Some Results on Cross Viewpoint Consistency
Checking

Howard Bowman, John Derrick and Maarten Steen
University of Kent at Canterbury, U.K. (hb5,jd1,mwas)@ukc.ac.uk.

The ODP multiple viewpoints model prompts the very challenging issue of cross viewpoint
consistency. This paper considers definitions of consistency arising from the RM-ODP and
relates these in a mathematical framework for consistency checking. We place existing
FDTs, in particular LOTOS, into this framework. Then we consider the prospects for
viewpoint translation. Our conclusions centre on the relationship between the different
definitions of consistency and on the requirements for realistic consistency checking.

Keyword Codes: D.2.1, D.2.10
Keywords: Requirements/Specifications, Design

1. INTRODUCTION

Multiple viewpoints are a cornerstone of the Open Distributed Processing (ODP) model
[12]; they enable a different perspective of a system to be presented to different observers.
Each viewpoint is a partial view of the complete system specification. It is through this
separation of concerns that the inherent complexity of a complete distributed system
is decomposed. ODP supports five viewpoints: enterprise, information, computational,
engineering and technology.

However, the subdivision of a system specification raises the issue of consistency.
Descriptions of the same or related entities will appear in different viewpoints and it
must be shown that the multiple specifications are not in conflict with one another. The
development of tools and techniques to check the consistency of viewpoint specifications
is of great importance, however, it is also extremely challenging. In particular, in its
most general form, consistency checking requires specifications in different notations to be
related. This is because it has been recognised that different notations are appropriate for
different viewpoints. Relating model based specification notations, such as Z, to languages
which explicitly model the ‘temporal ordering’ of abstract events, such as LOTOS or SDL,
is particularly challenging.

This paper addresses the question: what is an appropriate definition for consistency?
The RM-ODP is ambiguous in this respect. We will clarify the relationship between a
number of possible consistency definitions and we will consider how different FDTs, in
particular LOTOS, can be integrated into a consistency checking framework and then we
will discuss the different options for translation. The results of the paper centre on the
relative strengths of definitions and the information that needs to be made available in

9The work presented in this paper was partially funded by British Telecom Labs., U.K. and partially
by the U.K. Engineering and Physical Sciences Research Council (grant number GR/K13035.)

order that an appropriate consistency check can be applied.

We consider consistency in very general terms. In particular, we do not consider
specific instances of comsistency, such as between the information and computational
viewpoints. This reflects our adopted strategy, which is to clarify the general form of
consistency as a relationship between arbitrary specifications before considering specific
instances of consistency. This paper is reporting results of the initial, general, phase of
our work.

The paper begins by exploring the extent of consistency relationships in ODP (in
section 2). Section 3 discusses appropriate definitions of consistency arising from the
RM-ODP and then section 4 relates these to a mathematical framework for consistency
checking. Section 5 places existing FDT's into this framework. Then we outline a number
of possible approaches to translation in section 6. Finally, we present concluding remarks
in section 7.

2. THE EXTENT OF CROSS VIEWPOINT RELATIONSHIPS

Due to the central role viewpoints play, consistency relationships are extremely pervasive
in ODP. Counsistency arises in the following situations:-

Conformance Assessment. Conformance assessment for ODP is extremely broad. In
particular, it encompasses both conformance testing (i.e. relating real implementations to
specifications) and specification checking (i.e. specification to specification relationships),
this distinction was particularly emphasised in PROST [7]. Verification of cross viewpoint
consistency is an important example of specification checking.

System Development. The RM-ODP does not prescribe a particular system devel-
opment methodology and a number of development methodologies could be envisaged.
However, each viewpoint specification is, at least potentially, at the same level of ab-
straction; suggesting that viewpoints are related horizontally relative to a vertical system
development. This is in contrast to classic waterfall development methodologies. PROST
[7] has investigated such a, fully general, system development methodology for ODP. This
is depicted in figure 1 and uses a number of specification to specification transformations,
such as translation, refinement and unification, in order to generate a composite ‘imple-
mentation’ specification. Translation maps specifications into new languages, refinement
has the usual meaning and unification is a transformation which enables specifications
in the same language to be combined. Consistency is implicit in such a system develop-
ment methodology. For example, two specifications would be viewed as inconsistent if a
common unified specification did not exist. Thus, consistency arises during unification of
specifications in models of ODP system development.

Architectural Semantics. The use of different FDTs in defining the ODP architectural
semantics and the fact that the architectural semantics (when complete) will span a
number of the viewpoint languages suggests consistency relationships will have relevance
in this domain as well. Two forms of consistency relationship can arise. Firstly, there is
a need to relate the architectural semantics of different viewpoints in order to determine
that the FDT interpretations are consistent. Secondly, there is a need to demonstrate that
descriptions in different FDTs of particular architectural semantics entities are consistent.

VIEWPOINTS
= RELATED <€—
HORIZONTALLY

Vl1inlLl V2in L2 V3inL3 V4inl4 V5inL5
TRANSLATE redine Y ¥
\é Specification /
| UNIFICATION / / VERTICAL
of Specifications / / SYSTEM
inL2 | // // DEVELOPMENT
/ /
UNIFICATION 1/
of Specifications =< /I
inL2 \ !l v/
AN
N !/
AN
N /7
Vi - Viewpoint Specification i N7
Li - Language i Implementation Y

Specification

Figure 1: PROST System Development Scenario

We strongly believe that a formal approach to consistency checking should be employed. In
particular, the ability to reason rigorously about the specifications under consideration is
of vital importance. We will assume the use of formal description techniques as viewpoint
languages in the remainder of this paper.

3. CONSISTENCY DEFINITION

This section highlights three possible interpretations of consistency that appear in the
RM-ODP, the first two appear in part 1 (clause 12.2) and the third apears in part 3 [12]
(clause 10). Although, the first of these definitions is only alluded to; it is not formally
proposed as a definition.

Definition 1

(1.1) Two specifications are consistent iff they do not impose contradictory requirements.
(1.2) Two specifications are consistent iff it is possible for at least one example of a product
(or implementation) to exist that can conform to both of the specifications.

(1.3) Two specifications are consistent iff they are both behaviourally compatible with the
other.

This last interpretation is a rewording of the RM-ODP definition. This is because the RM-

ODP definition is expressed in terms of relating specific viewpoints. We are considering

more generalised notions of consistency, thus, we have brought the definition into line with

the other definitions in order to facilitate a direct comparison. In addition note, that all

these definitions are symmetric, i.e. if a specification S is consistent with a specification

R then R is consistent with S. This is a reasonable intuitive requirement for consistency.
Behavioural compatibility is defined as follows:

Definition 2 (Behavioural Compatibility) An object is behaviourally compatible with
a second object, with respect to a set of criteria, if the first object can replace the second

object without the environment being able to notice the difference in the objects behaviour
on the basis of the set of criteria.

These three consistency interpretations blur over the fact that specifications may be in
different FDTs and that it may not be possible to relate specifications directly with-
out some element of translation. In fact, in the RM-ODP the third of these definitions
includes a notion of translation which is described in terms of ‘information preserving’
transformations between languages. Translation will be discussed in section 6.

Each of these notions of consistency is intuitively reasonable. However, the question
arises: what is the relationship between the interpretations and, in particular, are these
definitions of consistency themselves consistent? In fact, the different interpretations
are likely to be applicable in different settings. For example, definition 1 is relevant to
consistency checking in a logical setting, e.g. in an FDT such as Z which is based on first
order logic.

We seek to reconcile these interpretations through formalisation. We formalise the
first notion of consistency as follows,

Definition 3 S; C7 Sy iff =(F s.t. St Ep A Sy =)

where |= is the satisfaction relation of the specification’s logic. This definition states that
two specifications are consistent if and only if there is no property that holds over one of
the specifications and its negation holds over the other specification.

To interprete consistency 1.2 we need a formal interpretation of conformance. There is
a difficulty here because conformance relates implementations to specifications and imple-
mentations are not amenable to formal interpretation. The classical approach to handling
this difficulty is to only consider conformance up to a, so called, implementation specifica-
tion. This is a specification that describes a real implementation in as much detail that a
direct mapping from the implementation specification to the real implementation can be
found. Thus, it is normal just to consider conformance relations between specifications,
see [4] [5] [14] for typical approaches. However, implementation specifications relate to real
implementations in different ways for different FDTs and, in particular, for some FDTs
not all implementation specifications are implementable. For example, a 7 specification
that contains an operation [n!: N|n! = 5 A n! = 3] has no real implementation.

Our approach then is to divide conformance testing into two parts. Firstly, we con-
sider conformance up to implementation specifications, using a relation conf C SPFEC x
SPEC, and then we consider conformance of implementation specifications to real im-
plementations, using a relation conf C SPEC x IMP '. Where SPEC is the set of
possible ODP specifications and I M P is the set of possible ODP implementations.

By way of clarification, Sycon fS5 expresses the property that specification S5 conforms
to specification S, i.e. according to tests derived from Sy, S5 cannot be distinguished
from 5. It should be noted that we have not specified how and what form of tests are
derived from S7; there are many options for such derivation [4] [5]. In a similar way
Sconf expresses the property that [conforms to S. Interpretation 1.2 is now formalized
as:-

!The order of our relations is in accordance with Z conventions and is opposed to LOTOS conventions

Definition 4 Sy Uy Sy iff S € SPEC, I € IMP s.t.(SiconfS A SyconfS) AS confl.

i.e., two specifications are consistent iff an implementation specification which conforms
to both and a real implementation of the implementation specification can be found.
This definition is correct, but is not very useful since it uses conf, which is not subject
to formal interpretation. In order to resolve this difficulty we introduce the concept of
internal validity which holds whenever a specification is implementable:-

Definition 5 S is internally valid, denoted ¥(S), iff 31 € IMP s.t. Sconf]

U acts as a receptacle for properties of particular FDTs that make specifications in that
FDT unimplementable. For example, a Z specification which contains contradictions
would not be internally valid. Now we can redefine (5 in a more usable way:

Definition 6 Sy Csq Sy of f 35 € SPEC s.t. (SiconfS A Sy confS) N ¥(S).

The third and final consistency interpretation hinges on the notion of behavioural compat-
ibility which is defined in terms of an environment and unspecified criteria. We will con-
sider specific instantiations of behavioural compatibility when we look at specific FDTs;
at this stage we formulate the interpretation completely generally, for bc a particular
instantiation of behavioural compatibility.

Definition 7 Sl 03 52 Zﬁ Sl be 52 A SQ be Sl.

Since consistency checking will occur at the specification checking stage of conformance
assessment we actually need a mechanism to assess consistency that uses only specifica-
tion checking relationships, i.e. refinement, unification and equivalence. We will seek to
define natural interpretations of refinement, unification and translation and then consider
how the different definitions of consistency can be related to the above three consistency
interpretations.

4. A SPECIFICATION CHECKING FRAMEWORK

Translation. It seems natural to require that translation enforces equivalence, i.e. a
translation of a specification should be equivalent to the original specification. The actual
notion of equivalence required will be FDT dependent. However, we would certainly want
translation to preserve equivalence due to conformance, which we denote =;:

Definition 8 Sy =.; 52 iff {5 : SiconfS} = {5 : SeconfS}

Intuitively, two specifications are equivalent iff they determine exactly the same set of
valid implementation specifications through con f. It should be pointed out that =.; does
not imply standard semantic equivalence; the equivalences of FDTs (such as observational
and testing equivalences of process algebra) are likely to be stronger than =;.

Refinement. Following [14] we define that 53 is a refinement of S; as:-

Definition 9 S; C Sy iff {S: SeconfS} C{S: SiconfS}

i.e. refinement restricts the set of conformant implementation specifications. But, im-
portantly, the implementations of a refinement are also implementations of the original
specification.

Unification. Unification takes two specifications in the same language and produces
a unified version which is a combination of the two specifications. By combination of
specifications, we mean that unification should satisfy the property of common refinement,
ie. that 71,7, C U(T1,T3), since an implementation that conforms to U(Ty,Ts) should
also conform to the original specifications T,T5. In fact, we characterize unification as
the least refinement of two specifications, with the following construction: U(Ty,Ts) €

{T:T, T, CT and if 71,7, = S then T C S}, see [8] for a discussion.

Consistency. A natural specification checking definition of consistency is that two spec-
ifications are consistent if their unification can be implemented.

Definition 10 Given Sy in language Ly and Sy in language Ly. Then S1C4.S, iff there ex-
ists a specification language Ls such that Sy =.5 T1, Sy =c5 To and there exists a U(Ty,Ts)
in Ly such that Y(U(Ty,Ty)) for some Ty, Ty in Ls.

Notice in particular that the internal validity condition guarantees that a conformant
implementation of the unification exists. In addition, this is our first interpretation of
consistency that embraces translation. Properties of refinement, equivalence, unification
and consistency can be found in appendix (ii).

Discussion. We now have four definitions of consistency C;, Cy4, C3 and C4. The first
three of these arise from the ODP reference model and the third is a natural specification
checking definition, which links notions of conformance to specification checking relation-
ships such as refinement, unification and equivalence. We would clearly like to relate
these definitions. However, a number of aspects of these definitions are FDT dependent.
We will make the required FDT dependent comparison in the next two sections. We
can, though, clarify our general approach, which is the following. Firstly, we view Cy
as a specialised form of consistency which is relevant to consistency checking in a logical
setting and it will be captured by the internal validity property where it is relevant. The
main focus of this paper, though, will be the relationship between C; 5, C3 and (4 which
are clearly in the same domain of reference.

The specification checking relationships of a particular FDT will not be equivalent
to the corresponding definitions in our framework. However, our interpretation in this
respect is that FDT relations that are stronger or equal to the framework definitions
are appropriate, but relations that are either weaker or only partially intersect with the
corresponding framework definition are not appropriate. Our intuition behind this in-
terpretation is that consistency checking occurs during specification checking and that
the specifier has knowledge about the nature of the specifications under consideration
that is relevant to consistency, thus, at this stage of system development we can be more
discriminating than is implicit in the framework. For example, the specifier may know
that a specification is a functionality extension of another specification; that two spec-
ifications are strictly equivalent or that two specifications are related by reduction of
non-determinism. This extra information should be used at the specification checking
phase as long as it does not contradict the weaker conformance oriented definitions.

5. INSTANTIATING PARTICULAR FDTs

5.1 LOTOS Consistency Checking Relationships

Existing LOTOS relations can be instantiated into the consistency framework as follows:-

Conformance. A natural instantiation of our conf relation is the LOTOS conformance
relation, which we denote conf (a definition of conf can be found in appendix i).

Internal Validity. The internal validity concept is targetted at FDTs such as Z where
specifications can exist which do not have implementations. All LOTOS specifications
can, at least ‘theoretically’, be implemented (and we apologize for the circularity here).
Thus, we view all LOTOS specifications as internally valid.

C3s. Consistency definition 1.3 is dependent upon the interpretation of behavioural com-
patibility, which in turn hinges on the interpretation of a specification’s environment and
the criteria imposed on that environment. The looseness of the definition of behavioural
compatibility implies that one of a number of interpretations of (5 could be made. It is
our view that (5 could be interpreted as any of the following:-

Definition 11

(i) S1C3 Sy iff Sy ~ Sy - Strong Bisimulation

(i) S1CFSy iff S1 ~ Sy - Weak Bisimulation

(iit) S1CLESy iff SiteSy - Testing Equivalence

(iv) S1C5°Sy iff Siconf Sz A Sseconf Sy - conf symmetric

Definitions (11.i) and (11.ii) view the environment as an unconstrained observer, in the
sense of standard observational equivalences. In contrast, (11.ii) and (11.iv) view the
environment as a tester for the specifications. The distinction between (11.iii) and (11.iv)
is that (11.iii) implies robustness testing and (11.iv) implies restricted testing, see [4] [3]
for a discussion of these alternatives. In the remainder of this paper we will concentrate on
C'$?. Our reasons for this choice are two fold. Firstly, this interpretation agrees with the
LOTOS definition of behavioural compatibility in Part IV of [12] and, secondly, we will
show that, in comparison with Cs 5 and C4, C* is a strong interpretation of consistency.
Furthermore, C'$* is the weakest behavioural compatibility definition. Thus, since (5 =
CF = Clf = (C5°, from process algebra theory, C5* bounds the relationship between
(5 and the other consistency definitions.

Refinement. We will focus on two of the most important LOTOS refinement relations,
extension (which we denote ext) and reduction (which we denote red), see appendix 1
for definitions. Intuitively, the former of these characterizes when a specification validly
extends the behaviour of another specification and the latter relation characterizes refine-
ment through reduction of non-determinism. In order to accept ext and red as suitable
refinement relations we must show that both imply E. Extrapolating from the results
of [14] we get that ext =L, but red AC and red +<C. Thus, ext can be instantiated
without any difficult, but red causes problems. We resolve this problem by considering a
relation red* which we define as follows: red* = redn C.

We will denote the instantiation of ext as the refinement relation in Cy as Czit and,

similarly, the instantiation of redx in Cy as Cfd*

Results. The following results arise from applying LOTOS relations to consistency:-
Proposition 1 For conf all pairs of LOTOS processes are consistent by C .5

Proof This follows from [13] which provides an algorithm that determines a common
extension (i.e. ext) for any pair of LOTOS processes and since ext = conf.

Proposition 2 For conf, C5* C Uy

Proof All we have to do is to demonstrate a pair of processes that are not related by
conf. This is straightforward. For example, for the processes, S; := b; stop[|i; a; stop
and Sy = b; ¢; stop|]i; a; stop, —(SyconfSy). This is because Ref(S51,b) € Ref(Sz,b), e.g.
¢ € Ref(51,b) but ¢ € Ref(5,0b).

Proposition 3 C¢ = (,,

Proof This follows from the results of [13].

Proposition 4 (i) C$ N CEE L, (i) O € CFE and (iii) O+ ¢ g

Proof We provide example LOTOS processes to demonstrate each of the properties.
(i) Consider the following trivial example. Take S; = S5 := a; b; stop. Clearly, S; C5° S5.

In order to show that also 5; Cfd* S5, we choose their common refinement to be S = 5

= S := a; b; stop. Obviously, Sired+S and SyredxS.

(ii) Take Sy := a; stop and Sy :=1i; a; stop [| b; ¢; stop. Now 51C5°S,, but we will show
that ﬁ(Slcfd*Sz). Firstly, the only possible reduction of both 57 and S5 is the process
S := a; stop. Now, take the implementation 7' := a; stop [] b; stop. This is a valid
implementation with respect to S, i.e. SconfT. However, we can see that —=(SyconfS),
because S refuses action c¢ after the trace b. Therefore, Syred+S does not hold.

(iii) Take Sy := a; (b; stop [] i; stop) and Sy := a; b; stop [] i; stop. We can easily
check that —(S;confSy) and =(SiconfS;). Therefore, we have —(5; C§* S;). However,
S Cfd* Sy, which can be shown by taking 5 := a; b; stop as the common refinement of
S1 and S;. This is because SiredS and S;redS, since all non-determinism in 57 and S5
has been resolved in S. In addition, as Tr(S) = Tr(S1) = Tr(S5;) we know that SjextS
and SyextS. Moreover, since ext =L, from [14], we know that S; C S and S; C S.

These results are depicted in figure 2. Interestingly, though unification construction al-
gorithms can be given which demonstrate that C'5 C Cf;d and C3 C (4, these algorithms

red

will not always yield the same unification, thus C37— N Cy # Cfd*. For further discussion

of these relations see [16]. The following implications can be drawn from these results.

1. For LOTOS (55 is very weak. In fact, it does not distinguish any processes.

2. In contrast, (5 is a strong relation for LOTOS. In particular, none of the specifica-
red« ~red ~ext

tion checking consistency relationships, i.e. O, C;—, C7, imply Cs.

3. The relationship between Cfﬂ and C'5® is not very satisfactory and contrasts with
the more natural relationship of Cf;d and Cy with C5°.

4. Under CS all pairs of LOTOS specifications are consistent. This may seem a
surprising result at first, but it reflects the fact that extension of functionality across
pairs of specifications can always be reconciled.

c22 = Ciit =true

*
red cs

Firgure 2: LOTOS Counsistency Relations

Probably the most important implication of these results is that consistency checking must
be performed selectively. In particular, it is inappropriate to view consistency checking
as a single mechanism which can be applied to any pair of specifications. For example, it
would be inappropriate to check two specifications which express exactly corresponding
functionality with Cjﬁ. Thus, in order to apply suitable consistency checks the relation-
ship of the specifications being checked must be made available. The RM-ODP has no
provision for the communication of such information. The correspondence rule concept
is used in the reference model as a means to locate portions of viewpoint specifications
that should be compared. However, there is no means to define how these portions of
specifications should be related.

5.2 Z Consistency Checking Relationships

A conformance relation for Z does not exist, but refinement has been extensively investi-
gated. Thus, our work on consistency checking in 7 has focussed on instantiating the Cy
definition of consistency. As indicated earlier internal validity is a central issue with Z,
specifically, we define:-

Definition 12 For S, a Z specification, U(S) iff =) s.t. S |, .

An algorithm can be given which will unify two Z specifications [8]. This algorithm is
divided into three stages: normalization, common refinement (which we usually term
unification itself), and re-structuring. Normalization identifies commonality between two
specifications, and re-writes the specifications into normal forms suitable for unification.
Unification itself takes two normal forms and produces the least refinement of both. Re-
structuring is performed to re-introduce the specification structure that is lost during
normalization.

The major issue with Z consistency checking is not demonstrating that a unification
exists, rather it is showing that the unification is internally valid. This is in obvious
contrast to LOTOS where finding a unification with respect to a refinement relation

is the central task. Demonstrating internal validity of Z specifications using theorem
proving tools is a central area of our current research. A companion paper [8] contains a
full discussion of consistency checking for Z.

6. TRANSLATION - THE OPTIONS

There has been some success in relating FDTs that have similar underlying semantics, e.g.
[15] [2], although, it should be pointed out that the common semantic form underlying
these approaches is typically very ugly and significant research is required before usable
translations can be generated. ODP consistency checking though, requires translation
across FDT families. There are very few positive results on this topic, although a number
of approaches could be considered, the following are the most likely:-

Syntactic Translation. Translation based upon a direct relating of syntactic terms
in one FDT to terms in another FDT is a possible approach. However, it is difficult
to envisage that such an approach could offer a general solution. In particular, a lot of
semantic meaning will certainly be lost in such a crude relating of FDTs. Partial syntactic
translations may though be feasible.

Common Semantic Model. Translation into a common semantic model is a more
realistic approach. Such translation could either use the semantics of one of the FDTs
as the intermediate semantics or use a third semantics. The former of these is not fully
general, for example, Z and LOTOS are so fundamentally different that relating one to
the others semantic model is very difficult to envisage. Relating FDTs using a third
intermediate form is a more likely approach.

e There is a link between model based action systems (and thereby Z) and CSP
made by showing that refinements (forwards and backwards simulation) in an action
system are sound and jointly complete with respect to the notion of refinement in

CSP [18].

e The requirement for highly expressive intermediate semantics suggests that logical
notations may be appropriate. [10] and [3] consider logical characterisations of
LOTOS in temporal logic. However, relating temporal logic to the Z first order
logic remains an open issue. Categorical approaches and the theory of institutions
offer a possible solution [3].

e An alternative logical approach is that by [19]. This work uses first order logic to
express relationships between states and events. Thus, they offer a single notational
link between model based specification and formal descriptions based on transition
systems. The approach uses logical conjunction as composition and sketches how
consistency checking can be performed in this framework. The pragmatic nature
of this work reflects the compromises that will have to be made when performing
translation in the ODP setting. Specifically, [19] acknowledge that their approach
does not preserve the semantic equivalences of particular FDTs.

o A final alternative which has the benefit of being ODP specific is suggested by
the work of [6]. This work offers a denotational semantics for the computational

viewpoint language. These semantics could, theoretically, be used to relate different
FDT interpretations of the computational viewpoint language. Clearly, this work
does not give a complete solution to consistency as the semantics are restricted to
a single viewpoint. However, it may be possible to extrapolate this approach to a
general solution.

A further issue affecting translation is the role of the ODP architectural semantics. Specif-
ically, Part 4 should provide a basis for relating FDTs. ODP concepts, in particular
viewpoint languages, are defined in different FDTs in the architectural semantics. Thus,
when relating complete viewpoint specifications in different FDTs these definitions can
be used as components of a consistency check. However, it is important to note that the
architectural semantics will only provide a framework for consistency checking. Actual
viewpoint language specifications will extend the ODP architectural semantics, which are
non prescriptive by nature, with FDT specific behaviour. There is then a need to combine
the framework provided by the architectural semantics with actual consistency checking
relationships arising from FDTs.

It is clear though that a usable translation mechanism is likely to represent a prag-
matic, compromise solution. In particular, complete preservation of semantic meaning
during translation will not be possible.

7. CONCLUDING REMARKS

We have described how consistency arises in ODP. We have formalized a number of
possible definitions of consistency, three of which are presented in the RM-ODP. We
have considered instantiations of these consistency definitions with particular FDTs, viz,
LOTOS and Z and finally we have discussed the thorny issue of translation between FDTs.

We believe that consideration of consistency is timely, not just from an ODP per-
spective. In particular, a number of recent software engineering methodologies consider
relating multiple specifications of a single system, e.g. [19] [1]. The interest in such
approaches reflects a general move away from classical single threaded waterfall system
development scenarios. Furthermore, OO methodologies, require specifications to be re-
lated horizontally. Related issues can be found in OSI [9].

There are very few published results on consistency checking for Open Distributed
Processing, [17] and [11] are exceptions to this. Both of these consider strong notions of
consistency based on process algebra equivalences and in this sense take a quite different
approach to us. The work presented in this paper suggests the following concrete results:-

1. The consistency interpretations arising in the RM-ODP have very different mean-
ings. In particular, for LOTOS, all pairs of specifications are consistent by (.,
while (5 is significantly stronger. In addition, by defining suitable conditions on the
relationship between con f and |= we can use Cy ‘consistently’ with our conformance
definitions. We can guarantee that Cy = C55 and Cy = (4, thus, C4 provides an
important link between logical notions of consistency and conformance notions.

2. Tt is appropriate to determine consistency using stronger relationships than the basic
conformance definitions, since the extra knowledge available during specification
checking enables system developers to apply consistency more discriminatingly.

3. With LOTOS all instantiations of Cy with LOTOS refinement relations (trivially)

imply C .5, while none of the instantiations imply Cs.

4. Consistency checking in Z and in LOTOS have a very different character. With
LOTOS the central issue is finding a unification, while with Z the central issue is
demonstrating that a unification does not contain any contradictions and can thus
be implemented.

5. Pragmatic approaches to translation, in which some semantic information is lost,
will have to be accepted.

We make the following recommendations; these are all required if realistic cross viewpoint
consistency checking is to be undertaken:-

1. More specification to specification information must be made available to the con-
sistency checking process. The nature of the consistency relationship to be checked
must be made known. In addition, knowledge of the specification style used will be
of value in performing consistency checking. It may even be necessary for specifiers
to highlight particular cross viewpoint assertions that need to be tested.

2. Work on Part 4 of the RM-ODP must be undertaken as a priority. The architec-
tural semantics provide an essential basis for consistency checking. In addition, the
architectural semantics must themselves be shown to be ‘consistent’. i.e. different
FDT interpretations must not conflict.

3. Examples of multiple viewpoint specifications must be undertaken and be made
available to the ODP community. Without realistic examples, consistency checking
research will be poorly focussed.

In conclusion then, our inital results suggest that reasonable intra language consistency
relationships can be found, however, inter language consistency checking remains a very
challenging proposition. It is likely that this will only be possible with considerable pre-
scriptive help from viewpoint language specifiers and in a pragmatic manner. However,
this challenge must be met since without a realistic approach to maintaining the consis-
tency of specifications across multiple viewpoints the potential of the existing and ongoing
work on the ODP model cannot be fully realised.

References

[1] M Ainsworth, AH Cruickshank, LJ Groves, and PJL Wallis. Viewpoint specification
and Z. Information and Software Technology, 36(1):43-51, February 1994.

[2] D. Bert, M. Bidoit, C. Choppy, R. Echahed, J.-M. Hufflen, J.-P. Jacquot, M. Lemoine,
N. Lévy, J.-C. Reynaud, C. Roques, F. Voisin, J.-P. Finance, and M.-C. Gaudel.
Opération SALSA: Structure d’Accueill pour Spécifications Algébriques. Rapport
final, PRC Programmation et Outils pour l'intelligence Artificielle, 1993.

3]

[4]

H. Bowman and J. Derrick. Towards a formal model of consistency in ODP. Technical
Report 3-94, Computing Laboratory, University of Kent at Canterbury, 1994.

E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani,
editors, Protocol Specification, Testing and Verification, VIII pages 63-74, Atlantic
City, USA, June 1988. North-Holland.

E. Brinksma, G. Scollo, and C. Steenbergen. Process specification, their imple-
mentation and their tests. In B. Sarikaya and G. V. Bochmann, editors, Protocol
Specification, Testing and Verification, VI, pages 349-360, Montreal, Canada, June
1986. North-Holland.

AFNOR cont. A direct computational language semantics for Part 4 of the RM-ODP.
ISO/IEC JTC1/SC21/WGT approved AFNOR contribution, July 1994.

G. Cowen, J. Derrick, M. Gill, G. Girling (editor), A. Herbert, P. F. Linington,
D. Rayner, F. Schulz, and R. Soley. Prost Report of the Study on Testing for Open
Distributed Processing. APM Ltd, 1993.

J. Derrick, H. Bowman, and M. Steen. Maintaining cross viewpoint consistency using

Z. In ICODP’95, Brisbane, Australia, February 1995.

A. Fantechi, S. Gnesi, and C. Laneve. Two standards means problems : A case study
on formal protocol descriptions. Computer Standards and Interfaces, 9:11-19, 1989.

A. Fantechi, S. Gnesi, and G. Ristori. Compositional logic semantics and LOTOS.
In L. Logrippo, R.L. Probert, and H. Ural, editors, Protocol Specification, Testing
and Verification, X, Ottawa, Canada, June 1990. North-Holland.

K. Farooqui and L. Logrippo. Viewpoint transformations. In J. de Meer, B. Mahr,
and O. Spaniol, editors, 2nd ICODP, pages 352-362, Berlin, September 1993.

ISO/IEC JTC1/SC21/WGT. Basic reference model of Open Distributed Processing
- Parts 1-4, July 1993.

F. Khendek and G. v. Bochmann. Merging behaviour specifications. Technical Report
856, University of Montreal, Department of Computing, 1993.

G. Leduc. A framework based on implementation relations for implementing LOTOS
specifications. Computer Networks and ISDN Systems, 25:23-41, 1992.

R. Reed, W. Bouma, J.D. Evans, M. Dauphin, and M. Michel. Specification and
Programming Environment for Communication Software. North-Holland, 1993. ISBN
0 444 89923 5.

M. Steen, H. Bowman, and J. Derrick. Consistency in LOTOS. Technical Report in
preparation, Computing Laboratory, University of Kent at Canterbury, 1995.

[17] A. Vogel. Entwurf, Realisierung und Test von ODP-Systemen auf der Grundlage
formaler Beschreibungstechniken. PhD thesis, Humboldt-Universitat zu Berlin, 1993.
submitted.

[18] J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurent systems.
In D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM 90 VDM and 7 -
Formal Methods in Software Development, LNCS 428, pages 340-351, Kiel, FRG,
April 1990. Springer-Verlag.

[19] P. Zave and M. Jackson. Conjunction as composition. ACM Trans. on Soft. Eng.
and Method., 2:379-411, 1993.

APPENDIX (i): LOTOS Relations. P, P, and P, are processes; L is the alphabet
of observable actions; £* denotes strings over £; Tr(P) denotes the set of traces of P and
Ref(P,o) denotes the refusal set of P after the trace o.

Definition 13

(i) Py conf Py iff Vo € Tr(P) : Ref(P1,0) C Ref(Ps,0).

(i) Py red Py iff Tr(Py) CTr(Py) A PiconfPs.

(tii) Py ext Py iff Tr(Py) 2 Tr(P2) A PiconfPs.

(iv) Py te Py iff: Tr(Py) =Tr(Py) ANVo € L*: Ref(P1,0) = Ref(Py,0).

APPENDIX (ii): Further Results. Proofs of these results can be found in [3].

Proposition 5 Properties of C

(i) C is a pre-order (i.e. reflexive and transitive)

(ii) S1 =5 So iff S1 T Sy and Sy © Sy (i.e., C is a partial order with respect to equivalence)
(iii) (E o conf) = conf

(iv) For all R, we have R C T iff (Ro conf) C conf

(v) For all R, we have Id C R implies that (R C C) iff (Ro conf = conf)

(vi) C is the least relation R such that Ro conf = conf.

Proposition 6 Unification satisfies the following properties:
(i) U(Ty, Ty) = U(T2,Th) - commutativity

(i) U(Ty,U(Ty, T5)) = U(U(T1,T3),T5) - associativity

(tii) Th, T T U(T1,Ty) - common refinement

() If Ty T Ty then U(Ty,Ty) =Ty

Proposition 7 Properties of consistency:

(1) Consistency is a symmetric relation, but it is neither reflexive nor transitive.
(ii) S1C4U(S2, S3) if f S2C4U(S1, S5) of f SsC4U(S1, Ss).

(iii) Global consistency of three or more specifications implies pairwise consistency.
(iv) Pairwise consistency does not imply global consistency.

