
Abstract Matching can improve on Abstract Uni�cation

Andy King
Computing Laboratory�

University of Kent at Canterbury�

Canterbury� CT� �NF� UK�

a�m�king�ukc�ac�uk

Mark Longley
Dept� of Electronics and Computer Science�

University of Southampton�

Southampton� S�� �NH� UK�

ml�ecs�soton�ac�uk

March 	� 
���

Abstract

Analyses for sharing and freeness are important in the optimisation and the parallelisation
of logic programs� By using a standard �xed�point framework� sharing and freeness analysis
can be constructed by de�ning suitable abstract analogs for concrete operations like renaming�
restriction� uni�cation and extension� Extension is required in the clause exit mechanisms and
is typically formulated in terms of restriction and matching� Matching also arises as goal�head
uni�cation in normalised programs in which the �formal� arguments of each clause head are
distinct variables� Abstract matching� however� is rarely given special attention and is usually
implemented by abstract uni�cation� This paper remedies this� contributing a series of useful�
practical and formally�justi�ed abstract matching algorithms for the popular domains Share�
Share � Free and Share � Free � Lin� The matching algorithms are useful and important
because they can outperform their corresponding uni�cation algorithms in both precision and
speed�

� Introduction

Analyses for sharing and freeness are important topics of logic programming with applications
which include� the sound removal of the occur�check ����� optimisation of backtracking �	�� the
specialisation of uni
cation ����� and the identi
cation ���� �	� and e�cient exploitation ��
� ��� ���
of independent and�parallelism �
��

Following the approach of abstract interpretation ���� sharing and freeness analyses are usually
constructed by tracing possible program executions with descriptions of the data values �the
abstract data� rather than using actual data values �the concrete data�� The construction usually
divides into domain and framework related issues� For the domain� suitable abstract analogs for
concrete operations like renaming� uni
cation� composition and restriction are speci
ed and proven
safe for a particular description of substitutions� For example� uni
cation would be mimicked
by an abstract uni
cation algorithm in which substitutions are 
nitely represented by sharing
and freeness abstractions� the abstract substitutions� The framework traces the control��ow of
Prolog� the concrete semantics� calculating abstract substitutions at various points of a program
thereby characterising the actual substitutions which can possibly arise at those program points�
Frameworks ��� ��� ��� ��� ��� ��� ��� ��� �
� are usually parameterised by the domain operations
and basically solve a set of 
xed�point equations�

��� Abstract matching in standard frameworks

Although the concrete semantics of logic programs are formulated in terms of uni
cation� both
matching and uni
cation usually require to be abstracted in a framework� Frameworks typically
trace the values of substitutions which� for 
niteness� are restricted to sets of program variables� To

�



describe the sharing and freeness at a certain point in a clause� for example� it is only necessary to
characterise the sharing and freeness between the variables of the clause� For 
niteness� however�
frameworks have to introduce explicit clause entry and exit mechanisms� the latter of which is
formulated in terms of restriction and matching� The restriction and matching operations RESTRG
and EXTG� for example� are used in the framework of �����

RESTRG�l� �Ain� takes as input a literal� l� of the form p�ui� � � � � � uim� taken from a clause with
variables U � fu�� � � � � ung� and an abstract substitution on U � �Ain� RESTRG projects �

A
in onto

fui�� � � � � uimg returning� as output� the projection renamed by fui� �� u�� � � � � uim �� umg�

The resulting abstract substitution� �Aentry say� is thus expressed in terms of fx�� � � � � xmg�

The result of executing p� �Aexit say� is also formulated in terms of fx�� � � � � xmg

EXTG�l� �Ain� �Aexit� takes as input� like before� a literal l � p�ui� � � � � � uim� from a clause with
variables U � fu�� � � � � ung� an abstract substitution on U � �Ain� and� in addition� an ab�
stract substitution on fui�� � � � � uimg� �

A
exit� the result of executing p with input �Aentry �

RESTRG�l� �Ain�� For output� EXTG returns the abstract substitution obtained by instantiat�
ing �abstractly� �Ain to take into account the result �Aexit of p�

Operations like EXTG� sometimes called extension ����� boil down to renaming and matching�
Although implementation details are rarely reported in the literature� extension is usually imple�
mented by an abstract uni
cation algorithm ����� This is a convenient 
x� saving on the design
and implementation of an abstract matching algorithm� The saving� however� comes at the cost
of both ine�ciency and imprecision� Implementation note 
� in appendix B of ���� explains �EXTG
loses some information because it uses uni
cation instead of matching� To achieve more precision
�and we have seen that it makes a di�erence in precision on a real application�� it is necessary to
de
ne the matching version of �the abstract uni
cation algorithms� UNIF� and UNIF as it is known
that the second substitution is always an instance of the 
rst one�� In addition� since matching is
simpler than uni
cation� abstract matching can be faster than abstract uni
cation and therefore
should be used wherever possible�

��� Abstract matching in normalised frameworks

Both the concrete and abstract semantics of a logic program are simpli
ed if the program is nor�
malised� Normalisation� suggested 
rst in ���� involves transforming the input program into a more
restricted syntactic form which preserves the semantics yet simpli
es the design and implementa�
tion of an analyser� There are various degrees of normalisation� but for brevity� just two will be
distinguished� In the 
rst form of normalisation� uni
cation between sub�goals and clause heads
is made explicit by making the �formal� arguments of each clause head distinct variables� This
enables an �entry and exit� substitution for a clause� both in the concrete and the abstract� to be
expressed in terms of its head variables� This is an important simpli
cation� in turn� factoring
out some of the predicate entry and exit calculations and streamlining the lub ����� Interestingly�
the normalisation transforms goal�head uni
cation into a combination of goal�head matching and
explicit uni
cations in the body of a clause� Thus� although abstract uni
cation is still required
for the uni
cation builtins� abstract matching is more appropriate for clause entry�

In the second� more aggressive form of normalisation� body atoms� other than the equality
builtins� are additionally transformed so that the �actual� arguments are distinct variables� This
has the chief advantage of simplifying the matching of the sub�goal with clause head to just
renaming� Other types of normalisations derive from the form of equation that can be processed
by the abstract uni
cation algorithm� For example� the Pat algorithm of ���� requires syntactic
equations of the form xi � xj or xi � f�xj� � � � � � xjn� where f is an n�ary functor� whereas
algorithms which apply preuni
cation ��� ��� ��� ��� can manipulate more general equations like
ti � tj where ti and tj are arbitrary terms�

Although the r�ole and a�ect of normalisation has only been partially explored ��	� ���� it is
clear that normalisation can induce a loss of precision ���� and perhaps more signi
cantly� can

�



increase the number of variables in a clause� Since the size of an abstract substitution is at least
polynomial ��� ��� and is often exponential ��� �� �
� ��� ��� ��� ��� ��� in the number of variables
in a clause� normalisation can adversely a�ect both the time and the memory performance of an
analyser ��	� ���� Fast renaming is thus not free� It is not yet clear� however� which has most
a�ect on performance� renaming or the representation of substitutions� The potential speedup
from using abstract matching techniques to implement goal�head uni
cation �in the case of 
rst
degree normalisation�makes the performance of an analyser even harder to predict� To summarise�
abstract matching algorithms need to be synthesised to quantitatively compare the speed and
accuracy of the various normalisation strategies� Only then can the implementer make informed
design decisions�

��� Abstract matching in sharing and freeness analysis

Sharing �or aliasing� analysis conventionally infers which program variables are de
nitely grounded
and which variables can possibly be bound to terms containing a common variable� Freeness
analysis usually infers which program variables are free� that is� which variables can never be
bound to non�variable terms� Early proposals for sharing and freeness analyses include ���� ��� �	�
and �����

This paper contributes a series of useful� practical and formally�justi
ed abstract matching
algorithms for a number of popular sharing and freeness domains that can be used as part of
extension operator or applied to abstract goal�head matching� As far as is known� the r�ole of
abstract matching has not been studied before very carefully� and certainly no abstract matching
algorithms have been reported for the popular sharing and freeness domains�

The exposition is structured as follows� Section � describes the notation and preliminary
de
nitions which will be used throughout� To 
t with the trend of constructing a composite
domain from proven and well�tried domain units ��� �� ��� ���� abstract matching algorithms
will be presented for the domains Share ��
�� Share � Free ���� and a variant of the ��� domain�
Share�Free�Lin ����� In section �� the focus is on the domains� Share captures possible sharing
and de
nite groundness� whereas the Free and Lin components denote sets of free variables and
variables bound to linear terms� Linearity relates to the number of times a variable occurs in a
term ��� ��� ���� A term is linear if it de
nitely does not contain multiple occurrences of a variable�
otherwise it is non�linear� The signi
cance of linearity is that the uni
cation of linear terms only
yields restricted forms of aliasing� Speci
cally� by tracking linearity� a sharing analysis does not
always have to assume that aliasing is transitive ���� The structure of Share is particularly
rich� implicitly encoding covering information ���� Covering� in short� permits groundness to
interact nicely with sharing to remove redundant aliasing� For 
niteness� Share� Free and Lin

are parametrised by a 
nite set of program variables� Pvar� which typically equate to the variables
of a clause� To be precise� SharePvar � ����Pvar�� and FreePvar � LinPvar � ��Pvar��

In section 
� the emphasis changes to abstracting matching for these domains� An abstract
matching algorithm is described for SharePvar � FreePvar � LinPvar � Abstract matching al�
gorithms SharePvar � FreePvar and SharePvar follow straightforwardly from the SharePvar �
FreePvar � LinPvar algorithm� The matching algorithms can outperform their corresponding
uni
cation algorithms ��� �
� ��� ��� in both precision and speed� Abstract matching is poten�
tially faster than the abstract uni
cation because certain forms of aliasing that arise in uni
cation
cannot occur in matching� Aliasing is tracked by calculating a union closure � operation ��
� ����
Closure has an exponential time and space complexity in the size of the abstract substitution
and therefore closure calculations should be avoided� wherever possible� Since abstract matching
computes fewer closures than abstract uni
cation it is potentially faster� Moreover� since excess
closures also reduce precision� the matching algorithms can also improve accurate� In addition�
matching need make less conservative assumptions about the freeness and linearity of variables
which� in turn� can further improve the quality of the aliasing information�

Although correctness is proved� for reasons of brevity and continuity� the proofs are relegated
to an appendix� section �� In addition� to shorten the presentation and avoid repetition� the
abstract matching algorithms for SharePvar�FreePvar and SharePvar are respectively presented

�



in appendices � and �� Sections 	 and � present the related work and the concluding discussion�

� Notation and preliminaries

To introduce the analysis some notation and preliminary de
nitions are required� The reader is
assumed to be familiar with the standard constructs used in logic programming ��
� such as a
universe of variables �u� v ��Uvar� the set of terms �t ��Term formed from Uvar and the set
of functors �f� g� h ��Func �of the 
rst�order language underlying the program�� and the set of
program atoms Atom� Func is considered to include the set of constants Const� It is sometimes
convenient to abbreviate f�t�� � � � � tn� to f�ti�� Let Pvar denote a 
nite set of program variables
� the variables that are in the text of the program� and let var�o� denote the set of variables in a
syntactic object o�

��� Substitutions

A substitution � is a total mapping � � Uvar � Term such that its domain dom��� �
fu � Uvar j��u� �� ug is 
nite� The application of a substitution � to a variable u is denoted
by ��u�� Thus the codomain is given by cod��� � �u�dom���var���u��� A substitution � is
sometimes represented as a 
nite set of variable and term pairs fu �� ��u� ju � dom���g� The
identity mapping on Uvar is called the empty substitution and is denoted by �� Substitutions�
sets of substitutions� and the set of substitutions on Uvar are denoted by lower�case Greek letters�
upper�case Greek letters� and Sub�

Substitutions are extended in the usual way from variables to functions� from functions to
terms� and from terms to atoms� The restriction of a substitution � to a set of variables U � Uvar

and the composition of two substitutions � and �� are denoted by � � U and � 	 � respectively�
and de
ned so that �� 	 ���u� � ����u��� Restriction lifts to sets of substitutions by� � � U �
f� � U j� � �g� The preorder Sub �v�� � is more general than �� is de
ned by� � v � if and only
if there exists a substitution 	 � Sub such that � � 	 	 �� The preorder induces an equivalence
relation 
 on Sub� that is� � 
 � if and only if � v � and � v ��

��� Equations and most general uni�ers

An equation is an equality constraint of the form a � b where a and b are terms or atoms� Let
�e ��Eqn denote the set of 
nite sets of equations� The equation set feg � E� following ���� is
abbreviated by e �E� There is a natural mapping from substitutions to equations� that is� eqn���
� fu � t ju �� t � �g� Thus� when unambiguous� substitutions will be expressed as equations�
The set of most general uni
ers of E� mgu�E�� is de
ned operationally ��
� in terms of a predicate
mgu� The predicate mgu�E� �� which is true if � is a most general uni
er of E�

De�nition ��� �mgu� The set of most general uni�ers mgu�E� � ��Sub� is de�ned by� mgu�E�
� f� jmgu�E� ��g where

mgu��� ��
mgu�v�v �E� 
� ifmgu�E� 
�
mgu�t�v �E� 
� ifmgu�v� t �E� 
�

mgu�v� t �E� 
 	 �� ifmgu���E�� 
��v ��var�t����fv �� tg
mgu�f�ti��f�t�i� �E� 
� ifmgu�fti� t�ig

n
i���E� 
�

By induction it follows that dom��� 
 cod��� � � if � � mgu�E�� or put another way� that the
most general uni
ers are idempotent �����

Following ��
�� the semantics of a logic program is formulated in terms of a single unify

operator� To construct unify� and speci
cally to rename apart program variables� an invertible
substitution ����� �� is introduced� It is convenient to let Rvar denote a universe of renaming
variables distinct from Uvar� Uvar 
Rvar � �� and suppose that � � Uvar� Rvar�






De�nition ��� �unify� The partial mappings unify � Atom � Sub � Atom � Sub � Sub is
de�ned by�

unify�a� �� b� 	� � �� 	 �� � Pvar where � � mgu�f��a� � ��	�b��g�

��� Linearity

To be more precise about linearity� it is necessary to introduce the variable multiplicity of a term
t� denoted ��t��

De�nition ��� �variable multiplicity	 � 
��� The variable multiplicity operator � � Term �
f�� �� �g is de�ned by�

��t� � max�f�u�t� ju � Uvarg� where �u�t� �

��
�

� if u does not occur in t

� if u occurs only once in t

� if u occurs many times in t

If ��t� � �� t is ground� if ��t� � �� t is linear� and if ��t� � �� t is non�linear� Note that if
��u� � Uvar then ����u�� � � so that free variables� like u� are linear� The uni
cation of linear
terms only yields restricted forms of aliasing� Lemma ��� states one restriction on a most general
uni
er which follows from uni
cation with a linear term�

Lemma ��� ��b� �� � � var�a� 
 var�b� � � � � � mgu�fa � bg� �

�� �u� u� � Uvar � u �� u� � var���u�� 
 var���u��� �� � � u �� var�a� � u� �� var�a��

Lemma ��� represents one case of a three part result which is formally established in ����� The
lemma di�ers from the corresponding lemma in ��� �lemma ���� because lemma ��� requires that
a and b do not share variables� This is essentially a work�around for a subtle mistake in lemma
��� �����

� Abstracting substitutions

Abstract interpretation clari
es how data is represented in the abstract by requiring the relation�
ship between the data and the abstract data to be made explicit� To keep the paper self�contained
the SharePvar � FreePvar � LinPvar domain and its abstraction and concretisation mappings
will be brie�y reviewed� The mappings for SharePvar � FreePvar are presented in appendix ��

��� On the domain SharePvar � FreePvar � LinPvar

SharePvar is formulated in terms of sharing groups ��
� ��� which record which program vari�
ables potentially share variables� A sharing group is a �possibly empty� set of program variables�
FreePvar and LinPvar � on the other hand� represents the free and linear program variables as
sets�

De�nition ��� �SharePvar 	 FreePvar and LinPvar� The domains SharePvar � FreePvar and LinPvar
are de�ned by�

SharePvar � ����Pvar��� F reePvar � ��Pvar�� LinPvar � ��Pvar�

The intuition is that a sharing group records which program variables are bound to terms that
share a variable� SharePvar � FreePvar � LinPvar is 
nite since Pvar is 
nite�

	



��� On the abstraction and concretisation mappings �SFL
Pvar

and �SFL
Pvar

In the spirit of ����� the abstraction and concretisation mappings are constructed by lifting three
mappings� shPvar � frPvar and lnPvar� to sets of substitutions� The mappings shPvar � frPvar and
lnPvar detail how a single substitution is abstracted�

De�nition ��� �shPvar	 frPvar and lnPvar� The abstraction mappings shPvar � Sub � SharePvar �
frPvar � Sub � FreePvar and lnPvar � Sub � LinPvar are de�ned by�

shPvar��� � foccPvar�u� �� ju � Uvarg� occPvar�u� �� � fv � Pvar ju � var���v��g

frPvar��� � fv � Pvar j var���v�� � Uvarg

lnPvar��� � fv � Pvar j����v�� � �g

The abstraction shPvar is analogous to the abstraction A used in ����� Observe that for � 
 ��
shPvar��� � shPvar���� frPvar��� � frPvar��� and lnPvar��� � lnPvar���� The mapping 
SFLPvar

and �SFLPvar follow directly from shPvar � frPvar and lnPvar �

De�nition ��� �
SFLPvar and �SFLPvar� The abstraction and concretisation mappings 
SFLPvar � ��Sub� � SharePvar � FreeP
and �SFLPvar � SharePvar � FreePvar � LinPvar � ��Sub� are de�ned by�


SFLPvar��� � h
SPvar���� 

F
Pvar���� 


L
Pvar���i� �SFLPvar��

SFL� � �SPvar��
S �
�FPvar��

F �
�LPvar��
L�

where

SPvar��� � ����shPvar���� �SPvar��

S � � f� j shPvar��� � �Sg


FPvar��� � 
���frPvar���� �FPvar��
F � � f� j�F � frPvar���g


LPvar��� � 
���lnPvar���� �LPvar��
L� � f� j�L � lnPvar���g

Note that 
S��� � � whereas 
S��� � f�g if � is a set of substitutions which all ground Pvar�
This distinction is preserved in SharePvar � FreePvar � LinPvar �

� Abstracting matching

Abstract interpretation can help to focus the development of an analysis by illuminating the
connection between an operation �like matching� and its abstract counterpart�

��� On the abstract matching relation mguSFL

Matching is abstracted by tracing the steps of a standard uni
cation algorithm ����� To trace
uni
cation� the abstract algorithm mimics the recursive simpli
cation steps of mgu in a relation
mguSFL� relegating the solution of simpli
ed equations of the form u � t or t � u to a mapping
mguSFL� Uni
cation� or more precisely pre�uni
cation ���� cannot be used to implement the
simpli
cation steps� Instead a simpli
cation algorithm like that of ���� is used�

The relation mguSFL is de
ned to abstract a slight variant of mgu� Speci
cally� if � �
mgu�f��t� � ��t��g�� ����t�� � ��t�� and � � �SFLPvar ��

SFL� then mguSFL�t� t�� �SFL� abstracts
the composition � 	 � �rather than ��� that is� � 	 � � �SFLPvar �mguSFL�t� t�� �SFL��� This spares
the need to de
ne an extra �composition� operator�

De�nition 
�� �mguSFL� The relation mguSFL � Eqn� �SharePvar � FreePvar � LinPvar� �
�SharePvar � FreePvar � LinPvar� is de�ned by�

mguSFL��� �SFL� �SFL�
mguSFL�u � u � E� �SFL� �SFL� if mguSFL�E� �SFL� �SFL�
mguSFL�t � u � E� �SFL� �SFL� if mguSFL�E�mguSFL�t� u� �SFL�� �SFL� � u �� var�t�
mguSFL�u � t � E� �SFL� �SFL� if mguSFL�E�mguSFL�u� t� �SFL�� �SFL� � u �� var�t�

mguSFL�f�ti� � f�t�i� � E� �
SFL� �SFL� if mguSFL�fti � t�ig

n
i�� �E� �SFL� �SFL�

�



��� On the auxiliary operations

To de
ne the mapping mguSFL �and thus the relation mguSFL� a number of standard auxiliary
operators are required ��
� ���� First� rel�t� �S � represents the sharing groups of �S which are
relevant to the term t� that is� those sharing groups of �SFL which share variables with t� Second�
in the absence of useful freeness and linearity information worst�case aliasing is assumed� Thus�
as in ��
� ���� a closure under union operator� �� is employed to enumerate all the possible sharing
groups that can possibly arise in uni
cation� Third� to succinctly de
ne mguSFL� it is convenient
to lift � to sets of sharing groups with a pair�wise union operator� denoted ��

De�nition 
�� �rel	 � 
�
	 ��� and ��

rel�t� �S� � fU � �S jU 
 var�t� �� �g

�S
�
� �S � fU � U � jU�U � � �S

�
g� �S ���S � fU � U � jU � �S � U � � ��Sg

The mappings shareSFL� freeSFL and linSFL apply di�erent analysis strategies according to the
freeness and linearity of ��t� and ��t�� for � � �SFLPvar��

SFL��
The LinPvar component of the domain encodes the variable multiplicity of a substitution�

More signi
cantly� if � � �SFLPvar ��
SFL� then the variable multiplicity of ��t� can be �partially�

deduced from t and �SFL� The precise relationship between ��t�� t and �SFL is formalised in
de
nition 
�� and lemma 
��� Proof of lemma 
�� is given in proof ����

De�nition 
�� ��SFL� The abstract variable multiplicity operator �SFL � Term� �SharePvar �
FreePvar � LinPar � � f�� �� �g is de�ned by�

�SFL�t� �SFL� �

������
�����

� if var�t� 
 var��S � � �
� else if �u � var��S ���u�t� � � �

var�t� � �L �
�u� v � var�t��rel�u� �S� 
 rel�v� �S � � �

� otherwise

Lemma 
��

var�t� � Pvar � � � �SFLPvar��
SFL� � ����t�� � �SFL�t� �SFL�

��� On the abstract matching mapping mguSFL

The mapping mguSFL�t� t�� �SFL� abstracts the matching of two terms� ��t� and ��t��� where
� � �SFL� The mapping assumes that ��t� is more general than ��t��� The di�erent cases of
mguSFL apply di�erent analysis strategies according to whether ��t� is free or ��t�� is free or
linear� Simpli
cation ensures that the equation t � t� assumes the form of either u � t� or t � u�

De�nition 
�
 �mguSFL�

mguSFL�t� t�� �SFL� � �SFL where

�S � �S n �rel�t� �S � � rel�t�� �S�� ��
rel�t� �S� � rel�t�� �S�if t � �F � �SFL�t�� �SFL� � �
rel�t� �S��� rel�t�� �S�otherwise

�F �

�
�F �ftg if t� � �F

�F n var�rel�t� �S �� otherwise

�L �

�
�L � var�t� if �SFL�t�� �SFL� � �
�L n var�rel�t� �S �� otherwise

�



Note that rel�t� �S�� rel�t�� �S� � � and rel�t� �S��� rel�t�� �S� � � if rel�t� �S � � �� Thus� in
the 
rst case of �S � rel�t� �S� need not be calculated if rel�u� �S � � � and similarly in case two�
rel�t� �S� need not be computed or closed under union if rel�u� �S� � �� Analogous re
nements
follow if rel�t� �S� � ��

Observe that mguSFL improves on a re
nement suggested in ����� In abstract uni
cation�
the calculation of a closure can be avoided if either t or t� are free� If neither t nor t� are free�
two closure calculations are required� Abstract matching� however� requires at most one closure
computation� This follows from the restricted forms of aliasing that can arise from matching�
Moreover� if t or t� are free� or ��t�� is linear� no closures need be calculated�

The correctness of the mapping mguSFL is stated as lemma 
��� The corresponding proof is
numbered ����

Lemma 
��

� � �SFLPvar��
SFL� �

var���t�� 
 var���t��� � � �
var�t� � var�t�� � Pvar �
� � mgu�f��t� � ��t��g� �
����t�� � ��t�� �

mguSFL�t� t�� �SFL� � �SFL � � 	 � � �SFLPvar��
SFL�

The correctness of the relation mguSFL follows from lemma 
�� and is stated as theorem 
��� The
corresponding proof is numbered ����

Theorem 
��

� � �SFLPvar��
SFL� �

E � fti � ti
�gni�� �

var���ti�� 
 var���tj�� � � �
var�E� � Pvar �
� � mgu���E�� �
����ti�� � ��ti

�� �

mguSFL�E� �SFL� �SFL� � � 	 � � �SFLPvar��
SFL�

It is convenient shorthand to regard mguSFL as a mapping� that is� mguSFL�E� �SFL� � 	SFL

if mguSFL�E� �SFL� 	SFL�� Strictly� it is necessary to show that mguSFL�E� �SFL� 	SFL� is
deterministic for mguSFL�E� �SFL� to be well�de
ned� Like in ���� the conjecture is that mguSFL

yields a unique abstract substitution 	SFL for �SFL regardless of the order in which E is solved
�though� in practice� any 	SFL is safe��

��� On the mappings entrySFL and exitSFL

To 
nally de
ne the matching versions of clause entry and exit� abstract restriction has to be
introduced� An abstract substitution� �SFL say� is implicitly de
ned in terms of a set of program
variables Pvar� If �SFL

�
� �SFL �SFL Pvar� then �SFL

�
� the restricted abstract substitution� is

de
ned in terms of the variables Pvar 
Pvar�� Abstract restriction thus restricts the variable set
of an abstract substitution and does not abstract concrete restriction� The precise relationship
between �SFL and �SFL

�
is stated as lemma 
�� and established in proof ��
�

De�nition 
�� �abstract restriction� The abstract restriction operator� ��SFL �� is de�ned by�

�SFL �SFL U � h�S �S U� �F �F U� �L�LU i where
�S �S U � fU 
 U � jU � � �Sg
�F�F U �U 
 �F

�L�L U �U 
 �L

�



Lemma 
��

�SFLPvar��
SFL� � �SFLPvar�Pvar� ��SFL �SFL Pvar��

The de
nitions of entrySFL and exitSFL are given below with their safety stated as theo�
rems 
�� and 
��� Clause entry abstracts the uni
cation of a �renamed� goal atom ���in�acall��
and a head atom ahead where �in � �SFLPvar��

SFL
in �� The resulting abstract substitution is restricted

to the variables of the clause to obtain the clause entry substitution �SFLenter� To clarify� �in and �out
represent the input and output pairs for goal� or equivalently a program literal� whereas �enter and
�exit represent the entry and exit substitutions for a clause which invoked by the literal� Matching
arises if the arguments of ahead are distinct variables�

Clause exit abstracts the uni
cation of a goal atom �in�acall� and a �renamed� head atom
���exit�ahead�� where �in � �SFLPvar��

SFL
in � and �exit � �SFLPvar��

SFL
exit �� Matching arises because

�in�acall� is more general than ���exit�ahead�� since �enter is more general than �exit�

De�nition 
�� �entrySFL and exitSFL� The entrySFL and exitSFL mappings are de�ned by�

entrySFL�acall� �
SFL
in � ahead� � �SFLenter� exitSFL�acall � �

SFL
in � ahead� �

SFL
exit � � �SFLout

�SFLenter � mguSFL�f��acall� � aheadg����SFLin � � �SFL� �SFL Pvar

�SFLout � mguSFL�facall � ��ahead�g� �
SFL
in ����SFLexit �� �

SFL Pvar

Theorems 
�� and 
�� assume var�acall��var�ahead� � Pvar and are established by proofs ��	
and ����

Theorem 
�� �local safety of entrySFL�

�in � �SFLPvar��
SFL
in � �

� � mgu�f���in�acall�� � aheadg� �
���in�acall�� � ��ahead� �

unify�ahead � �� acall� �in� � �SFLPvar�entry
SFL�acall � �

SFL
enter� ahead��

Theorem 
�� �local safety of exitSFL�

�in � �SFLPvar ��
SFL
in � � �exit � �SFLPvar��

SFL
exit � �

� � mgu�f�in�acall� � ���exit�ahead��g� �
���in�acall�� � ����ahead�� �

unify�acall � �in� ahead� �exit� � �SFLPvar�exit
SFL�acall � �

SFL
in � ahead� �

SFL
exit ��

� Related and future work

Abstract uni
cation algorithms for sharing and freeness have been studied in some detail ��� �� ��
�� ��� �
� ��� ��� ��� �	� ��� ��� ��� but� curiously� there is a dearth of work on abstract matching�
Abstract matching� in fact� is rarely given special attention and is usually implemented by abstract
uni
cation�

Future work will focus on implementation and benchmarking �which is a non�trivial study
within itself� to measure the speedup from substituting matching for uni
cation� The r�ole and
a�ect of normalisationwill also be explored particularly in regard to goal�head uni
cation� Another
direction for future work is in extending the abstract matching algorithms to trace sure structural
information ��� ��� ���� This would avoid any loss of precision that might be introduced through
normalisation�

�



� Conclusions

Most of the execution time of an analyser is typically spent� not in the framework� but on domain
operations like uni
cation and matching ��	�� Thus� if the performance of sharing and freeness
analysis is to be improved� it is crucial that operations like abstract matching are both precise
and e�cient� Improving the e�ciency of abstract matching speeds up extension� clause exit� for
arbitrary programs� and goal�head uni
cation clause entry� for normalised programs with head
arguments that are distinct variables�

A series of useful� practical and formally�justi
ed abstract matching algorithms have been syn�
thesised for the popular domains Share� Share � Free and Share � Free � Lin� The matching
algorithms can outperform their corresponding uni
cation algorithms in both precision and speed�
The techniques are signi
cant because they can under�pin a number of important optimisation
and parallelisation techniques�

Acknowledgements

This work was supported� in part� by ESPRIT project ������ �ParForce� and undertaken while
Mark Longley was visiting the University of Kent at Canterbury�

References

��� M� Bruynooghe� A Practical Framework for the Abstract Interpretation of Logic Programs�
J� Logic Programming� ��������
� �����

��� M� Bruynooghe� M� Codish� and A� Mulkers� Abstract uni
cation for a composite domain
deriving sharing and freeness properties of program variables� In ICLP�	
 post�conference
workshop on the veri�cation and analysis of logic programs� pages �������� Santa Margherita
Ligure� Italy� ���
� June�

��� M� Bruynooghe� G� Janssens� A� Callebaut� and B� Demoen� Abstract Interpretation� To�
wards the Global Optimization of Prolog Programs� In SLP��
� pages ������
� MIT Press�
�����

�
� F� Bueno� M� Garc !a de la Banda� and M� Hermenegildo� E�ectiveness of Global Analysis in
Strict Independence�Based Automatic Program Parallelization� In International Symposium
on Logic Programming� pages �������� MIT Press� ���
�

�	� J��H� Chang and A� M� Despain� Semi�intelligent backtracking of prolog based static data
dependency analysis� In JICSLP���� IEEE Computer Society� ���	�

��� M� Codish� D� Dams� and E� Yardeni� Derivation and Safety of an Abstract Uni
cation
Algorithm for Groundness and Aliasing Analysis� In ICLP�	�� pages ������ Paris� France�
����� MIT Press�

��� M� Codish� A� Mulkers� M� Bruynooghe� M� J� Garc !a de la Banda� and M� Hermenegildo�
Improving abstract interpretation by combining domains� In PEPM�	�� ACM Press� �����

��� A� Cortesi and G� Fil e� Abstract interpretation of logic programs� an abstract domain for
groundness� sharing� freeness and compoundness analysis� In PEPM�	�� pages 	����� ACM
Press� �����

��� P� Cousot and R� Cousot� Abstract Interpretation and Application to Logic Programs� J� of
Logic Programming� �������� �����

���� D� Dams� Personal communication on linearity lemma ���� July� �����

��



���� S� Debray and D� S� Warren� Automatic Mode Inference for Logic Programs� J� of Logic
Programming� 	������������ �����

���� S� K� Debray� Static inference of modes and data dependencies in logic programs� ACM
TOPLAS� ������
���
	�� July �����

���� M� Hermenegildo and F� Rossi� Non�strict independent and�parallelism� In ICLP�	�� pages
�����	�� Jerusalem� ����� MIT Press�

��
� D� Jacobs and A� Langen� Static Analysis of Logic Programs� J� Logic Programming� pages
�	
���
� �����

��	� G� Janssens and W� Simoens� On the Implementation of Abstract Interpretation Systems for
�Constraint� Logic Programs� In CC�	
� pages �������� Springer�Verlag� ���
�

���� N� Jones and H� S"ndergaard� Abstract Interpretation of Declarative Languages� chapter A
Semantics�Based Framework for the Abstract Interpretation of Prolog� pages �����
�� Ellis
Horwood� �����

���� T� Karamori and T� Kawamura� Analyzing Success Patterns of Logic Programs by Abstract
Hybrid Interpretation� Technical Report TR����� ICOT� �����

���� A� King� Share � Free Revisited� Technical report� Computing Laboratory� University of
Kent at Canterbury� Canterbury� CT� �NF� UK� ���
�

���� A� King� A Synergistic Analysis for Sharing and Groundness which traces Linearity� In
ESOP�	
� pages �������� Edinburgh� UK� ���
� Springer�Verlag�

���� A� King and P� Soper� Depth�k Sharing and Freeness� In ICLP�	
� Santa Margherita Ligure�
Italy� ���
� MIT Press�

���� J� Lassez� M� J� Maher� and K� Marriott� Foundations of Deductive Databases and Logic
Programming� chapter Uni
cation Revisited� Morgan Kaufmann� �����

���� B� Le Charlier and P� Van Hentenryck� Compositional bits� In POPL�	
� ���
�

���� B� Le Charlier and P� Van Hentenryck� Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog� ACM Transactions on Programming Languages and
Systems� ���
�

��
� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� �����

��	� K� Marriott and H� S"ndergaard� Analysis of constraint logic programs� In NACLP�	�� pages
	���	
�� MIT Press� �����

���� C� Mellish� Abstract Interpretation of Declarative Languages� chapter Abstract Interpretation
of Prolog Programs� pages �������� Ellis Horwood� �����

���� A� Mulkers� W� Simoens� G� Janssens� and M� Bruynooghe� On the Practicality of Abstract
Equation Systems� Technical Report CW���� K� U� Leuven� Celestijnenlaan ��� A� ����
Herverlee� Belgium� November ���
�

���� K� Muthukumar and M� Hermenegildo� Combined determination of sharing and freeness of
program variables through abstract interpretation� In ICLP�	�� pages 
����� Paris� France�
����� MIT Press�

���� K� Muthukumar and M� Hermenegildo� Compile�time Derivation of Variable Dependency
through Abstract Interpretation� J� of Logic Programming� pages ��	�
��� �����

��



���� U� Nilsson� Abstract Interpretations and Abstract Machines� contributions to a methodol�
ogy for the implementation of logic programs� PhD thesis� Department of Computer and
Information Science� ����� Link�oping studies in science and technology dissertation no� ��	�

���� H� S"ndergaard� An application of the abstract interpretation of logic programs� occur�check
reduction� In ESOP���� pages �������� New York� ����� Springer�Verlag�

���� R� Sundararajan and J� Conery� An abstract interpretation scheme for groundness� freeness�
and sharing analysis of logic programs� In ��th FST and TCS Conference� New Delhi� India�
December ����� Springer�Verlag�

���� A� Taylor� High Performance Prolog Implementation� PhD thesis� Basser Department of
Computer Science� NSW ����� Australia� July �����

��
� W� Winsborough� Multiple Specialisation Using Mimimal Function Graphs� J� of Logic
Programming� �����

��	� W� Winsborough and A� W#rn� Transparent and�parallelism in the presence of shared free
variables� In ICLP���� pages �
����
� MIT Press� �����

���� H� Xia� Analyzing Data Dependencies� Detecting And�Parallelism and Optimizing Backtrack�
ing in Prolog Programs� PhD thesis� University of Berlin� April �����

��



� SharePvar � FreePvar Appendix

As with SharePvar � FreePvar � LinPvar � the mapping 
SFPvar and �SFPvar follow directly from
shPvar and frPvar �

De�nition ��� �
SFPvar and �SFPvar� The abstraction and concretisation mappings 
SFPvar � ��Sub� �
SharePvar � FreePvar and �SFPvar � SharePvar � FreePvar � ��Sub� are de�ned by�


SFPvar��� � h
SPvar���� 

F
Pvar���i �SFPvar��

SF � � �SPvar��
S� 
 �FPvar��

F�

Linearity can be tracked because� like before� if � � �SFPvar��
SF � then the variable multiplicity

of ��t� can be �partially� deduced from t and �SF � Lemma 
�� explains how �SF approximates ��

De�nition ��� ��SF� The abstract variable multiplicity operator �SF � Term � �SharePvar �
FreePvar � LinPar � � f�� �� �g is de�ned by�

�SF �t� �SF � �

������
�����

� if var�t� 
 var��S � � �
� else if �u � var��S ���u�t� � � �

var�t� 
 �S � �F �
�u� v � var�t��rel�u� �S� 
 rel�v� �S � � �

� otherwise

Lemma ���

var�t� � Pvar � � � �SFPvar��
SF � � ����t�� � �SF �t� �SF �

The corresponding proof is numbered ����

De�nition ��� �mguSF�

mguSF �t� t�� �SF� � �SF where

�S � �S n �rel�t� �S � � rel�t�� �S�� ��
rel�t� �S� � rel�t�� �S�if t � �F � �SF �t�� �SF � � �
rel�t� �S��� rel�t�� �S�otherwise

�F �

�
�F �ftg if t� � �F

�F n var�rel�t� �S �� otherwise

The mappingmguSFL divides into two cases� like before� applying di�erent analysis strategies
according to whether ��t� is free or ��t�� is free or linear� Because of the lack of precise linearity
information� however� the second� less precise case is likely to be selected more frequently inmguSF

than in mguSFL� Lemma ��� is established in proof ����

Lemma ���

� � �SFPvar��
SF � � var���t�� 
 var���t��� � � � var�t� � var�t�� � Pvar �

� � mgu�f��t� � ��t��g� � ����t�� � ��t�� �mguSF �t� t�� �SF� � �SF � � 	 � � �SFPvar��
SF �

The mguSF relation� restrictionSF � entrySF and exitSF are de
ned in a similar way to before�

��



� SharePvar Appendix

For SharePvar � without freeness or linearity information� a closure calculation cannot be avoided�
However� this compares favourably with the two closure that are required in the standard abstract
uni
cation algorithm ��
�� The proof for lemma ��� is numbered ����

De�nition ��� �mguS�

mguS �t� t�� �S� �

�S n �rel�t� �S � � rel�t�� �S�� � rel�t� �S���rel�t�� �S�

Lemma ���

� � �SPvar ��
S� � var���t�� 
 var���t��� � � � var�t� � var�t�� � Pvar �

� � mgu�f��t� � ��t��g� � ����t�� � ��t�� �mguS �t� t�� �S� � �S � � 	 � � �SPvar ��
S�

	 Proof Appendix

Proof ��� �for lemma 
��� Let var�t� � Pvar and � � �SFLPvar��
SFL��

�� Suppose ����t�� � �� Immediate�

�� Suppose ����t�� � �� Thus there exists v � var�t� such that u � var���v��� Since v � Pvar�
v � var�occPvar�u� ��� and thus v � var��S �� Hence �SFL�t� �SFL� �� ��

�� Suppose ����t�� � ��

�a� Suppose u � var�t� such that �u�t� � � and v � var���u��� Thus� since u � Pvar�
u � var�occPvar�v� ��� and thus u � var��S �� Hence �SFL�t� �SFL� � ��

�b� Suppose u� v � var�t� such that w � var���u�� 
 var���v�� and u �� v� Thus� since
u� v � Pvar� u� v � var�occPvar �w� ��� and therefore rel�u� �S�
 rel�v� �S � �� �� Hence
�SFL�t� �SFL� � ��

�c� Suppose v � var�t� such that �u���v�� � �� Thus� since v � Pvar� v �� �L� Hence
�SFL�t� �SFL� � ��

Proof ��� �for lemma 
��� Let � � �SFLPvar ��
SFL�� var���t�� 
 var���t��� � �� var�t� � var�t�� � Pvar�

� � mgu�f��t� � ��t��g�� ����t�� � ��t�� and mguSFL�t� t�� �SFL� � �SFL�

�� Let v � Uvar� To show occPvar�v� � 	 �� � �S �

�a� Suppose v �� cod�� 	 ��� Thus v �� var�� 	 ��w�� for all w � dom�� 	 ���

i� Suppose v �� dom�� 	 ��� that is� � 	 ��v� � v� Thus ��v� � v� and ��v�� � v�
Suppose v �� v�� Hence v � var���t���var���t���� Thus there exists var�t��var�t��
such that v � var���w��� But since ��v� � v�� v �� w and because dom���
 cod���
� �� ��v� � v and therefore v � var�� 	 ��w��� Hence v � cod�� 	 �� which is a
contradiction� Thus v � v��

A� Suppose v �� var���t�� and v �� var���t���� Hence v �� cod��� and therefore
occPvar�v� � 	 �� � occPvar�v� ��� But var�t� 
 var�occPvar�v� ��� � � and
var�t�� 
 var�occPvar�v� ��� � �� Hence occPvar�v� � 	 �� � �S �

B� Suppose v � var���t�� and v �� var���t���� Since � � mgu�f��t� � ��t��g��
v � dom��� or v � cod���� Since ��v� � v� v �� dom��� and thus v � cod����
Thus v � var�� 	 ��t�� and therefore v � var�� 	 ��t���� Since v �� var���t���
there exists w � var���t��� such that v � var���w��� Thus v � var�� 	 ��t���
and since v �� cod�� 	 ��� v � t� so that ��t�� � v which is a contradiction�

C� Suppose v �� var���t�� and v � var���t���� Like case ��a�iB�

�




D� Suppose v � var���t�� and v � var���t���� Since ��v� � v and v �� cod�� 	 ���
v �� cod���� Thus v � var�t� and v � var�t�� so that var�t� 
 var�t�� �� � which
is a contradiction�

ii� Suppose v � dom�� 	 ��� Since v �� cod�� 	 ��� occPvar�v� � 	 �� � � � �S �

�b� Suppose v � cod��	��nvar��	��t��� Suppose v � cod���� Thus v � var��	��t�� which
is a contradiction� Suppose v � dom���� Thus v �� cod��� and hence v �� cod�� 	 ��
which is a contradiction� Hence occPvar�v� � 	 �� � occPvar�v� �� � �S � Suppose
v � var���t���var���t���� Since v �� var��	��t��� v � dom��� and therefore v �� cod����
Hence v �� cod�� 	 �� which is a contradiction� Thus var�t� 
 var�occPvar�v� ��� and
similarly var�t�� 
 var�occPvar�v� ��� � � and therefore occPvar�v� � 	 �� � �S �

�c� Suppose v � cod�� 	 �� 
 var�� 	 ��t��� Note that occPvar�v� � 	 �� � �v�var���w��
occPvar�w� ���

i� Suppose t � �F with ��t� � vt� Thus � � fvt �� ��t��g� Since v � var�� 	 ��t���
v � var���t���� Thus fw j v � var���w�g � fvt� vg� Hence occPvar�v� � 	 �� �
rel�t� �S�� rel�t�� �S� � �S �

ii� Suppose �SFL�t�� �SFL� � �� There exists Wt � var���t�� and Wt� � var���t���
such that occPvar�v� � 	 �� � �w�Wt�Wt�

occPvar�w� ��� Since v � var�� 	 ��t���
Wt �� � and thusWt� �� �� Suppose w�w� �Wt and w �� w�� Since �SFL�t�� �SFL� �
�� by lemma 
��� ����t��� � � and because var���t��
var���t��� � �� by lemma ����
w �� var���t�� or w� �� var���t�� which is a contradiction� Now suppose w�w� �Wt�

and w �� w�� Since dom��� 
Wt� � �� var���w�� 
 var���w��� � � which is a con�
tradiction� Thus occPvar�t� � 	 �� � rel�t� �S � � rel�t�� �S� � �S �

iii� Suppose t �� �F and �SFL�t�� �SFL� � �� There exists Wt � var���t�� and
Wt� � var���t��� such that occPvar�v� � 	 �� � �w�Wt�Wt�

occPvar�w� ��� Like in
case ��c�ii� Wt� � fw�g so that occPvar�t� � 	 �� � rel�t� �S�� � rel�t�� �S� � �S �

�� Let v � �F �

�a� Suppose t� � �F where ��t�� � vt� �

i� If v � t then v � frPvar�� 	 �� since � 	 ��t� � vt� �

ii� If v � �F then v � frPvar�� 	 �� since frPvar�� 	 �� � frPvar��� � �F �

�b� Suppose t� �� �F � Since v �� var�rel�t� �S ��� var���v�� 
 var���t�� � � and because
dom��� � var���t��� � 	 ��v� � ��v� � frPvar����

�� Let v � �L�

�a� Suppose �SFL�t�� �SFL� � �� by lemma 
��� ����t��� � � and thus ��� 	 ��t�� � ��

i� If v � var�t� then v � lnPvar�� 	 �� since ��� 	 ��t�� � ��

ii� If v � �L then v � frPvar�� 	 �� since frPvar�� 	 �� � frPvar ��� � �L�

�b� Suppose �SFL�t�� �SFL� � �� Since v �� var�rel�t� �S��� var���v�� 
 var���t�� � � and
because dom��� � var���t��� � 	 ��v� � ��v� � lnPvar����

Proof ��� �for theorem 
��� Let � � �SFLPvar��
SFL�� E � fti � ti

�gni�� var���ti��
var���tj�� �
�� var�E� � Pvar� � � mgu���E�� ����ti�� � ��ti

�� and mguSFL�E� �SFL� �SFL�� By induc�
tion on the steps of mguSFL and by lemma 
�� there exists � � mgu���E�� such that � 	 � �
�SFLPvar�	

SFL�� But � 
 � ���� and thus � 	 � 
 � 	 �� Hence � 	 � � �SFLPvar �	
SFL��

Proof ��
 �for lemma 
��� Let � � �SFLPvar ��
SFL� and u � Uvar� Now occPvar�Pvar� �u� ��

� occPvar�u� �� 
 Pvar� � �S �S Pvar�� Thus � � �SPvar�Pvar� ��S �S Pvar��� Moreover�
� � �FPvar�Pvar� ��F �F Pvar�� since �F 
 Pvar� � frPvar�Pvar� ��� because �F � frPvar����
Similarly� � � �LPvar�Pvar� ��L �L��

�	



Proof ��� �for theorem 
��� Let �in � �SFLPvar��
SFL
in �� � � mgu�f���in�acall�� � aheadg��

���in�acall�� � ��ahead� and � � unify�ahead � �� acall� �in��
Thus � � �� 	 �� � Pvar where � � mgu�f��ahead� � ���in�acall��g�� Observe that � �

mgu�f��ahead� � ���in��
�����acall����g� and thus putting � � � � �� 	 �in 	 ����� � �

mgu���fahead � ��acall�g��� Note that � � �SFLPvar��
SFL� and �in 	 ��� � �SFL��Pvar�����SFLin ��

and hence � 	 �in 	 ��� � �SFL��Pvar�����SFLin ��� Since var��� 
 var�� 	 �in 	 ���� � �� � �

�Pvar���Pvar���
SFL����SFLin ��� Thus� by theorem 
��� since var���ahead��
var�����acall ��� � ��

var�ahead��var���acall �� � Pvar���Pvar�� � � mgu���fahead � ��acall�g�� and ����ahead�� �
����acall�� it follows that � 	 � � �SFL

Pvar���Pvar� ��
calSFL� where �calSFL � mguSFL�fahead �

��acall�g� �SFL����SFLin ��� Thus� by lemma 
��� � 	 � � �SFLPvar��
calSFL �SFL Pvar� and because

�� 	 �� � Pvar � �� 	 �� � Pvar�� � Pvar � �� 	 �� � Pvar� �� 	 �� � Pvar � �SFLPvar��
calSFL �SFL

Pvar� and therefore � � �SFLPvar�entry
SFL�ahead� �

SFL� acall� �
SFL
in ���

Proof ��� �for theorem 
��� Like proof 	���

Proof ��� �for lemma ���� Let var�t� � Pvar and � � �SFPvar��
SF ��

�� Suppose �SF �t� �SF� � �� Put �L � �� Thus �L � lnPvar��� and � � �SFLPvar��
SFL�� But

�SFL�t� �SFL� � � so that� by lemma 
��� ����t�� � ��

�� Suppose �SF �t� �SF � � �� Let v � var�t��

�a� Suppose v � var��S�� Then v � �F and hence ����v�� � � so that v � lnPvar����

�b� Suppose v �� var��S�� Then ����v�� � � so that v � lnPvar����

Put �L � var�t�� Thus �L � lnPvar��� and hence � � �SFLPvar��
SFL�� But �SFL�t� �SFL� � �

so that� by lemma 
��� ����t�� � ��

�� Suppose �SF �t� �SF � � �� Immediate�

Proof ��� �for lemma ���� Like cases �a� �b� �c and � of lemma 
���

Proof ��� �for lemma ���� Like cases �a� �b� ��c�iii of lemma 
���

��


