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FREE INTEGRO-DIFFERENTIAL ALGEBRAS AND GR OBNER-SHIRSHOV BASES
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AsstracT. The notion of commutative integroftiérential algebra was introduced for the algebraic
study of boundary problems for linear ordinaryfdrential equations. Its noncommutative analog
achieves a similar purpose for linear systems of such emuatiln both cases, free objects are
crucial for analyzing the underlying algebraic structyeeg. of the (matrix) functions.

In this paper we apply the method of Grobner-Shirshov bisesnstruct the free (noncommu-
tative) integro-diterential algebra on a set. The construction is from the fre@#axter algebra
on the free dierential algebra on the set modulo théeliential Rota-Baxter ideal generated by
the noncommutative integration by parts formula. In ordestttain a canonical basis for this quo-
tient, we first reduce to the case when the set is finite. Thendar to obtain the monomial order
needed for the Composition-Diamond Lemma, we considerréw Rota-Baxter algebra on the
truncated free dierential algebra. A Composition-Diamond Lemma is proveithis context, and
a Grobner-Shirshov basis is found for the correspondifigrdintial Rota-Baxter ideal.
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1. INTRODUCTION

1.1. Commutative Setting. An integro-djferential algebra(R, d, P) is an algebraic abstraction
of the familiar setting of calculus, where one employs aarotf differentiationd together with
a notion of integratior? on some (real or complex) algebra of functions.

For understanding the motivation behind this abstracteinys first consider theR( d). This is
the familiar setting otlifferential algebraas set up in the work of Ritg, BJ] and Kolchin 24].
The idea is to capture the structure of (polynomially) noadir diferential equations from a
purely algebraic viewpoint. If one speaks of solutions iis ttontext, one usually means ele-
ments in a suitable ferential fieldR extendingR. In particular, in diferential Galois theory, an
“integral” of f € Ris taken as an elemeunte R such thad(u) = f.

In applications, however, fierential equations often come together wattundary conditions
(for simplicity here we include also initial conditions wrathis term). Incorporating these into
the algebraic model requires some modifications: Assumiegyef € R has an integrall € R,
the conditiord(u) = f becomeslo P = 1g, and itis natural to assume that the oper&orf — u
is linear. In the standard settiigy= C*(R) we haved(u) = v’ andP(f) = J’zf(g) dé for some
initial pointa € R. This leads us to expect some further propertieB:of

e The Fundamental Theorem of Calculus tells us fRas a right inverse ofl, as noted
above. But it also tells us th&t is not a left inverse; rather, we halko d = 15 — E; in
the standard setting, wheEg is theevaluation u— u(a). Note thatE, is a multiplicative
functional onR.

¢ Just liked satisfies the product rule (also known as the Leibniz law)P satisfies the
well-knownintegration by partsule. In its strong form, this is the rul(fd(g)) = fg-—
P(d(f)g) — E(f)E(Q); in its weak form it is given byP(f)P(g) = P(fP(q)) + P(P(f)g).
Both can be verified immediately in the standard settingihieir distinction in general
see below.

We will now explain briefly why both of these properties arstramental for treatingpoundary
problems(differential equations with boundary conditions) on an algedevel. We restrict
ourselves to the classical case of two-point boundary problfor a linear ordinary tferential
equations. For this and the more general setting of Steliipundary condititions, we refer
to [B1].

If Ris an arbitraryk-algebra, we can define avaluationas a multiplicative linear func-
tional R — k. In the case of a two-point boundary problem oweb] c R, one will have two
evaluation€,: u+— u(a) andEy: u+— u(b). A boundary condition like @a)—-3u’(a)+u'(b) = 0
then translates t8(u) = 0 with the linear functiongh = 2E, — 3E,d + E,d.

We can now define a general boundary problem oRed,(E,, Ep) as the task of finding for
givenf e Rthe solutionu € R of

Tu=f,
B1(U) = -+ =pBn(u) = 0,

whereT € R[d] is a monic linear dierential operator of order and the boundary conditioiss
are linear functionals built frord and the evaluations,, E, as above, with dferentiation order
belown. We call the boundary problenfL.{l) regular if there is a unique solution € R for
everyf € R. In this case, the associatidn— u gives rise to linear ma: R — Rknown as the
Green’s operatoof ([L.]).
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It turns out B, Thm. 26] that the Green'’s operat@rof ([.J) can be computed algebraically
from a given fundamental system ®f Moreover,G can be written in the form of an integral
operatoru = jzg(x, &) (&) d¢, whereg(x, ¢) is the so-calledsreen’s functionof ([L.J). More
precisely, defining the operator ring generatedRpg], the integral operatoP and the evalu-
ationsE,, E,, modulo suitable relations; can be written as an element of this quotient ring,
with g as its canonical representative. We observe tisatgleintegration is sfficient for undo-
ing n differentiations—this is achieved by collapsimgntegrations into one, using integration by
parts as one of the relations.

In fact, the relations contain two ftierent rules that encodetegration by parts The rewrite
rule [f [ — ... encapsulates the weak for¢f)P(g) = P(fP(g)) + P(P(f)g) while the rewrite
rule [fo — ... encodes the strong forf(fd(g)) = fg — P(d(f)g) — E(f)E(g). The former
contracts multiple integrations into one, the purpose tétas to eliminate derivatives from the
Green'’s operator.

In concluding this brief account on the algebraic treatnuéritoundary problems, let us note
that the operator ring is much more general than the usuar@éunctions. Extending two-
point conditions tdStieltjes boundary conditiorieads to a threefold generalization: More than
two point evaluations can be used, definite integrals magap@mnd the dierentiation order
need not be lower than that ©f In this case is still representable as an element of the operator
ring, and as before it may be computed from a given fundarhsystem ofT .

Let us now turn to the distinction between the “weak” fornms¢atalled Rota-Baxter axiom)
and the “strong” form (called the hybrid Rota-Baxter axiomh)jntegration by parts. Since the
former does not involve the derivatiopit can be used to encode an algebraic strucrB)Ywith
just an integral—this leads to the important notion of a Rééter algebra, introduced below in
amore general context in DE.J(D) Rota-Baxter algebras form an extremely rich structuré wit
important applications in combinatorics, physics (Yaraxtr equation, renormalization theory),
and probability; seef]]] for a detailed survey. Here we restrict our interest to thteraction
between the Rota-Baxter opera®and the derivationl. If this interaction is only given by the
section axiond o P = 1, one speaks of differential Rota-Baxter algebrantroduced formally
in Def. P(C) below. Intuitively, this is a weak coupling between th&eliential algebraR, d)
and the Rota-Baxter algebrg, (P).

In contrast, the hybrid Rota-Baxter axiom involvesas well asd, and it creates a stronger
coupling betweed andP. In fact, one checks immediately that it implies the RotatBaaxiom,
but the converse is not in general true as one sees from EgediplB]]. An integro-djferential
algebra(R, d, P) is then defined as affierential ring R, d) with a right inverseP of d that satisfies
the hybrid Rota-Baxter axiom; see DEfJ(d)for the more general setting. Hence every integro-
differential algebra is also aftirential Rota-Baxter algebra but generally not vice veidae
crucial diference between the two categories can be expressed in vadqoivalent waysiZ,
Thm. 2.5] of which we shall mention only two. An integrod@irential algebraR d, P) is a
differential Rota-Baxter algebra satisfying one of the follogwequivalent extra conditions:

e The projectoiE := 1z — P o d is multiplicative So if additionally ked = k as is typically
the case in an ordinary fiierential algebra, theR deserves to be called an “evaluation”.
This is the situation we had observed before in the stancstithg.

e The imageP(R) is not only a subalgebra (as in any Rota-Baxter algebradubigteal of R.
As a consequence, this excludes the possibility tRad)has the structure of aftierential
field so common in dferential Galois theory (see above).
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In many “natural” examples—such as the standard settingritbesl above—the notions of
differential Rota-Baxter algebra and integrdkeliential algebra actually coincide. However, their
differences are borne out fully when it comes to constructingdnespondindree objects For
differential Rota-Baxter algebras, this works in the same wdgrabe free Rota-Baxter algebra
(only with differential instead of plain monomials). Due to the tightdfedentialRota-Baxter
coupling, the construction of the free integrdfdrential algebra is significantly more complex.
Two different methods have been used to this endZBh 4n artificial evaluation is set up while
in [[L9] Grobner-Shirshov bases are employed.

Free objects are useful in many ways. In the case of the ftegrim-diferential algebra, we
mention the following twapplications where we think of th& as function spaces similar to the
standard setting:

e It allows to build up integro-dferential subalgebra® c C*(R) by adjoining new func-
tions. For example, we can create the subalgebra of expatsRt R[e*] by forming the
free integro-diferential algebra in one indeterminaand passing to the quotient modulo
the integro-diferential ideal generated IB(e)—e+1. Note that this implies the filerential
relationd(e) = e and the initial valude(e) = 1.

e It attaches a rigorous meaning to the intuitive notiopoifely algebraic manipulations of
integro(-djferential) equationsFor example, in the proof of the Picard-Lindelof theorem,
one transforms a given initial value problem for #eliential equation into an equivalent
integral equation.

Intuitively, one should think of the elements in a free imtedifferential as an integro-ierential
generalization of dierential polynomials (with trivial derivation on the dteients).

1.2. Noncommutative Setting. Up to now we have thought of the rirfjas commutative but the
above considerations—in particular the applications efftee integro-dierential algebra—will
also make sense without the assumption of commutativitiadty the noncommutative standard
example is the (real or complerjatrix algebra R= C*(R)™", and this forms the basis for two-
point (and more general) boundary problems for linear systaf ordinary diferential equations.
Hence we may think of the (noncommutative) free object asstisstrate for adjoining matrix
functions and manipulating systems of integr@efiential equations (the usual situation of the
Picard-Lindelof theorem).

This can immediately be generalized. Timatrix functorassigns to an arbitrary (commuta-
tive or noncommutative) integro{tierential algebraR d, P) the (necessarily noncommutative)
integro-diferential algebraR™", d, P) whose derivation and Rota-Baxter operat®érare defined
coordinatewise; the same is true for the transport of memphifromR — S to R™" — S™",

Another familiar functor from the category of integroférential algebras to itself is given
by the construction ohoncommutative polynomialR, ..., X<) over a commutative integro-
differential algebraR, d, P), where thex,, ..., X are assumed to commute with the fiaments
in Rbut not amongst themselves. The derivation and Rota-Bapemator, as well as the transport
of morphisms, are defined déieientwise.

The construction oR(Xy, .. ., Xx) models some extensions of a commutative integffiedintial
algebra to a larger noncommutative one: In some cases, riper lalgebra will be a quotient
of R(Xy,...,X). A typical case is given by extendirlg = C*(R) to R[i, j,K] := Ki, j,k)/I
wherel is the ideal generated by the familiar relatidAs= j> = k¥ = -1 andij = k, jk =
i, ki = j with their anticommutative counterparts. ObviouRly, j, k] can be seen as an algebraic
model for smoothguaternion-valued functionsf a real variable. (Finding the right notions of
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differentiation and integration for functions of a quaterniariable is a far more delicate process,
giving rise to thequaternion calculuglq]. It would be interesting to investigate this in the frame
of noncommutative integro-fierential algebras but this is beyond the scope of the cupiagrer.)

Finally, let us mention a potential application in combaras: Inspecies theorff], the usage
of derivations and so-called combinatoriaffdrential equationg]]] is well-established. Alge-
braically, the isomorphism classes of species formfi@dintial semiring that can be extended to
a differential ring by introducing so-called virtual species.ifdsthe more restricted setting of
linear species, it is also possible to introduce an integpatator [}, £9], thus endowing the class
of virtual linear species with the structure of an integrfatential ring. Since species can be ex-
tended to a noncommutative settifig]], it would be interesting to see how an integrdfeiential
structure can be set up in this case.

1.3. Structure of the Paper. In this paper we construct free integrafdrential algebras. This
construction, built on an earlier construction of frefetiential Rota-Baxter algebrgg]], is ob-
tained by applying the method of Grobner bases or GroBhéishov bases. The method has its
origin in the works of BuchbergefLP], Hironaka P3|, Shirshov and Zhukov B3]. Even
though it has been fundamental for many years in commutakj}ebra, associative algebra, alge-
braic geometry and computational algetfig]. It has only recently shown how comprehensive
the method of Grobner-Shirshov bases can be, through tfpe faumber of algebraic structures
that the method has been successfully applied to. (€, L] for further details. The method
is especially useful in constructing free objects in vasi@ategories, including the alternative
constructions of free Rota-Baxter algebras and frékeintial Rota-Baxter algebra@, [H]. In
the recent papefH], this method is applied to construct the free commutatitegro-diterential
algebras.

The layout of the paper is as follows. Sectiorf, we give the definition of integro-fierential
algebra and summarize the construction of fretedential Rota-Baxter algebras as a preparation
for the construction of free (noncommutative) integréetiential algebras. IBectiond, we set
up a weakly monomial order onftierential Rota-Baxter monomials of order In Sectior,
we prove the Composition-Diamond Lemma for fre€atiential Rota-Baxter algebras of order
n. In Sectionf, we prove that the dierential Rota-Baxter ideal of the freefidirential Rota-
Baxter algebra that defines the relations for free integfi@iential algebras possesses a Grobner-
Shirshov basis. Therefore we can apply the Compositiomidrad Lemma to obtain a canonical
basis, identified as the set of functional monomials, forftee integro-diferential algebra of
ordern. We then show that the ordarpieces form a direct system whose functional monomials
accumulate to a canonical basis of the free integftedintial algebra on a finite st Finally,
we prove that for an arbitrary st the inclusions of the finite subsetsXfinto X also preserve
the functional monomials, which allows us to take their tn&s a canonical basis of the free
integro-diferential algebra oiX.

2. FREE INTEGRO-DIFFERENTIAL ALGEBRAS

We recall the definitions of algebras with variousfeliential and integral operators and the
constructions of the free objects in the correspondinggeaies. Seefll7, 23] for further details
and examples.

2.1. The definitions. We recall the algebraic structures considered in this papferalso intro-
duce variations with bounded derivation order that will leeded later. Algebras considered in
this paper are assumed to be unitary, unless specified atieerw
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Definition 2.1. Letk be a unitary commutative ring. Ldte k be fixed.
(a) A differential k-algebra of weight A (also called al-differential k-algebra) is an asso-
ciativek-algebraR together with a linear operatdr. R — R such that
(2) d(1) = 0, d(uv) = d(u)v + ud(v) + Ad(u)d(v) for all u,ve R
(b) A Rota-Baxter k-algebra of weight1 is an associativk-algebraR together with a linear
operatorP: R — Rsuch that
(2) P(U)P(v) = P(uP(Vv)) + P(P(u)v) + AP(uv) for all u,ve R

(c) A differential Rota-Baxter k-algebra of weight A (also called ai-differential Rota-
Baxter k-algebra) is a diferentialkk-algebra R, d) of weight1 and a Rota-Baxter operator
P of weighta such that

3 doP=id.

(d) An integro-differential k-algebra of weight A (also called at-integro-differential k-
algebra) is a diferentialkk-algebra R, d) of weightA with a linear operatoP: R — Rthat
satisfies Eq.[{) and such that

P(d(u)P(v)) = uP(v) — P(uv) — AP(d(u)v) for allu,v e R,
P(P(uwd(v)) = P(u)v — P(uv) — AP(ud(v)) forall u,ve R.
Egs. B), @ and @) are called theRota-Baxter axiom, section axiomand integration by

parts axiom, respectively. SeeZf]] for the equivalent conditions for the integration by parts
axiom in various forms.

(4)

2.2. Free differential algebras. We first recall the construction of freeffirential algebras and
introduce their orden variations. For a seY, let M(Y) be the free monoid oY with identity
1, and letS(Y) be the free semigroup ori Thus elements i (Y) are words, plus the identity
1, from the alphabet sef. Further the noncommutative polynomial algekk¥’) onY is the
semigroup algebraM(Y).

Theorem 2.2. (@) Let Y be a set with a mapdY — Y. Extend gto d: k(Y) — k({Y) as
follows. Letw=u;---u, U € Y,1 <i <k, be aword from the alphabet set Y. Recursively
define

) d(w) = do(up)uz - - - Ug + Urd(Uz - - - Uy) + Ado(up)d(uz - - - U).
Explicitly, we have

©  dw= > AU dw) i) = () = { ), Tel,
0IC[K] Ui el
Further define 1) = 0 and then extend d tkXY) by linearity. Thenk(Y), d) is a difer-
ential algebra of weigha.

(b) Let X be a set. Let Y= AX := {(xX" | x € X,n > 0} with the map g: AX — AX, x™
x™D - Then with the extension d of as in Eq. f), (k(AX),d) is the free dfferential
algebra of weightt on the set X.

(c) For a given nx 1, let AX™D := {x¥ | x € X,k > n+ 1}. Thenk(AX)AX™Dk(AX) is the
differential ideal |, of k(AX) generated by the s¢x™? | x € X}. The quotient gferential
algebrak(AX)/I, is of order n and has a canonical basis given by

AX = X xe X k <n),
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thus giving a dfferential algebra isomorphiskxAX)/I, = k(A,X), called thedifferential
polynomial algebra of order n. Here the dferential structure on the later algebra is
given by
i x*D 1<i<n-1
(|) _ 5 =1 = s
awn={5" 15,

Proof. Item [a] is a generalization of Iterfib] from [2J] and can be proved in the same way.
ltem[c] is a direct consequence of ltdim]. O

2.3. Free operated algebras.We now recall the construction of the free operated algebra o
a setX that has the free (ferential) Rota-Baxter algebra as a quotightl9, 0, 23]. At the
same time, the explicit construction of free Rota-Baxtgebras and free flerential Rota-Baxter
algebras in Theorefs.j can be realized on a submodule of the free operated algednasg by
reduced words under a rewriting rule defined by the Rota-@axtiom.

Definition 2.3. An operated monoid (resp. k-algebra) with operator sef2 is a monoid (resp.
k-algebra)G together with maps,,: G — G,w € Q. A homomorphism between operated
monoids (resp.k-algebras) G, {«,},) and H, {8.}.) is a monoid (respk-algebra) homomor-
phismf: G — H such thatf o a, =8, o f for w € Q.

We next construct the free objects in the category of opénaenoids.

Fix a setY. We define monoid®i, » := Man(Y) for n > 0 by the following recursion. We use
the notation. for disjoint union.

First denoteligg = M(Y). Let [IM(Y)]l, = {lul,lu € M(Y)},w € Q, be disjoint sets in
bijection with and disjoint fromM(Y). Then define

SIRQ,l = M(Y L ('—,weQLM(Y)Jw))'

Note that elements ibM(Y)],, are only symbols indexed by elementsNH(Y). For example,
1], is not the identity, but a new symbol. The inclusigh— Y L (U,calMaol,) induces a
monomorphismg;: Nao = M(Y) = Nig1 = M(Y U (Uwea [Maol.)) Of free monoids through
which we identifyfi, o with its image inig ;. Inductively assume thak, ,; has been defined
for m> 2 and that the embedding

Im2m-1: Mom2 = Mom-1
has been obtained. We then define
Maom = MY L (Wpeal Mo m-1]w))-

We also have the injection
[(Maom-—2lo = [Mom-1]0, w € Q.

Thus by the freeness @fig -1 = M(Y U (Wpea!Mam-21)) as a free commutative monoid, we
have

Mom1 = MY U (UuealMam-2]0)) = M(Y U (Upeal Mam-110)) = Mam.
We finally define the monoid

Ma(Y) = || Mam = lim i

m>0
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WhenQ is a singleton, the subscrig will be suppressed. Elementstiig(Y) are calledorack-
eted monomialsin Y. Defining

L Jo: Ma(Y) - Na(Y),u- lul,, we Q,
then Mia(Y),{l lo}weq) is an operated monoid and its linear spliiG(Y), | l.cq) IS an operated
k-algebra.

Proposition 2.4. ([L9)) Let jy: Y — Mu(Y) denote the natural embedding. Then the triple
(KMa(Y), {L lo}w, Jy) is the free operate#f-algebra on Y. More precisely, for any operated
algebra R and any set map: ¥ — R, there is a unique extension of f to a homomorphism
f: kMa(Y) - R of operatedk-algebras.

2.4. The construction of free Rota-Baxter algebras.Considem)iqg(Y) with Q = {w} being a
singleton. Denot®(u) := [u] := Lu],, u € M(Y). For a nonempty sé&t and nonempty subsets
andV of M(Y), define thealternating products of U and V to be the following subsets af(Y)

(7) A(U,V) = [U(U P(V»fU) g (U u P(V))r) U(U(P(V)U)fP(V)] U(U(P(V)U)f].

r>0 r>1 r>0 r>1
With these notations, defimgy(Y) = M(Y) to be the free monoid ovf and, form > 1, define
Am(Y) = A(S(Y)’ Am—l(Y)) U {1}.

ThenAn(Y), m > 0, define an increasing sequence and we define the $&tafBaxter words
to be

R(Y) 1= Aw(Y) = UmpoAm(Y).
Each 1# u € R(Y) can be uniquely expressedas u; - - - Uy, Whereu, - - - , Uy, are alternately in
S(Y) andP(R(Y)). Thedepth dep(i) of u is defined to be the least > 0 such thati is contained
in An(Y). Define
Py: R(Y) = R(Y), um [u]l, ueR(Y).
Let Irg(Y) denote the operated ideal kibi(Y) generated by elements of the form
Lullvl = Lulv]] = [Lulv] = Aluv],  u,v e KM(Y).
By [[L8, EQ] wherekX(Y) is denoted bymiNc(Y), the composition
(8) KR(Y) — kIM(Y) — kM(Y)/Igs(Y)

is a bijection. Hence (the coset representatives of) thelsvorR(Y) form a linear basis of the
free Rota-Baxter algebra on Further, write

9) Red = a o 7: KM(Y) = KM(Y)/1ra(Y) = KR(Y),

wheren : kM(Y) — kM(Y)/Irg is the quotient map and : kMi(Y)/Igrg — KR(Y) is the inverse
of the linear bijection in Eqf).

Define a product on kR(Y) as follows. Letu = uiu,---Us andv = v;V, - - - v, be two Rota-
Baxter words, where; for 1 <i < sandy; for 1 < j <t are alternately ir8(Y) and[R(Y)].

(@) If s=t=1and hence,Vv e S(Y) U |R(Y)], then define

(10) uov-—{“V’ uorve S(Y),
=\ Red(TL¥)) = Red(B(T ¥)) = [Red®(@. %), u = L],V = 7] € LR(Y)l,

whereB({, V) = GLV] + [TV + A0 V.
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(b) If s> 1ort> 1, then define
UOV 1= Uzl - - - (UsOV)Vo - - - g,

whereusov; is defined by Eq.[[0) and the remaining products are given by concatenation
together withk-linearity whenusov, is a linear combination.

We callR(AX) the set ofdifferential Rota-Baxter (DRB) monomialson X.

Theorem 2.5. (a) ([L4]) Let Y be a set. ThetkR(Y), ¢, Py) is the free Rota-Baxter algebra
ony.

(b) ([27]) Let X be a set angk(AX), d) the djferential algebra of weighft on X in Theo-
remP.2[b]. There is a unique extensior,dof d tokR(AX) such tha{kR(AX), dax, Pax),
together with §: k(AX) — kR(AX), is the free dferential Rota-Baxtek-algebra of
weighta on the diferential algebrak(AX).

In the same fashion, one obtaiR§A,X)), called the set oDRB monomials of ordern on X,
as a basis dER(A,X) by applying[a]to Y := A,X,n > 1. We note that ik R(A,X), the property
d™(u) = 0 only applies tai € X. For example, taking = 2, thend?(x) = 0. Butd(x]) = x and
henced?(|x]) = d(x) = X # 0.

2.5. Free integro-differential algebras. By the universal property di(Y), we obtain the fol-
lowing conclusion from general principles of universaletiga [I, [[3].

Proposition 2.6. Let X be a set. Le®2 = {d, P} and denote () := |ulg, P(u) := |ulp. Let
Jp = Jip.x be the operated ideal &fi,(X) generated by the set

d(uv) — d(u)v — ud(v) — ad(u)d(v),

d(2),

(do P)(U) —u, u,ve Mo(X)}.
P(d(u)P(v)) — uP(v) + P(uv) + AP(d(u)v),

P(P(u)d(v)) — P(u)v + P(uv) + AP(ud(v))

Then the quotient operated algeltk@iq(X)/Jp, with the quotient of the operator d and P, is the
free integro-diferential algebra on X.

Our main purpose in this paper is to give an explicit consionoof the free integro-dierential
algebra by determining a canonical subsebf(X). The construction is given in Theorgsnl}

We will achieve this construction in several steps. Firstligs = Jors.x denote the operated
ideal ofk9iq(X) generated by the set

d(uv) — d(u)v — ud(v) — ad(u)d(v),

d(2),

(do P)(u) —u,

P(U)P(v) — P(uP(Vv)) — P(P(u)v) — AP(uv)

Then the quotient operated algekt& (X)/Jors, With the quotient operatosandP, is the free
differential Rota-Baxter algebra ofi Its explicit construction is given irgfl] and recalled in

Theoren.5:

u,veNqg(X)s.

kMa(X)/Jore = KR(AX),
as the free Rota-Baxter algebra on the freffedential algebr&(AX) on X.
Letl,p denote the image afip under the quotient maig(X) — kR(AX), then we have

kMa(X)/Ip = kKR(AX)/Ip.
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Further,lp is the diferential Rota-Baxter ideal 6t(AX) generated by the set

P(d(u)P(v)) — uP(v) + P(uv) + AP(d(u)v),
{ P(P(u)d(v)) — P(u)v + P(uv) + AP(ud(v))

Thus to obtain an explicit construction of the free intedifierential algebr&9iq(X)/Jp by
providing a canonical subset @,(X) as a basis (of coset representatives) of the quotient, we
just need to determine a canonical subseR@X) as a basis of the quotiekR(AX)/Ip.

However, in order to apply the Grobner-Shirshov basis oukthive need a monomial (well)
order onR(AX) which is easily seen to be nonexistent: Suppese P(x), then we havex >
P(x) > --- > P'(x) > --- leading to an infinite descending chain. Supp®$g) > X, then
we havex > d(x), again leading to an infinite descending chain d(X)--- > x™ > ..., To
overcome this dficulty, we consider, for each > 1, the free Rota-Baxter algebk&(A,X) on
the truncated dierential algebr&[A,X] in TheorenfZ.2[C] and construct an explicit basis of the
quotientk R(A,X)/l\p.n Wherelp , is the diferential Rota-Baxter ideal of the Rota-Baxter algebra
kR(AnX) generated by the set

(11) #1(u,v) ;= P(d(u)P(v)) — uP(v) + P(uv) + AP(d(u)v),

¢o(u, V) ;= P(P(u)d(v)) — P(u)v + P(uv) + AP(ud(v))

Then asn goes to infinity, the above explicit basis will give the deditbasis okR(AX)/Ip
and hence okig(X)/Jp. See the proof of TheorefIFfor details of this last step.

uVve fR(AX)} .

uVve SR(AnX)} .

3. WEAKLY MONOMIAL ORDER
Write R, := R(AX).

Definition 3.1. Let X be a setx a symbol not inX andA,X* := Ap(X U {x}).

(a) By ax-DRB monomial on A, X, we mean any expression ®(A,X*) with exactly one
occurrence ok. The set of alk-DRB monomials o\, X is denoted byR*.
(b) Forg e R andu € R, we define

C"u = Q|*+—>u

to be the bracketed monomiali(A,X) obtained by replacing the letterin g by u, and
call gy au-monomial on A X.
(c) Fors= 3, cu; € KRy, whereg; € k, u; € R, andq € R%, we define

q|s = Z Ciqlui,
i

which is ink9t(A,X). We callgls ans-monomial on A, X. This applies in particular when
sis a monomial.

We note that ax-DRB monomialg is a DRB monomial imA,X* while the u-monomialq|,
might not be a DRB monomial. For example, ipr= P(X)x € R* andu = P(X) € R, where
x € X, theu-monomialg|, = P(X)P(x) is no longer inR,.

Lemma 3.2. Let S be a subset &XR,, and Id(S) be the djferential Rota-Baxter ideal dR,

generated by S. Then
ld(s) = {Z Gails
i

ciek,qiefR;,seS}.
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Proof. It is easy to see that the right hand side is contained in thsitke. On the other hand, the
right hand side is already an operated idedt ®f, containingS. O

Definition 3.3. If q = ply(x) for somep € R*(A,X) and? € Z.,, then we callj atype | x-DRB
monomial. Let R}, denote the set of typeA-DRB monomials om,X and call

Ry =R\ Ry
the set ottype Il x-DRB monomials.

Definition 3.4. Let < be a linear order oR(A,X), g € Ry ands € kR,,.

(a) For any 0% f € k®R,, let f denote the leading term df: f = cf + Y, Gu;, where
0#c,c ek, u e R, u < f. Furthermoref is calledmonicif ¢ = 1.
(b) Write
dis := Reddls),
where Red kMt(A,X) — kR, is the reduction map in Eq].
(c) The elements € kR, is callednormal if gfs is in R,,. In other words, if Redfs) = qs.

Remark 3.5.  (a) By definition,q|s is normal if and only ifgls is normal if and only if the
S-DRB monomialg[s is already a DRB monomial, that is, no further reductiok®y, is
possible.

(b) Examples of not normal (abnorma)DRB monomials are
() g = xP(x) ands = P(x), giving qls = P(X)P(x), which is reduced td(xP(y)) +
P(P(X)y) + AP(xy) in kKRy;
(i) g=d(x)ands= P(x), giving qls = d(P(X)), which is reduced ta in kR;
(iii) q=d(x)ands= x?, givinggs = d(x?), which is reduced to2¢? + A(xY)? in kR,
(iv) g =d"(x) ands = d(x), giving qls = d"**(s), which is reduced to 0 ikR,,.

Definition 3.6. A weakly monomial order on R, is a well order< satisfying

u<v = gl <l if eitherq e Ry, orq e R, andg|, is normal

foru,ve R,.

Let X be a well-ordered set. Leét> O be given. First, we extend the order ¥rto AX and
AnX. For X x8 e AX (resp.AnX) with o, X; € X, define

(io) (i1)

(12) X3 < x{? (resp.$? <n XiV) © (%0, o) < (x1.—i1)  lexicographically

For examplex? < X < x. Also, %, < % impliesx? < X&), Then by [l], the order<, is a well

order onA,X. Next, we extend the well order axg,X to a weakly monomial order dR,,.

We adapt the order defined {ijlfto the case when the set is taken tap& and when the order
is restricted tdR,,. For anyu € R,, and for a seT € A,X U {P}, denote by degu) the number of
occurrences ofe T in u. Let

deg(l) = (degy x(u), deg(u)).

We order degf) lexicographically. Ifu € A, X U P(R,), thenu is calledindecomposable For
anyu € R, u has astandard form:

(13) u=U--- U, Whereu,--- , U are indecomposable.

Now we set up an ordet, on R, as follows. Letu,v € R,. If degu) < deg{), thenu <, v.
If deg(u) = deg{) = (my, mp), then we definal <, v by induction on (g, m,) which is at least
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(1,0). If (mg, mp) = (1,0), thatis,u,v € A X, we use the order in E{CB). Let (M, mp) > (1,0)
be given, and assume the order is defined formil {v,) < (my, my) and considew, v with
deg(l) = deg{) = (m, my). If u,v e P(R,), sayu = P({i) andv = P(V), then definau <, v if and
only if U <, ¥ where the latter is defined by the induction hypothesis. @tise, letu = ug - - - Uk
andv = vy ---V, be the standard forms with > 0 or ¢ > 0. Then definau <, v if and only
if (Ug,---,Ux) < (Vo,---,Vy) lexicographically. Here the latter is again defined by tiduiction
hypothesis.

We next show that the ordet, defined above is a weakly monomial order®n Recall the
following lemma from []] on R(X) which still applies when it is restricted ®,.

Lemma 3.7. ([[]] Lemma 3.3) If u<, v with uv € R,, thenuw <, VYW andwu <,, Wv for any
we Rp.

Lemma 3.8. Let£ > 1 and s€ R,,. Then d(x)|s is normal if and only if &£ A,_/X.

Proof. If se€ A,_.X, thend/(s) is in A,X and hencel’(x)|s is normal. Conversely, i§ ¢ An_/X,
then eithers ¢ A,X or s € ApX \ Ar_X. In both cases we have thaf(x)|s is not normal. See

Remark{3.5. O

Lemma 3.9.Let uv e R,and¢ € Zs,. If u <, v and d(x)|, is normal, therd’(u) <, d/(v).

Proof. We prove the result by induction ah We first consider = 1 and proved(u) <, d(v).

Sinced(x)l, is normal, we have = X{" € A, 1X by LemmaB3:3. Sinceu <, v, by the definition

of <,, we haveu = x{? e A, X with eitherx, < x, or X, = X, andi, > i1. Henced(u) <, d(v).
Next, suppose the result holds foxIlm < ¢. Then by the induction hypothesis, we have

d‘(u) = d(d*(u)) = d(d“*(u)) <n d(d“(v)) = d(d“H(V)) = d(V).

Proposition 3.10. The order<, is a weakly monomial order dR,,.

Proof. Letu,v € R, with u <, vandq € R;. Depending on the location of the symbel we
have the following three cases to consider.

Case 1.Suppose the symbal in g is not contained irP or d. Thenq = sx t wheres,t € R,,.
This case is covered by LemrBaj
Case 2.Suppose the symbal is contained irP. Theng = sP(p)t for somes,t € R, andp € R;.
This case can be verified by induction on dpnd the fact that, fou,v € R, u <, v implies
P(u) <, P(v) by the definition of,,.
Case 3. The symbolx is contained ind, that is,q € R’,. Thenq = ply(,) for somep € Ry

and( € Z,;. Take suchf maximal so thap € Ry, . We need to show that if <, vandd| is

normal, therg, <n gly. But if g, is normal therdi*)h, is normal. Thengy Lemm@A9, we have
d‘(u) <, df(v). Then by Cases 1 and 2, we hayg = Plgry <n Plgrgy = dlv- This completes the
proof. |

We shall use the weakly monomial ordey on R, throughout the rest of this paper. The
following consequence of PropositiBnl)will be applied in Sectiof].

Lemma 3.11.Let ge R} and let se kR, be monic. If ¢ is normal, thergls = gls.
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Proof. Lets = S+ }cis with 0 # ¢ € k ands <y S. Thengls = ds + X Gidlls. Sinceq|s is
normal, it follows that:ﬂg_e Rn ind sagls = gls. We have the following two cases to ionsﬁer.
Case 1.g€ R, Thengls <n dls = gls by Definition8.§and Propositiofe. IQ: Henceq|s = gs =
Jfs- -

Case 2.9 € R},. Sinceq|s is mormal, we haves is normal and s@|s < dfs = gls by Definition

B-8and Propositiofs.1Q: Henceq|s = (s. u
4. CompoSsITION-DIAMOND LEMMA

In this section, we shall establish the Composition-Diachiemma for the orden free diter-
ential Rota-Baxter algebieR,,.

Definition 4.1. Let X be a setx3, x, two distinct symbols not irK and A X*+*2 ;= A (X U
{1, *2}).
(a) We defineR(A,X*+*2) in the same way as faR(A,X) with X replaced byX U {x1, x>}.
(b) We define a%;, x2)-DRB monomial on A,X to be an expression ifR(A,X*+*2) with
exactly one occurrence &f; and exactly one occurrence ®f. The set of all &, x,)-
DRB monomials om\,X is denoted byR;**2.
(c) Forge Rp+*? anduy, U, € kR, we define

qth_,Uz = ql*lHul,*zHUZ
to be the bracketed monomial obtained by replacing therlatigresp. x,) in g by u;

(resp.up) and call it a (3, Uz)-monomial on A, X .
(d) The elemeny|,, ,, is callednormal if qlg, 5, IS in R,. In other words, if Red{g, 5,) = dlg, 5,

A (uy, uz)-DRB monomial om,X can also be recursively defined @iy, ., := (4**|u,)lu,» Where
g*' isqwhenq s regarded as &;-DRB monomial on the set,X*2. Theng*'|,, is in R*2(AnX).
Similarly, we haveq|y, u, := (9*?|u,)lu, -

Definition 4.2.  (a) Letu,w € R,. We callu a subword of w if there is aq € R} such that

W = Qlu.

(b) Letu; andu, be two subwords oiv. Thenu; andu, are calledseparatedif u;, u, € R,
and there is @ € R*+*2(A,X) such thaw = q,, u,-

(c) Letu = u; ---uUg € R, be the standard form. The inteders called thebreadth of u and
is denoted by brei).

(d) Let f,g € R,. A pair (u,v) with u,v € R, is called anintersection pair for (f,g) if
w = fu = vgorw := uf = gvis a diferential Rota-Baxter monomial and satisfies
maxbre(f), bre@)} < brefw) < bre(f) + bre@). Then we callf andg overlapping.

There are three kinds of compositions.

Definition 4.3. Let f, g € kR, be monic with respect te;,.
(@) If T € R,P(R,), then define @omposition of right multiplication to be fu whereu €
P(Rn)Rn. We similarly define @omposition of left multiplication. B
(b) If there is an intersection paiu,(v) for (f,g) with w := fu = vg (resp.w := uf = gv),
then we define
(f.Q)w = (f.Q)% := fu—vg(resp.uf - gy)
and call it anintersection compositionof f andg.
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(c) If there exists @ € R* such thaw := f = Al then we definef(, g)w := (f,g)w := f — dlg
and call it aninclusion compositionof f andg with respect tay. Note that if this is the
case, therq is normal.

In the last two casesf(g). is called theambiguity of the composition.

Definition 4.4. Let S C kR, be a set of monic dierential Rota-Baxter polynomials amde R,,.
(@) An elemeng in kR, is calledtrivial modulo [S]if g = Y} cigls, where, for each, we
have 0+ ¢ € k, g € R, s € S such thatl|s is normal andy|s <, §. If this is the case,
we writeg = 0 mod [S].
(b) The composition of right (resp. left) multiplicatidu (resp.uf) is calledtrivial modulo
[S]if fu=0mod[S] (resp.uf = 0 mod [§)]).
(c) Foru,v e kR, we calluandv congruent modulo[S, w] and denote this by

u=vmod [S,w]|

ifu-v=0orifu-v=3}cqls, where O+ ¢ € k, g € R}, s € S such that| is
normal andjls <, W.

(d) For f,g € kR, and suitabley, v or g that give an intersection compositiof, ¢)y;’ or an
including composition{, g)a, the composition is callettivial modulo [S,w] if

(f,9)" or (f,g)y, = 0 mod [S, w].

(e) The set C kR, is aGrobner-Shirshov basisf all compositions of right multiplication
and left multiplication are trivial moduldd], and, forf,g € S, all intersection composi-
tions (f, g)w' and all inclusion compositiond (g)y, are trivial modulo £, wi.

We give some preparatory lemmas before establishing thepGsition-Diamond Lemma.

Lemma 4.5. Let S C kR, with d(S) € S. If each composition of left multiplication and right
multiplication of S is trivial modul$S], then d is trivial modulo[S] for every ge R} and se S.

Proof. We have the following two cases to consider.
Case 1.q € R*, . This case is similar to the proof of Lemma 3.6 [ifj.[

nll*

Case 2.q € R},. Thenq = ply(x) for somep € R} and¢> 1. Choose such afto be maximal so
thatpisinR*, . Sinced(S) C S, by Case 1 that has been proved above, the result holds.o

nll*

Lemma4.6.Let SC kR, with d(S) € S be a Grobner-Shirshov basis. Lets € S, q, 0 € R}
and we R, such that w= au|s; = Qzls;, where g is normal for i= 1, 2. If §; and<s; are separated
inw, then qls, = gzls, Mod[S, w].

Proof. Let q € R;**2 be the 1, x»)-DRB monomial obtained by replacing the occurrencg;of
in w by %, and the occurrence & in w by x,. Then we have

q"lg = 02, 47%ls; = g1 anddls;s = Qilsy = ol
where in the first two equalities, we have identifigff andR;* with Rx. Lets, — 5 = 3 qu;
ands, -5 = 3;djv; with 0 # ¢, d; € k andu;, v € R, such thau; <, §; andv; <, . Then by
the linearity ofs; ands; in qls, s,, Wwe have

q1|51 - q2|52 = (q*2|§)|sl - (q*l|§)|sz

= q|sl,§ - q|s_152
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= Ols, — dlsps, + Alsp.s, — Alsis,
= —Ols,. -5 + ds,-s1.5,
= _(q*2|sz §)|sl + (q*1|51 §)|sz

=— Z di(@*2h)ls, + Z Gi(A*lu)ls,

= - Z djq|sl Vj + Z Clqlu,

From LemmdZ.5, for eachj, we may suppose that

q|Sl,Vj = (q|51)|Vj = Z djé’pt’lvjp
4

where 0% dj, € k, pr € R}, vj, € S such thatply, is normal andply,, <n (Qls,)ly, = ls,v;-
Since *s)ls = ds.5 = (O*2s)ls, = Quls, IS Nnormal andv; <, S, by Definition B.§ and
Propositior3. 10, we have

q|81,vj = (q*1|51)|Vj <n (q*1|sl)|§ =Qils; = il =W

So we have

pf|Vj/ Sn W
With a similar argument to the case@, s,, we can obtain thaly|s, = g,|s, mod [S, w]. O

Fork > 1, write My := Mq k(AnX) whereQ = {d, P}. Forg € R;;, we define thelepth dep, (q)
of x in g by induction onk > 0 such thag € R; N M. Letk = 0. Theng € M(A,X*) and we
define dep(q) = 0. Suppose degq) has been defined far € R N My, m > 0, and consider
g€ Rx N Mpy,1. Then we have = q; - - - g, with eachg; in ApX U {x} or [IM(AX*)] N Miprg, L <
i < ¢, and with x appearing in a unique;. Suppose the unique is in A, X U {x}. Then
define dep(q) = 0. Suppose the uniqug is in [M(AX*)] N M. Theng = [Gi] with
G € M(ARX™) N M. Thusd is in Ry N Ny, and deR(G) is defined by the induction hypothesis.
We then define degq) := dep, (Gi) + 1. For example, degq) = 1 if g = P(x) and dep(q) = 2
if g = P(XP(x)).

For the purpose of the proof the next lemma, we describe thgvelocation of two bracketed
subwords in the more precise notion of placements (or oenaes [{]) in a bracketed word.
See P4] for details. But note that we focus on words®y as a subset dt(A,X).

Definition 4.7. Letw,u € R, andq € R be such thatv = g|,. Then we call the pairy q) a
placement(or occurrence of uin w.

The pair (1, g) corresponds to the paig,u) in [[LQ, Chapter 2] where is called the prefix.
We note that a placement, ) gives an appearance ofas a subword or subterm af = .
A placement is more precise than a subword since a placemgphasizes the location of a
subword. For example = x has two appearanceswn= x| x| which are dfferentiated by the two
placementsy, ;) and (, ;) whereq; = x| x| andx| x .

Definition 4.8. Letw, uy, u; € R, andqy, g2 € R} be such that

(14) Gy, = W = Qalu,-
The two placementsu(, ;) and (., ,) are said to be
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(a) separatedif there exists an elememntin R}**? anda,b € R, such thatgil,, = Jlx..b.
O2lx, = Ola +, @NAW = Qla b;
(b) nestedif there exists an elementin Ry such that eitheg, = |, or g1 = Glg;
(c) intersecting if there exist an elemerg in R and elements, b, c in R,\{1} such that
W = (lanc @and either
() A1 = Olxc, G2 = Glax; OF
(“) aL = q|a*, O = ql*c-

By takingu = abg it is easy to see that{, g;) and {1, gy) are intersecting (in case (i)) if and
only if there arevy, v, € R, such thatv = |, U := uyv; = VU, and

maxXbre(,), bre(,)} < breu) < breu;) + bre(,).

This corresponds to the above definition via the relationg,(v,) = (abg c, a).
Theorem 4.9. [P4, Theorem 4.11] et w be a bracketed word i®,. For any two placements
(uz, 1) and(uy, g2) in w, exactly one of the following is true:

(@) (uz, ) and(uy, 0,) are separated;
(b) (uy, q1) and(uy, gp) are nested;
(¢) (ug, g1) and(uy, gp) are intersecting.

Now we are ready to prove the next result.

Lemma 4.10.Let SC kR, with d(S) € S. If S is a Grobner-Shirshov basis, then for each pair
S, S € S for which there exist;qg, € R} and we R, such that w= qi|s; = Qls; With a5, and
Ozls, NOrmal, we have g, = gpls, mod[S, w].

Proof. Let s, € S, 01,02 € R} andw € R, be such thatv = qi|s = Qols;- Let (5,9;) and
(%2, 02) be the corresponding placementswfBy Theorenff.9, according to the relative location
of the placementgy(, S;) and @, S;) in w, we have the following three cases to consider.

Case 1.The placementss{, ;) and &, gp) are separated iw. This case is covered by Lemma
E-g.

Case 2.The placementsst, g;) and &, 0,) are intersecting imv. We only need to consider Case
(i) of overlapping since the proof of Case (ii) is similar.érhby the remark after Definitidh g,
there areu, v € R,, such thatv; := Sju = VS, is a subword irw, where

maxbre(s,), bre(s;)} < brefw,) < bre(s;) + bre(s;).
SinceS is a Grobner-Shirshov basis, we have

SIU-VS = D Gl
i

where 0% ¢; € k, tj € S, pj € Ry such thafpjl;, is normal andpjl;; = pjlg <n SU = V& = Wi
Let g € Ry**? be obtained fronay, by replacingx by x4, and theu on the right ofx by x,. Let
p € R’ be obtained frong by replacingx;x, by x. Then we have

q*ly = 1, 9"y = G2 @and plsy = Al = Galsy = W,

where in the first two equalities, we have identifigff andR;* with R*. Thus we have

q1|51 - q2|52 = (q*2|u)|sl - (q*llv)|sz = p|slu—vsz = Z Cj plpjhj = Z Cj ﬁjltj’
j j
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wherepj := plp, € R;. By Lemmaf.j, for eachj, we may suppose that
ﬁj |tj = Z ij pjé’ltjp
¢
where 0% ¢j; € k, tj € S, pj € R%, pjcly, is normal andpjck,, <n Bjl,- SO
Chls, = Gl = ) CiBily = ) CiCieich-
j it

Sincepjl, <n Wy andply, = W € R, is normal, by DefinitiorB-g, we have

Pily = Pl = Pl <n Phwy = Plwy =W

and so

pjé’ltjg <n ﬁj |tj <n W.
Hence
q1|51 = q2|52 mOd [S’ W]

17

Case 3. The placementss, ;) and &, o) are nested. Without loss of generality, we may
supposel, = dulq for someq € R7. Thenduls = Gals; = (Clg)ls; and hencés; = gls;. Since
S = (ls; € Ry, it follows thatq|s, is normal by Definitior3.4 andqls, = qls;. For the inclusion

composition §,, sg)‘%, sinceS is a Grobner-Shirshov basis, we have

(SCI., 82)2—1 =5 - q|32 = chp”t,,
j

where 0% ¢j € k, p; € R%, tj € S andpjl, is normal withp;l;, <, . Thus

Ols, = Chls, = Chlgs, — Chls, = —Chls,—gs, = — Z CiQlalpyy, = = Z Ci Bl
i i

wherepj := qilp, € R;. By Lemmat.g, for eachj, we may write
ﬁj|tj = Z Cj[pjfltj/’
l
where 0% cj; € K, pjcly;, is normal andjsl, <n Bjly;- SO

Ols, — Quls, = — Z CiCicPijely;,-

it

Sincepjl, <n S anddls = W € Ry, is normal, by Definitior8-8, we have

Pily = Chalpy, = Gl <n Oalsy = Oalsy =W

and sopjcl, <n Pjly <n W. Hencegpls, — guls, = 0 mod [, w].
This completes the proof of Lemnffal(.
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Lemma4.11.Let SC kR, with d(S) € S andirr(S) == R, \ {dls| g € R}, s€ S, gls is normal}.
Then any fe kR, has an expression

f= ZCiUi + ZdeHsj,
i j

where for each,ij, we have0 # ¢, d; € k,u; € Irr(S),T <, T, g; € R%, sj € S such that s, is
normal and gls- <, .

Proof. Suppose the lemma does not hold andflée a counterexample with minimal. Write
f = Y cu where 0# ¢ € k, Ui € R, anduy >, Uy >, ---. If up € Irr(S), then letf; ;= f — cyu;.
If up ¢ Irr(S), that is, there exists; € S such thatu; = o1y and uls, is normal, then let

fi == f —ci1qils,. In both cased; <, f. By the minimality of f, we have thaf, has the desired
expression. Theih also has the desired expression. This is a contradiction. m|

Now we are ready to derive the Composition-Diamond Lemma.

Theorem 4.12.(Composition-Diamond Lemma) Let S be a set of monic DRB puolials in
kR, with d(S) € S andld(S) the djferential Rota-Baxter ideal &X,, generated by S. Then the
following conditions are equivalent:
(@) S is a Grobner-Shirshov basis k..
(b) If 0 # f € 1d(S), thenf = gJs for some g R*, se S and ¢y is normal.
(©) Irr(S)= R\ {dls| g€ R}, s€ S, qlsis norma} is ak-basis ofkR,/Id(S). In other words,
KIrr(S) @ 1d(S) = kR,,.

Proof. [a] = [b]: Let 0« f € Id(S). Then by LemmaB.2 andfL.5,

k
(15) f = Z CiGils, where 0 ¢ € k,g € R}, s € S,qls isnormal1 <i < k.
i=1
Letw; = gls, 1 <i < k. We rearrange them in non-increasing order by
Wl:W2:"' :Wm>nWrn+l Zn"'Zan.

If for each 0% f € 1d(S), there is a choice of the above sum such that 1, thenf = gyl and
we are done. So suppose the implication=ajb) does not hold. Then there is ar:0f € 1d(S)
such that for any expression in E.3j, we have tham > 2. Fix such anf and choose an
expression in EqfI(§) such thaiy, |- is minimal and then wittm > 2 minimal, that is, with the
fewestq;|s such thatls = tuls;. Sincem > 2, we havels; = Wi = W = Qpls;.

SinceS is a Grobner-Shirshov basis kR, by Lemmd4. 10, we have

Gols, = Chls, = ) APyl
j

where each @& d; e k, r; € S, p; € R} andpy|;; are normal withp;lr; <, wy. Hence

k k
f =) Gl = (CL+Co)lhls, + Colls, + - + Crllmlsy + ) Gilils + > Gl

i=1 i=m+1 i

By the minimality ofm, we must have; + ¢, = ¢z = - -- = ¢, = 0. Then we obtain an expression
of f in the form of Eq. [(3) for which q|5; is even smaller, a contradiction.
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[b] =[(c): Obviously 0€ Klrr(S) + 1d(S) < kR,. Suppose the inclusion is proper. Then
kRn \ (klrr(S) + 1d(S)) contains only nonzero elements. Lfe€ kR, \ (kirr(S) + 1d(S)) be such
that

f =min{g| gekR,\ (Kirr(S) + 1d(S))}.

Case 1.f € Irr(S). Thenf # f sincef ¢ Irr(S). By f — f <, f and the minimality off, we must
have

f —f e klrr(S) + 1d(S)
and so
f e Kirr(S) + 1d(S),

a contradiction.

Case 2. f ¢ Irr(S). Then by the definition of Irr(S), we havfe gls for someq € R*(AX),
s € S andq|sis normal. Thugys = gs = f and sof — qs gs <n f. If f =g, thenf € 1d(S), a
contradiction. Iff # s, thenf — gls # O with f — qs <, f. By the minimality of f, we have

f —qls € KIrr(S) + 1d(S).

This implies that
f e klrr(S) + 1d(S),

again a contradiction.
Henceklrr(S) + 1d(S) = kR,,. Suppos&lrr(S) N 1d(S) # 0 and let 0+ f € klrr(S) N 1d(S).
Then byf € Irr(S), we may assume that

f =civi +CoVo + - - - + CVi,

wherev; >, Vo >, -+ > Vi € Irr(S). Sincef e 1d(S), by Item (b), we have, = f = qs for
someq € R, se S andq|sis normal. This is a contradiction to the definition of Irr(Sherefore
Kirr(S) & 1d(S) = kR, and Irr(S) is &-basis otk R(AX)/1d(S).

=[(a] : Supposef, g € S give an intersection or inclusion composition. With theatimns
in the definitions of compositions, | = fuandG = vgin the case of intersection composition
and letF = f andG = g in the case of inclusion composition. Then we have= F = G. If
(f,g)w = F = G = 0, there is nothing to prove. Iff(g), # 0, we have

k
(0w =) GU, 0#C ek Up>nUy>n- > Uk € Ry,

Theny; <, F = G = w. Since {,g)y € Id(S) andklrr(S) N 1d(S) = 0 by Item[c], we have
u ¢ Irr(S) fori = 1,--- ,k. So by the definition of Irr(S), there atg € R%, s € S such that
U = gils andqjls is normal for each X i < k. Since@ = Gils = U <p W, we have §,g)y = 0
mod [S, w].

For any composition of right multiplicatiofu wheref € S, f € R,P(R,,) andu € P(R,), we
havefu € 1d(S). By Item[c], we haveklrr(S) N 1d(S) = 0. This implies from Lemmd¢.1] that
fu = 3,;dqjls, where 0% d; € k, s; € S such thaty; € R, gjls, is normal andgjls <n fu.
Thus fu = 0 mod [S]. With a similar argument, we can show that the compositiohkeft
multiplication are trivial B].

ThereforeS is a Grobner-Shirshov basis. O
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5. (GROBNER-SHIRSHOV BASES AND FREE INTEGRO-DIFFERENTIAL ALGEBRAS

In this section we begin with a finite s&t andn > 1 and prove that the idelg , of kKR,
possesses a Grobner-Shirshov basis. This is done in 8&clioThen in Sectiorb.2, we apply
the Composition-Diamond Lemma in Theor@niZto construct a canonical basis &R,/ p n-
Letting n to go to infinity, we obtain a canonical basis of the free intedjfferential algebra
kR(AX)/1p on the finite seX. Finally for any well-ordered sef, by showing that the canonical
basis of the free integro-ierential algebra on each finite subsetXis compatible with the
inclusions of the subsets of, we obtain a canonical basis of the free integrdedential algebra
on X.

5.1. Grobner-Shirshov basis. In this subsectionX is a finite set. Let

Sn = {¢1(U, V)’ ¢2(U, V) | uve Rn}

be the set of generators in EfiJj corresponding to the integration by parts axiom &y Then
lion IS the diferential Rota-Baxter ideal 18() of kR, generated by,,.

Remark 5.1. Letu = 1. Theng;(u,v) = ¢1(1,v) = 0is inS,. By Egs. [) and f§), we have
(16) d(¢1(u, v)) = d(u)P(v) — d(uP(v)) + uv+ Ad(u)v = O,
and hence is ifs,,. Similarly, d(¢-(u,Vv)) = 0. Sod(S,) C S,.

Next, we show tha$, is a Grobner-Shirshov basis of thefdrential Rota-Baxter idedp ,, =
ld(Sp) € kR,

Lemma 5.2. Let u= Ul - - - U € M(AX) With W, -+ , U € AX. Thend(u) = UgUy - - - U1dl(W).
If u e M(A,X), thend(u) = Uguy - - - U_1d(uy) provided y € A,_1 X.

Proof. This follows from Eq. f]) and the definitions of the order aX. O
Let Ag := {d(U) | u € S(AX)}, Ang = Ag N M(ApX) and
(17) Zoi= 07 XD X0, X € Xk > O).

Note thatd(u) = 0 foru e M(A,X) ifand only ifu=1orue Z,.
Lemma 5.3. We have

(6:1(UV) | U,V € Ry} =PRoAnaP(Re) [ ]||L) PRaAna(P(Rn)Zn) P(Re))

r>1
| (PUAn, Re) \ PR))Re) () Ra) (10}
Here we take the intersection witty, to ensure that the right hand side isd.

Proof. We first show that the left hand side of the equation is corthin the right hand side. If
u=1,theng,(u,v) = 0= ¢1(u,V). If ue P(R,), letu = P(up) for someu, € R, then

$1(u, V) = P(UoP(V)) — P(Uo)P(V) + P(P(Uo)v) + AP(Uov) = O
and sap,(u, v) = 0. Suppose that # 1 andu ¢ P(R,,). Note that
deg, x(P(d(U)P(v))) = degknx(W(V)) = degknx(m) = de%nx(W)-
Case 1.deg,(d(u)) = deg,(u). Then
degy(P(d(U)P(v))) > deg-(UP(V)), deg-(P(uV)), deg,(P(d(u)v))
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and sog¢1(u,v) = P(d(u)P(v)) = P(d(u)P(v)). According to Eq.[(), we have four subcases
to consider. Consider first that = uyP(lp) - - - uP(Ti) U1 With Ug,--- , U1 € S(AxX) and
Uo, -+, Uu1 € Rn. Since deg(d(u)) = deg(u), there is at least ong with 0 < i < k+ 1
such that; ¢ Z. If U1 € Z, thend(ug.1) # 0 and

¢1(u, V) = P(d(u)P(v)) = P(uoP(To) - - - uxP(Tik)d(Uk:1) P(V)) € P(RnAndP(Rp)).
If ue1 € Zpn, suppose that; with 0 < i < kis right most such thag ¢ Z,, then
d(u) = upP(Tip) - - - Ui_1 P(T_1)d(W) P(T) Ui+ 1 P(Ti 1) - - - UkP(Ti) Uy 1

and so

$1(u, V) = P(d(U)P(V)) € Ur>1P(RnAna(P(Rn)Zn) P(Rn)).
For the other subcases, with a similar argument, we canrotitat

¢1(U’ V) € I::'(Rnﬂn,d P(Rn)) U ( Urs>1 F:'(Rnfln,d(F)(:Rn)z’n)r P(Rn)))-
Case 2.deg,(d(u)) # degs(u). Thenu € A(Zn, Ry) \ P(R,) and deg(d(u)) = degs,(u) — 1. So
degy(P(d(u)P(v))) = deg:(UP(V)) = degy(P(uv)) = degs(P(d(U)v)) + 1.

If u¢ R,P(R,), thenuP(v) = uP(v) andP(uv) = P(uv). By the definition of<,, we have
uP(v) <, P(uv). If u e R,P(R,), letu = ugP(uy) with ug, u; € R,,. Then by the definition ok,
we have

UP(v) = UpP(u1)P(v) = UuoP(P(u1)v) <n P(UoP(u1)Vv) = P(uv)
Sinced(u) <, u, we haveP(d(u)P(v)), P((d(u)v) <, P(uv). Henceg:(u,v) = P(uv) = P(Qv) €
P(A(Zn, Rr)Ry). o
We next prove the reverse inclusionwf= P(upd(u;)P(V)) € P(RpAngP(Rn)) with ug, v € Ry,
andd(uy) € A, letu = uouy. Thend(u) = ued(uy) and

$1(u,V) = P(d(U)P(V)) = P(d(U)P(V)) = P(Uod(u)P(V)) = w.

W= P(UOWUZP(V)) € Urzlp(fRn-An,d(P(:Rn)Zn)rP(:Rn))
With U, vV € Ry, d(Uy) € Ang andus € Ups1(P(Rn)Zn)', letu = UguyUy. Thend(u) = ugd(uy)u, and
¢1(u,v) = P(d(U)P(v)) = P(d(U)P(v)) = P(uod(us)uzP(v)) = w.
If w= P(uv) € P(A(Zn, Rn)Rp) with u e A(Zp, Ry) andv € Ry, theng,(u, v) = P(uv) = w. O

Lemma 5.4. We have

(62U) | U,V € Re} = R ()| PP(R)RnAna) [ (|L) PR RuAna(P(Rr)Z0)))

r>1

L (L PP@R)RaAna(P@Ra) Z0) P(Re))) ) P(Ra(A(Zn, Re) \ P(Ro))) [0}

r>1

Here we take the intersection wift), to ensure that the right hand side isd,.
Proof. The proof is similar to that of Lemnfa3. O

Note that only the first union components of Lemrpa$andp.4 do not involveZ,. Thus we
have
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Proposition 5.5. {¢1(u, V), ¢2(U, V) | U,V € Rp} = P(RpAngP(Rn)) U P(P(Rp)RnAng) U €(AnX),
where

eanX) = Raf )| ([ P@RaAng(P(Ra)Z0) PR))) () P((A(Zn, Re) \ P(Re)Rr)

rx1

(L PR RAAR(P(R)Zn)))

r>1

(L PP@R)RAAn4(P@Rn) Z0) P(R)) ) P(Ra(A(Zn, Re) \ P(Ro))) [|_JiO}.

rx1

Every term ine(A,X) has a factor ir&, and will thus disappear asgoes to infinity.
Lemma 5.6. The compositions of multiplication are trivial modyis,].

Proof. Let f € S,. Thenf = ¢,(u,v) or f = ¢,(u, V) for someu, v € R,. We only consider the
case when

f = ¢1(u,v) = P(d(u)P(v)) — uP(v) + P(uv) + AP(d(u)v), u,v € R,

since the case for = ¢,(u, v) is similar. It is suficient to show thag,(u, v)P(w) andP(w)¢1(u, v)
are trivial modulo 5,,]. We first show that, (u, v)P(w) is trivial modulo [S,]. Note thaty,(u, V) €
P(R,). From Eq. [@) we obtain

¢1(u, VIP(w) =P(d(u)P(v))P(w) — uP(v)P(w) + P(uv)P(w) + AP(d(u)v)P(w)
=P(P(d(u)P(v))w) + P(d(u)P(v)P(w)) + AP(d(u)P(v)w)
— uP(V)P(w) + P(uv)P(w) + AP(d(u)v)P(w)
=P(P(d(u)P(V))w) + P(d(u)P(P(V)w + VP(w) + Avw)) + AP(d(u)P(v)w)
— uP(P(v)w) — uP(vP(w)) — AuP(vw) + P(P(uv)w) + P(uvR(w))
+ AP(uvW) + AP(P(d(u)V)w) + AP(d(u)vP(W)) + 22P(d(u)vw).
By the definition ofy,(u, v), we have
(29) P(P(d(u)P(V))w) = P(¢1(u, V)W) + P(UP(V)w) — P(P(uv)w) — AP(P(d(u)v)w),
and

(18)

P(d(u)P(P(v)w + VP(w) + Avw))
=¢1(u, P(V)w + VP(W) + AvW) + uP(P(V)w + VP(W) + Avw)
(20) — P(u(P(v)w + vP(w) + Avw)) — AP(d(u)(P(v)w + VP(W) + Avw))
=¢1(u, P(V)w + VP(W) + Avw) + uP(P(V)w) + uP(vP(w)) + AuP(vw) — P(UP(V)w)
— P(uvP(W)) — AP(uvw) — AP(d(u)P(V)w) — AP(d(U)vP(W)) — 22P(d(u)vw)
Substituting Egs.f[9) and into Eq. (L), we have
d1(u, V)IP(W) = P(¢1(u, V)W) + ¢1(u, P(V)W + VP(W) + Avw)
= P(¢1(u, V)W) + ¢1(u, P(V)W) + ¢1(u, VP(W)) + A1 (U, vW).

The last three terms are alreadySpand hence are of the forgys with g = x ands € S,. So to
show that they are trivial modul&] we just need to bound the leading terms.
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Note that

P(aP(b)), P(P(a)b), P(ab) <, P(a)P(b) for a,b € R,.
If degp(u) = deg,(d(u)), that is, if we are in Case 1 of Lemrfia3, then we have
$1(u, P(V)w) = P(d(U)P(P()W)) <n P(d(u)P(v)P(w)) <n P(d(u)P(V))P(W) = ¢1(u, v)P(W),
¢1(u, VP(W)) = P(d(u)P(vP(w))) <n P(d(u)P(v)P(W)) <, P(d(u)P(v))P(W) = ¢1(u, v)P(w),
¢1(u, vw) = P(d(u)P(vw)) <n P(d(u)P(v)P(W)) <n P(d(u)P(v))P(w) = ¢1(u, v)P(W).
If degp(u) # deg»(d(u)), that is, if we are in Case 2 of Lemrfa, then we have
¢1(u, P(V)w) = P(UP(V)w) <, P(P(uv)w) <, P(uv)P(w) = ¢41(u, v)P(w),
$1(u, VP(W)) = P(UVRW)) <n P(uv)P(w) = ¢1(u, v)P(w),
$1(u, vw) = P(uvw) < P(uV)P(w) = ¢1(u, v)P(W).

Thus
$1(u, P(VW) + ¢1(u, vVP(W)) + A¢1(u, vw) = 0 mod [Sp, $1(u, V)P(W) ]
and so¢,(u, V)P(w) = 0 mod [S,] if and only if P(¢1(u, v)w) = 0 mod [S,, ¢1(u, V)P(w) ]. Let
w = WiW5 - - - W be the standard decompositionvaf We prove the latter statement by induction

on dep(vy).
If dep(w;) = O, that isw; € M(ApX), letq := P(xw) € R*. Then

Agsuy) = P(P1(U, VW) = P(P1(u, V)W1Ws - - - W)
andqg,w, is normal byw; € M(A,X). If degs(u) = degs(d(u)), then
P(¢1(u, v)w) = P(P(d(u)P())w) <n P(A(U)P(V))P(W) = ¢1(u, V)P(W),
If degp(u) # deg,(d(u)), then
P(¢1(u, V)W) = P(P(uv)w) <n P(UV)P(W) = ¢1(u, V)P(W).

HenceP(¢1(u, V)W) = 0 mod [5,].

If dep(w;) > 0, we may suppose; = P(W) with W € R,,. Thenw, € A X, asw = WiW; - - - Wi
is the standard decompositionwf Since dep{) < dep{,), by the induction hypothesis, we
may assume that

DU VPW) = ) cipls.

where 0% ¢ € k,pi € Ri,s € S, pils is normal andpils < ¢1(u,V)P(W). Letq :=
P(piw: - - - Wy). Sincepils is normal andv, € ApX, it follows thatg|s is normal. Furthermore, we
have

P(¢1(u, V)W) = P(¢1(U, V)WaW5 - - - W) = P(¢p1(U, V)P(W)Ws - - - W)
= Z CiP(pilsWo - - - W) = Z Cidils

and

Gils = P(pilsWa - Wi) <n P(¢1(U, VP2 - - W) = P2 (U, V)W) <n (U, V)P(W).

ThereforeP(¢1(u, V)W) = 0 mod [S,, ¢1(u, V)P(W)]. This completes the induction. Henggu, v)P(w) =
0 mod [Sy], as needed.
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With a similar argument, we can show tH{(iv)¢.(u, v) = 0 mod [S,]. O
Lemma 5.7. There are no intersection compositions ip S

Proof. Let f,g € S,. By Lemmag5.3andfF.4, we have bref) = 1 = bre@). Supposev := fu =
Vg gives an intersection composition. Then by the definitiomtd@rsection composition, we have
1 < brefw) < 2. This is a contradiction. Thus there are no intersectiongasitions inS,. O

Lemma 5.8. The including compositions in,&re trivial.

Proof. We first list all possible inclusion compositions fromg € S,,, namely thosef,g € S,
such thaw := f = g5 for someq € R*.

We begin with the case when= x. Then we havev := f = . From Lemma§.3andb.3, we
must have

f=¢1(uv) =g orf=g¢y(uv) =g

Hencef — g is trivial modulo [S,, w], as needed.

We next consider the case whgr¢ *. We needf = gy whereT is of the formP(w) with
w = d(u)P(v), w = P(u)d(v) or w = uv while g is also of the formP(d(r)P(s)), P(P(r)d(s)) or
P(rs). Thusqis of the forms

P(A(p)P(V), P(d(W)P(p)). P(P(p)d(v)). P(P(u)d(p)). P(pv), P(up), P(d(u)x), P(xd(v)),

wherep € R* and where thex in p or by itself is replaced by which can be of the forms
P(d(r)P(s)), P(P(r)d(s)) or P(rs). Thus there are 24 possibilities. The last two cases inite d
played list occur when the in P(g) and theP in g coincide. Thus all the including compositions
f = glg with g # % are of the forms

P(d(plg) P(v)), P(d(u)P(plg)), P(P(plg)d(v)). P(P(u)d(plg)). P(plgv). P(uplg). P(d(u)*lg), P(x[gd(v)).

with g = P(d(r)P(s)), P(P(r)d(s)) or P(rs).
With a similar argument as iffL, Lemma 5.7], we can show the triviality of the ambiguities
of the compositions

P(d(W)P(pleamre))), PA(Pleamnpsy) P(V)), PA(W)P(d(r)P(s))), P(P(d(r)P(s))d(v)).
We next check that the ambiguity of the compositR{d(u) P(plprwdw))) is trivial. This is the

case whenw = f = gl whereq = P(d(u)P(p)) for somep € R;;. Thenf andg of S,, are of the
form

f = ¢1(u,v) = P(A(U)P(V)) — uP(v) + P(uv) + AP(d(u)v),
g = ¢o(r, s) = P(P(r)d(s)) — P(r)s+ P(rs) + AP(rd(9)),

wheref = P(d(u)P(v)) andg = P(P(r)d(s)). Furtherv = Ply = Plry = Plepmaey for some
p € R} and

w = T = ¢1(u,v) = P(d(u)P(v)) = P(d(u)P(plg)) = dlg = dlg
with q = P(d(u)P(p)) € Ry andq|y being normal. Then
f = ¢1(u, v) = P(A(U)P(pleeds))) — UP(Plrerdae)) + PUBR@Ends)) + APEW) Pleerds))
and

dlg = dlg,r.9 = PA(U)P(Plpep(racs))) — PA(U)P(plpgs)) + P(A(U)P(plegs)) + AP(A(U)P(Plprd(s)))-
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So we have
(f,9)w = f —dlg = = UP(Plrp(ryaes)) + PUPRRPErds)) + AP(A(U) Plperds))
+ P(d(U)P(plr(r)s)) — PA(U)P(plpes)) — AP(D(U)P(plpras)))-

From the definition o, (u, v) andg,(r, s), we have

—UP(plpp(nyd(s)) = —UP(Plg,(r.9) — UP(PlP(r)s) + UP(Plprs)) + AUP(PIp(rd(s)))s

P(Uplpprd(s)) = P(UPlg,(r.9) + P(UPRr)s) — P(UPp(s)) — AP(UPIPgd(s)),
AP(d(U) Plpp(rd(g)) = APAU) Plyy(r.g) + AP(A(U) Plpgrys) — APE(U)Plegrs)) — AP(d(U) Plpgrags))-
P(d(U)P(plpr)s)) = #1(U, plpgr)s) + UP(Plp(rys) — P(Uplprs) — AP(d(U) plp(r)s),
=Pd(U)P(plp(rs))) = —¢1(U, Plprs)) — UP(Plpers)) + P(Uplp(rs)) + AP(d(U)plp(rs)),

—AP(d(U)P(Plp(ra(s))) = —161(U, Plegacg)) — AUP(Plp(ra(s)) + APUPIPGd(s)) + AZPAU) plpgas))-
From Egs. 1) and £2), it follows that

(f, 9w = —UP(Plgy(r.9)+P(UPls,r.9) +APA(U) Plyyir.9) + 01 (U, Plprys) —P1(U, Plprs) —Ad1(U, Plrrd(s))-
By Lemma3.2, we have

UP( plqﬁz(r,s)), P(U plqﬁz(r,s)), P(d(U) p|¢2(r,s)) € Id(Sn)

(21)

(22)

and
#1(U, Plp(s), p1(U, Plpes)), d1(U, Plred(s)) € Sn S 1(Sy).
Since
UP(Plg,(r.9)> P(UPs,(r.9), PAU)Plsyer.g) <n @1(U, Ployr.g) = ¢1(U, V) =W
and

$1(U, Plpgys)s P1(U, Plpgs))s $1(Us Plpgacs)) <n d1(U, Plirg) = #1(U, V) = W,
we conclude thatf( g),, = 0 mod [S,, w].

Next, we check that the ambiguity of compositiB(P(u)d(dlp@npw))) is trivial. This is the
case whenv = f = gy for someq = P(P(u)d(p)) for somep € R;;. Then the two elementsand
g of S, are of the form

f = ¢o(u,v) = P(P(u)d(v)) — P(u)v + P(uv) + AP(ud(v)),
g = ¢1(r, 8) = P(d(r)P(s)) — rP(s) + P(rs) + AP(d(r)s),

wheref = P(P(u)d(v)) andg = P(d(r)P(s)). Thusv = Ply = Pl = Pleamegy for somep € Ry
and

w = f = ¢,(u,v) = P(P(u)d(v)) = P(P(u)d(ply)) = dlg = dlg

with g = P(P(u)d(p)) € R;; andq|y being normal. Then
f = ¢o(u,v) = P(P(U)d(plpwqryrcs))) — PW PlpErpe) + PUBp@rpee)) + APUA(Ple@mes)))
and
dlg = dlpar.9 = P(PUWA(pPleiyrcs))) — P(PU)d(plrps)) + P(P(W)d(plpgs))) + AP(P(U)d(ple@is))-
So we have
(f’ g)W =f - q|9
(23) = — P(U) plp(rypes) + PUPlp@rps)) + APUA(Plp@mes)))
+ P(P(U)d(plrps)) — P(P(U)d(plpgs))) — AP(P(U)d(plpers)-
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By the definition ofp,(r, s) and¢,(u, v), we have
—P(U)plrryp(s) = —PU)Plgy(r.9 — P(W)Plrp(s) + P(U)Plp(rs) + AP(U) Plp(r)s)s
P(uplp@(rpee)) = P(UPg,(r.s) + P(Uplkp(g) — PUPprs)) — AP(UPIP@()s)-
APUA(plp(()pig)) = APUA(Plg,(r.9)) + APUA(Plrp(s)) — APUA(Plpes))) — A2P(Ud(plpd()s))-
P(P(W)d(plrr(s))) = #2(U, Plrr(s) + P(U)Plrp(s — P(Uplrp(s) — APUA(pPlrp(s)),
—P(P(u)d(plp(rs)) = —¢2(U, plp(rs)) — P(U)plpgs) + P(UPlpes)) + AP(Ud(plp(rs))),
—AP(P(U)d(plr(d(s)) = —Ad2(U, Plr@ns) — APW PlpEns + APUPP@Ems) + AZPUd(pled()s))-
Then Eq. E3) becomes

(f, 9w = —P(U) Plyyr.9+PUPls, r.9) +APUA(Plyyr.9)) +B2(U, Plrpig)—¢2(U, Plprs) —AP2(U, Plrr)s)-
From Lemmd3.2, we have

P(U) p|¢1(r,s), P(U plqﬁl(r,s)), P(Ud( p|¢1(r,s))) € Id(Sn)

and
$2(U, Plrp(g), 2(U, Plpes), d2(U, Plrrs) € Sn S 1(Sy).
Since
P(U) plqﬁl(r,s), P(U p|¢1(r,s)), P(Ud(pl¢1(r,s))) <n ¢2(U, p|¢1(r,s)) = ¢2(U, V) =W
and

$2(U, Plrp(s), P2(U, Plpgs), $2(U, Plrams) <n d2(U, Plsrg) = #2(U, V) = w,

we have thatf, g), = 0 mod [S,,, w].
We last check the ambiguity of compositi&iple)e(s)V) is trivial. This is the case when
w=f = dlg: Wwhereq = P(pv) for somep € R;;. Thenf andg of S, are of the form

f = ¢1(Plpmpe)- V) = P(Plrampe)V) + PA(PlpErnpe)) P(V)) = Plearpe)P(Y) + AP(A(Plederpe))V)
g = ¢a(r, s) = P(d(r)P(s)) — rP(s) + P(rs) — AP(d(r)s),
wheref = P(plpqpe)V) andg = P(d(r)P(s)). Then
(f. 9w =f —dlg
(24) =P(d(plrwrype))P(V)) = Plrrpe)P(V) + APA(plp@mpes))V)
+ P(plipgV) = P(Plprs)V) — AP(PlpmeV)-

Since
P(d(plpwr)p)) P(V)) = P(A(Plsyr.9)P(V) + P((plrps)P(V)) — P(d(plpes) P(V)) — AP(d(plpwr)9) P(V))

—Plrmnpe)PV) = =Ployr.9P(V) = PlrpgP(V) + Plprs)P(V) + APl P(V)

AP(d(ple@mpsy)V) = APA(Plgyr.9)V) + APA(Plipeg)V) — AP((Plprs)V) — A2P(d(Plpms)V)
P(Plrp9V) = ¢1(Plp(g, V) — P(A(plrps) P(V)) + PlrpgP(V) — AP(d(plrp(s)V)
—P(plprs)V) = —d1(Plpes)> V) + P(d(plprs)) P(V)) — Plers)P(V) + APA(plp¢s)V)

—AP(plengV) = —A81(Plens- V) + APA(Plens) P(V) — APleens P(V) + A2P(d(Plri9)V),
Eqg. €4) becomes
f—alg = P(A(Plyy(r.9) P(V))—Plo.(r.9 P(V)+AP(A(Ply.(r.9)V)+P1(Plrp(s), V) =P1(Plp(rs) V)~ A¢1(Plers)» V)-
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From Lemmd3.2, we have
P(d(Ply,(r.9) P(V)), Plgyr.9 P(V), PA(Plyyr.9)V) € 1d(Sn)

and
d1(Plrpss V), d1(Plees)s V), #1(Ple@ngs V) € Sn € 1d(Sy).
Since _
P(d(plqﬁl(r,s))P(V)), p|¢1(r,s) P(V)’ P(d(p|¢1(r,s))v) <n P(p|¢1(r,s)v) =f=w
and

B1(Plre(» V)» 1(Plers) V)s #1(Pleemngs V) <n #1(Pledmpe), V) = dlg = W,
we have that{, g), = 0 mod [S,, W].
With a similar argument, we can show the triviality of the agulities of the other composi-
tions. O

By Lemmadb.§, b.1andp.g, it follows immediately that

Theorem 5.9.S, is a Grobner-Shirshov basis kiR,,. Hencdrr(S,) in Theorenf.12is ak-basis
of KRn/1d(Sy).

5.2. Bases for free integro-dfferential algebras. We next identify IrrS,)) and thus obtaining a
canonical basis R, /1d(S,).

For anyu,ve M(A,X), letu=u;---upandv=vy---vpwithu,v; e AX,1<i<{,1<j<m
Note that, by the definition of,,, we have

£<m,

He Ve { or¢=mand3l < iy < £ such thau, = v; for 1 < i < ig andu;, < Vi,

We now introduce the key concept to identify Brj.

Definition 5.10. For anyu € M(AX), u has a unique decomposition
U= Uy-- U, Whereug, - ,Uc € AX.
Call u functional if eitheru = 1 oru, € X. Write
A :={ue M(AX)|uis functional}, An¢ := A N M(AnX)) andAs := kAs.
Lemma 5.11. M(AX) = Ag L As and M(ARX) = Apg L At
Proof. First we show thatdq N A; = 0. Letd(u) € Ag with u € S(AX). Supposeu =
Uo- - - Ug, Whereug,---,U¢ € AX. Then by Lemmds.2, we haved(u) = up---Uc1d(uy). So

d(u) ¢ A:. Next we show thaM(AX) = Aq U As. Letu € M(AX) \ A;. From the defini-
tion of being functional, we may suppose that

U= Ug---Uc_1Ux, Whereug,--- ,u.1 € AX U e AX\ X
Supposey = x© for somex € X and¢ > 1. Letv = up- - - U1 XD, By Lemmap.2, we have
u = d(v) € Aq. HenceM(AX) = Aq LI As.
SinceM(AX) € M(AX) andM(AX) = Aq U A¢, we have thaM(AX) = Ang U Ans- O

We now give the notion to identify the canonical basi«®{AX)/1,4. Write Aﬁ’f = Ans \{1}.

Definition 5.12. Let B(A,X) denote the subset 6f, consisting of thos& € R, with
(@) if whas a subworé(u;u,P(uz)) with uy, us € R, andu, € S(A,X), thenu, is in Aﬂ’f;
(b) if whas a subword(P(u;)u,uz) with ug, u, € R, andus € S(A,X), thenusz is in Aﬂ’f.
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The subsefR,, can be defined by the following recursion based on the obenviat restric-
tions on an element i®(A,X) is imposed only to its subwords insiéke

For a nonempty set and nonempty subsets andV of Mi(Y), define the following subset of
AU, V):

N(U,V) = (U(u P(V))'U) g (U(u P(V))' A7 P(V)]

r>0 r>0

9 (U(P(V)U)r P(V)AL P(V>) 9 [U(P(V)U)rp(vmﬁ,f) .

r>0 r>0

We define a sequendg,, := B(AX)m, m > 0, by taking
Bo 1= By = M(AnX),
and form > 0, recursively defining
B := A(S(AX), B, Brovs i= A (S(ARX), B}
Then3B,, m> 0, define an increasing sequence and we define
B(AnX) = IiLn Bm = UnsoBm.
Proposition 5.13. We have
Ir(Sn) = B(AX) \ {dls| 0 € Ry, s € €(AnX) and dsis normal }.

Proof. By Theorem¢$f.12andF.9, we have

Im(Sn) = Ra'\ {dl
By Propositior.j, we have
{61(0.V), 8200 V) | U,V € Rn} = P(RAngP(Rn)) U P(P(Ro)RnAng) U €(AnX).

The first and second union components correspond to réstisdmposed in itemi) and[b] of
Definition[5. 12 respectively.

B(AnX) = Rn\ {dls |0 € R%. S € P(RpAnaP(Rn)) U P(P(Rn)RnAAna). s is normal .
Thus we have

qe Ry, se€ {¢1(U, V), 2(U, V) |u,v e fRn} andq|s is normal}.

Irr(Sn) = B(AX) \ {q|S |q € R}, se e(AnX) andq|s is normal},
and the proposition follows. m|
Let
(25) S = {¢1(u, V), ¢2(u, V) | u, v € R(AX)}

be the set of generators corresponding to the integratiopablg axiom Eq.[d). Then, with a
similar argument to Eql), we haved(S) C S.

Lemma 5.14. Let Ip, (resp. Ip) be the djferential Rota-Baxter ideal dtXR,, (resp. kR(AX))
generated by $(resp. 9. Then ak-modules we havepl; C lip2 € -+ C lip = Ups1lipn @and
||D’n = ||D ﬂ kiRn.
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Proof. SinceS,, € Sp,; andk®R, € kR, for anyn> 1, we havelp; C lpe C --- andlp =
Uns1lip.n. We next showp , = I)p NkR,. Obviously,lip» C I)p NkXR,. So we only need to verify
lip N KR, C lip . By Theorenf.9, we havekR, = Kklrr(S;) @ lipa. Alsoklrr(Sy) € kirr(Sy) €

. Letn > 1 andk > 0. Sinceklrr(Sy.x) N lipnik = 0 andklrr(Sy) € kirr(Spik), we have
Kirr(Sp) N lipnek = 0. Sincelpn € lip nsk, DY the modular law we have

(26) I|D,n+k N kRn = I|D,n+k N (klrr(sn) @ IID,n) = (IID,n+k N klrr(sn)) @ IID,n = IID,n-

Letu € Iip NKR,. By lip = Ups1lipn, We haveu € Ipy for someN € Z,;. If N > n, then
uelpnNkR,=IlpnbyEqg. £8). If N<n,thenue lpy C lipn. Hencelp N kR, C Iip, and
solp N kfRn = |ID,n- O

Still assuming thak is finite, we define
R(AX)¢ := lim B(AX).

Write A9 := A¢ \ {1}. Then by Definitior5-12, R(AX) € R(AX) consists ofv € R(AX) with the
properties that

(a) if whas a subworé(u;u;P(uz)) with uy, uz € R(AX) andu, € S(AX), thenu, is in A%,

(b) if whas a subwor@(P(u;)u,Us) with uy, U, € R(AX) andus € S(AX), thenug is in A?.

Now we are ready to prove the main result of this paper.
Theorem 5.15.Let X be a nonempty well-ordered sk®R(AX) the free dfferential Rota-Baxter
algebra on X and} the ideal ok R(AX) generated by S defined in EfHJ. Then the composi-
tion

KR(AX)t — KR(AX) — KR(AX)/l\p

of the inclusion and the quotient map is a linear isomorphisnother words, ag-modules

Proof. First assume that is a finite ordered set. By Theorgfl2and Lemmé.14we have
Kirr(Sp) = kKRn/lipn = KRn/(Iip NkR,) = (KRy + 11p)/11p
From Propositiofp.T3we have
B(AnX) = I1(Spi1) = B(Ani1X).
Thus whem goes to infinity, we have_}lirﬂB(AnX) = IiLn Irr(Sp). Therefore we have

KR(AX)¢ = lim (kB(AnX)) = lim (KIrr(Sy)) = lim ((kRn + 1p)/11p) = kKR(AX)/lip,

since limR,, = R(AX).

Now let X be a given nonempty well-ordered set amde kR(AX). Then there is a finite
orderedsubsety C X such thatu is in kR(AY). Then by the case of finite sets proved above,
u € kR(AY)s + lypp. By definition, we havekR(AY)s € kR(AX); andlyp < Ip. Hence
u € kKR(AX)¢ + lip. This provekR(AX) = KR(AX)¢ + Ip.

Further, if 0# uis in I p, then there is a finite ordered sub¥ett X such thatu is in lyp.
Thusu ¢ KR(AY); sincekR(AY)s N lyp = 0. By the definition okR(AX)¢, we havekR(AY) N
kKR(AX)t = kR(AY)¢. Thereforeu ¢ KR(AX)¢. This provekR(AX) = kR(AX)s & Ixp - m|
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