dictions� and has three components� State Consistency� Operation Consistency and the
Initialization Theorem�

State Consistency � From the general form of state uni�cation given in Section
���� it follows that the state model is consistent as long as both predS and predT can be
satis�ed for x � S � T �

Operation Consistency � Consistency checking also needs to be carried out on
each operation in the uni�ed speci�cation� The de�nition of operation uni�cation means
that we have to check for consistency when both pre
conditions apply� That is� if the
uni�cation of A and B is denoted U�A�B	� we have�

pre U�A�B	 � pre A � pre B � post U�A�B	 � �pre A� post A	 � �pre B � post B	

So the uni�cation is consistent as long as �pre A � pre B	 � �post A � post B	�
Initialization Theorem � The Initialization Theorem is a consistency requirement

of all Z speci�cations� It asserts that there exists a state of the general model that satis�es
the initial state description� formally it takes the form�

� 	State �
 InitState

For the uni�cation of two viewpoints to be consistent� clearly the Initialization Theorem
must also be established for the uni�cation�

The following result can simplify this requirement� Let State be the uni�cation of
State� and State�� and InitState be the uni�cation of InitState� and InitState�� If the
Initialization Theorem holds for State� and State�� then state consistency of Initstate
implies the Initialization Theorem for State� In other words� it su�ces to look at the
standard state consistency of Initstate�

If� however� Initstate is a more complex description of initiality �possibly still in terms
of InitState� and InitState�	� the Initialization Theorem expresses more than state con

sistency of Initstate� and hence will need validating from scratch� An example of this is
given below�

Example � � The classroom
State Consistency � The uni�ed state in this example was given by

Class

d � Pf
� �g � Pf�� �� �g

d � Pf
� �g 	� �d � Max

d � Pf�� �� �g	� �d � Min

To show consistency� we need to show that if d � Pf�� �g � Pf�� �� �g� then both
�d � Max and �d � Min hold� Suppose the class consisted of just the element ��
i�e� d � f�g� Both pre
conditions in the uni�ed state� d � Pf�� �g and d � Pf�� �� �g�
now hold giving the state invariant Min � �d �Max � Thus the consistency of the view

point speci�cations of the classroom requires that Min � Max � This type of consistency
condition should probably fall under the heading of a correspondence rule in ODP� ��
� that
is a condition which is necessary but not necessarily su�cient to guarantee consistency�

Operation Consistency � In the classroom example� this amounts to checking the
operation Leave when

�p� � d � f�� �g	 � �p� � d � f�� �� �g ��d � Min � �	

In these circumstances� the two post
conditions are d � � d n fp�g and d � � d n fp�� �g�
These two pre
conditions apply when p� � � and � � d � A consistency check has to be

applied for all possible values of d � For example� let d � f�� �g� then d � � d n fp�g� If
further �d � Min � �� then in addition we have d � � d n fp�� �g� These two conditions
are consistent �since p� � �	 regardless of Max or Min�

Let d � f�g� then both pre
conditions apply i� Min � �� in which case the post

conditions are d � � d n f�g and d � � d n f�g� and thus consistent�

Hence the two viewpoint speci�cations are consistent whenever the correspondence
rule Min � Max holds�

Example � � Dining Philosophers

Inspection of the uni�cation in the Dining Philosophers example shows that both state
and operation consistency is straightforward �note� however� that with non
object based
viewpoint descriptions of this example� consistency checking is a non
trivial task� this
points the need for further work on speci�cation styles to support consistency checks	�
Hence� consistency will follow once we establish the Initialization Theorem for the uni�

cation�

The Initialization Theorem for the uni�cation is� � 	Table �
 InitTable� which upon
expansion and simpli�cation becomes

 forks � �
��N 	 FORK � phils � �
��N 	 PHIL � ran forks � 	 fFreeg � ran phils � 	 fThinkingg

which clearly can be satis�ed� Hence the viewpoint descriptions given for the dining
philosophers are indeed consistent�

� CONCLUSIONS

The use of viewpoints to enable separation of concerns to be undertaken at the speci�

cation stage is a cornerstone of the ODP model� However� the practicalities of how to
make the approach work are only beginning to be explored� Two issues of importance
are uni�cation and consistency checking� Our work attempts to provide a methodology
to undertake uni�cation and consistency checking for Z speci�cations�

There are still many issues to be resolved� not least the relation to the architectural
semantics work� Currently the architectural semantics associates an ODP object with
a complete Z speci�cation� Thus the con�guration and interactions of objects is then
outside the scope of a single Z speci�cation� The architectural semantics comments upon
the lack of support for combining Z speci�cations� we are currently investigating the
extent to which uni�cation can provide that support and hence model interaction and
communication between Z speci�cations which represent ODP objects�

Not withstanding this� consistency checking of two Z speci�cations is still important�
It provides a mechanism by which to assess di�erent descriptions of the same object� and
will be needed if consistency checking of speci�cations written in di�erent FDTs is to be
achieved� For example� one method would involve translating a LOTOS object into a Z
speci�cation �and this type of translation is the extremely challenging part	� which could
then be checked for consistency via unifying the two Z speci�cations� Thus the solutions
presented in this paper are only part of the whole consistency problem� and much work
remains including application to a larger case study�

We are currently funded by the EPSRC and British Telecom to extend our approaches
to uni�cation and consistency checking to other formal languages� in particular LOTOS�
and to develop tools to support the process�

References

�
� H� Bowman and J� Derrick� Towards a formal model of consistency in ODP� Technical
Report ����� Computing Laboratory� University of Kent at Canterbury�
����

��� H� Bowman and J� Derrick� Modelling distributed systems using Z� In K� M� George� editor�
ACM Symposium on Applied Computing� pages
���
�
� Nashville� February
���� ACM
Press�

��� G� Cowen� J� Derrick� M� Gill� G� Girling �editor�� A� Herbert� P� F� Linington� D� Rayner�
F� Schulz� and R� Soley� Prost Report of the Study on Testing for Open Distributed Pro�

cessing� APM Ltd�
����

��� E� W� Dijkstra� Cooperating sequential processes� In F� Genuys� editor� Programming
Languages� Academic Press�
����

��� A� Fantechi� S� Gnesi� and C� Laneve� Two standards means problems � A case study on
formal protocol descriptions� Computer Standards and Interfaces� ��

�
��
����

��� K� Farooqui and L� Logrippo� Viewpoint transformations� In J� de Meer� B� Mahr� and
O� Spaniol� editors� �nd International IFIP TC� Conference on Open Distributed Process�

ing� pages �������� Berlin� Germany� September
����

��� J� Fischer� A� Prinz� and A� Vogel� Di�erent FDT�s confronted with di�erent ODP�
viewpoints of the trader� In J�C�P� Woodcock and P�G� Larsen� editors� FME���� Industrial

Strength Formal Methods� LNCS ���� pages �������� Springer�Verlag�
����

��� K� Geihs and A� Mann� ODP viewpoints of IBCN service management� Computer Com�
munications�
��

����������
����

��� ISO�IEC JTC
�SC�
�WG�� Basic reference model of Open Distributed Processing � Parts

	�
� July
����

�
�� S� King� Z and the re�nement calculus� In D� Bjorner� C�A�R� Hoare� and H� Langmaack�
editors� VDM ��� VDM and Z � Formal Methods in Software Development� LNCS ����
pages
���
��� Kiel� FRG� April
���� Springer�Verlag�

�

� P� F� Linington� Introduction to the Open Distributed Processing Basic Reference Model�
In J� de Meer� V� Heymer� and R� Roth� editors� IFIP TC� International Workshop on Open

Distributed Processing� pages ��
�� Berlin� Germany� September
��
� North�Holland�

�
�� B� Potter� J� Sinclair� and D� Till� An introduction to formal speci�cation and Z� Prentice
Hall�
��
�

�
�� B� Ratcli�� Introducing speci�cation using Z� McGraw�Hill�
����

�
�� K� A� Raymond� Reference Model of Open Distributed Processing� a Tutorial� In J� de Meer�
B� Mahr� and O� Spaniol� editors� �nd International IFIP TC� Conference on Open Dis�

tributed Processing� pages ��
�� Berlin� Germany� September
����

�
�� R� Sinnott� An Initial Architectural Semantics in Z of the Information Viewpoint Language

of Part � of the ODP�RM�
���� Input to ISO�JTC
�WG� Southampton Meeting�

�
�� J�M� Spivey� The Z notation� A reference manual� Prentice Hall�
����

