
Formal Aspects of Computing ������ �� �	

c� ���� BCS

A Logic for Miranda�� Revisited

Simon Thompson

Computing Laboratory� University of Kent
Canterbury� CT�
NF� U�K�

Keywords� Functional programming� program veri�cation� logic� Miranda� op�
erational semantics� Isabelle

Abstract� This paper expands upon work begun in the author�s �Tho��	
 in
building a logic for the Miranda functional programming language� After sum�
marising the work in that paper
 a translation of Miranda de�nitions into logical
formulas is presented
 and illustrated by means of examples� This work expands
upon �Tho��	 in giving a complete treatment of sequences of equations
 and by
examining how to translate the local de�nitions introduced by where clauses�
The status of the logic is then examined
 and it is argued that the logic extends a
natural operational semantics of Miranda
 given by the translations of de�nitions
into conditional equations�
Finally it is shown how the logic can be implemented in the Isabelle proof tool�

�� Introduction

�Functional programming languages are the best hope for formally�veri�ed pro�
gramming� is article of faith for many� That it remains an article of faith
 rather
than a fact is because of the lack of any experimental evidence� In this paper
we continue work begun in �Tho��	 aimed at giving a logical translation of the
Miranda lazy functional programming language
 �Tur�
	
 and we report on the
implementation of the system in Isabelle
 �Pau�
	�

The paper begins in Section � with a self�contained summary of the material
in �Tho��	� This is followed in Section � by a full translation of de�nitions in
Miranda into logical formulas� This uses the notion of the complement of a
pattern
 from �Tho��	
 but unlike that paper gives a full treatment of sequences
of de�ning equations
 as well as local de�nitions as given in where clauses�

� Miranda is a trade mark of Research Software Ltd�
Correspondence and o�print requests to� S�J�Thompson�ukc�ac�uk

� S� Thompson

The relation of the logic to the language itself is examined in Section ��
We argue that a subset of the logic provides an operational semantics of the lan�
guage
 and argue that this logic is
 by construction
 consistent� Similar arguments
suggest that the full logic is also consistent�

Large portions of the logic have been implemented in Isabelle� we report on
this work in Section �� Work on the Isabelle implementation is proceeding with
case studies which we hope will guide research into generating theories automat�
ically from Miranda scripts and the design of tactics and tacticals to support
reasoning about functional programs � preliminary work in this area appears
to indicate that more tacticals to support forward reasoning from assumptions
would be welcome�

Similar work on giving a logical formulation of Haskell is reported in �Tho��	�
I am grateful to Howard Bowman
 Stephen Hill
 Richard Jones
 Andy King

Mark Longley
 Gerry Nelson and David Turner of the University of Kent
 Nor�
bert V�olker of FernUniversit�atHagen and the two anonymous reviewers for their
helpful comments on this material and its presentation�

�� A Logic for Miranda � Summary

In this Section we use the notation �xn�m� for Section n�m of the original paper

�Tho��	
 reserving �Section n�m� for sections of this paper�

In the original paper
 x� and x�
 we present an axiomatisation of the Miranda
language
 based on the atomic formulas

e � f
where e and f are Miranda expressions� the statement is intended to assert that
the expressions e and f have the same value� In addition
 the logic contains the
formulas e v f
 interpreted as �the value of e approximates that of f�� these
formulas can be de�ned from the equality relation � by induction over the con�
struction of the types
 and we say nothing further about them�

The atomic formulas are embedded in a many�sorted �rst�order logic
 the
sorts of the logic corresponding to the types of Miranda� The connectives are the
standard ones� conjunction ���
 disjunction ���
 implication ���
 negation ���

bi�implication ��� and the typed universal ��� and existential �	� quanti�ers�

The logic is standard �rst�order logic with equality ���� Because the language
contains unrestricted recursion
 it is possible for the evaluation of an expression
to fail to terminate� Each type is therefore taken to contain a term
 to denote
the unde�ned value� this is broadly the approach taken in LCF
 �Pau��	� x�
examines some of the alternative approaches available�

In keeping with the Miranda notation
 we shall in general omit the types
on quanti�ers� We also assume that the type checking facilities of Miranda are
employed in ensuring that only equations between objects of uni�able types are
well�formed�

Axiomatising the language consists of two steps�

� x�
 �
 � contain an axiomatisation of the types of the language�

� x�
 �
 � give an axiomatisation of the de�nitions which form the programs of
the language�

These are examined in turn now�

A Logic for Miranda� Revisited �

���� Types

A description of a type has two aspects� First
 we need to describe equality over
the type
 �� This is
 in general
 done by stating which elements are unequal as
well as those which are equal� In the case of compound types
 equality is based
on comparing the components� The general case of an algebraic type is examined
in x�� Taking as an example

tree ��� Leaf num � Node tree tree
we have two axioms to characterise equality�

�Leaf m � Leaf m� � �m � n�
�Node s	 s
 � Node t	 t
� � ��s	 � t	� � �s
 � t
��

and one to give the inequalities between the di�erent constructors�
�Leaf n �� Node t	 t
� � �Leaf n ��
� � �Node t	 t
 ��
�

Similar observations apply to products in x�����
 ����
Finally in considering equality
 we look at functions� Equality between func�

tions is extensional� two functions are equal if and only if they give the same
results on all possible arguments� this is discussed in x������

The second aspect of types to examine is how to prove universal results over a
type� Clearly we can use the standard rule of universal introduction� from a proof
of P�x� we can infer �x�P�x�
 so long as x is not free in any of the assumptions

but structured types carry induction rules which characterise the way in which
they are generated�

The induction rules for the boolean type are introduced in x����

P�True� P�False� P�
�
�x��bool�P�x�

P�True� P�False�
�dfx��bool�P�x�

The �rst characterises the full domain
 and the second the sub�domain of de�ned
elements� To eliminate the quanti�er �df
 it must be instantiated with a de�ned
element
 and the logic contains a de�nition of this� for the Boolean type
 it is
simply defined�x� � x ��
�

This approach is generalised to structured types such as lists in x���
 where
rules characterising various sub�domains of the full type of lists are given�

For example
 the �nite lists
 whose structure is �nite and fully de�ned but
whose elements may be unde�ned �for example �
�
�
�� are characterised by
the rule

P���� �a��x��P�x��P�a�x��
�finx�P�x�

As well as various degrees of de�ned list
 the list types contain in�nite elements�
To prove a result for the full type of lists
 including the in�nite elements
 re�
quires more sophisticated methods
 which are outlined in x���
 together with a
discussion of the equality over these objects�

Lists are taken as a paradigm for all �covariant� algebraic types in the paper�
A similar approach to the numeric type num is discussed in x����

���� De�nitions

On �rst examining a Miranda function de�nition
 it appears to be a set of equa�
tions� unfortunately
 the situation is more complicated than that�

A de�nition consists of a number of equations� when a function is applied

� S� Thompson

the �rst equation whose patterns match the given arguments will be applied�
Within a particular equation there can be multiple right�hand sides
 which are
searched through sequentially� x� discusses the simple case of a single equation

while x��� gives a thorough examination of pattern matching upon which we
build in the remainder of this paper� Miranda pattern matching is sequential

proceeding top�down and left to right�

The crucial de�nition in x��� is of the complement of a pattern
 p say� This is
a set of a patterns
 some accompanied by guards
 which characterise the cases in
which a value fails to match the pattern p
 and so when control �falls thorough�
to the next equation
 if any�

The explanation is given by de�ning a Miranda type to represent patterns

and a Miranda function over that type to calculate complements� As an example

the pattern �a�a� is examined� Its complement will consist of

� ��
 the empty list�

� �a�
 a one�element list�

� �a�b�x�
 a list with a least two elements also satisfying the guard a
�

�b� and

� �a�b�c�x�
 such that the guard a�b holds� a list of at least three elements

the �rst two of which have to be equal
 in other words�

This example can also be used to illustrate the fact that repeated variables in
patterns cannot simply be replaced by distinct copies of the variable which are
tested for equality in a guard� di�erent complements are derived�

Finally
 in x�
 �
 there are discussions of the characterisation of recursion and
related issues
 to be taken up further in the present paper�

�� Miranda de�nitions

This Section builds on x� and � of �Tho��	
 where a discussion of the translation
of Miranda de�nitions is initiated� New to this exposition are a full description of
pattern matching in the context of a sequence of equations
 as well as a treatment
of local de�nitions
 introduced in where clauses�

Miranda de�nitions are
 to the casual reader
 equations� This section outlines
a transformation from de�nitions to logical formulas and shows that a number of
features combine to make the explanation complex� These features include the
following�

� De�nitions consist of a number of equations
 each of which can have multiple
right�hand sides� These are to be understood sequentially� equations and
clauses within equations are tried one by one until an applicable case is
found�

� Pattern matching is complex� Patterns may contain literals and repeated
variables
 as well as nested patterns� The process of pattern matching is
sequential� Pattern matching has three outcomes� success
 failure and diver�
gence�

� Conditionals are expressed in Miranda by means of boolean guards� It is
possible to write an equation without a �nal otherwise case
 which can have
the e�ect of allowing control to �fall through� to the following equation�

� De�nitions contain local bindings in where clauses� in some circumstances

such as the �fall through� mentioned above
 it is necessary to combine together

A Logic for Miranda� Revisited �

the local de�nitions of distinct equations when giving a logical explanation
of their meaning�

� Lazy evaluation of constructor expressions has the consequence that algebraic
types contain partially de�ned elements � that is elements which are de�ned

at the top level
 at least
 yet which contain unde�ned components� Describing
pattern matching against such objects is tricky�

As was noted in Section �
 we shall use the notion of the complement of a
pattern in explaining the behaviour of a function de�ned by means of a sequence
of equations� The translation will be given in a number of stages
 and will be
illustrated by a series of examples� Lists are used as a typical example of a type

with constructors cons
 ���
 and the empty list
 ���

���� Single Equations

The simplest form of de�nition is
f x � e

where x is a variable� This translates to the formula
�x��f x � e�

This is the case for any number of pattern arguments on the left hand side �LHS�

so long as no variables are repeated on the LHS� For example

f p� � � � pn � e
is translated to

�x�� � �xk��f p� � � � pn � e�
where it is assumed that the variables appearing in the patterns p� to pn are x�
to xk�

Note that throughout this account �� � � � is used to elide parts of the text �
usually a sequence of patterns or the right hand side of a de�nition�

If
 in a de�nition consisting of a single equation
 one or more variables are
repeated on the LHS then the e�ect is the same as an equality test in a guard�

f p� � � � pn � e
will have the same behaviour as the de�nition

f p�� � � � pn� � e� � if guard ���
where multiple occurrences of a variable
 x say
 are replaced by di�erent sub�
scripted variables
 x� to xk to give the primed versions of the patterns� The right
hand side
 e� results from replacing a repeated variable
 x say
 by one of its
subscripted instances�

In the guard we have the tests
x��x� � x��x� � � � � � x��xk � � � �

This in turn is translated by
�x�� � ��guard � True � f p�� � � � pn� � e��

where the variable list x�� � � consists of all the variables free in the patterns p��
to pn��

���� Single equations� multiple clauses

A single equation may have multiple clauses on the right�hand side

� S� Thompson

f p � e� � if g�
� e� � if g�
� � � �

� en � if gn
�The case that the equation has a �nal otherwise clause is equivalent to the
�nal guard
 gn being replaced by True��

In evaluating the function
 the guards are evaluated in turn until one is found
which returns the value True� In translation
 we have

�g� � True � f p � e�� �
�g� � False � g� � True � f p � e�� � � � � �
�g� � False � g� � False �� � �� gn � True � f p � en�

where we assume that implication
�
 is right associative
 so that
A � B � C

is shorthand for
A � �B � C�

If there are repeated variables in the pattern p then guarding clauses like that
seen above in ��� need to be added to each conjunct before translation
 thus�

f p� � e�� � if guard � g��
� e�� � if guard � g��
� � � �

� en� � if guard � gn�
where the primed versions of the pattern
 guards and result expressions result
from replacing the repeated variables by their subscripted variants�

Each of the guards gi� can evaluate to True
 False or can diverge� In the
latter case
 the result of the function will be unde�ned

� These divergent cases
form part of the description of the function
 and are discussed in Section ����

���� De�nitions and recursion

Operationally
 a recursive de�nition of an object results in the least well�de�ned
solution of the de�nition� The philosophy of the work reported here is only to
reason about the properties common to all solutions of a particular equation�
For instance
 if

fac n � 	 � if n � �
� n � fac �n�	� � otherwise

then the de�nition is translated thus�
�n��� � True � fac n � 	 �
�n��� � False � fac n � n � fac �n�	�

Nothing de�nite can be inferred about the value of fac on negative integers
 for
instance� The least solution has the property of being
 on these values
 but it
would also be possible for them all to be zero�

���� Local de�nitions

The philosophy of treating equations as de�ning the properties common to all
solutions of a set of equations has an e�ect on the treatment of local de�nitions�
Consider

A Logic for Miranda� Revisited

b � a
where
a � a

If the local de�nition
 call it P�a�
 is satis�ed by a unique value
 then the whole
de�nition can be rendered either as

�a��P�a� � b � a� �y�
or thus

	a��P�a� � b � a� �z�
In the case that there are multiple solutions to P
 the equations have di�erent
interpretations� In �y�
 b is set equal to every solution of P
 thus generating a
logical inconsistency
 that is a formula from which we can prove every formula�
In �z� b is set equal to some �unknown� value � we can therefore deduce nothing
about a beyond the fact that it has the property P
 in line with our philosophy
of explanation�
The example

f x y � e�
where
g x � e�
h � e�

if we make the inner de�nitions visible
 translates to
��x��g x � e�� � h � e� � f x y � e��

The variables used locally �in this case the x used in the de�nition of g� are
hidden using the universal quanti�er� At the outer level the remaining variables
are similarly quanti�ed and names are hidden by existential quanti�cation thus�

�x�y�	g�h���x��g x � e�� � h � e� � f x y � e��
Since the scope of the variables x and y is the whole of the right hand side of
the de�nition
 including the right hand sides of the local de�nitions
 the order
of the quanti�ers allows the values of h and g to be di�erent for di�erent values
of x and y
 which is how it should be�

In the general case

f p � e� � if g�

� e� � if g�
� � � �

� en � if gn
where
l� � � � � � � �

� � �

lq � � � � � � �

the translation will be
�x�� � �xk�
	l�� � �lq�

�trans�l�� � � � � � trans�lq� �
�g� � True � f p � e�� �
�g� � False � g� � True � f p � e�� � � � � �
�g� � False � g� � False �� � �� gn � True � f p � en��

where trans�li� is the translation of the local de�nition of li according to the
same rules as for top�level de�nitions� The variables x� to xk are precisely the
variables free in the pattern p� The case of repeated variables in p is treated as
above�

Another way of justifying the use of an existential quanti�er to give the

� S� Thompson

local scope is to examine the traditional existential elimination rule in natural
deduction systems�

	x�P�x� P�y�
 C
C

�	E�

where c and any other assumptions of the derivation do not contain the variable
y free� To infer C
 we have to use an arbitrary y with the property P� That is
precisely the e�ect we wish to achieve with our de�nition�

Local de�nitions and guards

It is worth examining one of the consequences of the translation of local de�ni�
tions above�

The local de�nitions are given in an existential block
 containing within it
the case switch� For example

f p � e� � if g�
� e� � otherwise
where
b x � e

becomes
�x�� � �xk�

	b�� �x��b x � e� �
�g� � True � f p � e�� �
�g� � False � f p � e�� �

Note that the case switch is within the scope of the quanti�er
 so that the same
value of b is used in both cases� This is stronger than the formula

�x�� � �xk�
	b�� �x��b x � e� �

�g� � True � f p � e�� � �
	b�� �x��b x � e� �

�g� � False � f p � e�� �
in which di�erent values of b may potentially be used in the two clauses� This
latter rendering is strictly weaker then the former
 and is not used�

���� Multiple Equations

In explaining pattern matching for a single equation
 it is su�cient to describe
the set of values for which the pattern match succeeds� In general an attempt
to match a value against a pattern can have one of three results� success
 failure
and divergence� For instance
 matching the list �
�
� against �a�x�will succeed

whilst against �a� it will fail
 and against �a�a� it will give divergence
 since it
will involve evaluating
�
�

Given two equations
 the second will only be applied to values which fail to
match against the pattern in the �rst equation� We call this set the complement
of the �rst pattern
 and we argued in Section � that it could be described by a
�nite set of patterns
 perhaps with accompanying guards� The patterns
 right�
hand sides and guards are specialised as a result of unifying the patterns with
the complements of earlier patterns� Section � described the complement of the
pattern �a�a�
 and so the de�nition

A Logic for Miranda� Revisited �

f �a�a� � e�
f y � e�

will be translated thus�
�a�b�c�x�z�

�a�a� � True � f �a�a� � e� �
f �� � e�f���yg �
f �a� � e�f�a��yg �

�a�b� � False � f �a�b�x� � e�f�a�b�x��yg �
�a�b� � True � f �a�b�c�z� � e�f�a�b�c�z��yg

�It is assumed that none of a�b�c�x�z is free in e�� If this is not the case then
the appropriate re�namings should �rst be done�� In this example
 the uni�cation
with y is trivial� In general
 the equations will be rendered thus�

A similar explanation holds for equations with multiple patterns on the left
hand side� the patterns are matched left to right� Occurrences of numeric literals
in patterns are treated in similar way to repeated variables� the equality tests
they give rise to are performed during the course of pattern matching
 and so
de�nitions which contain numeric literals cannot in general be replaced by de��
nitions containing only variables with an auxiliary equality test on the variables
in a guard�
When a sequence of equations like

f p� � RHS�
f p� � RHS�
����
f pk � RHSk

is to be translated
 the second equation is only invoked on expressions which
match both the complement of p�
 written

�

p�
 and p�� We need therefore to
unify the two
 written p� �

�

p�� �As was evident above
 the complement of a
pattern may be described by a set of patterns rather than a single pattern� in
that case p� has to be uni�ed with each of the patterns in

�

p��� The result in
the case above is

f p� � e�
f �p� �

�

p�� � RHS���
f �pk �

�

p� �� � ��
�

pk��� � RHSk�k��
where �i is the substitution unifying

�

p� up to
�

pi with pi��� Each of these
de�nitions can then be translated separately using the methods above
 assuming
that the �nal guard in each equation is otherwise or the equation is without
guards�
An example of this is given by the de�nition

f �� �a�b�x� � e�
f �a�b�x� y � e�
f x �a�y� � e�

which gives rise to
�a�b�c�x�y�

f �� �a�b�x� � e� �
f �a�b�x� y � e� �
f �� �a� � e�f���x����yg �
f �c� �a�y� � e�f�c��xg

In these examples it has been evident that substitutions have to be performed
on the right hand sides of equations� This remark applies equally well to guards
and local de�nitions �where clauses��

�
 S� Thompson

��	� Patterns and Guards
 Dangling conditions

The guards of Miranda do not necessarily include an otherwise clause� It is
therefore possible for a pattern match to succeed
 only for �all� the guard�s� in
an equation to fail
 causing control to �drop through� to the following equation�
This mechanism is orthogonal to the pattern matching which can also cause
control to pass to an subsequent equation� The example of

f �a�b�x� � e� � if g�
f �a�x� � e� � if g�

can be illustrated thus�

f (a:b:x) = e1 , if g1

f (a:x) = e2 , if g2

Pattern Matching Guards

In its translation there are three clauses� The �rst corresponds to a successful
match with the �rst equation
 followed by a True result of the guard� the second
to the fall through from the �rst equation to the second
 and the �nal clause to
use of the second equation after failure to match with the �rst�

�a�b�x�
g� � True � f �a�b�x� � e� �
g� � False � g�� � True

� f �a�b�x� � e�� �
g�� � True � f �c� � e��

where
g�� � g�f�b�x��xg
g�� � g�fc�a����xg

and e�� and e�� are de�ned similarly�

Local De�nitions

The di�culty of explanation is compounded by the presence of where clauses�
For example

f �a�x� y � u � if h b
where
b � g a x y

f x �b�y� � v � if w
where
a � s t

���
Control will fall through to the second equation from the �rst if the guard
 which
involves the locally de�ned value b
 fails� In explaining the e�ect of the second
equation
 therefore
 we will need to use this value b� It is as though the scope of b

A Logic for Miranda� Revisited ��

is extended to include the other de�ning equations of f� To make the explanation
clearer
 the variables in the second equation are renamed thus�

f x� �b��y�� � v� � if w�
where
a� � s� t�

The translation is then
�a�b�x�y�
	b��b � g a x y � ���

�h b � True � �	�
f �a�x� y � u� � �
�

�h b � False � �
�
�	x��b��y��a�� ���
��b��y���y � x���a�x� � a� � �s� t�� � ���

��w� � True � f x� �b��y�� � v�� � ���
��� � � � � � � ���

	a��a � �s t�f���xg � ���
�wf���xg � True � f �� �b�y� � vf���xg� � ���
��� � � �	��

��� �		�
The �rst conjunct �lines ��� to ���� denotes successful matching with the pat�
terns in the �rst equation�

Within this conjunct
 the �rst conjunct �lines �	� and �
�� denotes the case
in which the �rst equation applies� the second �lines �
� to ���� covers that in
which control falls through to the second equation�

In this case
 a collection of existentially quanti�ed variables is introduced in
line ���� these are used to represent a successful match with the patterns in the
second equation �line ����
 as well as the de�nition local to the second equation
�line ����� Line ��� contains the guard from the second equation
 and the result
of successful evaluation of the guard� The ellipsis in line ��� denotes the case in
which controls falls through to the third and subsequent equations from the �rst
and second�

The second conjunct �lines ��� to �	��� covers the case of a successful match
with the second equation after failure to match the �rst� the ellipsis in line �	��
allows for control to fall to the third� The �nal ellipsis in line �		� covers the
case of a successful match with the third equation �after failure to match the
�rst two��

The example shown here is representative of the most complex possible form
of de�nitions in Miranda� Schematically
 a sequence of equations will be trans�
lated as in Figure ��

As a result of our work in this area
 we would propose that the otherwise
clause in Miranda and its analogue in Haskell
 �HJE��	
 become compulsory � this
means that once a pattern is matched
 there is commitment to that equation

and that there is no need for the joining together of local de�nitions which
makes the operation of the construct substantially more complicated than it
need be� In Standard ML
 �MTH�
	
 this problem does not occur� alternatives
are constructed using if���then���else��� with no option to drop the else
case�

�� S� Thompson

local definitions 1

local definitions 1 and 2

local definitions 1, 2, 3

pattern1

pattern1 & pattern2

pattern1 & pattern2 & pattern3

grd1 => RHS1

~pattern1 & pattern2

local definitions 2

grd2 => RHS2

....

....

....

~grd1 => grd2 => RHS2

~grd1 => ~grd2 => grd3 => RHS3

Fig� �� Translating a sequence of equations� the general case�

���� Built�in functions

A number of the functions available in the Miranda system are built�in�

� The equality and ordering functions
 which are de�ned over all ground types

that is types built from the atomic types num
 bool and char using �covariant�
algebraic type de�nitions
 tuples and lists�

� The arithmetical functions
 de�ned over the type num�

� The show functions
 which provide printable ��char�� representations of ob�
jects�

The values of these functions are assumed to be given as axioms
 so that for all
m and n of type num
 the equation

m�n � vm�n
will be an axiom
 where vm�n is the value of the sum of m and n�

A Logic for Miranda� Revisited ��

��
� List Comprehensions

The syntax used to describe lists in Miranda is rich� De�nitions using a variety
of patterns are permitted
 and there is also the list comprehension notation�
Intuitively
 a list comprehension allows a declarative description of a list
 thus

� e � g� � g� � ��� � gn �
where each gi is either a generator of the form

pattern �� expression
or a boolean expression� The generators bind values to the variables in the
pattern
 successively binding the pattern to the values in the list denoted by the
expression�

The boolean expressions are tests which �lter the values chosen
 so that those
making the test False are omitted� The result of the evaluation is the list of e�s
resulting from the successive bindings� For example

� f x � x �� l � g x � � map f �filter g l�
� x�y � x �� ���	� � y �� ���
� � � ���
���
�

The following axioms su�ce to describe list comprehensions�
� e � � � �e�
� e � ��� � True � ��� � � � e � ��� � ��� �
� e � ��� � False � ��� � � ��
� e � ��� � x �� �� � ��� � � ��
� e � x �� �a�l� � ��� �

� � e � ��� �fa�xg �� � e � x �� l � ��� �
In case a pattern appears in a generator
 it is �rst translated into a simpler form�
Suppose we have the generator

�a�x� �� l
make the auxiliary de�nitions

patt	 �a�x� � True
aPart �a�x� � a
xPart �a�x� � x

replace the generator by
y �� filter patt	 l

and replace the identi�ers a and x by
�aPart y� �xPart y�

in the remainder of the list comprehension� The translation is simpler in the case
of an irrefutable pattern
 such as �x�y�
 there being no need to �lter the values
matching the pattern�

Miranda contains one �nal form of generator
 which can be described by a
source�to�source transformation� It is possible to write

x �� c� f x ��
this is explained in exactly the same way as the

x �� iterate f c
where iterate f c is the list �c� f c� f �f c�� �����

���� Divergence information

There is further information to be gleaned from the equations about cases in
which a function is unde�ned� this can happen because pattern matching or
guard evaluation diverges�

True � x � x

�� S� Thompson

False � x � False
has the property that

 � x �

since the pattern match in the �rst argument forces the conjunction operation
to examine its �rst argument�

The information about this form of divergence can be derived from the de��
nitions in a similar way to the calculation of complements above
 if it is required�

����� Conclusion

This Section has given a translation of Miranda de�nitions into conditional equa�
tions of the form

cond� � � � � � condk � f p� � � � pm � v �y�
and more complex logical formulas in which scopes are represented by existen�
tially quanti�ed variables�

As is well�known �see
 for example
 �Pey��	� local de�nitions can be removed
by a process of lambda lifting
 in which a local de�nition of e say
 depending
upon formal parameters x� to xk
 is lifted to a top�level de�nition of a function
of these parameters� Occurrences of e within its original scope are then replaced
by applications

e x� � � � xk
Di�erent de�nitions of e in di�erent scopes will have to be renamed
 of course� If
the process of lambda lifting is applied to a script
 an equivalent script results�
Moreover
 the translations of a script without local de�nitions will consist only
of conditional equations like �y�� We shall use this fact below�

It should also be observed that the translation is monotonic
 in the sense that
if an extra equation is added to a de�nition
 the translation of the augmented
de�nition will extend the translation of the original� This is a consequence of
the approach of Section ���
 where we noted that we only observe properties
common to all functions satisfying the de�ning equations
 rather than the least
solution� �Note also that this is true of the divergence information we infer in
Section ���� We only axiomatise the cases in which pattern matching diverges

which will not be altered by the addition of extra equations��

�� The status of this logic

Section � gives a translation of Miranda de�nitions into a logic� together with
the rules for types in �Tho��	 and reviewed in Section � we have a system for
reasoning about Miranda programs� In this Section we look at the status of
the logic
 and in particular explore the twin questions of its consistency and its
relation to Miranda�

���� An Operational Semantics for Miranda

In the absence of a published semantics for the Miranda programming language
it is impossible to assess the relative soundness of the logic proposed here�

On the other hand we suggest that the system is itself an extension of an
operational semantics for Miranda� First we make a de�nition�

A Logic for Miranda� Revisited ��

A Miranda expression is a value if it contains only literals and constructors�
For instance

� the values of type num are the numeric literals

� the values of �num� are �nite lists built from numeric literals
 and so on�

We claim that a Miranda expression e of ground type will have the value v if
and only if

� e � v
where the deduction system
� consists of

� the elimination rules for 	 �as given above
 in Section ����
 � and �

�x�P�x�

P�e�
��E�

A�B A
B

�� E�

together with

� the structural rules governing assumptions

� the axioms stating that � is a congruence
 and

� the translations of the de�nitions of the Miranda de�nitions into quanti�ed
formulas built over conditional equations of the form �y�
 as described in
Section ��

The explanation above gives directly only values to expressions denoting hered�
itarily fully�de�ned objects� Miranda as a lazy language contains other values
also� These are de�ned indirectly by equating two expressions e� and e�
 e���
e�
 if and only if for all contexts
 C����
 and values v

� C�e�� � v if and only if
� C�e�� � v

���� Consistency of the operational semantics

As was explained in Section ���

 without loss of generality we can consider
scripts without local de�nitions
 since the lambda�lifting transformation pre�
serves meaning� Another way of looking at this is to see the lambda lifted de�ni�
tions as Skolem functions witnessing the existential quanti�ers in the translations
of general formulas�

In this case
 the translations are �the universal closures of� conditional equa�
tions of the form

cond� � � � � � condk � f p� � � � pm � v �y�
We now claim that the set of formulas produced by the translation will be consis�
tent by construction� This is because the algorithm for translation ensures that
no two conditional equations for a single de�ned object have both

� compatible conditions � that is have the union of their sets of conditions a
consistent set of formulas
 and

� uni�able patterns�

As a consequence of this property
 it apparent that no non�trivial equations
between values can arise as a consequence of the translations of de�nitions
 and
so that in particular

�
� � � 	
which is a formal statement of the consistency of the system
�� Another way of

�� S� Thompson

seeing this is to use the con�uence of the corresponding semi�equational condi�
tional term rewriting system� see
 for instance �Klo��	�

���� Consistency of the full logic

The full logic consists of the translations of Section � together with the rules
which characterise the types
 reviewed in Section �� The induction rules
 and so
on
 are derived from domain models in �Pau��	
 and so are consistent� The addi�
tion of the rules derived from the de�nitions should not compromise consistency
for the same reasons as discussed in the previous Section�

�� Implementation in Isabelle

Isabelle is a generic proof assistant with some support for automatic theorem
proving
 and which supports proof in a variety of logics� We have used the version
of �rst�order many�sorted logic in Isabelle to implement the logic for Miranda�

Isabelle supports goal�directed backwards proof construction� Inference rules
are matched against goal states using higher�order uni�cation
 and in the mainwe
have applied rules one by one when constructing proofs� The system supports
tactics
 and in our work we have used some of the built�in tactics� safe�tac
applies a number of simple logical strategies
 without causing any instantiation
of logical variables� fast�tac will do instantiations as well� These tactics are
often used to strip o� universal quanti�ers
 move hypotheses from implication
formulas into assumption lists
 and so on� Also built into the system is a rewriting
package
 which uses logical equations and equivalences as directed rewriting rules�
Application of tactics such as SIMP TAC and ASM SIMP TAC which recursively
apply all the available rewriting rules can substantially simplify proof search�

In reasoning about functional programs
 it is often the case that certain
conclusions are sought on the basis of equational assumptions� At certain points
of proof
 forward reasoning from these assumptions is required
 and it took a
certain amount of time �and advice� to discover how best to do this� In particular
it is sometimes necessary to cut in the appropriate substitution instance of a
known fact to guide search or variable instantiation�

The translation of Miranda scripts is made easier by a number of features of
Isabelle�

� The types �or sorts� allowed in the system can belong to classes
 similar to
the type classes of Haskell� The class mira is de�ned to represent the class
of Miranda types
 and allows a natural representation of Miranda polymor�
phism� This is assisted by the ability to give type variables a default class

which we choose to be mira in most cases�

� Classes also give a clean treatment of the overloaded operations of Miranda

like the computational equality operation
 which returns a boolean result�
This is denoted by � in Miranda� we use ��� for the relation in Isabelle
 since
� is used for identity
 which we have denoted by � thus far in the paper� We
also use overloading to de�ne a predicate def
 for the fully�de�ned elements
of each type�

� Operators can be given mix�x syntax
 so that the built�in syntax of the

A Logic for Miranda� Revisited �

operations can be made to resemble that of the application domain� Declaring
values thus�
undef �� ��a��mira� ��� �� ��
��� �� ���a��a list� �! �a list� �infixr ���
member �� ��a list �! �a �! bool� ��member ��
ensures that � is the polymorphic unde�ned element
 cons is denoted by
an in�x colon and that applications of member are written without brackets

as in Miranda� More complex syntactic declarations are easily available�

A selection of the rules for booleans and lists follow�
disBool	 �

�

�true � false� �
disBool
 �

�

�true � � � �
disBool
 �

�

�false � � � �
These three axioms ensure that the three boolean values are distinct� The axioms
are preceded by their names
 which are used when writing proofs� Note that lower
case true and false are used� the upper�case versions denote the true and false
propositions�

boolInd ��� P�false� � P�true� � P� � � �� ��! ALL x�P�x��
This is the induction rule for booleans
 from which can be proved

�ALL x � x�true �x�false�x� � �
The disjunction operation is axiomatised thus

orTrue �true ""� x � true�
orFalse �false ""� x � x�
orUndef � � ""� x � � �

A typical list function is ��
appendNil �����x � x�
appendUndef � � ��x � � �
appendCons ��a�x���y � a��x��y��

The list induction axiom is only to be applied to chain complete predicates P

see �Pau��	 for details�

listInd
��� P���� � P� � � � ALL a x � P�x� ��! P�a�x� ��

��! ALL x�P�x��
Here can be seen a part of the de�nition of the def predicate
 for list types� The
rules for def are formulated as equivalences
 so that they can be input to the
simpli�cation system�

defNil �def���� ��! True�
defUndef �def� � � ��! False�
defCons �def�a�x� ��! def�a� � def�x��

As an experiment in veri�cation using functions involving local de�nitions
 pat�
terns and local de�nitions
 we performed veri�cation for the Miranda function

frontsubst �� ��� �! ��� �! ��� �! � ��� � bool �
The function frontsubst x y z replaces the initial sublist x of z by y
 if pos�
sible� In this case the result if paired with True� If the substitution fails
 the
unmodi�ed string is paired with False to give the result�

frontsubst �� rep st � � rep��st � True �
frontsubst �a�x� rep �� � � �� � False �
frontsubst �a�x� rep �b�y�
� � b�y � False � � if a

�

� b "�
�

ok
� � out � True � � otherwise

where �out�ok� � frontsubst x rep y

�� S� Thompson

The function is translated thus�
frontsubst �� ���a list��a list��a list� �! ��a list � bool��

��frontsubst � �		��		��		�� 	���
The syntax declaration here ensures that the arguments to the function are
bracketed in exactly the cases that they are bracketed in Miranda�

fs	 �frontsubst �� rep st � � rep��st � true ��
fs
 �frontsubst �a�x� rep �� � � �� � false ��

The �nal case translates into a block
 containing an inner case analysis
fsBlock
�EX out ok �� �out�ok� � frontsubst x rep y

� � not �a ��� b� ""� not ok � true
��! frontsubst �a�x� rep �b�y� � � b�y � false � �

� � not �a ��� b� ""� not ok � false
��! frontsubst �a�x� rep �b�y� � � out � true � �

� � not �a ��� b� ""� not ok � �
��! frontsubst �a�x� rep �b�y� � � ���

The goal is one half of the bi�implication which expresses that the function
performs the substitution required�

�ALL x y z ans �
def�x� ��! def�y� ��! def�z� ��! def�ans� ��!
�frontsubst x y z � �ans�true� ��!
�EX w� x��w�z � y��w�ans����

and this is proved in a proof of some �

 steps� Many of these steps are small
 and
could be put together by de�ning the appropriate tactics� In outline
 the proof
proceeds by induction over the �rst variable
 x� Within the induction step there
is a case analysis on the value z� Now a case analysis on the value of the guard
can be used� The interesting case �False� requires the proof of two subsidiary
lemmas�

In constructing a proof of this size
 it is imperative to keep a textual log of
the steps taken so that this can be modi�ed and re�played at will� How best to
document such proofs will form part of our future research
 since if the proofs
are to be re�used
 at least partially
 they need to be comprehensible�

References

�HJE��� Paul Hudak� Simon Peyton Jones� and Philip Wadler �Editors�� Report on the
Programming Language Haskell� version ���� ACM SIGPLAN Notices� �
����
�����

�Klo��� J� W� Klop� Term rewriting systems� In Samson Abramsky� Tom Maibaum� and
Dov Gabbay� editors�Handbook of Logic in Computer Science� Volume II� Oxford
University Press� �����

�MTH�
� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML�
MIT Press� ���
�

�Pau�
� LawrenceC� Paulson� Logic and Computation � Interactive proof with Cambridge

LCF� Cambridge University Press� ���
�
�Pau�
� Lawrence C� Paulson� Isabelle� the next

 theorem provers� In P� Oddifreddi�

editor� Logic and Computer Science� Academic Press� ���
�
�Pey�
� SimonPeyton Jones� The Implementation of Functional Programming Languages�

Prentice Hall International� ���
�
�Tho��� Simon J� Thompson� A Logic for Miranda� Formal Aspects of Computing� �� �����
�Tho��� Simon J� Thompson� Formulating Haskell� In Workshop on Functional Program�

ming� Ayr� ���	� Workshops in Computing� Springer Verlag� �����

A Logic for Miranda� Revisited ��

�Tur�
� David A� Turner� An overview of Miranda� In David A� Turner� editor� Research
Topics in Functional Programming� Addison Wesley� ���
�

