Abstract Matching can improve on Abstract Unification

Andy King Mark Longley
Computing Laboratory, Dept. of Electronics and Computer Science,
University of Kent at Canterbury, University of Southampton,
Canterbury, CT2 7NF, UK. Southampton, S09 5NH, UK.
a.m.king@ukc.ac.uk ml@ecs.soton.ac.uk

March 3, 1995

Abstract

Analyses for sharing and freeness are important in the optimisation and the parallelisation
of logic programs. By using a standard fixed-point framework, sharing and freeness analysis
can be constructed by defining suitable abstract analogs for concrete operations like renaming,
restriction, unification and extension. Extension is required in the clause exit mechanisms and
is typically formulated in terms of restriction and matching. Matching also arises as goal-head
unification in normalised programs in which the (formal) arguments of each clause head are
distinct variables. Abstract matching, however, is rarely given special attention and is usually
implemented by abstract unification. This paper remedies this; contributing a series of useful,
practical and formally-justified abstract matching algorithms for the popular domains Share,
Share X Free and Share x Free x Lin. The matching algorithms are useful and important
because they can outperform their corresponding unification algorithms in both precision and
speed.

1 Introduction

Analyses for sharing and freeness are important topics of logic programming with applications
which include: the sound removal of the occur-check [31]; optimisation of backtracking [5]; the
specialisation of unification [33]; and the identification [13, 35] and efficient exploitation [14, 28, 29]
of independent and-parallelism [4].

Following the approach of abstract interpretation [9], sharing and freeness analyses are usually
constructed by tracing possible program executions with descriptions of the data values (the
abstract data) rather than using actual data values (the concrete data). The construction usually
divides into domain and framework related issues. For the domain, suitable abstract analogs for
concrete operations like renaming, unification, composition and restriction are specified and proven
safe for a particular description of substitutions. For example, unification would be mimicked
by an abstract unification algorithm in which substitutions are finitely represented by sharing
and freeness abstractions, the abstract substitutions. The framework traces the control-flow of
Prolog, the concrete semantics, calculating abstract substitutions at various points of a program
thereby characterising the actual substitutions which can possibly arise at those program points.
Frameworks [1, 11, 16, 17, 23, 26, 29, 30, 34] are usually parameterised by the domain operations
and basically solve a set of fixed-point equations.

1.1 Abstract matching in standard frameworks

Although the concrete semantics of logic programs are formulated in terms of unification, both
matching and unification usually require to be abstracted in a framework. Frameworks typically
trace the values of substitutions which, for finiteness, are restricted to sets of program variables. To

describe the sharing and freeness at a certain point in a clause, for example, it is only necessary to
characterise the sharing and freeness between the variables of the clause. For finiteness, however,
frameworks have to introduce explicit clause entry and exit mechanisms, the latter of which is
formulated in terms of restriction and matching. The restriction and matching operations RESTRG
and EXTG, for example, are used in the framework of [23].

RESTRG(/, (/)ﬁl) takes as input a literal, {, of the form p(u;,,...,u;,,) taken from a clause with
variables U = {uy, ..., u,}; and an abstract substitution on U, (/)ﬁl RESTRG projects (/)ﬁl onto
{uiy, ..., u;, } returning, as output, the projection renamed by {u;, — w1, ..., u;,, — tm}.

A

ntry S2Y, 18 thus expressed in terms of {z1,... ,zn}.

The resulting abstract substitution, ¢

The result of executing p, ¢4 . say, is also formulated in terms of {xy, ..., 2}

ext

EXTG(I, (/)ﬁl, qbfm»t) takes as input, like before, a literal | = p(u;,,...,u;) from a clause with
variables U = {uy,...,u,}; an abstract substitution on U, (bﬁl, and, in addition, an ab-
stract substitution on {u;,,...,u;, }, ¢, the result of executing p with input (bfmry
RESTRG(/, (/)ﬁl) For output, EXTG returns the abstract substitution obtained by instantiat-

ing (abstractly) ¢7* to take into account the result ¢ .. of p.

ext

Operations like EXTG, sometimes called extension [29], boil down to renaming and matching.
Although implementation details are rarely reported in the literature, extension is usually imple-
mented by an abstract unification algorithm [29]. This is a convenient fix, saving on the design
and implementation of an abstract matching algorithm. The saving, however, comes at the cost
of both inefficiency and imprecision. Implementation note 48 in appendix B of [23] explains “EXTG
loses some information because it uses unification instead of matching. To achieve more precision
(and we have seen that it makes a difference in precision on a real application), it is necessary to
define the matching version of [the abstract unification algorithms] UNIF1 and UNIF as it is known
that the second substitution is always an instance of the first one.” In addition, since matching is
simpler than unification, abstract matching can be faster than abstract unification and therefore
should be used wherever possible.

1.2 Abstract matching in normalised frameworks

Both the concrete and abstract semantics of a logic program are simplified if the program is nor-
malised. Normalisation, suggested first in [3], involves transforming the input program into a more
restricted syntactic form which preserves the semantics yet simplifies the design and implementa-
tion of an analyser. There are various degrees of normalisation, but for brevity, just two will be
distinguished. In the first form of normalisation, unification between sub-goals and clause heads
is made explicit by making the (formal) arguments of each clause head distinct variables. This
enables an (entry and exit) substitution for a clause, both in the concrete and the abstract, to be
expressed in terms of its head variables. This is an important simplification, in turn, factoring
out some of the predicate entry and exit calculations and streamlining the lub [23]. Interestingly,
the normalisation transforms goal-head unification into a combination of goal-head matching and
explicit unifications in the body of a clause. Thus, although abstract unification is still required
for the unification builtins, abstract matching is more appropriate for clause entry.

In the second, more aggressive form of normalisation, body atoms, other than the equality
builtins, are additionally transformed so that the (actual) arguments are distinct variables. This
has the chief advantage of simplifying the matching of the sub-goal with clause head to just
renaming. Other types of normalisations derive from the form of equation that can be processed
by the abstract unification algorithm. For example, the Pat algorithm of [23] requires syntactic
equations of the form #; = x; or x; = f(;,,...,2;,) where f is an n-ary functor; whereas
algorithms which apply preunification [6, 18, 19, 20] can manipulate more general equations like
t; = t; where ¢; and ¢; are arbitrary terms.

Although the role and affect of normalisation has only been partially explored [15, 23], it is
clear that normalisation can induce a loss of precision [23] and perhaps more significantly, can

increase the number of variables in a clause. Since the size of an abstract substitution is at least
polynomial [6, 23] and is often exponential [2, 8, 14, 19, 18, 20, 28, 32] in the number of variables
in a clause, normalisation can adversely affect both the time and the memory performance of an
analyser [15, 27]. Fast renaming is thus not free. It is not yet clear, however, which has most
affect on performance: renaming or the representation of substitutions. The potential speedup
from using abstract matching techniques to implement goal-head unification (in the case of first
degree normalisation) makes the performance of an analyser even harder to predict. To summarise,
abstract matching algorithms need to be synthesised to quantitatively compare the speed and
accuracy of the various normalisation strategies. Only then can the implementer make informed
design decisions.

1.3 Abstract matching in sharing and freeness analysis

Sharing (or aliasing) analysis conventionally infers which program variables are definitely grounded
and which variables can possibly be bound to terms containing a common variable. Freeness
analysis usually infers which program variables are free, that is, which variables can never be
bound to non-variable terms. Early proposals for sharing and freeness analyses include [36, 12, 25]
and [28].

This paper contributes a series of useful, practical and formally-justified abstract matching
algorithms for a number of popular sharing and freeness domains that can be used as part of
extension operator or applied to abstract goal-head matching. As far as is known, the role of
abstract matching has not been studied before very carefully, and certainly no abstract matching
algorithms have been reported for the popular sharing and freeness domains.

The exposition is structured as follows. Section 2 describes the notation and preliminary
definitions which will be used throughout. To fit with the trend of constructing a composite
domain from proven and well-tried domain units [2; 7, 18, 22], abstract matching algorithms
will be presented for the domains Share [14], Share x Free [28] and a variant of the [2] domain,
Share x Free x Lin [32]. In section 3, the focus is on the domains. Share captures possible sharing
and definite groundness, whereas the F'ree and Lin components denote sets of free variables and
variables bound to linear terms. Linearity relates to the number of times a variable occurs in a
term [6, 19, 31]. A term is linear if it definitely does not contain multiple occurrences of a variable;
otherwise it is non-linear. The significance of linearity is that the unification of linear terms only
yields restricted forms of aliasing. Specifically, by tracking linearity, a sharing analysis does not
always have to assume that aliasing is transitive [6]. The structure of Share is particularly
rich, implicitly encoding covering information [8]. Covering, in short, permits groundness to
interact nicely with sharing to remove redundant aliasing. For finiteness, Share, F'ree and Lin
are parametrised by a finite set of program variables, Pvar, which typically equate to the variables
of a clause. To be precise, Sharepyq, = p(p(Pvar)) and Freepyq = Linpya, = p(Povar).

In section 4, the emphasis changes to abstracting matching for these domains. An abstract
matching algorithm is described for Sharepyqr X Freepyar X Linpyqer. Abstract matching al-
gorithms Sharepyq, X Freepyq, and Sharep,,, follow straightforwardly from the Sharep,q, x
Freepygr X Linpygr algorithm. The matching algorithms can outperform their corresponding
unification algorithms [2, 14, 28, 32] in both precision and speed. Abstract matching is poten-
tially faster than the abstract unification because certain forms of aliasing that arise in unification
cannot occur in matching. Aliasing is tracked by calculating a union closure x operation [14, 28].
Closure has an exponential time and space complexity in the size of the abstract substitution
and therefore closure calculations should be avoided, wherever possible. Since abstract matching
computes fewer closures than abstract unification 1t is potentially faster. Moreover, since excess
closures also reduce precision, the matching algorithms can also improve accurate. In addition,
matching need make less conservative assumptions about the freeness and linearity of variables
which, in turn, can further improve the quality of the aliasing information.

Although correctness is proved, for reasons of brevity and continuity, the proofs are relegated
to an appendix, section 9. In addition, to shorten the presentation and avoid repetition, the
abstract matching algorithms for Sharep,q, X Freepyq, and Sharep,q, are respectively presented

in appendices 7 and 8. Sections b and 6 present the related work and the concluding discussion.

2 Notation and preliminaries

To introduce the analysis some notation and preliminary definitions are required. The reader 1s
assumed to be familiar with the standard constructs used in logic programming [24] such as a
universe of variables (u,v €) Uvar; the set of terms (t €)Term formed from Uwvar and the set
of functors (f, g, h €) Func (of the first-order language underlying the program), and the set of
program atoms Atom. Func is considered to include the set of constants C'onst. It is sometimes
convenient to abbreviate f(t1,...,1,) to f(t;). Let Pvar denote a finite set of program variables
— the variables that are in the text of the program; and let var(o) denote the set of variables in a
syntactic object o.

2.1 Substitutions

A substitution ¢ is a total mapping ¢ : Uwar — Term such that its domain dom(¢) =
{u € Uvar | ¢(u) # u} is finite. The application of a substitution ¢ to a variable u is denoted
by ¢(u). Thus the codomain is given by cod(¢) = Uyecdom(g)var(é(u)). A substitution ¢ is
sometimes represented as a finite set of variable and term pairs {u — ¢(u)|u € dom(¢)}. The
identity mapping on Uwvar is called the empty substitution and is denoted by e. Substitutions,
sets of substitutions, and the set of substitutions on Uvar are denoted by lower-case Greek letters,
upper-case Greek letters, and Sub.

Substitutions are extended in the usual way from variables to functions, from functions to
terms, and from terms to atoms. The restriction of a substitution ¢ to a set of variables U C Uvar
and the composition of two substitutions ¢ and ¢, are denoted by ¢ [U and ¢ o ¢ respectively,
and defined so that (¢ o ¢)(u) = ¢(p(u)). Restriction lifts to sets of substitutions by: & | U =
{6 1 U|¢ € ®}. The preorder Sub (C), ¢ is more general than ¢, is defined by: ¢ C ¢ if and only
if there exists a substitution ¢ € Sub such that ¢ = ¥ o ¢. The preorder induces an equivalence
relation & on Sub, that is: ¢ & ¢ if and only if ¢ C ¢ and ¢ C ¢.

2.2 Equations and most general unifiers

An equation is an equality constraint of the form a = b where a and b are terms or atoms. Let
(e €) FEqn denote the set of finite sets of equations. The equation set {e} U E, following [6], is
abbreviated by e: E. There is a natural mapping from substitutions to equations, that is, eqn(¢)
={u=t|u—1te€ ¢} Thus, when unambiguous, substitutions will be expressed as equations.
The set of most general unifiers of E/, mgu(F), is defined operationally [14] in terms of a predicate
mgu. The predicate mgu(FE, ¢) which is true if ¢ is a most general unifier of .

Definition 2.1 (mgu) The set of most general unifiers mgu(E) € p(Sub) is defined by: mgu(F)
={¢|mgu(E,¢)} where

mgu(0,
mygu(v=v:FE,

€)

Q)i <)
mygu(t=v:FE, () ifmgu

n)

<)

v’:t E ()
n(E), QAvgvar(t)An={v — t}
{ti=t}}7UE, ()

mgu(v=t:FE,{on)ifmgu
mgu(f(t:)=f(t): E,) fmgu

By induction it follows that dom(¢) N cod(é) = O if § € mgu(FE), or put another way, that the
most general unifiers are idempotent [21].

Following [14], the semantics of a logic program is formulated in terms of a single unify
operator. To construct unify, and specifically to rename apart program variables, an invertible
substitution [21], T, is introduced. It is convenient to let Rvar denote a universe of renaming
variables distinct from Uvar, Uvar N Rvar = (), and suppose that T : Uvar — Rvar.

(E
(
(
(

Definition 2.2 (unify) The partial mappings unify : Atom x Sub x Atom x Sub — Sub is
defined by:

unify(a, ¢,b,¢) = (¢ o @) I Pvar where p € mgu({¢(a) = T(¥(b))})

2.3 Linearity

To be more precise about linearity, it is necessary to introduce the variable multiplicity of a term
t, denoted x(¥).

Definition 2.3 (variable multiplicity, x [6]) The variable multiplicity operator x : Term —
{0,1,2} is defined by:

0 ¢f u does not occur in t
x (1) = max({xu(?) | v € Uvar}) where xo(t) = ¢ 1 if u occurs only once in t
2 if u occurs many times in t

If x(t) = 0, t is ground; if x(¢) = 1, ¢ is linear; and if x(¢) = 2, ¢ is non-linear. Note that if
é(u) € Uvar then x(¢(u)) = 1 so that free variables, like u, are linear. The unification of linear
terms only yields restricted forms of aliasing. Lemma 2.1 states one restriction on a most general
unifier which follows from unification with a linear term.

Lemma 2.1 x(b) #2 A var(a) Nvar(b) =0 A ¢ € mgu({a =b}) =
1. Yu, v € Uvar . u £ v A var(¢(u)) Nvar(é(u')) # 0 = u & var(a) Vo’ & var(a).

Lemma 2.1 represents one case of a three part result which is formally established in [19]. The
lemma differs from the corresponding lemma in [6] (lemma 2.2) because lemma 2.1 requires that
a and b do not share variables. This is essentially a work-around for a subtle mistake in lemma

2.2 [10].

3 Abstracting substitutions

Abstract interpretation clarifies how data is represented in the abstract by requiring the relation-
ship between the data and the abstract data to be made explicit. To keep the paper self-contained
the Sharepyqr X Freepygar X Linpye, domain and its abstraction and concretisation mappings
will be briefly reviewed. The mappings for Sharep,q, X Freep,q, are presented in appendix 7.

3.1 On the domain Sharepye, X Freepya, X Linpyar

Sharepyq, is formulated in terms of sharing groups [14, 29] which record which program vari-
ables potentially share variables. A sharing group is a (possibly empty) set of program variables.
Freepyqr and Linpyqr, on the other hand, represents the free and linear program variables as
sets.

Definition 3.1 (Sharepyars Freepya, and Linp,q-) The domains Sharepyq,, Freepyq, and Linp,q,
are defined by:

Sharepyqr = p(p(Pvar)), Freepyer = p(Pvar), Linpye = p(Pvar)

The intuition is that a sharing group records which program variables are bound to terms that
share a variable. Sharep,q X F'reepyar X Linpyqr 1s finite since Pvar is finite.

SFL

Puoar

SFL

Puoar

3.2 On the abstraction and concretisation mappings « and ~

In the spirit of [29], the abstraction and concretisation mappings are constructed by lifting three
mappings, shpyar, fTPvar and Inpyq,, to sets of substitutions. The mappings shpyqr, frpyqr and
{npyqr detaill how a single substitution is abstracted.

Definition 3.2 (shpyars [TPyar and npyar) The abstraction mappings shpyqr @ Sub — Sharepy .,
frevar : Sub — Freepygr and Inpygr : Sub — Linpya are defined by:

shpyar (@) = {occpyar (U, @) | u € Uvar}, occpyar(u, ¢) = {v € Pvar|u € var(¢(v))}

frpvar(9) = {v € Pvar|var(¢(v)) € Uvar}
lanar(¢) = {U € Puar | X(¢(U)) < 1}

The abstraction shp,q- is analogous to the abstraction A used in [29]. Observe that for ¢ & ¢,

5tha7‘(¢) = Sthar(SD)a ferar(¢) = ferar(SD) and lanar(¢) = lanar(SD)~ The mapping O“]S—:’f(ﬁ'

and ~y;§fa§ follow directly from shpyar, frpver and npyqr.

SFL .

T o(Sub) — Sharepyqr X Freep

Deﬁnition 3.3 (oz‘fgffr and 'yPUM) The abstraction and concretisation mappings o

and 'vaM Sharepyar X Freepyar X Linpygr — p(Sub) are defined by:

OB ar(P) = (@Puar(®) 0Puar(®) @Buar(®))s Thvar (0°75) = 1P0ar (65) 1 Puar (67)M Byar (6°)
where

0 Puar(®) = (@), YPuar(67) = {& | shpvar(9) C 67}

anar(q)) Ngee frPvar (), 71§var(¢F) =1{¢| ¢]: C frrvar(¢)}

Wpuar(®) = Ngealnpoar(®), Vpuar () = {016° C Inpuar(9))

Note that a®(f) = () whereas a®(®) = {0} if ® is a set of substitutions which all ground Pvar.
This distinction is preserved in Sharepyq,r X Freepyar X Linpyar.

¢E‘I>5thar

4 Abstracting matching

Abstract interpretation can help to focus the development of an analysis by illuminating the
connection between an operation (like matching) and its abstract counterpart.

4.1 On the abstract matching relation mgu®**
Matching is abstracted by tracing the steps of a standard unification algorithm [21]. To trace
unification, the abstract algorithm mimics the recursive simplification steps of mgu in a relation

mguST* | relegating the solution of simplified equations of the form v = ¢ or ¢ = u to a mapping

mgu®?*. Unification, or more precisely pre-unification [6], cannot be used to implement the
simplification steps. Instead a simplification algorithm like that of [28] is used.
The relation mgu®”% is defined to abstract a slight variant of mgu. Specifically, if ¢ €
mgu({6(t) = ¢(t')}), ©(¢(t)) = ¢(¥') and ¢ € v37~ ((;SS}I) then mguS7~ (¢, ¢/, ¢57%) abstracts
g) SD PyP'Uar g))
the composition ¢ o ¢ (rather than ¢), that is, ¢ 0 ¢ € v37 £ (mgu®7# (¢, ¢/, ¢57%)). This spares
the need to define an extra (composition) operator.

Definition 4.1 (mgu®*%) The relation mgus** : Eqn x (Sharepyar X Freepyar X Linpyar) ¥
(Sharepyar X Freepyar X Linpygr) is defined by:

mguSTE (), pSF~ ¢SF£)

mguSFE(u=u: B (B, ¢5FC 57~

mguTE(t = u (E, mgusrﬁ(t, u, ¢57), ST LY A u g var(t)

mguSTE(u =t B, ¢5FE, GSFE meguS]-'ﬁ(E mguSTE (u,t, §5FL), SFEY A u & var(t)
(

mguSFE(f(L) = F(1) : B.657E 57 E) ifmgusPE({ts = 1o, U B, 657E, p574)

K3

4.2 On the auxiliary operations

SFL S]-'ﬁ)

To define the mapping mgu (and thus the relation mgu a number of standard auxiliary
operators are required [14, 29]. First, rel(t, %) represents the sharing groups of ¢ which are
relevant to the term ¢, that is, those sharing groups of ¢7* which share variables with ¢. Second,
in the absence of useful freeness and linearity information worst-case aliasing is assumed. Thus,
as in [14, 29], a closure under union operator, *, is employed to enumerate all the possible sharing

SFL

groups that can possibly arise in unification. Third, to succinctly define mgu , 1t 18 convenient

to lift U to sets of sharing groups with a pair-wise union operator, denoted .

Definition 4.2 (rel, * [14, 29] and O)
rel(t,¢%) = {U € ¢° |U Nwvar(t) # 0}

¢S =S VU UU U U €657}, ¢S O¢S = {UUU'|U € ¢ AU € ¢}

F SFL

The mappings shareS” < freeST% and lin apply different analysis strategies according to the
freeness and linearity of ¢(¢) and ¢(¢') for ¢ € v&7 £ (¢57%).

The Linpyqr component of the domain encodes the variable multiplicity of a substitution.
More significantly, if ¢ € y27£(¢57%) then the variable multiplicity of ¢(¢) can be (partially)
deduced from t and ¢5F*. The precise relationship between ¢(t), ¢ and ¢ is formalised in

definition 4.3 and lemma 4.1. Proof of lemma 4.1 is given in proof 9.1.

Definition 4.3 (y$7%) The abstract variable multiplicity operator x3F* : Term x (Sharepyar %
Freepyar x Linpgy) — {0,1,2} is defined by:

0 ifvar(t) Nvar(¢®) =0
1 else if Yu € var(¢®).xu(t) < 1A
= var(t) C ¢ A
Yu,v € var(t).rel(u, ¢%) Nrel(v,) = 0

2 otherwise

XS]-'ﬁ(t’ ¢SFL:)

Lemma 4.1

var(t) C Pvar A ¢ € 75, 4 (6575) = x(6(1)) < 574 (¢, 0°7F)

4.3 On the abstract matching mapping mgus”*

The mapping mgu®7%(t,¢',¢57%) abstracts the matching of two terms, ¢(¢) and ¢(¢'), where
¢ € ¢°7%. The mapping assumes that ¢(¢) is more general than ¢(t'). The different cases of
mgu®?* apply different analysis strategies according to whether ¢(t) is free or ¢(t') is free or
linear. Simplification ensures that the equation ¢ = ¢ assumes the form of either u = ¢/ or t = u.

Definition 4.4 (mgus”*)

mguSTE(, 1 657 L) = pSTE where

p = ¢% \ (rel(t, 6%) Urel(t’, 6%)) U
rel(t,q/)s) Drel(t’,qf)s)ift c q/)]-' \/X‘Sfﬁ(t/,dfsj:ﬁ) S 1
rel(t, ¢Sy Orel(t', ¢°) otherwise

F_ [¢70{t} it € ¢”
= o7\ var(rel(t, $%)) otherwise

o q/)ﬁ Uvar(t) Z‘fXS]-'ﬁ(t/’ q/)S]-'ﬁ) S 1
7 et \ var(rel(t, ¢°)) otherwise

Note that rel(t,¢%)Orel(t',¢%) = 0 and rel(t, ¢°)* Orel(t’, %) = 0 if rel(t, %) = 0. Thus, in
the first case of u®, rel(t, ¢°) need not be calculated if rel(u, ¢°) = @ and similarly in case two,
rel(t, 9°) need not be computed or closed under union if rel(u, ¢®) = . Analogous refinements
follow if rel(t,¢5) = 0.

Observe that mgu®”% improves on a refinement suggested in [28]. In abstract unification,
the calculation of a closure can be avoided if either ¢ or t' are free. If neither ¢ nor ¢’ are free,
two closure calculations are required. Abstract matching, however, requires at most one closure
computation. This follows from the restricted forms of aliasing that can arise from matching.
Moreover, if ¢ or ¢’ are free, or ¢(t') is linear, no closures need be calculated.

The correctness of the mapping mgu®”* is stated as lemma 4.2. The corresponding proof is
numbered 9.2.

Lemma 4.2

¢ € Vpy o (6575)
var(g(t)) Nvar(é(t’')) =0
var(t) Uvar(t') C Pvar
¢ € mgu({e(t) = o(t')})
p(o(t)) = (')

mguS]-'ﬁ(t’t/’qj)S}'ﬁ) — NS]-'ﬁ . QDOQS c 78]-'6 (NS]-'ﬁ)

Puvar

> > > > >

The correctness of the relation mgu®”* follows from lemma 4.2 and is stated as theorem 4.1. The
corresponding proof is numbered 9.3.

Theorem 4.1

¢ € Vhrar(°7F) A
E={t; =t} A
var(¢(t;)) Nvar(é(t;)) =0 A
var(FE) C Pvar A
p € mgu(¢(E)) A
p(6(t:)) = o(ti") A

)

SFL SFL SFL SFL
u” (B, %7

= po ¢ € Pvaar(/'LS]:ﬁ)

mg
It is convenient shorthand to regard mgu®”** as a mapping, that is, mgus”*(E, ¢57%) = 57~
if mguSTL(B, ¢57% SFL). Strictly, it is necessary to show that mguS74(E, ¢57% ¢S7%) is
deterministic for mguS”*(E, ¢57 %) to be well-defined. Like in [6], the conjecture is that mgus”*
yields a unique abstract substitution %% for ¢57* regardless of the order in which £ is solved
(though, in practice, any 7% is safe).

4.4 On the mappings entry®** and exits"*

To finally define the matching versions of clause entry and exit, abstract restriction has to be
introduced. An abstract substitution, ¢7* say, is implicitly defined in terms of a set of program
variables Pvar. If (/)S}I/ = ¢SFL 18FL Pyar' then qbs}-ﬁ/, the restricted abstract substitution, is
defined in terms of the variables Pvar N Pvar’. Abstract restriction thus restricts the variable set
of an abstract substitution and does not abstract concrete restriction. The precise relationship
between ¢57 % and (/)S}I/ is stated as lemma 4.3 and established in proof 9.4.

Definition 4.5 (abstract restriction) The abstract restriction operator, - 7% - is defined by:

51U ={UNnU'|U" € 6%}
¢S.7:,C rS]:,C U:<¢S rSU’¢.7: r]:U’qS,C rL:U> where ¢_7:r.7: U:Um¢.7:
q/)ﬁ rﬁU:Uqu)ﬁ

Lemma 4.3

SFL SFL SFL SFL WSFL !
Pvaar(qs) g 7PvarﬂPvar’(¢ r Puvar)

SFL tS]-'ﬁ

The definitions of entry and exi are given below with their safety stated as theo-
rems 4.2 and 4.3. Clause entry abstracts the unification of a (renamed) goal atom Y(¢in(acainr))
and a head atom ap.qq where ¢;, € yﬁfaﬁ(ffﬁ). The resulting abstract substitution is restricted
to the variables of the clause to obtain the clause entry substitution ¢57,% . To clarify, ¢, and ¢ oy
represent the input and output pairs for goal, or equivalently a program literal; whereas ¢.p¢.r and
@erit Tepresent the entry and exit substitutions for a clause which invoked by the literal. Matching
arises if the arguments of ap.qq are distinct variables.

Clause exit abstracts the unification of a goal atom ¢;n(acqi) and a (renamed) head atom
Y(¢perit(aneqaa)) where ¢ € yﬁfaﬁ(SFLY and ¢epir € yﬁfaﬁ(S7L). Matching arises because
Gin(acqn) is more general than Y(@epit(apeqaq)) since ¢epter is more general than ¢epq.

Definition 4.6 (entry®”* and exitS7 %) The entry®”* and exit®"* mappings are defined by:

SFL SFL _ USFL SSFL SFL SFLN _ U SFL
entry (acalla¢in ,ahead)— enters €x (acall,¢m y @head, em't)— out

frﬁfr = mguSFﬁ({T(acall) = ahead}, T(;'Sn]:ﬁ) U GS]:L:) rS]:LZ Poar

oue” = mguT ({acan = Yaneaa)), 57 UT(6550)) 157 Poar

Theorems 4.2 and 4.3 assume var(acqn) U var(apeqqd) € Pvar and are established by proofs 9.5
and 9.6.

Theorem 4.2 (local safety of entry”+<)
¢i” € Pylgvfaﬁ(;’S‘n}-ﬁ) A
pE mgu({T(¢in(acall)) = ahead}) A
T(¢in(acall)) = Sp(ahead) =

unify(aheada €, Aeglly ¢2n) S Vl‘gvfaﬁ(entrys}-ﬁ(acalla ¢‘§r£§ra ahead))

Theorem 4.3 (local safety of exitS7 <)

Pin € 71‘51)]:(16(;Snj:ﬁ) N Gerit € 71‘51;]:@6(‘egx}z-tﬁ) A
P e mgu({¢in(acall) = T(¢6xit(ahead))}) A
Qp(¢in(acall)) = T(So(ahead)) =

unify(aca” 5 ¢ina Ahead, ¢exit) S Vl‘gvfaﬁ(exitsj:ﬁ(acalla ¢;Snfﬁ’ Ahead, ¢‘§1§tﬁ))

5 Related and future work

Abstract unification algorithms for sharing and freeness have been studied in some detail [2, 6, 7,
8,12, 14, 18, 19, 22, 25, 28, 32, 36] but, curiously, there is a dearth of work on abstract matching.
Abstract matching, in fact, is rarely given special attention and is usually implemented by abstract
unification.

Future work will focus on implementation and benchmarking (which is a non-trivial study
within itself) to measure the speedup from substituting matching for unification. The réle and
affect of normalisation will also be explored particularly in regard to goal-head unification. Another
direction for future work is in extending the abstract matching algorithms to trace sure structural
information [2, 18, 23]. This would avoid any loss of precision that might be introduced through
normalisation.

6 Conclusions

Most of the execution time of an analyser is typically spent, not in the framework, but on domain
operations like unification and matching [15]. Thus, if the performance of sharing and freeness
analysis is to be improved, it i1s crucial that operations like abstract matching are both precise
and efficient. Improving the efficiency of abstract matching speeds up extension, clause exit, for
arbitrary programs; and goal-head unification clause entry, for normalised programs with head
arguments that are distinct variables.

A series of useful, practical and formally-justified abstract matching algorithms have been syn-
thesised for the popular domains Share, Share x Free and Share x Free x Lin. The matching
algorithms can outperform their corresponding unification algorithms in both precision and speed.
The techniques are significant because they can under-pin a number of important optimisation
and parallelisation techniques.

Acknowledgements

This work was supported, in part, by ESPRIT project (6707) “ParForce” and undertaken while
Mark Longley was visiting the University of Kent at Canterbury.

References

[1] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
J. Logic Programmang, 10:91-124, 1991.

[2] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a composite domain
deriving sharing and freeness properties of program variables. In ICLP’9} post-conference
workshop on the verification and analysis of logic programs, pages 213-230, Santa Margherita
Ligure, Italy, 1994. June.

[3] M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract Interpretation: To-
wards the Global Optimization of Prolog Programs. In SLP’87, pages 192-204. MIT Press,
1987.

[4] F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Global Analysis in
Strict Independence-Based Automatic Program Parallelization. In International Symposium
on Logic Programming, pages 320-336. MIT Press, 1994.

[5] J-H. Chang and A. M. Despain. Semi-intelligent backtracking of prolog based static data
dependency analysis. In JICSLP’85. IEEE Computer Society, 1985.

[6] M. Codish, D. Dams, and E. Yardeni. Derivation and Safety of an Abstract Unification
Algorithm for Groundness and Aliasing Analysis. In ICLP’91, pages 79-93, Paris, France,
1991. MIT Press.

[7] M. Codish, A. Mulkers, M. Bruynooghe, M. J. Garcia de la Banda, and M. Hermenegildo.
Improving abstract interpretation by combining domains. In PEPM’93. ACM Press, 1993.

[8] A. Cortesi and G. Filé. Abstract interpretation of logic programs: an abstract domain for
groundness, sharing, freeness and compoundness analysis. In PEPM’91, pages 52-61. ACM
Press, 1991.

[9] P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Programs. J. of
Logic Programming, 13(2-3), 1992.

[10] D. Dams. Personal communication on linearity lemma 2.2. July, 1993.

10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Debray and D. S. Warren. Automatic Mode Inference for Logic Programs. J. of Logic
Programming, 5(3):207-230, 1988.

S. K. Debray. Static inference of modes and data dependencies in logic programs. ACM
TOPLAS, 11(3):418-450, July 1989.

M. Hermenegildo and F. Rossi. Non-strict independent and-parallelism. In ICLP’90, pages
237-252, Jerusalem, 1990. MIT Press.

D. Jacobs and A. Langen. Static Analysis of Logic Programs. J. Logic Programming, pages
154-314, 1992.

G. Janssens and W. Simoens. On the Implementation of Abstract Interpretation Systems for
(Constraint) Logic Programs. In CC’94, pages 172-198. Springer-Verlag, 1994.

N. Jones and H. Sgndergaard. Abstract Interpretation of Declarative Languages, chapter A
Semantics-Based Framework for the Abstract Interpretation of Prolog, pages 123-142. Ellis
Horwood, 1987.

T. Karamori and T. Kawamura. Analyzing Success Patterns of Logic Programs by Abstract
Hybrid Interpretation. Technical Report TR-279, ICOT, 1987.

A. King. Share x Free Revisited. Technical report, Computing Laboratory, University of
Kent at Canterbury, Canterbury, CT2 7TNF, UK, 1994.

A. King. A Synergistic Analysis for Sharing and Groundness which traces Linearity. In
ESOP’94, pages 363-378, Edinburgh, UK, 1994. Springer-Verlag.

A. King and P. Soper. Depth-k Sharing and Freeness. In IC'LP’94, Santa Margherita Ligure,
Italy, 1994. MIT Press.

J. Lassez, M. J. Maher, and K. Marriott. Foundations of Deductive Databases and Logic
Programmang, chapter Unification Revisited. Morgan Kaufmann, 1987.

B. Le Charlier and P. Van Hentenryck. Compositional bits. In POPL’94, 1994.

B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog. ACM Transactions on Programming Languages and
Systems, 1994.

J. W. Lloyd. Foundations of Logic Programmang. Springer-Verlag, 1987.

K. Marriott and H. Sgndergaard. Analysis of constraint logic programs. In NACLP’90, pages
531-547. MIT Press, 1990.

C. Mellish. Abstract Interpretation of Declarative Languages, chapter Abstract Interpretation
of Prolog Programs, pages 181-198. Ellis Horwood, 1987.

A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the Practicality of Abstract
Equation Systems. Technical Report CW198, K. U. Leuven, Celestijnenlaan 200 A, 3001
Herverlee, Belgium, November 1994.

K. Muthukumar and M. Hermenegildo. Combined determination of sharing and freeness of
program variables through abstract interpretation. In ICLP’91, pages 49-63, Paris, France,
1991. MIT Press.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
through Abstract Interpretation. J. of Logic Programming, pages 315-437, 1992.

11

[30]

[31]

[32]

[33]

[34]

[35]

[36]

U. Nilsson. Abstract Interpretations and Abstract Machines: contributions to a methodol-
ogy for the implementation of logic programs. PhD thesis, Department of Computer and
Information Science, 1992. Link” oping studies in science and technology dissertation no. 265.

H. Sgndergaard. An application of the abstract interpretation of logic programs: occur-check

reduction. In ESOP’86, pages 327-338, New York, 1986. Springer-Verlag.

R. Sundararajan and J. Conery. An abstract interpretation scheme for groundness, freeness,
and sharing analysis of logic programs. In 12" FST and TCS Conference, New Delhi, India,
December 1992. Springer-Verlag.

A. Taylor. High Performance Prolog Implementation. PhD thesis, Basser Department of
Computer Science, NSW 2006, Australia, July 1991.

W. Winsborough. Multiple Specialisation Using Mimimal Function Graphs. J. of Logic
Programming, 1990.

W. Winsborough and A. Wern. Transparent and-parallelism in the presence of shared free

variables. In IC'LP’88, pages 749-764. MIT Press, 1988.

H. Xia. Analyzing Data Dependencies, Detecting And-Parallelism and Optimizing Backtrack-
wng i Prolog Programs. PhD thesis, University of Berlin, April 1989.

12

7 Sharepyy, X Freep,,, Appendix

As with Sharepyqr X Freepyqr X Linpyqr, the mapping oz‘fgfar and 7,‘§fw follow directly from
Sthar and ferm“

Definition 7.1 («37, and 'yPUM) The abstraction and concretisation mappings o7« p(Sub) —
Sharepyar X Freepyar and v37 : Sharepyar X Freepya — p(Sub) are defined by:

a‘;-’UF(IT(@) = <a‘;’0(17‘(@)’ a;’UGT(@)> PyP’U(lT(qSSF) - Pyl‘gvar(dfs) m 75’0(17‘(¢F)

Linearity can be tracked because, like before, if ¢ € v37 (¢57) then the variable multiplicity
of ¢(t) can be (partially) deduced fromt and QSSF. Lemma 4.1 explains how x5% approximates x.

Definition 7.2 (y7) The abstract variable multiplicity operator x°7 : Term x (Sharepyqr ¥
Freepyar x Linpgy) — {0,1,2} is defined by:

0 if var(t) Nwar(¢®) =0
1 else if Yu € var(¢®).xu(t) < 1A
(%) = var(t) N ¢¥ = ¢ A
Yu,v € var(t).rel(u, ¢%) Nrel(v, %) = 0

2 otherwise

Lemma 7.1

var(t) C Pvar A ¢ € vona(6°7) = x(6(1)) < X°7 (1, 6°7)

The corresponding proof is numbered 9.7.
Definition 7.3 (mgu®”)

mgu®” (4,1, ¢°F) = uS7 where

= ¢° \ (rel(t, q[)s) U rel(t, ¢S)) U

rel(t, %) Orel(t',¢%)ift € o7 VxSF (', 6°7) <1
rel(t, ¢S) Orel(t', ¢%) otherwise

F_ [¢70{t} it € ¢”
= o7\ var(rel(t, $%)) otherwise

The mapping mgu®”* divides into two cases, like before, applying different analysis strategies
according to whether ¢(t) is free or ¢(¢') is free or linear. Because of the lack of precise linearity
information, however, the second, less precise case is likely to be selected more frequently in mgu®”*
than in mgu®”*. Lemma 9.8 is established in proof 9.8.

Lemma 7.2

¢ €L (65T) Avar(6(1)) Nwar(é(t')) = B A var(t) Uvar(t') C Poar /\
p € mgu({(t) = 6(t')}) A p(d(1)) = ¢(t') AmgusT (8,1, 6°7) = 4i*7 = p 0 ¢ € 137, (1)

SF entry®” and ezit®”

The mgu®” relation, restriction are defined in a similar way to before.

13

8 Sharep,, Appendix

For Sharepyq-, without freeness or linearity information, a closure calculation cannot be avoided.
However, this compares favourably with the two closure that are required in the standard abstract
unification algorithm [14]. The proof for lemma 8.1 is numbered 9.9.

Definition 8.1 (mgu®)

mgu® (t,1',¢%) =
5\ (rel(t, %) Urel(t', 6°)) U rel(t, ¢°) Orel(t’, ¢°)

Lemma 8.1

¢ E ’Y}gva,« (¢8) Avar(¢(t)) Nvar(é(t")) = 0 Avar(t) Uvar(t') C Pvar A
o € mgu({p(t) = ¢(1")}) A p(8(t)) = ¢(t') Amgu® (1,1, 6%) = ¥ = 0 0 ¢ € YDy (1)

9 Proof Appendix

Proof 9.1 (for lemma 4.1) Let var(t) C Pvar and ¢ € v37 5 (¢57%).

Puvar

1. Suppose x(¢(t)) = 0. Immediate.

2. Suppose x(¢(t)) = 1. Thus there exists v € var(t) such that u € var(¢(v)). Since v € Pvar,
v € var(occpyar(u, ¢)) and thus v € var(¢®). Hence xS7%(t,¢57%) # 0.

3. Suppose x(¢(1)) = 2.
(a) Suppose u € var(t) such that x4 (t) = 2 and v € var(¢(u)). Thus, since u € Pvar,
u € var(occpyar (v, ¢)) and thus u € var(¢®). Hence x$7<(t,¢57%) = 2.

(b) Suppose u,v € var(t) such that w € var(¢(u)) Nvar(¢(v)) and w # v. Thus, since
u,v € Pvar, u,v € var(occpyqar (0, ¢)) and therefore rel(u, ¢%) Nrel(v,¢%) # 0. Hence
STE(, $5FE) = 2.

(c) Suppose v € var(t) such that x,(¢(v)) = 2. Thus, since v € Pvar, v & ¢*. Hence
S

Puvar

¢ € mgu({6(t) = ¢(t)}), e(o(t)) = ¢(t') and mguSTE(t,t', ¢5FF) = psF
1. Let v € Uvar. To show occpyar(v,p 0 ¢) € us.

(a) Suppose v & cod(p o ¢). Thus v & var(p o ¢p(w)) for all w € dom(yp o ¢).
i. Suppose v & dom(p o @), that is, p o $(v) = v. Thus ¢(v) = v and p(v') = v.
Suppose v £ v'. Hence v € var(¢(t))Uvar(¢(t’)). Thus there exists var(t)Uvar(t')
such that v € var(¢(w)). But since ¢(v) v, v # w and because dom(p) Ncod(yp)

=0, ¢(v) = v and therefore v € var(p (w)) Hence v € cod(p o ¢) which is a
contradiction. Thus v = v'.

Proof 9.2 (for lemma 4.2) Let ¢ € v37 £ (¢57%), var(¢(t)) Nvar(é(t')) = 0, var(t) Uvar(t') C Puar,
c

A. Suppose v & var(¢(t)) and v & var(¢(t')). Hence v & cod(p) and therefore
occpyar(V, 9 © @) = occpyar(v,¢). But var(t) N var(occpyar(v,¢)) = O and
var(t’) Nwvar(occpyar (v, ¢)) = 0. Hence occpyar(v, 9 0 @) € us.

B. Suppose v € var(é(t)) and v & var(¢(t')). Since ¢ € mgu({¢(t) = (1)}
v € dom(p) or v € cod(yp). Since p(v) = v, v & dom(yp) and thus v € cod(p
Thus v € var(p o ¢(1)) and therefore v € var(p o ¢(t')). Since v & var(¢(t'),
there exists w € var(¢(t’)) such that v € var(p(w)). Thus v € var(p o ¢(t'))
and since v & cod(p o @), v =t so that ¢(t') = v which is a contradiction.

C. Suppose v & var(¢(t)) and v € var(¢(t')). Like case 1{a}iB.

),
)-

14

D. Suppose v € var(¢(t)) and v € var(¢(t’)). Since p(v) = v and v & cod(p o ¢),
v & cod(¢). Thus v € var(t) and v € var(t’) so that var(t) Nvar(t’) # 0 which
15 a contradiction.

i. Suppose v € dom(p o ¢). Since v & cod(p o @), occpyar(v,po0 @) =0 € ps.

(b) Suppose v € cod(pod)\var(pod(t)). Suppose v € cod(p). Thus v € var(po¢(t)) which
is a conitradiction. Suppose v € dom(p). Thus v & cod(p) and hence v & cod(p o ¢)
which is a contradiction. Hence occpyar(v, 0 @) = occpyar(v,d) € ¢°. Suppose
v € var(g(t))Uvar(g(¥')). Sincev & var(pog(t)), v € dom(p) and therefore v & cod(p).
Hence v & cod(p o ¢) which is a contradiction. Thus var(t) N var(occpyar (v, ¢)) and
similarly var(t') Nvar(ocepyar (v, ¢)) = 0 and therefore occpyar(v, 0 @) € .

(¢c) Suppose v € cod(p o ¢) Nwar(p o ¢(t)). Note that occpyar(v, 9 © ¢) = Uyevar(o(w))
OccPvar(wa ¢)

i. Suppose t € ¢7 with ¢(t) = v;. Thus ¢ = {v; — ¢(t')}. Since v € var(p o (1)),
v € var(¢(t')). Thus {w|v € var(p(w)} = {ve,v}. Hence occpyar(v,p 0 @) €
rel(t, %) Orel(t', ¢%) C pb.

i. Suppose \STE(t',¢57%) < 1. There exists Wy C var(é(t)) and Wy C var(é(t'))
such that occpyar (v, 0 ¢) = Uwew,uw,, 0¢CPyar (W, ¢). Since v € var(p o ¢(1)),
Wy # 0 and thus Wy # 0. Suppose w,w' € Wy and w # w'. Since Y$TX(#,¢57%) <
1, by lemma 4.1, x(6(t')) < 1 and because var(¢(t))Nvar(¢(t)) = 0, by lemma 2.1,
w & var(¢(t)) or w' & var(¢(t)) which is a contradiction. Now suppose w,w’ € Wy
and w# w'. Since dom(p) "Wy = 0, var(e(w)) Nvar(e(w’)) = O which is a con-
tradiction. Thus occpyar(t, 0 ¢) € rel(t,¢%) O rel(t',¢5) C ps.

wi. Suppose t ¢ ¢7 and Y$TF(,¢57F) = 2. There exists Wy, C var(é(t)) and
Wy C war(¢(t')) such that occpyar (v, 0 ¢) = Uyew,uw, 0¢Cpyar(w, @). Like in
case 1(c)ii, Wy = {w'} so0 that occpyar(t, 0 0 @) € rel(t,¢°)* O rel(t',¢5) C p.

[
[

2. Letveu”.
(a) Suppose t' € ¢7 where ¢(t') = vy
i. Ifv =t then v € frpyar(p o @) since o (t) = vy.
i va € ¢]: then v € ferar(on ¢) since ferar(SD o ¢) = ferar(¢) g ¢]:~
0

(b) Suppose t' & ¢%. Since v & var(rel(t,¢®)), var(¢(v)) Nvar(é(t)) =
dom(p) C var(é(t)), ¢ o ¢(v) = ¢(v) € frpyar(9).

3. Letv € p*.

and because

(a) Suppose \ST (', ¢5F%) <1, by lemma 4.1, x(4(t')) < 1 and thus x(p o ¢(t)) < 1.
i. If v e wvar(t) then v € Inpyar(p o @) since x(po ¢(1)) < 1.
. va € ¢£ then v € ferar(SD ° ¢) since ferar(SD ° ¢) = ferar(¢) g ¢£~
(b) Suppose xSTX(t',¢57%) = 2. Since v € var(rel(t, ¢%)), var(é(v)) Nvar(é(t)) = 0 and
because dom(p) C var(¢(t)), ¢ o ¢(v) = ¢(v) € Inpyar(d).
Proof 9.3 (for theorem 4.1) Let ¢ € v37 5 (¢57%), E = {t; = t;/}7_, var(é(t;)) Nvar(¢(t;)) =
0, var(E) C Puar, ¢ € mgu(¢(E)) ¢(6(t;)) = o(t:) and mguST*(E,¢57% 15F%). By induc-
tion on the steps of mguST* and by lemma 4.2 there exists 6 € mgu(¢(E)) such that § o ¢ €
VoI L (WSTLY, But 0 ~ ¢ [21] and thus 0o ¢~ po¢. Hence p o ¢ € v37 L (Y55,

Puvar

Proof 9.4 (for lemma 4.3) Lel ¢ € ~y§fa§(¢>5”) and v € Uvar. Now occpyarnpuar (4, $)
= occpyar(u, @) N Pvar’ € ¢° ¥ Pvar'. Thus ¢ € Y3, rnpvar (85 15 Puar'). Moreover,
o € ’y}fvampww(qb}- i Puar’) since ¢F N Puar' C frpvarapvar (@) because ¢F C frpvar(¢).

Stmalarly, ¢ € ’yfpwmpvar,((bﬁ fﬁ)

15

Proof 9.5 (for theorem 4.2) Let ¢;, € yﬁfaﬁ(SFLY o € mgu({Y(Gin(acan)) = anead}),
T(¢in(acall)) = Sp(ahead) and 0 = unify(aheada €, Qeall,y ¢zn)

Thus 6§ = (¢ o €) | Pvar where ¢ € mgu({e(anead) = Y($in(acann))}). Observe that ¢ €
mgu({e(aneaa) = Y(Gin (Y"1 (T(acan))))}) and thus putting o = ¢ U (T o ¢sp o Y1), ¢ €
mygu(o({aneaa = Y(acan)})). Note that € € 'yﬁfﬁ(esrﬁ) and ¢z o Y71 € 'y?fpiar)("f(SFLY)
and hence T o ¢z o Y71 € 'y?fpﬁvw)(T(SFLY). Since var(e) Nvar(Y o ¢ 0 T71) =0, 0 €
’ypvarUr(Pvar)(ES]:L:UT(d);Sn]:L:)). Thus, by theorem 4.1, since var(c(apeqq))Nvar(oc(Y(acq))) = 0,
var(apeqd) Jvar(Y(acan)) € PvarUY (Puar), ¢ € mgu(o({anead = Y(aeann)})) and o(o(apeqd)) =
(Y (acqn)) it follows that ¢ o o € 'yl‘gvfaiuT(va)(ucalSFL) where p**FL = mgu ({apeaa =
Y(acan)}, ST UN(9ST)). Thus, by lemma 4.3, ¢ o o € v37 5 (peeSFL }SFL Pyar) and because
(poo) | Pvar = (po[o | Pvar]) | Pvar = (poe€) | Pvar, (poe€) | Pvar € 7§fa€(ﬂcalSFL 1SFL

Puar) and therefore 0 € v37~ (entryS T~ (ancaa, 7%, acan, ¢57°7)).

Puvar

Proof 9.6 (for theorem 4.3) Like proof 9.5.

Proof 9.7 (for lemma 7.1) Let var(t) C Pvar and ¢ € 757, (¢°7).

Puvar

1. Suppose X537 (t,¢57) = 0. Put ¢* = 0. Thus ¢* C Inpyar(¢) and ¢ € v375(¢57%). But
XETE(t, 657 %) = 0 so that, by lemma 4.1, x(¢(t)) = 0.

2. Suppose X7 (t,¢°7) = 1. Let v € var(t).

(a) Suppose v € var(¢¥). Then v € ¢7 and hence x(¢(v)) = 1 s0 that v € Inpyar(@).
(b) Suppose v & var(¢®). Then x(¢(v)) = 0 so that v € Inpyar(d).

Put ¢* =wvar(t). Thus ¢* C Inpyar(¢) and hence ¢ € v37 5 (6575). But X574 (t,657%) = 1
so that, by lemma 4.1, x(¢(2)) < 1.

3. Suppose X7 (t,6°7) = 2. Immediate.
Proof 9.8 (for lemma 7.2) Like cases 1a, 1b, 1c and 2 of lemma 4.2.

Proof 9.9 (for lemma 8.1) Like cases 1a, 1b, 1(c)iii of lemma 4.2.

16

